
APOTHEOSIS: An Efficient Approximate Similarity
Search System

Daniel Huicia, Ricardo J. Rodrígueza,∗, Eduardo Menaa

aDpto. de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Spain

Abstract

APOTHEOSIS is a tool for efficiently identifying and comparing data simi-
larity in large datasets, addressing challenges faced by traditional methods
such as scalability and speed. APOTHEOSIS overcomes them by combining
advanced algorithms and data structures, enabling fast and accurate simi-
larity analysis. Specifically, it uses a custom hierarchical small navigation
world as an approximate K-nearest neighbors search method, and approxi-
mate similarity digests algorithms to find common features between similar
data items, also supporting various distance metrics beyond vector-based
approaches. Our software tool is designed for seamless integration into re-
search workflows, improving reproducibility and facilitating the comparison
of large-scale, high-dimensional data comparison across multiple domains.

Keywords: approximate search methods, approximate K-nearest neighbors,
approximate matching, similarity digest algorithms, data similarity analysis

∗Corresponding author
Email address: rjrodriguez@unizar.es (Ricardo J. Rodríguez)

Preprint submitted to SoftwareX December 19, 2024

Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version v1.2
C2 Permanent link to code/reposi-

tory used for this code version
https://github.com/reverseame/
APOTHEOSIS

C3 Permanent link to Reproducible
Capsule

–

C4 Legal Code License GPLv3
C5 Code versioning system used git
C6 Software code languages, tools,

and services used
Python

C7 Compilation requirements, oper-
ating environments & dependen-
cies

Python (≥ 3.9.2), Flask, mat-
plotlib, mysql-connector-python,
networkx, numpy, pandas,
py_tlsh, pytest_regressions,
PyYAML, Requests,
scipy, seaborn, sensitivity,
SQLAlchemy, statsmodels,
waitress, Werkzeug

C8 If available Link to developer doc-
umentation/manual

https://github.com/reverseame/
APOTHEOSIS/blob/main/
README.md

C9 Support email for questions reverseame@unizar.es

Table 1: Code metadata (mandatory).

1. Motivation and Significance

APOTHEOSIS (APprOximaTe searcH systEm Of Similarity dIgeSts) is a
tool designed to efficiently identify and compare data similarity in large
datasets, an essential capability in fields such as digital forensics, data dedu-
plication, or genomics, to name a few. For instance, a rapid identification of
similar binary artifacts can significantly expedite incident response investi-
gations [1].

Traditional methods of data comparison often struggle with scalability
and speed when working with large amounts of data (known as the curse of
dimensionality [2]). Our tool addresses this challenge by leveraging advanced
algorithms and efficient data structures to reduce analysis time and compu-
tational demands. Specifically, it combines approximate search techniques [3]

2

https://github.com/reverseame/APOTHEOSIS
https://github.com/reverseame/APOTHEOSIS
https://github.com/reverseame/APOTHEOSIS/blob/main/README.md
https://github.com/reverseame/APOTHEOSIS/blob/main/README.md
https://github.com/reverseame/APOTHEOSIS/blob/main/README.md
reverseame@unizar.es

to quickly find close (but not exact) matches and approximate similarity
matching algorithms [4] to identify shared features between similar artifacts.

APOTHEOSIS improves scientific research by offering a powerful platform
for data similarity analysis, easily integrated into various workflows. It im-
proves the speed and accuracy of large-scale data comparisons, which is crit-
ical for timely decision making and hypothesis testing. The tool also ensures
reproducibility in scientific studies by providing a systematic approach to
data analysis.

APOTHEOSIS is designed with a modular architecture, making it acces-
sible to users from various fields. After downloading [5] and installing the
tool, users can analyze datasets such as system logs, genomic sequences, or
document collections. The data may require preprocessing to ensure it is in
a suitable format, including cleaning and feature extraction. The similarity
digests [4] of the data are then used in the APOTHEOSIS model to perform
similarity searches.

Related Work
K-nearest neighbor search (K-NNS) is a common method to find the

nearest items in a dataset based on a defined distance function. However,
K-NNS faces challenges with high-dimensional data, where exact solutions
may be computationally intensive [6]. To address this problem, K-nearest
approximate neighbor search (K-ANNS) was introduced [3], which finds data
points that are close to the query, but not necessarily the closest, making it
more practical and efficient for high-dimensional spaces.

