
Identifying Runtime Libraries in
Statically Linked Linux Binaries

Javier Carrillo-Mondéjar, Ricardo J. Rodríguez
« All wrongs reversed – bajo licencia CC BY-NC-SA 4.0

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza

NoConName 2024 (Barcelona, Spain)

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

Associate Professor (PTU) @ UNIZAR

Research lines:
Software and application security
Digital forensics
System security
Formal methods applied to cybersecurity

Research team – we make funny stuff!

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 2 / 40

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/

$whoami

Associate Professor (PTU) @ UNIZAR

Research lines:
Software and application security
Digital forensics
System security
Formal methods applied to cybersecurity

Research team – we make funny stuff!

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 2 / 40

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/

$whoami $whoarewe

https://reversea.me/index.php/people/

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 3 / 40

https://reversea.me/index.php/people/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 4 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Unpatched apps can be exploited via 3rd-party program dependencies
Static linking vs. dynamic linking

Static linking includes all library dependencies in the binary
Complicates updates (and security)

Dynamic linking, in contrast, relies on external libraries that are linked at runtime
Makes updates easier, but introduces runtime dependency risks

Malware developers exploit static linking to guarantee compatibility
between platforms (e.g., IoT devices, Linux-based systems)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 5 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Unpatched apps can be exploited via 3rd-party program dependencies
Static linking vs. dynamic linking

Static linking includes all library dependencies in the binary
Complicates updates (and security)

Dynamic linking, in contrast, relies on external libraries that are linked at runtime
Makes updates easier, but introduces runtime dependency risks

Malware developers exploit static linking to guarantee compatibility
between platforms (e.g., IoT devices, Linux-based systems)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 5 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Binary code analysis in statically-linking binaries

How do we identify malware-related functions?

Challenges

Binary size increased

Difficult to update libraries

Lack of high-level abstractions in binary code

Mix of malware and third-party binary code

Compiler settings impact binary code generation: more complex code

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 6 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Binary code analysis in statically-linking binaries

How do we identify malware-related functions?

Challenges

Binary size increased

Difficult to update libraries

Lack of high-level abstractions in binary code

Mix of malware and third-party binary code

Compiler settings impact binary code generation: more complex code

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 6 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Contributions and results

MANTILLA

A system to identify runtime libraries in statically linked Linux binaries

Static analysis using features such as cyclomatic complexity, number of
arguments, and entropy

Machine learning (KNN) for classifying binaries by runtime library

Evaluation results:
High accuracy in identifying runtime libraries and architecture (up to 98.6% on IoT
malware)
Good performance on real-world IoT malware with diverse runtime libraries (uClibc,
glibc, musl)

MANTILLA and dataset released for open science under the GNU/GPLv3
Source code: https://github.com/reverseame/MANTILLA
Dataset: https://zenodo.org/records/7991325

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 7 / 40

https://github.com/reverseame/MANTILLA
https://zenodo.org/records/7991325
https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 8 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Overview

Two-phase workflow

Feature extraction phase: extract features using static binary analysis
(agnostic to architecture)

Prediction phase: use KNN-based supervised learning to predict the
runtime library

Classify the runtime library using KNN and majority voting

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 9 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
System Workflow Overview

MANTILLA

010001...

000100...

100001...

000011...

Binary file b
(statically linked)

x(fn)
. . .

x(f2)
x(f1)

Feature vectors x(fi),
∀fi ∈ b , i ∈ {1, . . . ,N}

KNN
prediction model

(f1, l1)
(f2, l1)
. . .

(fN , lm)
Predicted

values
Majority
voting

(b , lfinal)

Final
prediction

1 Feature Extraction Phase 2 Prediction Phase

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 10 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Extracted features (using radare2)

1 Cyclomatic complexity metric, CC(fi)

2 Size (in bytes) of the function, S(fi)

3 Reserved stack space, SS(fi)

4 Number of basic blocks, BB(fi)

5 Number of edges, E(fi)

6 Number of individual instructions in the function, I(fi)

7 Number of arguments the function takes, A(fi)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 11 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Extracted features (using radare2)

8 Computational cost of the function, C(fi)

9 Number of extended basic blocks, EBB(fi)

10 Whether the function has an explicit return or not, noret(fi)

11 Number of local variables declared within the function, L(fi)

12 Entropy of the bytes that make up the function, or H(fi)

13 Number of calls to other functions
Number of function calls made within the function (Ctotal(fi))
Number of unique functions called by the function (Cunique(fi))

