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Introduction

m Unpatched apps can be exploited via 3rd-party program dependencies

m Static linking vs. dynamic linking

B Static linking includes all library dependencies in the binary
B Complicates updates (and security)

B Dynamic linking, in contrast, relies on external libraries that are linked at runtime
B Makes updates easier, but introduces runtime dependency risks

STATIC VS. DINAMIC LINKING
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Malware developers exploit static linking to guarantee compatibility
between platforms (e.g., loT devices, Linux-based systems)
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Introduction
Binary code analysis in statically-linking binaries

How do we identify malware-related functions?

Challenges

m Binary size increased
m Difficult to update libraries

m Lack of high-level abstractions in binary code
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Introduction
Binary code analysis in statically-linking binaries

How do we identify malware-related functions?

Challenges

m Binary size increased

m Difficult to update libraries

Lack of high-level abstractions in binary code

m Mix of malware and third-party binary code

Compiler settings impact binary code generation: more complex code
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Introduction
Contributions and results

MANTILLA
m A system to identify runtime libraries in statically linked Linux binaries

m Static analysis using features such as cyclomatic complexity, number of
arguments, and entropy

m Machine learning (KNN) for classifying binaries by runtime library

m Evaluation results:

B High accuracy in identifying runtime libraries and architecture (up to 98.6% on loT
malware)

B Good performance on real-world loT malware with diverse runtime libraries (uClibc,
glibc, musl)

m MANTILLA and dataset released for open science under the GNU/GPLv3

B Source code: https://github.com/reverseame/MANTILLA
B Dataset: https://zenodo.org/records/7991325
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Agenda

MANTILLA: System Overview and Description

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 8/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description

Overview

Two-phase workflow

m Feature extraction phase: extract features using static binary analysis
(agnostic to architecture)

m Prediction phase: use KNN-based supervised learning to predict the
runtime library

B Classify the runtime library using KNN and majority voting
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MANTILLA: System Overview and Description
System Workflow Overview

MANTILLA
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MANTILLA: System Overview and Description
Extracted features (using radare?2)

Cyclomatic complexity metric, CC(f;)

Size (in bytes) of the function, S(f))

Reserved stack space, SS(f;)

Number of basic blocks, BB(f;)

Number of edges, E(f;)

B Number of individual instructions in the function, I(f;)

Number of arguments the function takes, A(f;)
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MANTILLA: System Overview and Description
Extracted features (using radare?2)

H Computational cost of the function, C(f;)

Bl Number of extended basic blocks, EBB(f;)

Whether the function has an explicit return or not, noret(f;)
Number of local variables declared within the function, L(f;)
Entropy of the bytes that make up the function, or H(f;)

Number of calls to other functions

B Number of function calls made within the function (Ciotal (f;))
® Number of unique functions called by the function (Cynique (f;))

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 12/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
KNN-Based runtime library prediction

KNN algorithm

m For a new data point d, KNN finds the K closest examples

m Classifies d according to the most frequent label among the nearest
neighbors
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MANTILLA: System Overview and Description
KNN-Based runtime library prediction

KNN algorithm

m For a new data point d, KNN finds the K closest examples

m Classifies d according to the most frequent label among the nearest
neighbors

m In our system, predictions are aggregated using majority voting to determine
the final predicted library kg for the entire binary
m Advantages of KNN:

B Distance metric inherent to KNN allows discarding distant functions from the prediction
B Our system is extensible to other clustering models (e.g., DBScan, K-means)
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MANTILLA: System Overview and Description
Threat model

Evasion techniques

m Adversaries may use obfuscation, packing, or junk code

m Mitigation: robust feature extraction, focusing on intrinsic properties of the
binary

Adversarial machine learning attacks

m Adversaries may create adversarial samples to deceive the KNN classifier

m Mitigation: model validation, periodic updates, and adversarial training
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MANTILLA: System Overview and Description
Threat model

Incompleteness or inaccuracy of extracted features

m Errors in feature extraction by radare2 may lead to incorrect predictions

m Mitigation: verification processes and use of multiple binary analysis tools
to cross-check features

Model drift and outdated training data

m New malware techniques may not be represented in training data

m Mitigation: Regular model updates and performance degradation detection

Limited scope

m The system may struggle to identify newer or less common runtime libraries.

m Mitigation: expand supported libraries and add new libraries through an
update mechanism
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Dataset
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Dataset
Generation of ground truth

Focus on C programming language (due to its popularity in malware)
Toolchains created for various CPU architectures:
B MIPSeb, ARMel, Intel x86, Intel x86-64