APOTHEOSIS employs a graph-based K-ANNS method that uses a cus-
tom implementation of Hierarchical Small Navigation World (HNSW) [7] for
approximate search. HNSW is popular for its efficiency in approximate near-
est neighbor searches. Many HNSW implementations focus particularly in
vector searches. The most widely used implementation is HNSWlib [8], a
lightweight C++ library with Python bindings, which offers customizable
distance functions, albeit limited to Euclidean distance, inner product, and
cosine similarity in Python.

Another notable tool is Facebook AI Similarity Search [9], a C++
implementation with GPU acceleration support that uses vector-based search
functions. Various HNSW implementations exist for languages like Java, Go,
and Rust, but they also rely on vector search. A Python3 implementation of
HNSW was recently released [10], but it shares the same limitations as the
other solutions.

Unlike vector-based approaches, which may struggle with large datasets,
APOTHEOSIS is built to handle large volumes of data using any type of distance
metric or similarity score.

3

2. Software Description

APOTHEOSIS is an approximate search system that uses similarity digest
algorithms (SDA) [4] to compare digital artifacts based on similarity rather
than exact matches. It employs two key data structures: a space-saving
trie for efficient item searching (specifically, a radix tree [11]) and a custom
implementation of HNSW [7], a graph-based method for fast, approximate
nearest neighbor searching in high-dimensional spaces.

Our system is highly extensible and adaptable to various fields, including
digital forensics, genomics, and environmental science, to name a few. It
significantly improves the ability to perform data similarity analysis, which
is crucial for various scientific and analytical tasks. For instance, in digi-
tal forensics, it enables analysts to quickly identify and correlate evidence
across multiple devices, speeding up investigations and uncovering coordi-
nated malicious activity. Likewise, in genomics, it helps researchers study
evolutionary relationships by comparing genetic data across species, improv-
ing the efficiency of scientific analysis.

2.1. Software Architecture
Figure 1 provides a high-level overview of APOTHEOSIS. Our system lever-

ages two complementary data structures–a radix tree and a custom HNSW–
alongside similarity digests to efficiently manage and compare data. The
APOTHEOSIS database stores all hashes and associated metadata, such as log
or document filenames, which helps maintain the spatial efficiency of the
HNSW structure. Additionally, APOTHEOSIS provides a REST API, enabling
seamless integration with other tools and systems for automated and real-
time data analysis.

Both data structures in APOTHEOSIS were implemented as generic Ab-
stract Data Types (ADTs) [12]. Following software engineering best prac-
tices [13], we designed these structures to be easily extensible for any similar-
ity function or data type. Specifically, we used the Abstract Factory design
pattern to define interfaces for creating related objects and the Strategy pat-
tern to allow dynamic selection of behaviors at runtime. In APOTHEOSIS, the
Strategy pattern manages the specific details of a node, while the Abstract
Factory pattern handles different distance and similarity metrics.

To support open science and foster research, we have released APOTHEOSIS
under the GNU/GPLv3 license. Our implementation includes typical ADT
operations such as initialization, insertion, deletion, lookup, and search. We
adhere to Python best practices and PEP8 style guidelines [14] for ease of
maintenance and readability. The source code is managed using Git and is
available in our GitHub [5].

4

Layer 0

Layer 1

Layer 2

n2

n6

n1

n5

n3

n4

HNSW model

n1 n2 n3 n4 n5 n6

T1

203 405 A2E

.

Radix tree

Database

APOTHEOSIS

REST API

Figure 1: High-level overview of APOTHEOSIS.

2.2. Software Functionalities
In this section, we describe the key operations of our system: initial-

ization, insertion, deletion, lookup, and search. Each operation is designed
to maintain system consistency, optimize performance, and support flexible
similarity analysis, as detailed below.

2.2.1. Initialization Operation
The radix tree and HNSW data structures are initialized to handle a

specific SDA to ensure consistent results by preventing the mixing nodes
from different SDA. The radix tree, which uses hashes as keys and pointers
to corresponding nodes in the HNSW structure as values, starts as an empty
tree. HNSW requires different configuration parameters [7]:

• Number of established connections (M): M determines the number of
connections a new node will establish upon insertion.

