
Practical Malware Analysis and Memory Forensics
for Incident Response

Ricardo J. Rodríguez
« All wrongs reversed – under CC BY-NC-SA 4.0 license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza

April 1, 2025

DFRWS EU 2025
Brno, Czech Republic

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

Associate Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
System security
Formal methods applied to cybersecurity

Speaker and trainer at different infosec conferences
(NcN, HackLU, RootedCON, STIC CCN-CERT, HIP,
MalCON, HITB. . .)

Research team – we make really good stuff!

https://reversea.me / https://t.me/reverseame

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 2 / 59

https://reversea.me
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/

$whoami

Associate Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
System security
Formal methods applied to cybersecurity

Speaker and trainer at different infosec conferences
(NcN, HackLU, RootedCON, STIC CCN-CERT, HIP,
MalCON, HITB. . .)

Research team – we make really good stuff!

https://reversea.me / https://t.me/reverseame

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 2 / 59

https://reversea.me
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/

$whoami $whoarewe

https://reversea.me/index.php/people/

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 3 / 59

https://reversea.me/index.php/people/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 4 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 5 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Workshop Goals

Practical intro to the analysis of memory dumps and malware artifacts

Explore both static and dynamic malware analysis techniques

Gain an understanding of memory acquisition best practices

Apply forensics skills in real-world scenarios

Understand malicious behavior

From Alert→ Memory Dump→ Analysis→ Report

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 6 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Incident Response

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Incident response

Figure out what happened, while
preserving incident-related data

Ask the well-known 6 W’s (what,
who, why, how, when, and where)

Common incident: presence of
malicious software (malware)

Detect and Analysis phase:
Identify, verify, and analyze potential
security incidents
Determine their scope, impact, and
appropriate response actions
Forensics help here

(as defined by NIST)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 7 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Incident Response

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Incident response

Figure out what happened, while
preserving incident-related data

Ask the well-known 6 W’s (what,
who, why, how, when, and where)

Common incident: presence of
malicious software (malware)

Detect and Analysis phase:
Identify, verify, and analyze potential
security incidents
Determine their scope, impact, and
appropriate response actions
Forensics help here

(as defined by NIST)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 7 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Meet Peter Griffin...

and alert him!

Credits: https://en.wikipedia.org/wiki/File:Peter_Griffin.png

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 8 / 59

https://en.wikipedia.org/wiki/File:Peter_Griffin.png
https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Meet Peter Griffin... and alert him!

Credits: https://en.wikipedia.org/wiki/File:Peter_Griffin.png

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 8 / 59

https://en.wikipedia.org/wiki/File:Peter_Griffin.png
https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Meet Peter Griffin... and alert him!

Credits: https://en.wikipedia.org/wiki/File:Peter_Griffin.png

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 8 / 59

https://en.wikipedia.org/wiki/File:Peter_Griffin.png
https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Meet Peter Griffin... and alert him!

Credits: https://en.wikipedia.org/wiki/File:Peter_Griffin.png

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 8 / 59

https://en.wikipedia.org/wiki/File:Peter_Griffin.png
https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Too late. Bye Peter Griffin!

Credits: https://knowyourmeme.com/memes/family-guy-death-pose-peter-falls-down-the-stairs

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 9 / 59

https://knowyourmeme.com/memes/family-guy-death-pose-peter-falls-down-the-stairs
https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

Can we discover what happened to him? → forensics analysis

Systems use (physical) memory to run and do their work
Let Peter Griffin be a system. Then, his brain is the memory of the system

The memory is always a snapshot of the current system state
Memory can contain indicators of what happened (i.e., indicators of compromise related
to the security incidents)

In memory forensics,
memory becomes the victim to analyze

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 10 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

Can we discover what happened to him? → forensics analysis

Systems use (physical) memory to run and do their work
Let Peter Griffin be a system. Then, his brain is the memory of the system

The memory is always a snapshot of the current system state
Memory can contain indicators of what happened (i.e., indicators of compromise related
to the security incidents)

In memory forensics,
memory becomes the victim to analyze

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 10 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

Can we discover what happened to him? → forensics analysis

Systems use (physical) memory to run and do their work
Let Peter Griffin be a system. Then, his brain is the memory of the system

