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Abstract

Malware attacks have been growing steadily in recent years, making more

sophisticated detection methods necessary. These approaches typically rely

on analyzing the behavior of malicious applications, for example by exam-

ining execution traces that capture their runtime behavior. However, many

existing execution trace datasets are simplified, often resulting in the omis-

sion of relevant contextual information, which is essential to capture the full

scope of a malware sample’s behavior. This paper introduces MALVADA,

a flexible framework designed to generate extensive datasets of execution

traces from Windows malware. These traces provide detailed insights into

program behaviors and help malware analysts to classify a malware sample.

MALVADA facilitates the creation of large datasets with minimal user effort,

as demonstrated by the WinMET dataset, which includes execution traces

from approximately 10,000 Windows malware samples.
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Preprint submitted to SoftwareX February 4, 2025



Nr. Code metadata description Please fill in this column

C1 Current code version v1.1

C2 Permanent link to code/reposi-

tory used for this code version

https://github.com/

reverseame/MALVADA

C3 Permanent link to Reproducible

Capsule

–

C4 Legal Code License GPL v3.0

C5 Code versioning system used Git (GitHub)

C6 Software code languages, tools,

and services used

Python

C7 Compilation requirements, oper-

ating environments & dependen-

cies

Requirements: Python 3, sed,

AVClass [1]. Dependencies: mat-

plotlib 3.8.2, pandas 2.2.2, rich

13.7.1, seaborn 0.13.2, ujson 5.9.0

C8 If available Link to developer doc-

umentation/manual

https://github.com/

reverseame/MALVADA/blob/

main/README.md

https://github.com/

reverseame/MALVADA/tree/

main/doc/malvada_workflow

C9 Support email for questions reverseame@unizar.es

Table 1: Code metadata (mandatory)

Metadata1

1. Motivation and Significance2

The rise in cyberattacks involving malware [2] has driven the need for im-3

proved detection methods. Several approaches have been proposed [3], in-4
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cluding artificial intelligence techniques [4, 5, 6], similarity algorithms [7, 8],5

and execution signatures [9], among others. These techniques typically rely6

on malware execution traces that have been previously captured, often in7

production systems (when a real attack occurs) or in sandbox environments.8

Malware execution traces are necessary to effectively train and test these9

methods, as execution traces reveal the actual behavior of the malware at10

runtime. However, most available execution trace datasets are simplified or11

optimized to be more efficient for techniques such as artificial intelligence.12

This simplification, in turn, frequently removes important contextual infor-13

mation, such as API or system call parameters and return values. Producing14

large datasets of malware execution traces remains a significant challenge15

due to the requirement for specialized tools, high resource costs, the risk of16

errors, and the need for user intervention during malware execution.17

Many malware detection proposals have focused on Windows systems due18

to their widespread use [10] and high appeal to attackers [11]. Behavior-19

based detection for Windows often involves analyzing execution traces, which20

are sequences of system calls or API functions invoked by a program. By21

examining these sequences, patterns relevant to determining the malware22

family or type can be identified.23

To our knowledge, there are very few publicly accessible datasets on Windows24

malware execution traces [12, 13, 14, 15]. These datasets typically consist25

only of sequences of API names or numerical identifiers, which provide a26

basic representation of execution. They also tend to include a limited num-27

ber of malware families and types, which are sometimes grouped together28

and treated as indistinguishable. Furthermore, this simplified representation29

often omits critical contextual information such as API parameters, results,30

processes created, synchronization objects, resources accessed, and commu-31
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nications established. This lack of detail hinders a comprehensive under-32

standing of execution behavior, which is particularly important in malware33

analysis [16].34

There are few tools for automatically generating datasets of malware exe-35

cutions. In [17], the authors introduced a tool that gathers information on36

malicious behavior from various security reports and analysis sources without37

executing the programs themselves, resulting in datasets based on secondary38

information. In contrast, the work in [18], more aligned with the approach39

discussed here, involves executing malware in a controlled environment to40

generate Windows system call traces. Specifically, the virtualization-based41

environment integrates tools to gather information about the system calls42

invoked and the files used during the execution of malware samples. This43

information is then stored into a relational database so that it can be trans-44

lated to different output formats. Additionally, each sample is classified using45

two labels: one indicating the malware category and another one specifying46

the malware family. Unfortunately, these category labels are too generic47

and have a limited semantic meaning, such as “Virus”, “Trojan”, “Danger-48

ousObject”, or “Packed”. This tool was used to generate a public dataset,49

called AWSCTD, which consists only of the anonymized sequence of system50

calls (the name of system calls have been translated to numerical identifiers51

and their parameters/results removed). In contrast, MALVADA is based on52

CAPE’s reports, which provide a richer description of the actions involved53

in the execution of the samples (including information about processes, net-54

work communications, synchronization, or the usage of registry, for instance).55

Besides, modern versions of two labeling algorithms have been used to de-56

termine the malware family of each sample, increasing the significance and57

precision of their classification labels.58
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In this work, we present MALVADA, a framework designed to generate Win-59

