References

[1] J.R.Wolpaw, D.J. McFarland, G.W. Neat and C.A. Forneris, “An EEGbased brain-computer interface for cursor control,” Electroencephalographic Clinical Neurophysiology, vol. 78, no. 3, pp. 252–9, March 1991.

[2] C. Guan, M. Thulasidas, and J. Wu, “High performance P300 speller for brain-computer interface,” Biomedical Circuits and Systems, 2004 IEEE International Workshop, December 2004.

[3] A. Karim, T. Hinterberger, and J. Richter, “Neural Internet: Web Surfing with Brain Potentials for the Completely Paralyzed,” Neurorehabilitation and Neural Repair, vol. 20, no. 4, pp. 508–515, 2006.

[4] J. Millán, F. Renkens, J. Mouriño and W. Gerstner, “Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, June 2004.

[5] T. Luth, D. Ojdanic, O. Friman, O. Prenzel, and A.Grser, “Low level control in a semi-autonomous rehabilitation robotic system via a Brain- Computer Interface,” 2007.

[6] B. Rebsamen, C. Teo, Q. Zeng, M. Ang, E. Burdet, C. Guan, H. Zhang, and C. Laugier, “Controlling a Wheelchair Indoors Using Thought,” IEEE Intelligent Systems, vol. 07, pp. 1541–1672, 2007.

[7] A. Ferreira, W.C. Celeste, F.A. Cheein, T.F. Bastos-Filho, M. Sarcinelli-Filho and R. Carelli, “Human-machine interfaces based on EMG and EEG applied to robotic systems,” Journal of NeuroEngineering and Rehabilitation, pp. 5–10, 2008.

[8] C. Bell, P. Shenoy, R. Chalodhorn, and R. Rao, “An Image-based Brain-Computer Interface Using the P3 Response,” Neural Engineering, 2007. CNE ’07. 3rd International IEEE/EMBS Conference on, pp. 318–321, 2007.

[9] M. Nicolelis, “Monkey Brains In U.S. Make Robot Walk In Japan,” The New York Times, Jan 2008.

[10] S. Patel and P. Azzam, “Characterization of N200 and P300: Selected Studies of the Event-Related Potential,” International Journal of Medical Sciences, pp. 147–154, October 2005.

[11] D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw, “A comparison of classification techniques for the P300 Speller,” Journal of Neural Engineering, vol. 3, pp. 299–305, Dec. 2006.

[12] G. Shalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw, “BCI2000: A General-Purpose Brain-Computer Interface (BCI) System,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, May 2004.

[13] L.A.Farwell and E.Donchin, “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials,” EEG Clinical Neurophysiology, vol. 70, no. 6, pp. 510–23, 1988.

[14] L. Montesano, J. Minguez, and L. Montano, “Lessons learned in integration for sensor-based robot navigation systems,” International Journal of Advanced Robotic Systems, vol. 3, no. 1, pp. 85–91, 2006.

[15] ——, “Modeling dynamic scenarios for local sensor-based motion planning,” Autonomous Robots, 2008.

[16] A. Ranganathan and S. Koenig, “A reactive architecture with planning on demand,” in International Conference on Robotics and Automation, Las Vegas, Nevada, 2003, p. 14621468.

[17] J. Minguez and L. Montano, “Nearness Diagram (ND) Navigation: Collision Avoidance in Troublesome Scenarios,” IEEE Transactions on Robotics and Automation, vol. 20, no. 1, pp. 45–59, 2004.

[18] I. Iturrate, J. Antelis, and J. Minguez, “Non-Invasive Brain-Actuated Wheelchair based on a P300 Neurophysiological Protocol and Automated Navigation,” IEEE Transactions on Robotics, 2009.

[19] L. Montesano, J. Minguez, M. Diaz, and S. Bhaskar, “Towards an Intelligent Wheelchair System for Cerebral Palsy Subjects,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009.

[20] S. Mason, J. Kronegg, J. Huggins, M. Fatourechi, and A. Schlgl, “The Self-Paced Graz Brain-Computer Interface: Methods and Applications,” Neil Squire Society, Vancouver, Canada, Tech. Rep., 2006.

[21] T. J. Sejnowski, G. Dornhege, J. del R. Millán, T. Hinterberger, D. J. McFarland, and K.-R. M¨uller, Toward Brain-Computer Interfacing (Neural Information Processing). The MIT Press, 2007.