The memory is always a snapshot of the current system state
Memory can contain indicators of what happened (i.e., indicators of compromise related
to the security incidents)

In memory forensics,
memory becomes the victim to analyze

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 10 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction

Credits: Digital forensic tools: Recent advances and enhancing the status quo. Wu et al., doi: 10.1016/j.fsidi.2020.300999

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 11 / 59

http://dx.doi.org/10.1016/j.fsidi.2020.300999
https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Memory forensics – some terminology

Memory dump

Full of data to analyze

Each item to analyze is called memory artifact (or simply artifact)
Retrieved via appropriate internal structures of the OS or using a pattern-like search

Snapshot of running processes, logged in users, open files, or open network
connections – everything that was running at the time of acquisition

Potential malware code (and in different forms: injected, unpacked, fileless...)

May also contain recently freed system resources
Normally, memory is not zeroed when freed

Volatility: de facto standard tool for analyzing memory dumps
Version 2 vs. version 3⇒ Python21 vs. Python3
We will talk about Volatility 2 and Volatility 3 in a few slides...

1I know, it is deprecated but Vol2 is certainly necessary on some analysis scenarios...
Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 12 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
End-to-End Analysis Workflow

Memory
Acquisition

Volatility-
based

Analysis

1 Memory Forensics

0100...

0100...

0110...

0101...

Malware
sample

Static
Analysis

Dynamic
Analysis

Hybrid
Analysis

2 Malware Analysis

Compromised
System

Threat
Attribution &

Reporting

——- ——-
——- ——-
——- ——-

Threat Report

3 Threat
Intelligence

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 13 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Lab Roadmap

Lab 1.- Getting Started with Volatility
Introduce memory forensics concepts and Volatility
Learning goals:

List running processes and understand process hierarchies
Identify useful plugins and interpret their output

Lab 2.- Memory Dump Analysis with Volatility 3
Perform deeper analysis on a memory dump from a
WannaCry-infected system
Learning goals:

Locate malware-related processes and extract binaries
Identify registry keys, DLLs, and persistence mechanisms
Analyze malware execution patterns in memory

Lab 3.- Practical Malware Analysis: From Memory Forensics to
Threat Attribution

Apply static analysis and triage techniques to extracted
binaries, and connect findings to threat intelligence
Learning goals:

Perform basic static triage: hash, strings, import analysis
Identify behavioral indicators and map to MITRE ATT&CK
Create a basic YARA rule and outline a threat report

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 14 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Lab Sessions

What do we need for workshop labs?

1 Install Docker (and, optionally, Docker Desktop) on your host

2 Get the Dockerfile from the workshop website

3 Deploy it and test the SSH connection: ssh forensic@localhost -p 2222
The password is the same as the username: forensic

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 15 / 59

https://webdiis.unizar.es/~ricardo/dfrws-eu-25-workshop/additional/Dockerfile
https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 16 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
Creation of Windows Processes

Credits: Windows Internals, 7th Ed., Part 1. P. Yosifovich et al. Microsoft Press, ISBN 978-0735684188

Creation of the virtual address space

associated to the process

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 17 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
Creation of Windows Processes

Credits: Windows Internals, 7th Ed., Part 1. P. Yosifovich et al. Microsoft Press, ISBN 978-0735684188

Creation of the virtual address space

associated to the process

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 17 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
Virtual Address Space

Per-process private data and code

Stored in kernel-mode-only accessible pages
Prevents user-mode threads from modifying their own address space layout

Default virtual size of 32-bit Windows processes: 2 GiB (before Win8)
Can be extended to 3 GiB (or 4 GiB on 64-bit Windows) if the program file is specifically
marked as a large address space and the system starts up with a special option
On 64-bit Windows 8.1 (and later): 128TiB (although the maximum amount of physical
memory currently supported by Windows is less than 24 TiB)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 18 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
Virtual Memory Translation (in x86)

Credits: Windows Internals, 7th Ed., Part 1. P. Yosifovich et al. Microsoft Press, ISBN 978-0735684188

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 19 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
More Terminology