• Maximum number of neighbors (Mmax): Mmax sets the upper limit on
the number of neighbors a node can have at each layer, except for the
ground layer which uses a separate parameter, Mmax0.

• Neighbors to explore (ef), which is how many neighbors are explored
during both the construction and search phases.

The values of these parameters affect the behavior and performance of
HNSW. For instance, increasing Mmax may improve search recall, but can

5

also increase memory usage and query time. Similarly, a higher ef value
can result in a more accurate index, but may increase construction time.
Users should evaluate these parameters based on their specific problem re-
quirements. To assist with this, we provide scripts for conducting sensitivity
analysis on these parameters under various configurations.
Algorithm 1: Insertion of a new node into an Apotheosis model.
Input: Apotheosis modelM = {Radix Tree RT , HNSW H}, new

node n with hash hn

1 Procedure InsertNode(M, n):
2 existing_node← SearchRadixTree(RT , hn)
3 if existing_node ̸= null then

// Node already exists, avoid redundant insertion
4 return

5 InsertRadixTree (RT , hn, n);
6 InsertHNSW (H, n) // Follows the algorithm in [7]

2.2.2. Insertion Operation
Once both the radix tree and HNSW structures have been initialized,

adding new nodes to the system follows a systematic approach (see Algo-
rithm 1). The InsertNode procedure first checks whether the new hash
already exists by searching for it in the radix tree (line 2). If found, the node
is not added again, avoiding redundancy (lines 3–4). Otherwise, the new
node is inserted first into the radix tree (line 5) and then into the HNSW
structure (line 6). The insertion operation in HNSW follows the algorithm
given in [7]. This dual data structure approach mitigates the risk of false
negatives that can occur with HNSW alone, by ensuring that the same node
is not inserted multiple times.

Let us finally remark that although our system specifically uses similarity
digests, the HNSW structure is designed to handle any type of element as
long as a comparison method is available.

6

Algorithm 2: Deletion of a node from an Apotheosis model.
Input: Apotheosis modelM = {Radix Tree RT , HNSW H},

node n with hash hn

1 Procedure DeleteNode(M, n):
// Sanity checks before deletion

2 if structure is empty or distance algorithm mismatch
then

3 return

4 removed← RemoveRadixTree(RT , hn)
5 if removed = false then

// Node not found in Radix Tree
6 return

7 RemoveHNSW (H, n)
// Update entry point if necessary

8 if n is the current entry point in H then
9 new_entry ←

FindNewEntryPoint(GetNeighbors(n, highest layer))
10 if new_entry = null then
11 new_entry ← Find first neighbor in lower layers

2.2.3. Delete Operation
The delete operation in APOTHEOSIS involves deleting a node from the

radix tree and the HNSW graph structure (see Algorithm 2). This process
ensures that the node is completely detached from both data structures while
maintaining the integrity and functionality of the overall structure.

It first verifies that the node can be safely removed with some sanity
checks (e.g., checking conditions such as that the structure is not empty and
that the node’s distance algorithm matches the structure’s algorithm; lines 2–
3). If these conditions are met, the node is removed from the radix tree (line
4). If the node is found, it is then removed from the HNSW graph structure
(line 7). To do this, it iterates through all layers of the node, removing the
node from the lists of its neighbors (and vice versa), and then removes it from
the HNSW structure’s internal dictionary. If the node is the only one in its
layer, the layer key is also removed from the internal dictionary. The final
step involves, if necessary, updating the entry point of the HNSW graph: if
the node to be deleted is the current entry point, it searches for a new entry
point among the node’s neighbors at the highest layer of the current entry
point. If no neighbors are found, it moves to the next immediate lower layer,
searching for the first neighbor in a lower layer of the node that was the entry

7

point to set it as the new entry point (lines 8–11).
Algorithm 3: KNN search of a node in an Apotheosis model.
Input: Apotheosis modelM = {Radix Tree RT , HNSW H},

query node q with hash hq, parameter K ∈ N>0

1 Procedure KNNSearch(M, q, K):
2 queue←

PriorityQueue with entry point of highest layer
3 current_layer ← highest layer
4 while current_layer ≥ ground layer do
5 neighbors← GetNeighbors(entry point, current_layer)
6 foreach neighbor n in neighbors do
7 UpdateQueue (queue, n, q)

8 current_layer ← current_layer − 1
9 entry_point← Get nearest neighbor from queue