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 12 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
KNN-Based runtime library prediction

KNN algorithm

For a new data point d, KNN finds the K closest examples

Classifies d according to the most frequent label among the nearest
neighbors

In our system, predictions are aggregated using majority voting to determine
the final predicted library lfinal for the entire binary

Advantages of KNN:
Distance metric inherent to KNN allows discarding distant functions from the prediction
Our system is extensible to other clustering models (e.g., DBScan, K-means)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 13 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
KNN-Based runtime library prediction

KNN algorithm

For a new data point d, KNN finds the K closest examples

Classifies d according to the most frequent label among the nearest
neighbors

In our system, predictions are aggregated using majority voting to determine
the final predicted library lfinal for the entire binary

Advantages of KNN:
Distance metric inherent to KNN allows discarding distant functions from the prediction
Our system is extensible to other clustering models (e.g., DBScan, K-means)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 13 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Threat model

Evasion techniques

Adversaries may use obfuscation, packing, or junk code

Mitigation: robust feature extraction, focusing on intrinsic properties of the
binary

Adversarial machine learning attacks

Adversaries may create adversarial samples to deceive the KNN classifier

Mitigation: model validation, periodic updates, and adversarial training

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 14 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

MANTILLA: System Overview and Description
Threat model

Incompleteness or inaccuracy of extracted features

Errors in feature extraction by radare2 may lead to incorrect predictions

Mitigation: verification processes and use of multiple binary analysis tools
to cross-check features

Model drift and outdated training data

New malware techniques may not be represented in training data

Mitigation: Regular model updates and performance degradation detection

Limited scope

The system may struggle to identify newer or less common runtime libraries.

Mitigation: expand supported libraries and add new libraries through an
update mechanism

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 15 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 16 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Dataset
Generation of ground truth

Focus on C programming language (due to its popularity in malware)

Toolchains created for various CPU architectures:
MIPSeb, ARMel, Intel x86, Intel x86-64

Multiple runtime libraries considered: uClibc, glibc, musl

Compilation with buildroot and gcc 10.2.1
Collection of algorithms from “TheAlgorithm” repository
Optimization options (specifically, O0, O1, O2, O3, and Os)

Dataset of 13,800 statically linked, unstripped binaries

Public release of the dataset for further research:
https://zenodo.org/records/7991325

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 17 / 40

https://zenodo.org/records/7991325
https://creativecommons.org/licenses/by-nc-sa/4.0/

Dataset
Generation of ground truth

Preprocessing steps

1 Extract functions used by the programmer using cflow

2 Disassemble binaries and remove standard C library functions

3 Retain external and static functions, excluding internal and library functions

Output: Features of non-discarded functions, labeled by architecture,
runtime library, and compiler

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 18 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 19 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Evaluation metrics

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2
Precision · Recall
Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 20 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Experiments performed

Validation

Feature importance

Evaluation on stripped binaries

Architecture distinction

Compiler and runtime library recognition

All experiments use 5-fold cross-validation and are run with Python3
and Sklearn on a Debian 11 machine

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 21 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Sensitivity of KNN hyperparameters

Number of neighbors: k = {1, . . . , 10}

Distance metrics: Euclidean, Manhattan, and Minkowski distances

All results are very similar, no significant differences between them

1 2 3 4 5 6 7 8 9 10
Number of Neighbours (k)

65

70

75

80

85

Pe
rc

en
ta

ge
 (%

)

Precision
Recall
F1-Score
Accuracy

(results before applying the majority voting rule for the final prediction)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 22 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Sensitivity of KNN hyperparameters

(K = 1, Euclidean distance, no voting)Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 23 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Feature importance – Permutation importance technique

Evaluates the importance of each feature by permuting its values and
measuring the impact on model performance