dows program execution trace datasets that relies on CAPE Sandbox [19]60

to execute programs and produce detailed reports. MALVADA filters and61

processes these reports into traces that include contextual information. Fur-62

thermore, these traces are also enriched with metadata, such as the likely63

malware family the program belongs to, providing a comprehensive dataset.64

The end result is a collection of traces in JSON, suitable for various mal-65

ware analysis applications. Our framework allows users to create custom66

datasets or extend existing ones. In this paper, we also publish the first67

version of a dataset generated by MALVADA, called Windows Malware Ex-68

ecution Traces (WinMET), which comprises approximately 10,000 malware69

execution traces.70

2. Software Description71

As shown in Figure 1, we used an enhanced version of CAPE Sandbox to72

analyze samples and generate execution reports. Modifications to CAPE in-73

cluded increasing the number of API calls intercepted, focusing on those74

linked to suspicious behaviors such as network communications, file/reg-75

istry accesses, and memory usage. Additionally, we developed CAPE Hook76

Generator, a tool that facilitates integrating new hooks into CAPE. This77

tool is publicly available in our GitHub [20].78

We use Kernel-based Virtual Machine (KVM) technology to deploy virtual79

machines (VMs) to run malware samples with CAPE. Each VM generates80

a report with key events and artifacts from the dynamic analysis, which81

is then processed by MALVADA. For medium-sized sample collections, we82

recommend a multi-VM setup. In our setup, we used four VMs on an Ubuntu83

22 host, each running Windows 10 x64. Using this setup, we analyzed over84
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Figure 1: Contextual overview of the MALVADA framework

20,000 samples. We discarded incorrect executions caused by errors, crashes,85

or connectivity issues with the sandbox environment. The remaining reports86

were then processed using MALVADA, resulting in the creation of the first87

version of WinMET.88

MALVADA processes CAPE reports to extract key data for understand-89

ing malware execution behavior. It generates detailed execution traces for90

each report, including the process tree, API call sequences, contextual infor-91

mation, accessed operating system resources, and mutex synchronizations,92

among others. Each report contains VirusTotal labels [21]. These labels93

are used to assign each trace to a malware family by applying two labeling94

algorithms: CAPE’s algorithm and AVClass [1].95

2.1. Software Architecture96

Figure 2 shows the architecture of MALVADA, designed as a modular pipeline97

for processing and generating datasets from input reports. This modular de-98

sign improves its maintainability, extensibility, and adaptability. Each task99

in the pipeline can be executed independently, allowing users to customize100

phases or configure different implementations. The tasks and control algo-101
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Figure 2: Internal architecture of MALVADA

rithm are implemented in Python, and data input and output are handled102

in JSON format.103

MALVADA automatically processes the CAPE analysis reports given as in-104

put in five steps to create a dataset of execution traces. First, it filters out105

reports of incomplete or failed executions (incorrect report detection) and106

removes duplicates based on sample ID hashes (duplicate report detection),107

retaining only one report per sample. It then transforms the remaining re-108

ports into execution traces by extracting and structuring relevant data about109

the execution behavior and context while anonymizing sensitive information110

(trace generation). The structure of these traces is described in Section 3.111

Each trace is then tagged with information about the malware family using112

results from antivirus engines and tools such as AVClass [1] to standardize113

classification (trace labeling). Finally, the system generates statistics about114

the processing of the reports and the composition of the final dataset (statis-115

tics reporting).116
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2.2. Software Functionalities117

The framework offers several key functionalities. It includes a configuration118

functionality to set operational parameters, such as directories for output119

results, criteria for report duplication, and thresholds for sample classifica-120

tion. The report filtering functionality also records reasons for exclusion121

of incomplete or erroneous reports and duplicates for the user to review.122

Trace generation processes CAPE analysis reports into detailed execution123

traces in JSON format, enriched with malware behavioral characteristics.124

The framework also incorporates malware family detection using CAPE and125

AVClass [1] to provide standardized family labels. Traces, labels, and a126

statistical description of the processing are packaged by MALVADA into a127

comprehensive dataset. In addition, it provides real-time monitoring of the128

status and results of each task in the process.129

2.3. Software Configuration130

The source code for MALVADA is publicly available [22]. This section pro-131

vides a detailed guide on the necessary steps to execute MALVADA.132

MALVADA processes reports generated by CAPEv2 Sandbox [19]. Therefore,133

installing CAPE, the VMs for malware analysis, and other dependencies is134

the first recommended step [23]. Additionally, to expand the API calls that135

CAPE hooks and thus improve the contextual information obtained from136

a program execution, it is necessary to modify the original CAPE monitor137

(capemon). This involves editing and recompiling the capemon source code,138

written in C [24]. Our tool CAPE Hook Generator [20] simplifies this by gen-139

erating hook code skeletons, which can be then integrated into the capemon140

source code. Once these steps are completed, the environment for executing141

malware samples and generating reports is ready.142
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Name Type Description

json dir string Directory containing one or more execution reports.