Page

Contiguous fixed-length block of memory

Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

Page frame: how physical memory (RAM) is divided

In a paged system, virtual memory is divided into virtual pages of the same
size as the page frames

Page Table Entry (PTE)

Maps each virtual page with its corresponding physical address

Stored in page tables
The set of page tables of a process defines its virtual address space
512 entries

Every entry value is also called page frame number (PFN)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 20 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
More Terminology

Page

Contiguous fixed-length block of memory

Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

Page frame: how physical memory (RAM) is divided

In a paged system, virtual memory is divided into virtual pages of the same
size as the page frames

Page Table Entry (PTE)

Maps each virtual page with its corresponding physical address

Stored in page tables
The set of page tables of a process defines its virtual address space
512 entries

Every entry value is also called page frame number (PFN)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 20 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Background
More Terminology

Credits: Windows Internals, 7th Ed., Part 1. P. Yosifovich et al. Microsoft Press, ISBN 978-0735684188

Virtual Address Descriptors (VADs)

Keep track of which virtual addresses have been reserved in the
process’s address space (and which have not)

Stored in a self-balancing AVL tree

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 21 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 22 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Memory Acquisition

Various acquisition techniques
Recommended Reading: Tobias Latzo, Ralph Palutke, Felix Freiling, “A universal
taxonomy and survey of forensic memory acquisition techniques,” Digital Investigation,
Volume 28, 2019, pp. 56–69, ISSN 1742-2876, doi: 10.1016/j.diin.2019.01.001

Software tools for full memory dumping
WinPmem: https://github.com/Velocidex/WinPmem

Apache License
Supports Windows XP to Windows 10 (32/64-bit)
Example: winpmem_mini_x64.exe physmem.raw

Linux Memory Extractor (LiME): https://github.com/504ensicsLabs/LiME
GNU/GPLv2 License
Supports Linux and Android
Extraction via local port connection

FTK Imager: https://accessdata.com/product-download/ftk-imager-version-4-2-1
Commercial tool
Windows support

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 23 / 59

http://dx.doi.org/10.1016/j.diin.2019.01.001
https://github.com/Velocidex/WinPmem
https://github.com/504ensicsLabs/LiME
https://accessdata.com/product-download/ftk-imager-version-4-2-1
https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Memory Acquisition

Acquisition in virtual machines
VirtualBox

vboxmanage debugvm "Win7" dumpvmcore --filename test.elf

VMWare

Create a VM snapshot (generates .vmss and .vmem files)
Tool vmss2core:
https://archive.org/download/flings.vmware.com/Flings/Vmss2core

Other tools for extracting processes or modules
ProcDump:
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

procdump -ma 4572
Single dump (.dmp file)

Windows Memory Extractor:
https://github.com/pedrofdez26/windows-memory-extractor

GNU/GPLv3 License
WindowsMemoryExtractor_x64.exe --pid 1234
Creates section-based process memory dumps

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 24 / 59

https://archive.org/download/flings.vmware.com/Flings/Vmss2core
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://github.com/pedrofdez26/windows-memory-extractor
https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Memory Dump Analysis

Volatility

De facto standard for memory dump analysis

Open source license GNU/GPLv2

Released in 2007 at BH USA, called Volatools

Supports Windows, Linux, and macOS (32/64-bit)

Rich API for custom implementations

Version 2.6 vs. Version 3
Python2 vs. Python3
Version 3 is now stable

https://github.com/volatilityfoundation/volatility3

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 25 / 59

https://github.com/volatilityfoundation/volatility3
https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Getting Started with Volatility

Help: python vol.py -h

Memory dump to analyze: python vol.py --f mem.dmp --profile Win7SP1x86
The profile is only needed in version 2.6
Indicates where the OS internal structures are located

How to determine the correct profile?: use the imageinfo plugin
python vol.py --f mem.dmp imageinfo

Plugins are always specified at the end of the command

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 26 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Analysis – Official Plugins (Volatility 2)

Processes and DLLs
pslist, pstree (psscan for potential rootkits)
dlllist, dlldump
handles
enumfuncs (list of imported/exported functions per process/DLL)

Process Memory
memmap, memdump
procdump
vadinfo, vadwalk, vadtree, vaddump
evtlogs
iehistory

