
 
 

 

DATA ARTICLE TEMPLATE V.18 (APRIL 2024)  1 

ARTICLE INFORMATION 2 
Ar,cle ,tle 3 

A Dataset to Train Intrusion Detec3on Systems based on Machine Learning Models for Electrical 4 
Substa3ons 5 

 6 

Authors 7 

Esteban Damián Gu3érrez Mlot* (a) 8 

Jose Saldana (a) 9 

Ricardo J. Rodríguez (b) 10 

Igor Kotsiuba (c) 11 

Carlos H. Gañan (d) 12 

 13 

Affilia,ons 14 

(a) CIRCE Technology Center, Zaragoza, Spain 15 
(b) Aragón Ins3tute for Engineering Research, University of Zaragoza, Zaragoza, Spain 16 
(c) Durham University, UK 17 
(d) Del\ University of Technology, Del\, the Netherlands 18 

 19 

Corresponding author’s email address and TwiAer handle 20 

esgu&@protonmail.com 21 

Keywords 22 

cybersecurity, cri3cal infrastructure, testbed, IEC61850, IEC60870-5-104, IEC104 23 

Abstract 24 

The growing integra3on of Informa3on and Communica3on Technology into Opera3onal Technology 25 
environments in electrical substa3ons exposes them to new cybersecurity threats. This paper presents 26 
a comprehensive dataset of substa3on traffic, aimed at improving the training and benchmarking of 27 
Intrusion Detec3on Systems (IDS) installed in these facili3es that are based on machine learning 28 
techniques. The dataset includes raw network captures and flows from real substa3ons, filtered and 29 
anonymized to ensure privacy. It covers the main protocols and standards used in substa3on 30 
environments: IEC61850, IEC104, NTP, and PTP. Addi3onally, the dataset includes traces obtained 31 
during several cyberaiacks, which were simulated in a controlled laboratory environment, providing 32 
a rich resource for developing and tes3ng machine learning models for cybersecurity applica3ons in 33 
substa3ons. A set of complementary tools for dataset crea3on and preprocessing are also included to 34 



 
 

 

standardize the methodology, ensuring consistency and reproducibility. In summary, the dataset 35 
addresses the cri3cal need for high-quality, targeted data for tuning IDS at electrical substa3ons and 36 
contributes to the advancement of secure and reliable power distribu3on networks. 37 

SPECIFICATIONS TABLE 38 

Subject Ar3ficial Intelligence 

Specific subject 
area 

This work focuses on using machine learning to enhance intrusion detec3on 
systems for cybersecurity in electrical substa3ons. 

Type of data Network captures: Raw and Processed 

Data collec,on Data was collected from two real substa3ons in Ukraine and Spain by capturing 
network traffic using embedded so\ware and tcpdump over a seven-day period. 
Addi3onally, cyberaiack traces were generated in a controlled lab environment 
using testbeds simula3ng aiacks such as Denial of Service, packet flooding, 
fuzzing, and replay. The data was filtered, anonymized, and processed to extract 
relevant features using scripts, ensuring privacy and consistency for machine 
learning model training and tes3ng. 

 

Data source 
loca,on 

Data was obtained from: 

- Real electrical substa3on located in Iltsi (Ukraine) 
- Real electrical substa3on located in Granada (Spain) 
- Laboratory testbeds located in Zaragoza (Spain). 

The data is available on Zenodo: hips://doi.org/10.5281/zenodo.13898982 

Data accessibility Repository name: Dataset to Train Intrusion Detec3on Systems based on Machine 
Learning Models for Electrical Substa3ons 

Data iden3fica3on number: 10.5281/zenodo.13898982 

Direct URL to data: hips://doi.org/10.5281/zenodo.13898982 
The data is accompanied by a code repository for processing: 
hips://github.com/esgu3/cybersecurity-datasets/   

Related research 
ar,cle 
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VALUE OF THE DATA 41 

- Training and Benchmarking ML Models: Researchers can use the dataset to train 42 
machine learning models for tasks such as intrusion and anomaly detection in 43 
substation environments. Given the scarcity of publicly available datasets based on 44 
real substation traffic [1] [2], this dataset fills a critical gap, providing realistic data that 45 
faithfully reflects actual operating conditions. It enables the benchmarking of multiple 46 
models, allowing researchers to evaluate and compare their accuracy, reliability, and 47 
robustness under the same conditions. This helps develop more effective machine 48 
learning algorithms, improving the overall security and resilience of substation 49 
systems against cyber threats. 50 