10 return Top K nodes from the priority queue

Algorithm 4: Threshold search of a node in an Apotheosis model.
Input: Apotheosis modelM = {Radix Tree RT , HNSW H},

query node q with hash hq, threshold t > 0, comparison
mode m

1 Procedure ThresholdSearch(M, q, t, m):
2 queue←

PriorityQueue with entry point of highest layer
3 current_layer ← highest layer
4 while current_layer ≥ ground layer do
5 neighbors← GetNeighbors(entry point, current_layer)
6 foreach neighbor n in neighbors do
7 if ThresholdCheck (n, q, t, m) then
8 UpdateQueue (queue, n, q)

9 current_layer ← current_layer − 1
10 entry_point← Get nearest neighbor from queue

11 final_candidates←
Get nodes from the priority queue that meet threshold
return final_candidates

2.2.4. Lookup and Search Operations
Given a query key (digest), our system first checks the radix tree, af-

ter some sanity checks (specifically, the distance algorithm of the query and

8

the system must match). If the key is found, it retrieves the corresponding
node and its KNN from the HNSW structure. Otherwise, HNSW is used
to perform an approximate search to find the nearest nodes. This approach
ensures that even if the exact key is missing, we can still obtain the approx-
imate nearest neighbors. Specifically, APOTHEOSIS supports two main search
operations, explained below.

Nearest Neighbors-Based Search. The KNN search operation (see Algorithm 3)
begins by initializing a priority queue with the entry point of the highest layer
(line 2). Given a query node q and parameter K ∈ N>0, the search process
begins at the top layer and traverses down to the ground layer (lines 3–9). At
each layer, the neighbors of the current entry point are evaluated based on
their distance to the query node, and the priority queue is updated with any
newly found closer nodes (lines 5–7). The entry point for the next lower layer
is selected from the nearest neighbors in the queue (line 9). Finally, the K
nearest neighbors are returned from the priority queue (line 10). Unlike [7],
our method extends this set by also considering the neighbors of the found
nodes, selecting those closest to the query node.

Threshold-Based Search. The threshold-based search operation (see Algo-
rithm 4) takes as input a query node q, a threshold value t > 0, and a
comparison mode m (distance metric or similarity score). It identifies nodes
whose similarity score to the query node is strictly greater or lower than
the threshold, depending on the mode. The search proceeds similarly to the
KNN search, starting from the topmost layer and moving down to the ground
layer, but with one key difference: nodes are added to the candidate set only
if they meet the threshold criteria (lines 7–8). After reaching the ground
layer, the final candidate set is expanded by considering neighbors that also
meet the threshold condition (line 11).

2.2.5. REST API Interface
We have developed a REST API interface for APOTHEOSIS to simplify

similarity analysis and extend its accessibility. This interface allows for easier
integration of APOTHEOSIS into existing workflows and solutions.

The REST API presents two endpoints for search operations on a loaded
HNSW model, allowing users to choose between knn or threshold searches.
Users provide the required search data and the API returns a JSON response
indicating whether an exact match was found and listing approximate neigh-
bors for the query hash.

9

Table 2: TLSH and ssdeep hashes from chapter extracts from the book “Don Quixote”.

Chapters TLSH (first line) and ssdeep (second line) hashes
1–1 T109217706ADC031F708D313D2C756D997D54192847604C2DAD9B6476630C57CCC9AFD48

24:2VEzWputOLBG6Keyvcj2FRd/LCfg3oZwamkMjyLyFJWV/K6q/xNn:2AN+GjdzHdzSAoZwYMHF0VCxN
1–2 T14F5194239DC013AB48D31386D686D6B3E080E6C07658C2EBD976D24A31C96CCCBAFD48

48:2AN+GjdzHdzSAoZwYMHF0VCx4byL1vTOZCgqF+SjtHBwLhmxSXMmz2bLAYK:2ANb59jl08xtL1vTLgqbthwLhmxSXMaz
1–3 T1E35194279DC013AB44D31386D64AC6B3E484A6C07758C2E7D976D64A30CD68CDBAFE48

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGc:V99j6OwqbthUmxSdeLVA
1–4 T117818323DDC413AB85D31386E78BD2A3F484A5C07654C1EB9566864A30CC6CCCBEFD88

