|dentifying Runtime Libraries in
Statically Linked Linux Binaries

Javier Carrillo-Mondéjar, Ricardo J. Rodriguez
© All wrongs reversed — bajo licencia CC BY-NC-SA 4.0

rjrodriguez@unizar.es % @RicardoJRdez x www.ricardojrodriguez.es

Universidad
Zaragoza

Dpto. de Informatica e Ingenieria de Sistemas
Universidad de Zaragoza

@@@@I NoConName 2024 (Barcelona, Spain)
B e e e IO

sincibe_

NSTITUTO NACIONAL DE CIBERSEGURIDAD



mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

m Associate Professor (PTU) @ UNIZAR
m Research lines:

B Software and application security

W Digital forensics

B System security

B Formal methods applied to cybersecurity

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24  2/40


https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/

$whoami

m Associate Professor (PTU) @ UNIZAR
m Research lines:

B Software and application security

W Digital forensics

B System security

B Formal methods applied to cybersecurity

m Research team - P G ol ©

B https://reversea.me
B https://twitter.com/reverseame/
B https://t.me/reverseame

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24  2/40


https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/

$whoami $whoarewe

https://reversea.me/index.php/people/

Faculty Master & Bachelor Students
Technical Staff

258 g°829 %

Miguel Moriente Alsin Villsgrasa
(Scstudent) (BScstudent)
Dr. Ricardo J. Rodriguez Dr. Javier Carrillo-Mondéjar Dr. José Roldin-Gomez udent et
Dol WU denyy DanilLastanao  Leon Abascal Pablo Ruiz
PostDoc Staff Internships
Lo Zineb Helali
O Danielroz
PhD Students Administrative Staff Visitors
Aitons.da Siia (UFAM, Brazi)
{August toNovember 2018]
[September 2021 to March 2022]
Razvan Raducu TomssPelavo Vigiia Giménes
Zaragoza

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 3/40


https://reversea.me/index.php/people/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

Introduction

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24  4/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

m Unpatched apps can be exploited via 3rd-party program dependencies

m Static linking vs. dynamic linking

B Static linking includes all library dependencies in the binary
B Complicates updates (and security)

B Dynamic linking, in contrast, relies on external libraries that are linked at runtime
B Makes updates easier, but introduces runtime dependency risks

STATIC VS. DINAMIC LINKING

YU SHOULD STOP
USING WHATEVER
You FIND LYING
AROUND

_ &
@\“

MONKEYUSER.COM

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24

5/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

m Unpatched apps can be exploited via 3rd-party program dependencies

m Static linking vs. dynamic linking

B Static linking includes all library dependencies in the binary
B Complicates updates (and security)

B Dynamic linking, in contrast, relies on external libraries that are linked at runtime
B Makes updates easier, but introduces runtime dependency risks

STATIC VS. DINAMIC LINKING

40U SHOULD STOP
USING WHATEVER
40U FIND LYING
AROUND

r

€
Q
)

MONKEYUSER.COM

Malware developers exploit static linking to guarantee compatibility
between platforms (e.g., loT devices, Linux-based systems)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 5/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Binary code analysis in statically-linking binaries

How do we identify malware-related functions?

Challenges

m Binary size increased
m Difficult to update libraries

m Lack of high-level abstractions in binary code

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 6/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Binary code analysis in statically-linking binaries

How do we identify malware-related functions?

Challenges

m Binary size increased

m Difficult to update libraries

Lack of high-level abstractions in binary code

m Mix of malware and third-party binary code

Compiler settings impact binary code generation: more complex code

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 6/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Contributions and results

MANTILLA
m A system to identify runtime libraries in statically linked Linux binaries

m Static analysis using features such as cyclomatic complexity, number of
arguments, and entropy

m Machine learning (KNN) for classifying binaries by runtime library

m Evaluation results:

B High accuracy in identifying runtime libraries and architecture (up to 98.6% on loT
malware)

B Good performance on real-world loT malware with diverse runtime libraries (uClibc,
glibc, musl)

m MANTILLA and dataset released for open science under the GNU/GPLv3

B Source code: https://github.com/reverseame/MANTILLA
B Dataset: https://zenodo.org/records/7991325

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24  7/40


https://github.com/reverseame/MANTILLA
https://zenodo.org/records/7991325
https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

MANTILLA: System Overview and Description

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 8/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description

Overview

Two-phase workflow

m Feature extraction phase: extract features using static binary analysis
(agnostic to architecture)

m Prediction phase: use KNN-based supervised learning to predict the
runtime library

B Classify the runtime library using KNN and majority voting

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 9/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
System Workflow Overview