Weight σ Feature
0.6581 0.0030 S(fi) (size)
0.5621 0.0034 C(fi) (cost)
0.4239 0.0025 SS(fi) (stackframe)
0.3796 0.0031 I(fi) (ninst)
0.1349 0.0017 E(fi) (edges)
0.0597 0.0004 H(fi) (entropy)
0.0356 0.0009 BB(fi) (nbbs)
0.0349 0.0020 A(fi) (nargs)
0.0227 0.0011 CC(fi) (cc)
0.0191 0.0021 L(fi) (nlocals)
0.0110 0.0013 Ctotal(fi) (outdegree)
0.0022 0.0003 EBB(fi) (ebbs)
0.0005 0.0013 Cunique(fi) (unique outdegree)
0.0004 0.0003 noret(fi) (noreturn)

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 24 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Accuracy of MANTILLA on stripped binaries

Experiment overview

Stripped and unstripped versions of binaries from the ground truth dataset

Cross-validation with 80% training and 20% testing

MANTILLA is trained with unstripped binaries, and tested on stripped ones

KNN distances are used for prediction, with a threshold d to filter out
unrelated functions

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 25 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Accuracy of MANTILLA on stripped binaries – results

1 2 3 4 5 6 7
Distance (d)

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 (%

)

k = 1
k = 2
k = 3
k = 4
k = 5

(a) Accuracy

1 2 3 4 5 6 7
Distance (d)

60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 (%

)

k = 1
k = 2
k = 3
k = 4
k = 5

(b) Precision

1 2 3 4 5 6 7
Distance (d)

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 (%

)

k = 1
k = 2
k = 3
k = 4
k = 5

(c) Recall

1 2 3 4 5 6 7
Distance (d)

60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 (%

)

k = 1
k = 2
k = 3
k = 4
k = 5

(d) F1-Score
Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 26 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Architecture distinction

The system identifies the architecture with very high accuracy before
applying majority voting

Misclassifications mainly occur between different runtime libraries within the
same architecture

The first misclassification occurs with k = 3, d = 3, where 19% of
x86-64_uclibc_gcc binaries are misclassified as x86-64_glibc_gcc

Architecture identification is highly accurate, even before voting

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 27 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance – results

Added Clang (version 11.0.1-2) to the toolchain for Intel x86 and Intel
x86-64 with glibc

Dataset extended by 2,300 binaries

Removed duplicate functions during training to avoid overfitting and reduce
computational load

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 28 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance – results

Predicted label Precision Recall F1-Score
x86-64_glibc_clang 0.56 0.47 0.51

x86-64_glibc_gcc 0.54 0.62 0.58
x86_glibc_clang 0.54 0.47 0.50

x86_glibc_gcc 0.53 0.60 0.56

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 29 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Experiments and Results
Compiler provenance – results

Results

Compiler prediction accuracy is low, around 50%

Both gcc and Clang use the same runtime library (glibc), leading to similar
or identical neighbor distances

Prediction performance depends on the order of training data, causing
inconsistent results

Conclusion

MANTILLA is not effective for determining the compiler used to compile a
binary when both compilers use the same runtime library

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 30 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 31 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

Construct validity

Controlled experiments were conducted to adjust the system and measure
evaluation metrics

No issues identified in the experimental study design

Internal validity

Third-party binary analysis tools (e.g., radare2) to extract features

Accuracy of features influenced by the assumptions of these tools
(e.g., instruction or function boundaries)

Easy interchangeability of feature extraction component

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 32 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

KNN model considerations

KNN is sensitive to the order of the training data when distances are tied,
mitigated by K -fold cross-validation

KNN is sensitive to high-dimensional data, addressed by limiting features to
those common across architectures

Sensitivity to the distance threshold in the voting phase, tested to assess
performance under various settings

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 33 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

Tailored for binaries in the C programming language: errors likely to occur
with binaries from other languages

Statically linked binaries compiled on GNU/Linux systems

Accuracy may decrease with obfuscated or packed binaries

Extensibility

Can be extended to other operating systems and platforms

Future work includes additional hardware architectures (e.g., PowerPC,
SPARC)

Other C runtime libraries (e.g., bionic, dietlibc) were not considered, but
can be added

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 34 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Limitations

Tailored for binaries in the C programming language: errors likely to occur
with binaries from other languages

Statically linked binaries compiled on GNU/Linux systems

Accuracy may decrease with obfuscated or packed binaries

Extensibility

Can be extended to other operating systems and platforms

Future work includes additional hardware architectures (e.g., PowerPC,
SPARC)

Other C runtime libraries (e.g., bionic, dietlibc) were not considered, but
can be added