- Feature Engineering and Algorithm Development: The dataset provides raw PCAP 51 
files (network captures), allowing researchers to perform custom preprocessing and 52 
feature extraction. This flexibility supports the development of new algorithms 53 
designed to detect specific threats or improve existing detection methods. 54 

- Standardize the process of files: The dataset is accompanied by a set of scripts 55 
specifically designed to standardize the processing of the files in the dataset. These 56 
scripts are available in the repository [3]. This standardization is essential given the 57 
notable absence of a documented methodology for processing such files in the 58 
existing literature. 59 

- Extending to Other Critical Infrastructure: While the dataset primarily focuses on 60 
electrical substations, it can be adapted for research in other critical infrastructure 61 
scenarios, such as water treatment plants or transportation systems, helping to 62 
generalize solutions across sectors. 63 

- Collaborative Studies and Comparative Analysis: Researchers can use the dataset to 64 
conduct collaborative studies, compare results, and validate findings with other 65 
datasets, fostering innovation and improving overall cybersecurity practices. 66 

 67 

 68 

 69 

BACKGROUND 70 
Substa3ons play a fundamental role in the electrical grid. They are responsible for conver3ng electrical 71 
voltage to levels suitable for transmission and distribu3on, manage system protec3on and 72 
interconnec3on to keep the network grid stable and secure, and support fault isola3on and 73 
maintenance through sophis3cated switching opera3ons. The digitaliza3on of substa3ons, through 74 
standards such as IEC61850 [4] and IEC60870-5-104 [5] (also known as IEC104), is essen3al for 75 
communica3on and automa3on in electrical substa3ons, but introduces new security problems [3] [4]. 76 



 
 

 

Substa3ons are typically organized into three levels: Sta&on, Bay, and Process, connected by the 77 
Sta&on and Process bus (see Figure 1). Each level is explained in more detail below. 78 

 79 

Figure 1 Substa.on architecture diagram 80 

The Sta,on Level is responsible for monitoring, controlling, and communica3ng with external systems 81 
such as control centers and other substa3ons. Typical protocols used at this level are IEC104, Network 82 
Time Protocol (NTP), and Precision Time Protocol (PTP). This level typically includes: a Supervisory 83 
Control and Data Acquisi3on (SCADA) system for real-3me monitoring and control of the en3re 84 
substa3on through a Remote Terminal Unit (RTU); a Human-Machine Interface (HMI) that allows 85 
operators to interact with the substa3on control systems, providing graphical displays of opera3ons 86 
and controls; other servers and worksta3ons that host so\ware applica3ons for data processing, 87 
visualiza3on, and control; 3me synchroniza3on servers; and a router to connect to the control center. 88 

The Bay Level is responsible for the control and protec3on of individual sec3ons (or “bays”) of the 89 
substa3on, i.e., transformers, feeders, and busbars. It executes control commands and protec3on 90 
algorithms, and includes the following components: Intelligent Electronic Devices (IEDs), responsible 91 
for controlling specific bays; protec3on relays capable of detec3ng faults and ini3a3ng corresponding 92 
protec3ve ac3ons (e.g., tripping a circuit breaker); and control panels and a local HMI, for opera3on 93 
and control of bay equipment. 94 

The Process Level directly interacts with the physical electrical equipment. It performs real-3me data 95 
acquisi3on from sensors and actuators and sends control commands to the primary equipment (e.g., 96 
transformers and circuit breakers). It may include mul3ple merging units, which digi3ze the electrical 97 
signal and share these measurements via the Sampled Values protocol (defined by IEC61850). 98 



 
 

 

Substa'on Communica'on Protocols: IEC61850 and IEC104 99 
IEC61850 is a comprehensive standard designed to modernize substa3on automa3on, emphasizing 100 
interoperability and open system architectures. It enables seamless integra3on between devices from 101 
different manufacturers and supports real-3me communica3on and data modeling within substa3ons. 102 
This standard uses an object-oriented approach to represent each device as a collec3on of logical 103 
nodes, facilita3ng efficient performance even in complex and large-scale environments. It also includes 104 
the defini3on of several network protocols. In par3cular: Manufacturing Message Specifica&on 105 
(MMS), which is used for client-server communica3on between IEDs and control systems, allowing the 106 
exchange of data, control commands, and status informa3on in real 3me via TCP/IP; Generic Object 107 
Oriented Substa&on Event (GOOSE), which is designed to support real-3me protec3on and automa3on 108 
func3ons and has very strict delay constraints (3 milliseconds in some cases), so it is sent directly over 109 
Ethernet. Finally, Sampled Values (SV) is used to transmit digi3zed analog data, such as current and 110 
voltage measurements, from merging units to protec3ve relays and other IEDs. Like GOOSE, it is sent 111 
over Ethernet. 112 