Networking
connections, connscan
sockets, sockscan
netscan (network artifacts in Win7)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 27 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Analysis – Official Plugins (Volatility 2)

Kernel Memory and Other Objects
modules, modscan, moddump
driverscan
filescan

Registry
hivescan, hivelist, hivedump
printkey
lsadump
userassist, shellbags, shimcache
dumpregistry

File System
mbrparser, mftparser

Analysis of hibernation files or other dump types

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 28 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Analysis – Unofficial Plugins

Many additional plugins extend Volatility’s capabilities

How to use:
1 Install the plugin (e.g., clone from a repository)
2 Execute with:
volatility --plugins="/path/to/plugin" -f file [OPTIONS] pluginname

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 29 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory Acquisition & Forensics with Volatility
Volatility 2 vs. Volatility 3

Summary table
Feature Volatility 2 Volatility 3
Language Python 2 Python 3
Plugin Structure Flat, less modular Fully modular and object-oriented
Profiling System Requires OS profiling No profiling (auto-detects kernel symbols)
Cross-platform Limited Improved Linux/macOS support
Performance Slower, single-threaded More efficient, supports streaming
Extensibility More difficult to extend Easier to create custom plugins
Development Status Legacy/Frozen Active maintenance

Command syntax comparison
Task Volatility 2 Syntax Volatility 3 Syntax
Specify Memory Dump -f mem.raw --profile Win7SP1x86 -f mem.raw (no profile)
List Processes vol2.py -f mem.raw pslist vol3.py -f mem.raw windows.pslist.PsList

Process Dump procdump -p <PID> windows.pslist.PsList --pid <PID> --dump

View Loaded DLLs dlllist -p <PID> windows.dlllist.DllList --pid <PID>

Volatility 3 uses full plugin paths (namespace.plugin.ClassName);
tab completion helps!

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 30 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Laboratory Session
Lab 1: Getting Started with Volatility

Goals

Explore the Volatility framework

Become familiar with its basic commands

Steps

1 Download the zeus.vmem memory dump from the workshop webpage

2 Explore initial plugins such as imageinfo, pslist, etcetera

Tip:
Focus on understanding the structure and output format of each command

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 31 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Laboratory Session
Lab 1: Getting Started with Volatility

Key takeaways

Volatility is a powerful framework for memory forensics, supporting modular
plugin development

You learned how to execute basic plugins to extract system and
process-level information from a memory dump

The memory dump structure reveals valuable artifacts such as process lists,
loaded DLLs, and system configuration

Volatility’s plugin output can be redirected, filtered, or piped for automation
and further analysis.

Understanding the basics of memory layout and plugin outputs is necessary
for deeper malware investigation in later labs

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 32 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 33 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Malware attack lifecycle

Typical stages that malware follows during an intrusion

Initial Access /
Delivery Execution

Persistence /
Defense Evasion

Reconnaissance /
Data Collection

Command &
Control

Lateral
Movement

Impact /
Exfiltration

pslist
pstree

dlllist
malfind

printkey
cmdline

netscan
sockets

filescan
vaddump

windows.pslist
windows.pstree

windows.dlllist
windows.malfind

windows.registry.printkey
windows.cmdline

windows.netscan
windows.netstat

windows.filescan
windows.vadinfo

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 34 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory

What might we find in memory after
a malware infection?

Take a moment to think:
If a system is infected with malware, what kinds of traces or artifacts might
we be able to find in a memory dump?

Specific behaviors

Artifacts (e.g., files, processes, keys, etc.)

System interactions

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 35 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory

What might we find in memory after
a malware infection?

Take a moment to think:
If a system is infected with malware, what kinds of traces or artifacts might
we be able to find in a memory dump?

Specific behaviors

Artifacts (e.g., files, processes, keys, etc.)