MANTILLA
@ FEeATURE EXTRACTION PHASE @ PREDICTION PHASE
FoSsesTTes x(h) — ” 1
x(f)

910001. . ] X(Fj (fi,h)

090100. . | el (f2, It) .
100001. . | .144 E’Y\g,;}—' e K (b’ Iflﬂa|)
000011. . | (> Im)

Binary file b Feature vectors x(f;) N Predicted - Majority Final
i i i): prediction model  values ' prediction
(statically linked) Vheb.ic(l... N voting

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 10/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Extracted features (using radare?2)

Cyclomatic complexity metric, CC(f;)

Size (in bytes) of the function, S(f))

Reserved stack space, SS(f;)

Number of basic blocks, BB(f;)

Number of edges, E(f;)

B Number of individual instructions in the function, I(f;)

Number of arguments the function takes, A(f;)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 11/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Extracted features (using radare?2)

H Computational cost of the function, C(f;)

Bl Number of extended basic blocks, EBB(f;)

Whether the function has an explicit return or not, noret(f;)
Number of local variables declared within the function, L(f;)
Entropy of the bytes that make up the function, or H(f;)

Number of calls to other functions

B Number of function calls made within the function (Ciotal (f;))
® Number of unique functions called by the function (Cynique (f;))

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 12/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
KNN-Based runtime library prediction

KNN algorithm

m For a new data point d, KNN finds the K closest examples

m Classifies d according to the most frequent label among the nearest
neighbors

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 13/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
KNN-Based runtime library prediction

KNN algorithm

m For a new data point d, KNN finds the K closest examples

m Classifies d according to the most frequent label among the nearest
neighbors

m In our system, predictions are aggregated using majority voting to determine
the final predicted library kg for the entire binary
m Advantages of KNN:

B Distance metric inherent to KNN allows discarding distant functions from the prediction
B Our system is extensible to other clustering models (e.g., DBScan, K-means)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 13/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Threat model

Evasion techniques

m Adversaries may use obfuscation, packing, or junk code

m Mitigation: robust feature extraction, focusing on intrinsic properties of the
binary

Adversarial machine learning attacks

m Adversaries may create adversarial samples to deceive the KNN classifier

m Mitigation: model validation, periodic updates, and adversarial training

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 14/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Threat model

Incompleteness or inaccuracy of extracted features

m Errors in feature extraction by radare2 may lead to incorrect predictions

m Mitigation: verification processes and use of multiple binary analysis tools
to cross-check features

Model drift and outdated training data

m New malware techniques may not be represented in training data

m Mitigation: Regular model updates and performance degradation detection

Limited scope

m The system may struggle to identify newer or less common runtime libraries.

m Mitigation: expand supported libraries and add new libraries through an
update mechanism

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 15/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

Dataset

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 16/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Dataset
Generation of ground truth

Focus on C programming language (due to its popularity in malware)
Toolchains created for various CPU architectures:
B MIPSeb, ARMel, Intel x86, Intel x86-64

Multiple runtime libraries considered: uClibc, glibc, musl

Compilation with buildroot and gcc 10.2.1

B Collection of algorithms from “TheAlgorithm” repository
B Optimization options (specifically, 00, 01, 02, 03, and 0s)

m Dataset of 13,800 statically linked, unstripped binaries

Public release of the dataset for further research:
https://zenodo.org/records/7991325

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 17/40


https://zenodo.org/records/7991325
https://creativecommons.org/licenses/by-nc-sa/4.0/

Dataset
Generation of ground truth

Preprocessing steps

Extract functions used by the programmer using cflow
Disassemble binaries and remove standard C library functions

Retain external and static functions, excluding internal and library functions

Output: Features of non-discarded functions, labeled by architecture,
runtime library, and compiler

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 18/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

Experiments and Results

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 19/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Evaluation metrics

m Precision = TP
- TP+FP
TP
Recall = ———
e TP AN

Precision - Recall
Precision + Recall
TP+ TN
TP+ TN+ FP + FN

m F1-Score =2

m Accuracy =

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 20/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Experiments performed

m Validation

Feature importance
m Evaluation on stripped binaries

m Architecture distinction

Compiler and runtime library recognition

All experiments use 5-fold cross-validation and are run with Python3
and Sklearn on a Debian 11 machine

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 21/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Sensitivity of KNN hyperparameters
m Number of neighbors: k = {1,...,10}

m Distance metrics: Euclidean, Manhattan, and Minkowski distances

m All results are very similar, no significant differences between them

—@— Precision

—¥— Recall
—— Fl-Score

851 —8— Accuracy

Percentage (%)