IEC104 extends the IEC60870-5 standard to include network access via Ethernet, focusing on remote 113 
control and monitoring of substations. It is especially useful for telecontrol tasks, using the standard 114 
TCP/IP stack to leverage existing network infrastructures. 115 

 116 

DATA DESCRIPTION 117 
The core of the dataset consists of network traffic captures and flow files. The content of each file is 118 
self-described in its name, which is composed of: 119 

• file type: it can be captured61850 or captured104, depending on whether it contains 120 
IEC61850 or IEC104 protocol captures; 121 

• aAack: it can have no aiacks (aHackfree) or a specific aiack name (see Error! Reference 122 
source not found.); 123 

• func,on: op3onally, if there are addi3onal details about the captured func3onality 124 
(normalfault) or specific protocol capture (PTP); and 125 

• file extension: it can be PCAP (network capture) or CSV (flow file). 126 

Addi3onally, two file types have been added: one containing all the features found in the CSV files 127 
(headers_[iec104|iec61850]_all.txt) and another with a selec3on of relevant features 128 
(headers_[iec104|iec61850].txt) used in the example described in the sec3on “Illustra3ve Example”. 129 
All these files can be found in [8] and are released under the CC BY-NC-SA 4.0 license [9]. 130 
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Attack IEC104 IEC61850 
DoS ✓  

Packet flooding ✓ ✓ 

Fuzzing ✓ ✓ 

Packet starvation ✓  
NTP DoS ✓  

PTP attack  ✓ 

Port scanning ✓  
PitM ✓  

Replay  ✓ 
Table 1 A8acks included in the testbed traces. 132 

The dataset is accompanied by a set of scripts specifically designed to standardize the processing of 133 
dataset files, available in our so\ware repository [3] under the GNU/GPLv3 license [10]. The scripts 134 
are organized into two folders: 135 

- ids: contains the Python scripts for running the machine learning algorithms to test the 136 
datasets. 137 

- tools: tools to process the dataset files. 138 

             139 

EXPERIMENTAL DESIGN, MATERIALS AND METHODS 140 
The dataset provides opera3onal data collected from two substa3ons. The data obtained from the first 141 
substa3on includes frames corresponding to the IEC104 and NTP protocol. The second substa3on 142 
provided data using IEC61850 standard and PTP. We will call this data “real substa3on traces” (see 143 
sec3on “Real Substa3on Traces”). In addi3on, the dataset also contains aiack traces. To obtain them, 144 
a testbed with specific hardware has been implemented in our laboratory. We will call them “testbed 145 
traces” (see sec3on “Testbed Traces”). 146 

Real Substa'on Traces 147 

These traces were obtained in two real substations. Specifically, the IEC104 data belongs to a facility 148 
located in Iltsi (Ukraine) and operated by JSC (“Prykarpattyaoblenergo”) within regional power 149 
distribution networks with a capacity of 110/35/10 kV, while the IEC61850 data belongs to a 150 
substation placed in Granada (Spain), which houses two 30 MVA transformers operating at 66/20 kV 151 
and contains two 20 kV bars with a total of 14 output lines (7 per busbar), supplying electricity to 152 
several municipalities. For confidentiality reasons, we cannot disclose internal schematics of the 153 
substations. 154 

The IEC104 and IEC61850 data captures correspond to a seven-day period, spanning 24 hours each 155 
day, within the internal network of the Iltsi (for IEC104) and Granada (for IEC61850) substations. The 156 
traffic was filtered to include only IEC104, IEC61850, PTP and NTP protocols. The files were 157 
anonymized, and in the case of IEC104, also processed to obtain a listing of the TCP connections. The 158 
resulting files are called flows and are stored in CSV files. 159 



 
 

 