-w int Number of workers. Default: 10.

-vt int Threshold for VirusTotal positives to consider a

sample malicious. Default: 10.

-a string Replace the terms in the file provided with

“[REDACTED]”. Default: terms_to_anonymize.txt.

-s bool Silent mode. Default: False.

Table 2: Configuration parameters of MALVADA

MALVADA works with minimal user intervention. To run it, simply execute143

the main script (malvada.py) and specify the directory containing the reports144

to be analyzed. Users can also customize certain parameters to fine-tune the145

tool’s behavior. Table 2 lists these parameters, along with their type and146

a brief description. More details are available in our GitHub [22], which147

contains all the material necessary to execute and test the tool. Table 3148

summarizes the structure of the repository.149

3. Illustrative Examples150

This section aims to explain the results produced by executing MALVADA.151

We first describe the structure of an execution trace generated by the frame-152

work, and then we provide a detailed example of a dataset created by MAL-153

VADA.154

3.1. Structure of an Execution Trace155

The JSON document for a trace comprises several fields that collectively de-156

tail the execution behavior of the analyzed sample. Due to space limitations,157

Listing 1 displays only the most relevant fields.158
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Folder Contents

src MALVADA’s source code.

doc Documentation for developers rendered in

HTML.

test_reports A set of 200 execution reports generated with

CAPE. The purpose of these test reports is to

check the execution of MALVADA. The folder

also contains the expected results after the

execution, in order to compare if the tool

behaves as expected.

capemon The compiled version of capemon we used.

cape-hook-generator Version 1.0 of CAPE Hook Generator [20].

WinMET Information about WinMET dataset.

Table 3: MALVADA’s repository [22] structure.
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The key fields include: sample identification using cryptographic and simi-159

larity hashes (line 4); details about the binary file type (such as whether it is160

a Portable Executable [25] with specific attributes such as imports, exports,161

and sections; lines 15–18); a process tree that records all processes initiated162

by the sample (line 47); a sequence of API calls made during execution, in-163

cluding their arguments, return values, and categories (lines 33–46); malware164

classification labels, as determined by CAPE (line 1) and AVClass [1] (line165

53) based on the VirusTotal results (line 24); and a summary of the OS166

resources accessed by the sample, such as files, registry keys, mutexes, and167

services (line 48).168

The API call sequence is the most crucial element in a trace. Each entry169

in the "processes" array (line 34) represents a process started during ex-170

ecution, identified by a "process_id" (line 35). The API calls made by171

each process are stored in the "calls" entry (line 37). For each API call,172

it includes the name of the API ("api"; line 39), the category of the call173

("category"; line 38), the return value ("return"; line 30), and the argu-174

ments ("arguments" array; lines 41–44), among other data.175
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Listing 1: Main structure of an enhanced report

1 { "detections": [{...}],

2 "target": {

3 "file": {

4 "md5": "...", "sha256": "...", "ssdeep": "...", ... // Additional hashes

5 "imports": {

6 "KERNEL32": {

7 "dll": "KERNEL32.DLL",

8 "imports": [{

9 "address": "0x68d13c",

10 "name": "LoadLibraryA"

11 }, ..., // Additional entries per imported function

12 ]

13 }, ..., // Additional entries per each imported dll

14 },

15 "pe":{

16 "resources": [{...}],

17 ... // Additional fields in the "pe" entry

18 },

19 "strings": [...],

20 "virustotal":{

21 "scan_id": "...",

22 "positives": 13,

23 "total": 73,

24 "results":[{

25 "vendor": "...",

26 "sig": "..."

27 }, ..., // Additional entries per vendor

28 ], ..., // Additional fields in the "virustotal" entry

29 }, ... // Additional fields in the "file" entry

30 }, ... // Additional fields in the "target" entry

31 },

32 "dropped": [{...}],

33 "behavior": {

34 "processes":[{

35 "process_id": 1337,

36 "parent_id": 31337,

37 "calls":[{

38 "category": "filesystem",

39 "api": "NtOpenFile",

40 "return": "0x00000000",

41 "arguments":[{

42 "name": "FileHandle",

43 "value": "0xDEADBEEF"

44 }, ...,] // Additional entries per each argument

45 }, ...,] // Additional entries per each API or syscall

46 }, ...,], // Additional entries per each process

47 "processtree": [ ... ],

48 "summary": {

49 "files": [ ... ], "read_files": [ ... ], "write_files": [ ... ], "

delete_files": [ ... ], "keys": [ ... ], "read_keys": [ ... ], "

write_keys": [ ... ], "delete_keys": [ ... ], "executed_commands":