System interactions

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 35 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Key Artifacts in Memory After Malware Execution

System Memory

Suspicious processes

Loaded DLLs

Cleartext strings

Registry artifacts

Network indicators

Injected code

Malware may appear as a
fake or renamed process such as
svchost.exe, taskhsvc.exe

Look for suspicious
mutexes, domains, C&Cs,
user-agent strings

These indicators can later be mapped to ATT&CK techniques for attribution
Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 36 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Memory Forensics – Unofficial Plugins
MalConfScan (https://github.com/JPCERTCC/MalConfScan)

Extracts configurations, decrypted strings, or DGA domains from known
malware families

Malscan (https://github.com/reverseame/malscan; for Volatility 2.6)

GNU/GPLv3 License

Combines malfind + clamav-daemon (Linux only). Fewer false negatives

Modes: normal (regions +WX, executable modules, private VadS) and
full-scan (+X regions)

Detects VADs without associated executables, function prologues, and
empty pages before code

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 37 / 59

https://github.com/JPCERTCC/MalConfScan
https://github.com/reverseame/malscan
https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Memory Forensics – Unofficial Plugins
Similarity Unrelocated Module

(https://github.com/reverseame/similarity-unrelocated-module; for Volatility 2.6)

GNU/GPLv3 License

Computes approximate signatures of modules found in a memory dump

SDA algorithms: dcfldd, ssdeep, sdhash, TLSH

A module is an executable or DLL loaded in memory

Allows comparison of modules across different dumps

Reverses OS relocations (relocation undoing) using:
Guided De-relocation
Linear Sweep De-relocation

More info: M. Martín-Pérez, R. J. Rodríguez, D. Balzarotti, “Pre-processing
Memory Dumps to Improve Similarity Score of Windows Modules,”
Computers & Security, vol. 101, p. 102119, 2021, doi:
10.1016/j.cose.2020.102119

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 38 / 59

https://github.com/reverseame/similarity-unrelocated-module
http://dx.doi.org/10.1016/j.cose.2020.102119
http://dx.doi.org/10.1016/j.cose.2020.102119
https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Memory Forensics – Unofficial Plugins

Winesap (https://github.com/reverseame/winesap; for Volatility 2.6)

AGPLv3 License

Searches for all Windows auto-start locations in the memory dump

Binary or unknown registry keys are treated as PE files

More info: D. Uroz, R. J. Rodríguez, “Characteristics and Detectability of
Windows Auto-Start Extensibility Points in Memory Forensics,” Digital
Investigation, vol. 28, pp. S95–S104, 2019, doi: 10.1016/j.diin.2019.01.026

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 39 / 59

https://github.com/reverseame/winesap
http://dx.doi.org/10.1016/j.diin.2019.01.026
https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Memory Forensics – Unofficial Plugins
Winesap

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 40 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Analyzing Malware Artifacts in Memory
Memory Forensics – Unofficial Plugins
Modex / Intermodex (https://github.com/reverseame/modex; for Volatility 3)

GNU/GPLv3 License

Enables more complete extraction of modules (from one or more dumps)

Remark: each process only holds the memory pages it uses from a module

Capable of detecting DLL hijacking attacks

More info: P. Fernández-Álvarez, R. J.
Rodríguez, “Module Extraction and DLL
Hijacking Detection via Single or Multiple
Memory Dumps,” Forensic Science
International: Digital Investigation, vol. 44, pp.
301505, 2023, doi: 10.1016/j.fsidi.2023.301505

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 41 / 59

https://github.com/reverseame/modex
http://dx.doi.org/10.1016/j.fsidi.2023.301505
https://creativecommons.org/licenses/by-nc-sa/4.0/

Laboratory Session
Lab 2: Memory Dump Analysis with Volatility 3
Goal

Analyze a real-world memory dump of a Windows system infected with
WannaCry ransomware using Volatility 3

Steps

1 Download the wannacry.elf memory dump from the workshop webpage

2 Identify suspicious processes and malware indicators

3 Examine loaded DLLs and handles to discover artifacts such as Tor
components or mutexes

4 Dump binaries and DLLs from memory for offline analysis

Tip:
Document each step and justify how you identified malware-related activity

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 42 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Laboratory Session
Lab 2: Memory Dump Analysis with Volatility 3

Key takeaways

Memory analysis reveals runtime artifacts that may not exist on disk
(processes, handles, DLLs, mutexes, etcétera)

You identified the presence of WannaCry through suspicious process names
and hierarchy (@WanaDecryptor, taskhsvc.exe)

The dlllist and handles plugins exposed key indicators such as
embedded Tor libraries and mutexes used for anti-reinfection

Dumping suspicious binaries from memory allows follow-up with static and
dynamic analysis (next lab)

Volatility 3 provides a plugin-based approach for forensic investigation,
letting you extract specific evidence to support threat detection and reporting

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 43 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 44 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
What’s Next?