Multiple runtime libraries considered: uClibc, glibc, musl

Compilation with buildroot and gcc 10.2.1

B Collection of algorithms from “TheAlgorithm” repository
B Optimization options (specifically, 00, 01, 02, 03, and 0s)

m Dataset of 13,800 statically linked, unstripped binaries

Public release of the dataset for further research:
https://zenodo.org/records/7991325
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Dataset
Generation of ground truth

Preprocessing steps

Extract functions used by the programmer using cflow
Disassemble binaries and remove standard C library functions

Retain external and static functions, excluding internal and library functions

Output: Features of non-discarded functions, labeled by architecture,
runtime library, and compiler
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Experiments and Results
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Experiments and Results
Evaluation metrics

m Precision = TP
- TP+FP
TP
Recall = ———
e TP AN

Precision - Recall
Precision + Recall
TP+ TN
TP+ TN+ FP + FN

m F1-Score =2

m Accuracy =
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Experiments and Results
Experiments performed

m Validation

Feature importance
m Evaluation on stripped binaries

m Architecture distinction

Compiler and runtime library recognition

All experiments use 5-fold cross-validation and are run with Python3
and Sklearn on a Debian 11 machine
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Experiments and Results
Sensitivity of KNN hyperparameters
m Number of neighbors: k = {1,...,10}

m Distance metrics: Euclidean, Manhattan, and Minkowski distances

m All results are very similar, no significant differences between them

—@— Precision

—¥— Recall
—— Fl-Score

851 —8— Accuracy

Percentage (%)

651

1 2 3 4 5 6 7 8 9
Number of Neighbours (k)

(results before applying the majority voting rule for the final prediction)
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Experiments and Results
Sensitivity of KNN hyperparameters

Confusion matrix

arm_glibc_gec

arm _musl_gec

arm_uclibe_gec

mips_glibe_gee

mips musl gec

mips_uclibc_gec

True label

X86-64_glibc_gee

x86-64_musl_gec

x86-64_uclibc_gcc

x86_glibc_gee

x86_musl_gec

x86_uclibc_gcc

Predicted label
accuracy=0.8696; misclass=0.1304
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Experiments and Results

Feature importance — Permutation importance technique

m Evaluates the importance of each feature by permuting its values and
measuring the impact on model performance

Weight o Feature
0.6581 0.0030 S(f) (size)
0.5621 0.0034 C(f)) (cost)
0.4239 0.0025 SS(f;) (stackframe)
0.3796 0.0031 I(f;) (ninst)
0.1349 0.0017 E(f;) (edges)
0.0597 0.0004 H(f,) (entropy)
0.0356  0.0009 BB(f;) (nbbs)
0.0349 0.0020 A(f) nargs)
0.0227  0.0011 CC(f) (c

0.0191 0.0021 L(f )(nlocals)
0.0110 0.0013 Ciotal(fi) (outdegree)
0.0022 0.0003 EBB(f;) (ebbs)
0.0005 0.0013  Cunique(fi) (unique outdegree)
0.0004 0.0003 noret(f;) (noreturn)
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Experiments and Results
Accuracy of MANTILLA on stripped binaries

Experiment overview

Stripped and unstripped versions of binaries from the ground truth dataset

m Cross-validation with 80% training and 20% testing
m MANTILLA is trained with unstripped binaries, and tested on stripped ones

m KNN distances are used for prediction, with a threshold d to filter out
unrelated functions

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 25/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Accuracy of MANTILLA on stripped binaries — results

Percentage (%)

Percentage (%)
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Distance (d)
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Experiments and Results
Architecture distinction

m The system identifies the architecture with very high accuracy before
applying majority voting

m Misclassifications mainly occur between different runtime libraries within the
same architecture

m The first misclassification occurs with k = 3, d = 3, where 19% of
x86-64_uclibc_gcc binaries are misclassified as x86-64_glibc_gcc

Architecture identification is highly accurate, even before voting
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Experiments and Results
Compiler provenance — results

m Added Clang (version 11.0.1-2) to the toolchain for Intel x86 and Intel
x86-64 with glibc

m Dataset extended by 2,300 binaries

m Removed duplicate functions during training to avoid overfitting and reduce
computational load

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 28/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance — results

Predicted label Precision Recall F1-Score

x86-64_glibc_clang 0.56 0.47 0.51
x86-64_glibc_gcc 0.54 0.62 0.58
x86_glibc_clang 0.54 0.47 0.50
x86_glibc_gcc 0.53 0.60 0.56
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Experiments and Results
Compiler provenance — results

m Compiler prediction accuracy is low, around 50%

m Both gcc and Clang use the same runtime library (glibc), leading to similar
or identical neighbor distances

m Prediction performance depends on the order of training data, causing
inconsistent results