Testbed Traces 160 
To obtain aiack traces, it was necessary to perform aiack simula3ons in a controlled laboratory 161 
environment, since conduc3ng these tests in real substa3ons is infeasible due to the cri3cal nature of 162 
the infrastructure. In this sense, laboratory simulators provide a safe and controlled environment to 163 
test and analyze the effects of various cyberaiack scenarios, avoiding any real-world consequences. 164 
The aiack traces have been obtained using two specifically prepared test environments: the IEC104 165 
and IEC61850 testbeds. 166 

The IEC104 testbed (detailed in Figure 2a) consists of five virtual machines: two of them simulate 167 
specific industrial devices (specifically, an RTU and a Programmable Logic Controller or PLC), while the 168 
remaining ones correspond to the networking infrastructure: an NTP server and a VyOS [7] router, and 169 
finally, a machine controlled by the aiacker. All components are connected to the same local network. 170 

The IEC61850 testbed (in Figure 2b) consists of two virtual machines (one controlled by the aiacker 171 
and a GOOSE/SV simulator), two embedded devices (a GOOSE/SV capturer and a PTP capturer), and 172 
four IEDs. These devices are interconnected through two different networks. The first one is dedicated 173 
to the transmission of power grid control packets, including GOOSE, SV, and MMS protocols, while the 174 
second one carries PTP messages for 3me synchroniza3on purposes. The IEDs protect the substa3on 175 
equipment against overcurrent faults. They monitor SV frames, which carry samples of electrical 176 
signals, for anomalies indica3ve of failure. Ini3ally, the system operates for about 3000 milliseconds 177 
without faults, followed by a “line to ground” fault (known as an AG fault) which triggers the protec3on 178 
mechanism and opens the line. This scenario is then repeated under the condi3on of a cyberaiack to 179 
observe the impact on the protec3on process. 180 

  

  

  

(a) Substation model for IEC104 testbed (b) Substation model for IEC61850 testbed 
Figure 2 Testbeds used to generate a8ack traces. 181 
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Error! Reference source not found. summarizes the aiacks included in this dataset, specifying the 184 
testbed where they were generated. Each of them is stored in a separate file for easy labeling. 185 

DoS refers to a DoS attack against the PLC (IEC104 testbed), where numerous TCP SYN packets are 186 
sent skipping the subsequent SYN+ACK response. The packet flooding attack in the IEC61850 dataset 187 
floods the Bus Differential Protection (BDP) with packets, thereby inducing a fault within the 188 
substation electrical network and disrupting the flow of electricity. In the IEC104 dataset, it floods the 189 
RTU with messages from the PLC. In the fuzzing attack, random commands are sent to cause failures 190 
in the RTU (IEC104 dataset) or the BDP (IEC61850 dataset). During the packet starvation attack, the 191 
RTU is overwhelmed with connections until it stops responding. Similarly, NTP DoS also involves 192 
attacking the NTP server to disrupt the operation of the service. In the PTP attack, a new time source 193 
is introduced into the network, which disrupts the master clock and messes up the time settings. The 194 
Port scanning attack involves reconnaissance attack on the PLC, RTU, NTP server, and VyOS router 195 
(IEC104 dataset). In the PitM attack (IEC104 dataset), ARP poisoning is conducted to isolate and drop 196 
traffic between the RTU and the PLC. Finally, the Replay attack tricks an IED into failing based on a 197 
repeated (replayed) packet, leading to operational issues such as opening an electrical circuit breaker 198 
at an unexpected time. 199 

Preprocessing 200 
The PCAP files available in the dataset are appropriately filtered and anonymized to prevent the 201 
disclosure of sensi3ve informa3on such as topology or equipment models, which could be used to 202 
aiack the cri3cal infrastructure used for the crea3on of the dataset. This process is followed by a 203 
feature extrac3on process, during which CSV files are generated. 204 

Filtering was performed using tshark [8]. Due to issues with handling large files, we first split the files 205 
into 10GB chunks, which were then merged a\er preprocessing. Spliyng and filtering were performed 206 
using the filter_and_split.sh script, and subsequent merging was performed using the merge_pcap.sh 207 
script. Both scripts are available in our so\ware repository [3]. A\er this, the anonymiza3on process 208 
is performed using the script anonymize.sh, which is based on Sanicap [9]. 209 

The final stage in the preprocessing process is feature extrac3on. Below, we provide an illustra3ve 210 
example of feature selec3on and extrac3on. Addi3onally, our dataset provides the original PCAP files 211 
to allow users to perform their custom feature processing. 212 