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 34 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 35 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Compiler provenance

Early work by Rosenblum et al. uses CRF to identify compiler families

BinComp performs syntactic, structural, and semantic analysis using the
Jaccard coefficient for function similarity

FOSSIL identifies free/open-source software (FOSS) packages and compiler
provenance in real-world binaries

HIMALIA uses RNNs for identifying optimization levels in binaries

Vestige uses graph neural networks for provenance identification

Authorship attribution

OBA2 detects software library functions based on syntax/semantics

BinAuthor filters out compiler-related features

BinChar uses CNNs, based on structural/semantic features

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 36 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work

Compiler provenance

Early work by Rosenblum et al. uses CRF to identify compiler families

BinComp performs syntactic, structural, and semantic analysis using the
Jaccard coefficient for function similarity

FOSSIL identifies free/open-source software (FOSS) packages and compiler
provenance in real-world binaries

HIMALIA uses RNNs for identifying optimization levels in binaries

Vestige uses graph neural networks for provenance identification

Authorship attribution

OBA2 detects software library functions based on syntax/semantics

BinAuthor filters out compiler-related features

BinChar uses CNNs, based on structural/semantic features

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 36 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work
Library function identification

IDA Pro FLIRT forms signatures for recognizing library functions

BinHash uses semantic hash functions to detect function similarities

libv uses subgraph isomorphism for library function identification

discovRE applies maximum common subgraph isomorphism

Genius detects similar functions using high-level features for IoT firmware

BinShape identifies library functions with robust signatures

Machine learning approaches

Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing

Comparison with our work:

Focus on identifying runtime libraries, not binary similarity

Most related work focuses on function libraries and compiler analysis, not
runtime libraries

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 37 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work
Library function identification

IDA Pro FLIRT forms signatures for recognizing library functions

BinHash uses semantic hash functions to detect function similarities

libv uses subgraph isomorphism for library function identification

discovRE applies maximum common subgraph isomorphism

Genius detects similar functions using high-level features for IoT firmware

BinShape identifies library functions with robust signatures

Machine learning approaches

Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing

Comparison with our work:

Focus on identifying runtime libraries, not binary similarity

Most related work focuses on function libraries and compiler analysis, not
runtime libraries

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 37 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Work
Library function identification

IDA Pro FLIRT forms signatures for recognizing library functions

BinHash uses semantic hash functions to detect function similarities

libv uses subgraph isomorphism for library function identification

discovRE applies maximum common subgraph isomorphism

Genius detects similar functions using high-level features for IoT firmware

BinShape identifies library functions with robust signatures

Machine learning approaches

Asm2Vec, DeepBinDiff, and PalmTree leverage ML and neural networks
for binary code similarity and diffing

Comparison with our work:

Focus on identifying runtime libraries, not binary similarity

Most related work focuses on function libraries and compiler analysis, not
runtime libraries

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 37 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 MANTILLA: System Overview and Description

3 Dataset

4 Experiments and Results

5 Limitations

6 Related Work

7 Conclusions and Future Work

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 38 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Conclusions and Future Work

Conclusions

MANTILLA: a system for identifying runtime libraries in statically linked ELFs
Analyzes binary files, extracting architecture-independent features via r2, and uses KNN
with majority voting for predictions

Evaluations with cross-validation show high accuracy, with improved results
using relaxed distance thresholds and higher K values

94.4% accuracy on binutils
95.5% accuracy on IoT malware datasets

Achieved 100% and 98.6% accuracy for predicting binary architecture

Future Work

Support additional architectures, operating systems, and runtime libraries

Provide it as a web service for integration into third-party analysis workflows

Library Identification in Statically Linked ELFs [CC BY-NC-SA 4.0 © J. Carrillo-Mondéjar, R.J. Rodríguez] 19/11/24 39 / 40

https://creativecommons.org/licenses/by-nc-sa/4.0/

Identifying Runtime Libraries in
Statically Linked Linux Binaries

Javier Carrillo-Mondéjar, Ricardo J. Rodríguez
« All wrongs reversed – bajo licencia CC BY-NC-SA 4.0

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza

NoConName 2024 (Barcelona, Spain)

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

	Introduction
	MANTILLA: System Overview and Description
	Dataset
	Experiments and Results
	Limitations
	Related Work
	Conclusions and Future Work
	