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGYJe0XQD:V99j6OwqbthUmxSdeLVOenD
1–5 T1659163239EC017AB81E32385D78BD663F584A5C07254C1D7A566C74A30CC78CDBAFE88

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGYJe0XQFaVBx:V99j6OwqbthUmxSdeLVOenkVBx
1–6 T14CA184279DC017AB81E32385D38BD663F584A5D07255C1E7E966C24A31CC68CDBAFE88

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGYJe0XQFaVBbIy:V99j6OwqbthUmxSdeLVOenkVBbIy
1–7 T1FEB18527DDC017AB81E32385E38BD663F584A5D07255C1E7D966C24A31CC68CDBAFE88

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGYJe0XQFaVBbIZ:V99j6OwqbthUmxSdeLVOenkVBbIZ
1–8 T139B164279DC0176B81E32385E38BD663F584A5D07255C1E7D566C24E31CC68CDBAFD88

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGYJe0XQFaVBbIX:V99j6OwqbthUmxSdeLVOenkVBbIX
1–9 T1EEC186279DC41B6B81E32385E78BDA73F484A5C07215C1DBD966C24E21C868CDBAFD88

96:2ANb59jl08xtL1vTLgqbthwLhmxSXMa2bLl3XSGYJe0XQFaVBbIoJv7jmmW:V99j6OwqbthUmxSdeLVOenkVBbIADjpW
1–10 T1ECD197279DC41B6B81E32385D38BC973F584A5D07255C1DBA96AC24E21CC68CDBAFD88

192:V99j6OwqbthUmxSdeLVOenkVBbIADjpN69v:zJ6OwqbthUmIUJZnibIIN69v

3. Illustrative example

To demonstrate the capabilities and potential applications of APOTHEOSIS,
we perform a text similarity analysis in subsets of chapters from Miguel de
Cervantes’ “Don Quixote”, focusing on comparing the performance of TLSH
and ssdeep. We incrementally extracted text from the first 10 chapters of the
novel by creating chunks that included progressively more chapters. Specifi-
cally, we first extracted chapter 1, then created a chunk containing chapters
1 and 2, followed by a chunk containing chapters 1, 2, and 3, and continued
this process until all 10 chapters were included. We then used APOTHEOSIS to
assess the similarity between these progressively larger chunks. Table 2 shows
the hash values for each chapter. To quantify similarity, Table 3 presents the
percentage representation of the byte size of each smaller file relative to pro-
gressively larger files. The values indicate what proportion of the byte size
of the larger file is accounted for by the smaller file, providing an indication
of their similarity in terms of content overlap.

We implemented a class, ChapBookHashNode, within APOTHEOSIS to han-
dle and analyze these hashes, and used the draw method to generate visu-
alizations of the HNSW model layers. This class should be a specialized
subclass of HashNode, a component of the APOTHEOSIS framework. Its full
code and the driver script can be found in the chapbooks-example branch1.

Figures 2a and 2b illustrate the the HNSW of each APOTHEOSIS model
constructed for each hashing algorithm in this running example. Our system

1See https://github.com/reverseame/APOTHEOSIS/tree/chapbooks-example.

10

https://github.com/reverseame/APOTHEOSIS/tree/chapbooks-example

Table 3: Percentage representation of smaller files within larger files, based on byte size.

– 1–1 1–2 1–3 1–4 1–5 1–6 1–7 1–8 1–9 1–10
1–1 100.00 41.44 38.82 31.41 26.74 24.38 24.09 23.45 21.56 19.70
1–2 – 100.00 93.68 75.78 64.53 58.84 58.12 56.59 52.02 47.53
1–3 – – 100.00 80.90 68.88 62.81 62.04 60.41 55.53 50.74
1–4 – – – 100.00 85.15 77.64 76.70 74.68 68.64 62.72
1–5 – – – – 100.00 91.18 90.07 87.70 80.62 73.66
1–6 – – – – – 100.00 98.78 96.18 88.41 80.78
1–7 – – – – – – 100.00 97.36 89.50 81.78
1–8 – – – – – – – 100.00 91.92 83.99
1–9 – – – – – – – – 100.00 91.37
1–10 – – – – – – – – – 100.00

allows for the extraction of DOT files for each layer, containing detailed
information about nodes, edges, and any additional custom data defined
by the user. This feature provides a comprehensive representation of the
structure and relationships within each layer, allowing for better analysis
based on specific requirements. Note also that the ground layers differ due
to the probabilistic nature of the underlying HNSW model. When nodes
are inserted, they may reach layer 0 through different entry points, leading
to variations in their nearest neighbors. This variability directly influences
the structure and neighborhood relations in the resulting graph. As a result,
even though nodes remain the same, the connections established between
them may vary.