651

1 2 3 4 5 6 7 8 9
Number of Neighbours (k)

(results before applying the majority voting rule for the final prediction)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez]

19/11/24  22/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Sensitivity of KNN hyperparameters

Confusion matrix

arm_glibc_gec

arm _musl_gec

arm_uclibe_gec

mips_glibe_gee

mips musl gec

mips_uclibc_gec

True label

X86-64_glibc_gee

x86-64_musl_gec

x86-64_uclibc_gcc

x86_glibc_gee

x86_musl_gec

x86_uclibc_gcc

Predicted label
accuracy=0.8696; misclass=0.1304

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 23/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results

Feature importance — Permutation importance technique

m Evaluates the importance of each feature by permuting its values and
measuring the impact on model performance

Weight o Feature
0.6581 0.0030 S(f) (size)
0.5621 0.0034 C(f)) (cost)
0.4239 0.0025 SS(f;) (stackframe)
0.3796 0.0031 I(f;) (ninst)
0.1349 0.0017 E(f;) (edges)
0.0597 0.0004 H(f,) (entropy)
0.0356  0.0009 BB(f;) (nbbs)
0.0349 0.0020 A(f) nargs)
0.0227  0.0011 CC(f) (c

0.0191 0.0021 L(f )(nlocals)
0.0110 0.0013 Ciotal(fi) (outdegree)
0.0022 0.0003 EBB(f;) (ebbs)
0.0005 0.0013  Cunique(fi) (unique outdegree)
0.0004 0.0003 noret(f;) (noreturn)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 24/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Accuracy of MANTILLA on stripped binaries

Experiment overview

Stripped and unstripped versions of binaries from the ground truth dataset

m Cross-validation with 80% training and 20% testing
m MANTILLA is trained with unstripped binaries, and tested on stripped ones

m KNN distances are used for prediction, with a threshold d to filter out
unrelated functions

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 25/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Accuracy of MANTILLA on stripped binaries — results

Percentage (%)

Percentage (%)

1001 = 5 — k=1 1001 = o
95 9%
90
90 B
7 85
g
85 £ 80
g
80 E) 75
75 70
65
70
60
1 2 3 4 5 6 7 1 2 3 4 6 7
Distance (d) Distance (d)
(a) Accuracy (b) Precision
1001 = % — k=1 1001 = 5
—— k=2
95
95 — k=3
e k=4 _ 90
90 - 8
k=5 S 8
g
85 £ 80
H
80 § 75
75 70
\ 65
70
60

1 2 3 4 5 6 7
Distance (d)

(c) Recall

1 2 3 4
Distance (d)

(d) F1-Score

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez]

19/11/24  26/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Architecture distinction

m The system identifies the architecture with very high accuracy before
applying majority voting

m Misclassifications mainly occur between different runtime libraries within the
same architecture

m The first misclassification occurs with k = 3, d = 3, where 19% of
x86-64_uclibc_gcc binaries are misclassified as x86-64_glibc_gcc

Architecture identification is highly accurate, even before voting

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 27/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance — results

m Added Clang (version 11.0.1-2) to the toolchain for Intel x86 and Intel
x86-64 with glibc

m Dataset extended by 2,300 binaries

m Removed duplicate functions during training to avoid overfitting and reduce
computational load

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 28/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance — results

Predicted label Precision Recall F1-Score

x86-64_glibc_clang 0.56 0.47 0.51
x86-64_glibc_gcc 0.54 0.62 0.58
x86_glibc_clang 0.54 0.47 0.50
x86_glibc_gcc 0.53 0.60 0.56

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 29/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance — results

m Compiler prediction accuracy is low, around 50%

m Both gcc and Clang use the same runtime library (glibc), leading to similar
or identical neighbor distances

m Prediction performance depends on the order of training data, causing
inconsistent results

Conclusion

m MANTILLA is not effective for determining the compiler used to compile a
binary when both compilers use the same runtime library

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 30/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

Limitations

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 31/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

Construct validity

m Controlled experiments were conducted to adjust the system and measure
evaluation metrics

m No issues identified in the experimental study design

Internal validity

m Third-party binary analysis tools (e.g., radare2) to extract features

m Accuracy of features influenced by the assumptions of these tools
(e.g., instruction or function boundaries)

m Easy interchangeability of feature extraction component

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 32/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

KNN model considerations

m KNN is sensitive to the order of the training data when distances are tied,
mitigated by K-fold cross-validation

m KNN is sensitive to high-dimensional data, addressed by limiting features to
those common across architectures

m Sensitivity to the distance threshold in the voting phase, tested to assess
performance under various settings