The IEC104 protocol operates on top of the transport layer (specifically, over TCP/IP protocol), unlike 213 
the IEC61850 protocol that operates on top of the link layer. This disparity requires the use of dis3nct 214 
features for training algorithms. To extract TCP/IP flows relevant to IEC104, we have used the 215 
CICFlowMeter [10] tool. Addi3onally, tshark was used to extract crucial features from IEC61850 frames. 216 
Our dataset provides scripts for feature extrac3on in each protocol: generatecsv_iec104.sh and 217 
generatecsv_iec61850.sh. A final step in the feature extrac3on process is labeling: an addi3onal 218 
column, called “Label”, is appended to each CSV file and stores the aiack type, or lack thereof, which 219 
is derived from the file name. 220 

Illustra've Example 221 
An example of usage is provided in the Python script pycaret_ids.py, created to facilitate the execu3on 222 
and comparison of various machine learning algorithms, specifically those used for classifica3on tasks. 223 



 
 

 

In par3cular, this script leverages the PyCaret [11] library, an open-source tool that simplifies and 224 
automates the process of developing machine learning models. 225 

The script reads all the CSV files from the dataset, using the “Label” column to categorize the data, 226 
removes invalid values, and runs several classifica3on models to compare them. Finally, it stores the 227 
model with the best results found for future predic3ons. 228 

We have employed a variety of machine learning models for our analysis, covering mul3ple algorithmic 229 
categories: Linear Models (Logis3c Regression and Ridge Classifier), Nearest Neighbors (K Neighbors 230 
Classifier), Support Vector Machines (Linear Support Vector Machine), Decision Trees and Ensembles 231 
(Decision Tree Classifier, Random Forest Classifier, Extra Trees Classifier, Gradient Boos3ng Classifier, 232 
Light Gradient Boos3ng Machine and Extreme Gradient Boos3ng), Naive Bayes (Naive Bayes Classifier), 233 
Discriminant Analysis (Linear Discriminant Analysis and Quadra3c Discriminant Analysis) and Dummy 234 
Classifier (just for benchmarking). This selec3on allowed us to explore a wide range of approaches to 235 
iden3fy the most effec3ve model for each anomaly detec3on task. 236 

The Area Under the ROC Curve (AUC) is o\en recommended for comparing models [12], par3cularly 237 
with imbalanced datasets, as it provides a balanced view of performance across all thresholds. F1-238 
Score (F1) is also very valuable in such scenarios, as it balances the importance of Precision (Prec.) and 239 
Recall. Furthermore, the Maihews’s Correla3on Coefficient (MCC) is beneficial for a comprehensive 240 
evalua3on of classifiers, considering all aspects of the confusion matrix. Using these three metrics, we 241 
can conclude that the Linear Discriminant Analysis model performs beier than the rest of the models. 242 
The table also shows the Accuracy, the Cohen’s kappa coefficient (κ), and the Training Time (in seconds; 243 
TT). 244 

We ran this script on subsets of our dataset to show how it facilitates model comparison. We have 245 
employed zscore normaliza3on and Stra3fiedKFold valida3on, with a 70% par33on for the training 246 
data. These experiments were run on a machine with two Intel Xeon Gold @2.20GHz and 128GB of 247 
RAM. For IEC104, all available traces have been used to detect the aiacks described in Error! 248 
Reference source not found. (mul3class classifica3on). For IEC61850, a single aiack (binary 249 
classifica3on) has been carried out to illustrate another type of classifica3on. More details and 250 
addi3onal examples can be found in [8]. 251 

Error! Reference source not found. provides the results for the IEC104 data. The results indicate that 252 
classifier models such as Extra Trees and Random Forest achieve an excellent balance between 253 
predic3ve performance and training 3me, posi3oning them as the most suitable for real-world 254 
applica3ons in this context. In par3cular, the Extra Trees classifier exhibited the highest accuracy 255 
(0.8217) and compe33ve results in AUC (0.8297), with a moderate training 3me of 2.620 seconds. 256 
Similarly, Random Forest performed well in both AUC (0.9127) and F1-score (0.8059), while 257 
maintaining a rela3vely short training 3me (1.989 s), making it a strong candidate for prac3cal 258 
deployment. 259 

Likewise, Table 3 illustrates the detec3on of fuzzy aiacks on the IEC61850 dataset. LightGBM and 260 
Extreme Gradient Boos3ng offer the best predic3ve performance, although they incur higher 261 
computa3onal costs. Linear Discriminant Analysis offers a solid balance between performance and 262 
efficiency, making it a good choice in situa3ons where fast training is essen3al. Models such as Ridge 263 