Conclusion

m MANTILLA is not effective for determining the compiler used to compile a
binary when both compilers use the same runtime library
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Limitations
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Limitations

Construct validity

m Controlled experiments were conducted to adjust the system and measure
evaluation metrics

m No issues identified in the experimental study design

Internal validity

m Third-party binary analysis tools (e.g., radare2) to extract features

m Accuracy of features influenced by the assumptions of these tools
(e.g., instruction or function boundaries)

m Easy interchangeability of feature extraction component
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Limitations

KNN model considerations

m KNN is sensitive to the order of the training data when distances are tied,
mitigated by K-fold cross-validation

m KNN is sensitive to high-dimensional data, addressed by limiting features to
those common across architectures

m Sensitivity to the distance threshold in the voting phase, tested to assess
performance under various settings
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Limitations

m Tailored for binaries in the C programming language: errors likely to occur
with binaries from other languages

m Statically linked binaries compiled on GNU/Linux systems

m Accuracy may decrease with obfuscated or packed binaries
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Limitations

m Tailored for binaries in the C programming language: errors likely to occur
with binaries from other languages

m Statically linked binaries compiled on GNU/Linux systems

m Accuracy may decrease with obfuscated or packed binaries

Extensibility

m Can be extended to other operating systems and platforms

m Future work includes additional hardware architectures (e.g., PowerPC,
SPARC)

m Other C runtime libraries (e.g., bionic, dietlibc) were not considered, but
can be added
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B Related Work
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Related Work

Compiler provenance

m Early work by Rosenblum et al. uses CRF to identify compiler families

m BinComp performs syntactic, structural, and semantic analysis using the
Jaccard coefficient for function similarity

m FOSSIL identifies free/open-source software (FOSS) packages and compiler
provenance in real-world binaries

m HIMALTA uses RNNs for identifying optimization levels in binaries

m Vestige uses graph neural networks for provenance identification
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Related Work

Compiler provenance

m Early work by Rosenblum et al. uses CRF to identify compiler families

m BinComp performs syntactic, structural, and semantic analysis using the
Jaccard coefficient for function similarity

m FOSSIL identifies free/open-source software (FOSS) packages and compiler
provenance in real-world binaries

m HIMALTA uses RNNs for identifying optimization levels in binaries

m Vestige uses graph neural networks for provenance identification

Authorship attribution

m OBA2 detects software library functions based on syntax/semantics
m BinAuthor filters out compiler-related features

m BinChar uses CNNs, based on structural/semantic features

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 36/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Library function identification

m IDA Pro FLIRT forms signatures for recognizing library functions

m BinHash uses semantic hash functions to detect function similarities
m libv uses subgraph isomorphism for library function identification

m discovRE applies maximum common subgraph isomorphism

m Genius detects similar functions using high-level features for loT firmware

BinShape identifies library functions with robust signatures
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Related Work

Library function identification

m IDA Pro FLIRT forms signatures for recognizing library functions

m BinHash uses semantic hash functions to detect function similarities

m libv uses subgraph isomorphism for library function identification

m discovRE applies maximum common subgraph isomorphism

m Genius detects similar functions using high-level features for loT firmware

m BinShape identifies library functions with robust signatures

Machine learning approaches

m Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing
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Related Work

Library function identification

m IDA Pro FLIRT forms signatures for recognizing library functions

m BinHash uses semantic hash functions to detect function similarities

m libv uses subgraph isomorphism for library function identification

m discovRE applies maximum common subgraph isomorphism

m Genius detects similar functions using high-level features for loT firmware

m BinShape identifies library functions with robust signatures

Machine learning approaches

m Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing

Comparison with our work:
m Focus on identifying runtime libraries, not binary similarity

m Most related work focuses on function libraries and compiler analysis, not
runtime libraries
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Agenda

Conclusions and Future Work
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Conclusions and Future Work

Conclusions

m MANTILLA: a system for identifying runtime libraries in statically linked ELFs

B Analyzes binary files, extracting architecture-independent features via r2, and uses KNN
with majority voting for predictions

m Evaluations with cross-validation show high accuracy, with improved results
using relaxed distance thresholds and higher K values

B 94.4% accuracy on binutils
B 95.5% accuracy on loT malware datasets

m Achieved 100% and 98.6% accuracy for predicting binary architecture

Future Work

m Support additional architectures, operating systems, and runtime libraries

m Provide it as a web service for integration into third-party analysis workflows
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