[ ... ], "mutexes": [ ... ],

50 ..., // Additional fields in the "summary" entry

51 },..., // Additional fields in the "behavior" entry

52 },

53 "avclass_detection": "...",

54 ..., // Additional entries in the report

55 }

56 }

176
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3.2. Example of dataset177

Using MALVADA, we created the WinMET dataset, which currently con-178

tains approximately 10,000 execution traces. The top five malware families179

represented in the dataset, according to AVClass [1], are Reline (22.1%),180

Disabler (7.4%), Amadey (5.8%), Agenttesla (4.8%), and Taskun (3.8%).181

According to CAPE, the top five families are Redline (12.4%), Agenttesla182

(10.2 %), Crifi (6.3%), Amadey (6.13%), and Smokeloader (5.4%). Both la-183

beling approaches are based on labels provided by vendors from VirusTotal.184

On average, there are 53 labels per report. Additionally, 7% of the samples185

are labeled as “(n/a)” by AVClass, compared to 26% by the CAPE label-186

ing algorithm. This suggests that AVClass is able to assign a label in most187

cases. The “(n/a)” label indicates that the respective algorithm could not188

determine a decision on the malware family.189

The WinMET dataset is publicly available at [26], and additional details are190

provided in our GitHub repository [22].191

Creating a dataset that includes all malware families is nearly impossible due192

to the sheer number of families. However, MALVADA allows for continuous193

updates and improvements to the dataset by allowing new samples from other194

families to be analyzed and included, either by the original developers or by195

third parties. This flexibility ensures that the dataset can be expanded and196

refined over time.197

4. Impact198

Cyberattacks are growing exponentially and becoming increasingly sophis-199

ticated, posing a significant threat to users and organizations. A major200

challenge in cybersecurity is developing tools that can efficiently detect and201

mitigate these attacks to minimize damage. These tools often rely on learning202
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from past data, making the availability of specialized, high-quality datasets203

essential. The rise of artificial intelligence as a detection method has further204

amplified the need for diverse, large-scale data sets, particularly since mod-205

els like deep learning require extensive and varied data to perform accurately206

and reliably.207

MALVADA addresses the scarcity of publicly available malware execution208

trace datasets. While traditional efforts have focused on collecting malware209

samples (e.g., VirusShare, VX-underground, Malware Bazaar, and MalShare210

malware repositories, among others), our framework enables the creation211

of datasets by processing the reports generated from sandbox environments212

such as CAPE.213

MALVADA offers several advantages for researchers too. Its modular design214

allows tasks in the process chain to be easily modified and extended, enabling215

new functionalities and improved reporting processing. The framework is216

easy to use and requires minimal intervention, and no specialized technical217

knowledge, making it accessible to users from all backgrounds. Furthermore,218

datasets can be created incrementally and combined with others, allowing219

collaborative and progressive development of a complete reference dataset..220

In this sense, WinMET [26] represents a significant advancement in malware221

research [27]. Unlike other public datasets, WinMET provides a wide range222

of malware behavior characteristics, including detailed process information,223

API calls, parameters/results, resource access, and synchronization details.224

This comprehensive dataset enables in-depth analysis of malware operations225

and interactions, making it a valuable resource for developing effective de-226

tection methods. Its size and detailed data provide a robust foundation for227

building widely accepted reference datasets, and its JSON format simplifies228

data interpretation and conversion, facilitating its use in current detection229
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technologies such as those based on machine learning.230

Both MALVADA and WinMET are open source and publicly available [22,231

26], aligning with the principles of open science and aiming to facilitate their232

widespread use by the research community.233

5. Conclusions234

In this paper, we introduce MALVADA, a framework for generating mal-235

ware execution trace datasets from sandbox reports (specifically, CAPE),236

enhanced with classification tools. Its key advantages are detailed behavioral237

insights and the ability to incrementally build large datasets. As malware238

detection increasingly relies on knowledge extraction and AI models, the239

need for high-quality datasets increases significantly. MALVADA addresses240

this need and supports the development of improved detection models. We241

also release the WinMET dataset, aiming to provide a valuable resource for242

researchers to collaboratively extend and contribute to a comprehensive ref-243

erence dataset for the malware research community.244
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[20] R. Raducu, R. J. Rodŕıguez, P. Álvarez, CAPE Hook Generator, [On-319

line; https://github.com/reverseame/cape-hook-generator], ac-320

cessed on Jul 24, 2024. (Jun. 2024).321

[21] VirusTotal, [Online; https://www.virustotal.com/], accessed on Jul322

22, 2024.323

[22] R. Raducu, A. Villagrasa-Labrador, R. J. Rodŕıguez, P. Álvarez, MAL-324
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