 
 

 

Classifier and SVM underperform, while simple models such as Naive Bayes and K-Neighbors are also 264 
viable alterna3ves in this context. 265 

 266 

Model Accuracy AUC Recall Prec. F1 κ MCC TT (s) 
Dummy Classifier 0.8592 0.5000 0.8592 0.7383 0.7942 0.0000 0.0000 0.4640 
Ridge Classifier 0.8586 0.0000 0.8586 0.7879 0.8148 0.1714 0.2154 0.6540 
Logistic Regression 0.8584 0.9454 0.8584 0.7978 0.8217 0.2253 0.2572 7.2600 
SVM - Linear Kernel 0.8566 0.0000 0.8566 0.8222 0.8345 0.3263 0.3390 2.1980 
Linear Discriminant Analysis 0.8566 0.9286 0.8566 0.8532 0.8546 0.4264 0.4266 1.4800 
Gradient Boosting Classifier 0.8551 0.9506 0.8551 0.7979 0.8217 0.2339 0.2588 76.4960 
Light Gradient Boosting Machine 0.8482 0.9370 0.8482 0.7934 0.8170 0.2207 0.2394 1400. 
Extreme Gradient Boosting 0.8419 0.9484 0.8419 0.7943 0.8167 0.2394 0.2494 4.0510 
Naive Bayes 0.8409 0.8314 0.8409 0.8198 0.8126 0.2668 0.2809 0.6700 
K Neighbors Classifier 0.8292 0.8785 0.8292 0.7920 0.8094 0.2147 0.2200 7.7830 
Extra Trees Classifier 0.8247 0.8297 0.8247 0.7730 0.7964 0.1377 0.1458 2.6200 
Decision Tree Classifier 0.8245 0.8238 0.8245 0.7682 0.7941 0.1267 0.1351 0.7070 
Random Forest Classifier 0.8245 0.9127 0.8245 0.7888 0.8059 0.2090 0.2128 1.9890 
Quadratic Discriminant Analysis 0.6505 0.8668 0.6505 0.8770 0.7329 0.1895 0.2299 1.1370 
Table 2 Comparison of different machine learning models evalua.ng IEC104 on our dataset. The best results for each metric 267 
have been highlighted in bold with an orange background. 268 

 269 

 270 

Model Accuracy AUC Recall Prec. F1 κ MCC TT (s) 
Dummy Classifier 0.8768 0.5000 0.8768 0.7688 0.8192 0.0000 0.0000 6.9830 
Ridge Classifier 0.8766 0.0000 0.8766 0.8540 0.8515 0.2334 0.2521 6.3390 
Logistic Regression 0.8768 0.7111 0.8768 0.8618 0.8670 0.3442 0.3522 8.0220 
SVM - Linear Kernel 0.8767 0.0000 0.8767 0.8078 0.8307 0.0857 0.0866 6.9760 
Linear Discriminant Analysis 0.8768 0.7152 0.8768 0.8768 0.8768 0.4297 0.4297 7.5940 
Gradient Boosting Classifier 0.8765 0.7424 0.8765 0.8470 0.8517 0.2247 0.2554 80.1890 
Light Gradient Boosting Machine 0.8764 0.7435 0.8764 0.8430 0.8458 0.1822 0.2201 186.9080 
Extreme Gradient Boosting 0.8761 0.7427 0.8761 0.8512 0.8577 0.2709 0.2904 13.3200 
Naive Bayes 0.8761 0.7134 0.8761 0.8765 0.8763 0.4281 0.4282 7.0930 
K Neighbors Classifier 0.8742 0.6968 0.8742 0.8470 0.8539 0.2473 0.2685 130.1370 
Extra Trees Classifier 0.8758 0.7412 0.8758 0.8509 0.8576 0.2708 0.2898 68.6430 
Decision Tree Classifier 0.8757 0.7411 0.8757 0.8509 0.8576 0.2708 0.2898 8.4140 
Random Forest Classifier 0.8758 0.7414 0.8758 0.8506 0.8572 0.2680 0.2876 103.6080 
Quadratic Discriminant Analysis 0.8761 0.7130 0.8761 0.8764 0.8763 0.4280 0.4280 7.4910 
Table 3 Comparison of different machine learning models evalua.ng IEC61850 on our dataset. The best results for each metric 271 
have been highlighted in bold with an orange background. 272 
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