The results indicate differences in performance: ssdeep shows limited
similarity between some chapters, while TLSH reflects a wider range of dif-
ferences. For instance, Chapters 1-10 and 1-9 have low TLSH distance and
high ssdeep similarity (i.e., both agree that they have significant similar-
ity). Both algorithms also agree on the high similarity between Chapters
1-7 and 1-8. According to Table 3, the percentage of byte size of Chapter
1-6 within Chapter 1-7 is 98.78%, indicating that Chapter 1-6 accounts for
almost all of the content of Chapter 1-7. This similarity is also corroborated
by both HNSW models, as they show a lower TLSH score (6) and a higher
ssdeep score (99), further supporting the strong overlap between these chap-
ters. This example demonstrates how our tool can effectively compare and
analyze textual data across different hashing techniques.

4. Impact

APOTHEOSIS improves research by accelerating, improving the accuracy,
and scaling data analysis. It enables faster large-scale similarity searches,
providing timely insights and decisions. Its ability to handle large data sets
helps researchers identify trends and patterns in big data that were previously
difficult to detect.

11

1-2

1-7

1-10

1-1

1-3

1-9

1-4

1-6

1-5

1-8

112

165

127

17

135
68

73

55

6

106

19
64

19

131 223
15

87

175

13168

101

39

96

53

37

75

20

27

42

(a) HNSW’s layer 0 with TLSH

1-9

1-5

1-8

1-7

1-4

1-2

1-10

1-1

1-3

1-6

91

93

93

86

69

94

0

94

97
97

97

93

86

86

99

99

75

93

86

86

99

80

93

93
80

0

88

0

58

0

(b) HNSW’s layer 0 with ssdeep

Figure 2: Ground layers of the HNSW of each APOTHEOSIS model.

Our custom implementation of HNSW and radix tree significantly re-
duce the computational burden of similarity searches. In particular, HNSW
achieves a worst-case complexity of O(N logN) for constructing the graph
and O(logN) for querying [7]. Conventional methods, such as pairwise com-
parisons, that compare every item in the dataset against all others, while
straightforward, exhibits a worst-case computational complexity of O(N2).
This improvement is achieved thanks to the hierarchical layers and opti-
mized connectivity management, as the number of comparisons required are
reduced. Similarly, the radix tree structure further accelerates operations
such as insertion, deletion, and search by organizing data based on common
prefixes. Operations on the radix tree exhibit a complexity of O(L), where
L is the key length [11]. These combined complexities ensure scalability to
large data sets.

Our software tool also opens up new research opportunities by enabling
efficient and accurate data similarity analysis and by helping to address inno-
vative questions. For instance, how large-scale similarity analysis of digital
artifacts can improve the detection and understanding of complex cyberat-
tacks? (digital forensics), what previously unidentified genetic patterns or
relationships can be discovered by comparing large genomic datasets? (ge-
nomics), or how analyzing ecological data from multiple regions and time
periods can improve our understanding of the impacts of climate change?
(environmental science).

Finally, APOTHEOSIS’s REST API enables integration into automated
workflows, reducing manual effort and increasing efficiency. This enables
real-time data similarity analysis, which is essential for applications such as
cybersecurity and digital forensics, to name a few. Additionally, its modular
architecture makes it easy to use across multiple domains, fostering a more

12

integrated approach to data analysis.

5. Conclusions

Efficiently handling and scrutinizing large datasets poses a significant hur-
dle in various domains, underscoring the critical need for fast and accurate
tools to quickly get insights and make decisions. In this paper, we have in-
troduced APOTHEOSIS, an extensible and versatile system that leverages the
power of approximate search methods and similarity digest algorithms to fa-
cilitate similarity data analysis. This combination allows for fast and efficient
identification of similar digital artifacts within large data sets. To improve
usability and accessibility, we have also provided a REST API interface for
APOTHEOSIS, allowing forensic analysts to seamlessly integrate it into existing
research and analytical workflows.