In the last lab, you identified suspicious processes and extracted binaries
from a real infected system

Now the question is:

What do these binaries do?

How do they persist or communicate?

Can we classify or attribute them?

In this last part: We move from forensic analysis of alerts to malware
analysis and threat attribution of alerts

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 45 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
What’s Next?

In the last lab, you identified suspicious processes and extracted binaries
from a real infected system

Now the question is:

What do these binaries do?

How do they persist or communicate?

Can we classify or attribute them?

In this last part: We move from forensic analysis of alerts to malware
analysis and threat attribution of alerts

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 45 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
Triage vs. Analysis vs. Attribution

Phase Goal Outcome
Triage Rapid risk assessment Suspicious binary, hash,

IoCs
Static/Dynamic Analysis Behavioral understanding Registry keys, API calls,

persistence method, ...
Attribution Link to known threats or

actors TTP
MITRE techniques, cam-
paign family, YARA rules

The three stages build on each other,
based on what the memory reveals

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 46 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
What makes a binary suspicious?

Flags to look out for

Unusual or obfuscated process names (e.g., taskhsvc.exe)

Hardcoded URLs, IPs, or domains

Registry manipulation APIs (RegSetValueEx, etc.)

Networking functions (WinHttpOpen, connect)

Unsigned or altered PE headers

Suspicious compile timestamps

Memory leaks or mutex creation

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 47 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
MITRE ATT&CK & Threat Attribution

MITRE ATT&CK is a curated knowledge base of adversary behavior,
based on real-world observations

Why use MITRE ATT&CK?

Provides a standardized way to describe adversary behavior

Helps map observable activity to known techniques

Facilitates threat hunting, detection engineering, and reporting

Examples:

Using RegSetValueA→ T1112 (Modify Registry)

Command line persistence→ T1059 (Command and Scripting Interpreter)

Mutex creation→ T1497.001 (Virtualization/Sandbox Evasion: System Checks)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 48 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
MITRE ATT&CK – Stages of an Intrusion

Reconnaissance

Resource Development

Initial Access

Execution

Persistence

Privilege Escalation

Defense Evasion

Credential Access

Discovery

Lateral Movement

Collection

Command and Control

Exfiltration

Impact

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 49 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
Understanding MITRE ATT&CK and TTP

TTPs = Tactics + Techniques + Procedures

Tactic: The adversary’s goal (e.g., persistence, credential access)

Technique: The meaning of achieving that goal (e.g., modifying the registry)

Procedure: The specific implementation (e.g., using RegSetValueA to
change an execution key)

Why it’s important in malware analysis:

Helps classify behavior in a structured and repeatable way

Links findings to known threat actors and campaigns

Facilitates defensive mapping (e.g., detection coverage, SIEM correlation)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 50 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
Understanding MITRE ATT&CK and TTP

TTPs = Tactics + Techniques + Procedures

Tactic: The adversary’s goal (e.g., persistence, credential access)

Technique: The meaning of achieving that goal (e.g., modifying the registry)

Procedure: The specific implementation (e.g., using RegSetValueA to
change an execution key)

Why it’s important in malware analysis:

Helps classify behavior in a structured and repeatable way

Links findings to known threat actors and campaigns

Facilitates defensive mapping (e.g., detection coverage, SIEM correlation)

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 50 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
Malware Analysis Phases

Static analysis
Examine the binary without executing it
Hashes, strings, imports, PE structure
Main goal: Reveal potential behaviors

Dynamic analysis
Execute the binary in a controlled environment (e.g., sandbox)
OS (file/registry/process) + external (network) interaction
Main goal: Observe real interactions

Hybrid analysis
Combine both approaches
Main goal: Improve coverage and correlation

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 51 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
Malware Analysis Phases