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 33/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

m Tailored for binaries in the C programming language: errors likely to occur
with binaries from other languages

m Statically linked binaries compiled on GNU/Linux systems

m Accuracy may decrease with obfuscated or packed binaries

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 34/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

m Tailored for binaries in the C programming language: errors likely to occur
with binaries from other languages

m Statically linked binaries compiled on GNU/Linux systems

m Accuracy may decrease with obfuscated or packed binaries

Extensibility

m Can be extended to other operating systems and platforms

m Future work includes additional hardware architectures (e.g., PowerPC,
SPARC)

m Other C runtime libraries (e.g., bionic, dietlibc) were not considered, but
can be added

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 34/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

B Related Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 35/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Compiler provenance

m Early work by Rosenblum et al. uses CRF to identify compiler families

m BinComp performs syntactic, structural, and semantic analysis using the
Jaccard coefficient for function similarity

m FOSSIL identifies free/open-source software (FOSS) packages and compiler
provenance in real-world binaries

m HIMALTA uses RNNs for identifying optimization levels in binaries

m Vestige uses graph neural networks for provenance identification

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 36/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Compiler provenance

m Early work by Rosenblum et al. uses CRF to identify compiler families

m BinComp performs syntactic, structural, and semantic analysis using the
Jaccard coefficient for function similarity

m FOSSIL identifies free/open-source software (FOSS) packages and compiler
provenance in real-world binaries

m HIMALTA uses RNNs for identifying optimization levels in binaries

m Vestige uses graph neural networks for provenance identification

Authorship attribution

m OBA2 detects software library functions based on syntax/semantics
m BinAuthor filters out compiler-related features

m BinChar uses CNNs, based on structural/semantic features

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 36/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Library function identification

m IDA Pro FLIRT forms signatures for recognizing library functions

m BinHash uses semantic hash functions to detect function similarities
m libv uses subgraph isomorphism for library function identification

m discovRE applies maximum common subgraph isomorphism

m Genius detects similar functions using high-level features for loT firmware

BinShape identifies library functions with robust signatures

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 37/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Library function identification

m IDA Pro FLIRT forms signatures for recognizing library functions

m BinHash uses semantic hash functions to detect function similarities

m libv uses subgraph isomorphism for library function identification

m discovRE applies maximum common subgraph isomorphism

m Genius detects similar functions using high-level features for loT firmware

m BinShape identifies library functions with robust signatures

Machine learning approaches

m Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 37/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Library function identification

m IDA Pro FLIRT forms signatures for recognizing library functions

m BinHash uses semantic hash functions to detect function similarities

m libv uses subgraph isomorphism for library function identification

m discovRE applies maximum common subgraph isomorphism

m Genius detects similar functions using high-level features for loT firmware

m BinShape identifies library functions with robust signatures

Machine learning approaches

m Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing

Comparison with our work:
m Focus on identifying runtime libraries, not binary similarity

m Most related work focuses on function libraries and compiler analysis, not
runtime libraries

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 37/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 38/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

Conclusions and Future Work

Conclusions

m MANTILLA: a system for identifying runtime libraries in statically linked ELFs

B Analyzes binary files, extracting architecture-independent features via r2, and uses KNN
with majority voting for predictions

m Evaluations with cross-validation show high accuracy, with improved results
using relaxed distance thresholds and higher K values

B 94.4% accuracy on binutils
B 95.5% accuracy on loT malware datasets

m Achieved 100% and 98.6% accuracy for predicting binary architecture

Future Work

m Support additional architectures, operating systems, and runtime libraries

m Provide it as a web service for integration into third-party analysis workflows

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodriguez] 19/11/24 39/40


https://creativecommons.org/licenses/by-nc-sa/4.0/

|dentifying Runtime Libraries in
Statically Linked Linux Binaries

Javier Carrillo-Mondéjar, Ricardo J. Rodriguez
© All wrongs reversed — bajo licencia CC BY-NC-SA 4.0

rjrodriguez@unizar.es % @RicardoJRdez x www.ricardojrodriguez.es

Universidad
Zaragoza

Dpto. de Informatica e Ingenieria de Sistemas
Universidad de Zaragoza

@@@@I NoConName 2024 (Barcelona, Spain)
B e e e IO

sincibe_

NSTITUTO NACIONAL DE CIBERSEGURIDAD



mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

	Introduction
	MANTILLA: System Overview and Description
	Dataset
	Experiments and Results
	Limitations
	Related Work
	Conclusions and Future Work
	