As future work, we intend to explore the integration and comparative
analysis of other K-ANN search methods, in addition to HNSW, to evalu-
ate their impact on performance, scalability, and accuracy in various data
similarity tasks.

Acknowledgements

This research was supported in part by the Spanish project TED2021-
131115A-I00, funded by MCIN/AEI/10.13039/501100011033, and by the Re-
covery, Transformation and Resilience Plan funds, financed by the European
Union (Next Generation). The research of R. J. Rodríguez was also supported
by the Recovery, Transformation and Resilience Plan funds, financed by the
European Union (Next Generation), and by the Spanish National Cyberse-
curity Institute (INCIBE) under Proyecto Estratégico CIBERSEGURIDAD
EINA UNIZAR. The research of E. Mena by the Spanish project PID2020-
113903RB-I00 (AEI/FEDER, UE). Additionally, the research of R. J. Ro-
dríguez and E. Mena was supported by the University, Industry and Innova-
tion Department of the Aragonese Government under Programa de Proyectos
Estratégicos de Grupos de Investigación (DisCo and SID research groups, refs.
T21-23R and T42-23R, respectively).

References

[1] G. Johansen, Digital Forensics and Incident Response: Incident response
tools and techniques for effective cyber threat response, 3rd Edition,
Packt Publishing, 2022.

[2] R. E. Bellman, Dynamic Programming, Courier Corporation, 2003.

13

[3] P. Indyk, R. Motwani, Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality, in: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, STOC ’98, Associa-
tion for Computing Machinery, New York, NY, USA, 1998, pp. 604–613.

[4] F. Breitinger, B. Guttman, M. McCarrin, V. Roussev, D. White, Ap-
proximate Matching: Definition and Terminology, techreport NIST Spe-
cial Publication 800-168, National Institute of Standards and Technol-
ogy (May 2014).

[5] D. Huici, R. J. Rodríguez, Apotheosis (version 1.2), [Online; https:
//github.com/reverseame/APOTHEOSIS], accessed on August 2, 2024.
(Aug. 2024).

[6] M. Radovanović, A. Nanopoulos, M. Ivanović, Nearest neighbors in high-
dimensional data: the emergence and influence of hubs, in: Proceed-
ings of the 26th Annual International Conference on Machine Learning,
ICML ’09, Association for Computing Machinery, New York, NY, USA,
2009, pp. 865–872.

[7] Y. A. Malkov, D. A. Yashunin, Efficient and Robust Approximate Near-
est Neighbor Search Using Hierarchical Navigable Small World Graphs,
IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (4)
(2020) 824–836.

[8] Y. Malkov, HNSWlib, [Online; https://github.com/nmslib/hnswlib], ac-
cessed on June 5, 2023. (2018).

[9] J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with
GPUs, IEEE Transactions on Big Data 7 (3) (2019) 535–547.

[10] Bartholomy, Hierarchical Navigable Small World: a scalable near-
est neighbor search, [Online; https://github.com/brtholomy/hnsw], ac-
cessed on June 5, 2023. (2023).

[11] D. R. Morrison, PATRICIA–Practical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric, Journal of the ACM (JACM) 15 (1968)
514–534.

[12] B. Liskov, S. Zilles, Programming with Abstract Data Types, in: Pro-
ceedings of the ACM SIGPLAN Symposium on Very High Level Lan-
guages, Association for Computing Machinery, New York, NY, USA,
1974, pp. 50–59.

14

https://github.com/reverseame/APOTHEOSIS
https://github.com/reverseame/APOTHEOSIS
https://github.com/nmslib/hnswlib
https://github.com/brtholomy/hnsw

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley Longman
Publishing Co., Inc., USA, 1995.

[14] G. van Rossum, B. Warsaw, A. Coghlan, PEP 8 – Style Guide for Python
Code, [Online; https://peps.python.org/pep-0008/], accessed on August
2, 2024. (Aug. 2013).

15

https://peps.python.org/pep-0008/

	Motivation and Significance
	Software Description
	Software Architecture
	Software Functionalities
	Initialization Operation
	Insertion Operation
	Delete Operation
	Lookup and Search Operations
	REST API Interface

	Illustrative example
	Impact
	Conclusions