Credits: An Inside Look into the Practice of Malware Analysis. Yong Wong et al., doi: 10.1145/3460120.34847599

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 52 / 59

http://dx.doi.org/10.1145/3460120.34847599
https://creativecommons.org/licenses/by-nc-sa/4.0/

From Malware to Attribution
Memory Forensics – Unofficial Plugins

Sigcheck (https://github.com/reverseame/sigcheck; for Volatility 2.6)

Useful for initial triage

GNU/GPLv3 License

Verifies PE files digitally signed with Microsoft Authenticode

Two types of signatures: embedded (in PE), catalog-based (external file)

IMPORTANT: verifies if the original executable was legit
If malware performs process hollowing, this won’t detect it

More info: D. Uroz, R. J. Rodríguez, “On Challenges in Verifying Trusted
Executable Files in Memory Forensics,” Forensic Science Int. Digital
Investigation, vol. 32, p. 300917, 2020, doi: 10.1016/j.fsidi.2020.300917

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 53 / 59

https://github.com/reverseame/sigcheck
http://dx.doi.org/10.1016/j.fsidi.2020.300917
https://creativecommons.org/licenses/by-nc-sa/4.0/

Laboratory Session
Lab 3: Practical Malware Analysis – From Memory Forensics to Threat
Attribution
Goal

Perform basic malware analysis on binaries extracted from memory to
understand their behavior and support threat attribution

Steps

1 Extract binaries from a compromised system (e.g., WannaCry or ALINA)

2 Apply static analysis techniques: hash generation, string extraction, PE
header inspection, and API import review

3 Identify behavioral indicators such as mutex names, embedded URLs,
registry usage, or memory scraping patterns

4 Map findings to MITRE ATT&CK techniques to assist in attribution

Tip:
Treat this as a real-world triage scenario – build your analyst mindset and
document your findings like a threat report

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 54 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Laboratory Session
Lab 3: Practical Malware Analysis – From Memory Forensics to Threat
Attribution

Key takeaways

You practiced end-to-end malware analysis starting from memory forensics
to static analysis of extracted binaries

Key insights were gathered using hash checks, string extraction, PE header
inspection, and analysis of imported functions

Behavioral indicators such as mutexes, registry paths, or suspicious strings
helped characterize the malware’s purpose

Mapping to MITRE ATT&CK techniques enables structured understanding of
adversary behavior and supports reporting, correlation, and defensive
actions

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 55 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

1 Introduction

2 Background

3 Memory Acquisition & Forensics with Volatility

4 Analyzing Malware Artifacts in Memory

5 From Malware to Attribution

6 Practical Takeaways

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 56 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Practical Takeaways

Just like in Inception, where every dream leaves a subtle trace – malware
leaves footprints in memory. Our job is to find them before they fade

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 57 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Practical Takeaways

1 Conduct quick memory-based investigations:
Use tools such as WinPmem or LiME to capture volatile memory
Load it into Volatility 3 for immediate inspection of suspicious activity

2 Perform triage on unknown/suspicious binaries:
Apply lightweight static analysis techniques (hashing, strings, imports, YARA) to quickly
evaluate malware samples
Even without Internet access or a full testing environment, static analysis can provide
valuable insights of the possible behavior
Note that more advanced analysis would be needed to further confirm the behavior

3 Mapping behavior with MITRE ATT&CK to improve your reporting:
Use your observations (e.g., registry key usage, mutexes, API calls) to map ATT&CK
techniques
Facilitates attribution and detection engineering

Start small: one dump, one binary, one insight at a time

Practical Malware Analysis and Memory Forensics for IR [CC BY-NC-SA 4.0 © (R. J. Rodríguez)] 01/04/25 58 / 59

https://creativecommons.org/licenses/by-nc-sa/4.0/

Practical Malware Analysis and Memory Forensics
for Incident Response

Ricardo J. Rodríguez
« All wrongs reversed – under CC BY-NC-SA 4.0 license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza

April 1, 2025

DFRWS EU 2025
Brno, Czech Republic

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

	$whoami
	Introduction
	Background
	Memory Acquisition & Forensics with Volatility
	Analyzing Malware Artifacts in Memory
	From Malware to Attribution
	Practical Takeaways
	

