
Exploiting Software Vulnerabilities
Software Defenses

Exploitation Mitigation Techniques in theWindows OS
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2023/2024

Master’s Degree in Informatics Engineering
University of Zaragoza

Room A.02, Ada Byron building



Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 2 / 41



Exploitation Mitigation Techniques in the Windows OS
A little recap...

. . . −

%esp→
@username ←%ebp - 264x

%ebp→ %ebp
@rtn address

(shellcode will be
placed here) +

1 Insert your shellcode on the stack
Shellcode: originally, the minimal code to launch
a shell (i.e., exec("/bin/sh")). Today,
any code injected regardless of its purpose

2 Manipulate @rtn address to return to
your shellcode

Look for assembly instructions that allow
redirection of execution to %esp
When the vulnerable function ends, the
shellcode runs!

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 3 / 41



Exploitation Mitigation Techniques in the Windows OS
A little recap...

#include <stdio.h>
#include <windows.h>

void readCredentials()
{

/* Create an array for storing some dummy data */
char username[16];
printf ("Enter your username for login, and then press <Enter>: ");
scanf ("%s", username);

printf("Hi %s, welcome back! Well coding!\n", username);

return;
}

int main(void)
{

printf("$: Welcome aboard!\n");
readCredentials();
printf("$: C U soon!\n");

}

_readCredentials:

push ebp

mov ebp, esp

sub esp, 40

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _printf

lea eax, [ebp-24]

mov DWORD PTR [esp+4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC1

call _scanf

lea eax, [ebp-24]

mov DWORD PTR [esp+4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC2

call _printf

leave

ret

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 4 / 41



Exploitation Mitigation Techniques in the Windows OS
A little recap...

. . . −

%esp→
. . .

username[0 . . . 3] -24
username[4 . . . 7] -20
username[8 . . . 11] -16
username[12 . . . 15] -12

-8
-4

%ebp→ %ebp
@rtn address

. . . +

See WinExec() in MSDN (link here)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 5 / 41

 https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx


Exploitation Mitigation Techniques in the Windows OS
A little recap...

. . . −

%esp→
. . .

username[0 . . . 3] -24
username[4 . . . 7] -20
username[8 . . . 11] -16
username[12 . . . 15] -12

-8
-4

%ebp→ %ebp
@rtn address

. . . +

See WinExec() in MSDN (link here)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 5 / 41

 https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx


Exploitation Mitigation Techniques in the Windows OS
A little recap...

. . . −

%esp→
. . .

username[0 . . . 3] -24
username[4 . . . 7] -20
username[8 . . . 11] -16
username[12 . . . 15] -12

-8
-4

%ebp→ %ebp
@rtn address

. . . +

See WinExec() in MSDN (link here)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 5 / 41

 https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx


Exploitation Mitigation Techniques in the Windows OS
A little recap...

. . . −

%esp→
. . .

username[0 . . . 3] -24
username[4 . . . 7] -20
username[8 . . . 11] -16
username[12 . . . 15] -12

-8
-4

%ebp→ %ebp
@rtn address

. . . +

See WinExec() in MSDN (link here)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 5 / 41

 https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx


Exploitation Mitigation Techniques in the Windows OS
A little recap...

readName:
push ebp
mov ebp, esp
sub esp, 264
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-264]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

(stack cookies disabled)

readName:
push ebp
mov ebp, esp
sub esp, 280
mov eax, DWORD PTR gs:20
mov DWORD PTR [ebp-12], eax
xor eax, eax
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-268]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
mov eax, DWORD PTR [ebp-12]
xor eax, DWORD PTR gs:20
je .L2
call __stack_chk_fail

.L2:
leave
ret

(stack cookies enabled)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 6 / 41



Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 7 / 41



Exploitation Mitigation Techniques in the Windows OS
Structured Exception Handlers

Exception handler (try/catch block)

Also called frame-based SEH
Because they are stored on the stack!

. . . −

local variables x%ebp→ %ebp
@rtn address

parameters

SEH
record

. . . +

SEH record

Record of 8 bytes:
Pointer to next SEH
Pointer to current SEH

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 8 / 41



Exploitation Mitigation Techniques in the Windows OS
SEH-based exploit

Sequence pop; pop; retn indicates Windows to run the following
SEH

The attacker finds an instruction set consisting of pop; pop; retn and
appropriately sets the pointer to the current SEH to that set
At the pointer to next SEH, they just need to set a jump to the shellcode!

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 9 / 41



Exploitation Mitigation Techniques in the Windows OS
SEH-based exploit

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 10 / 41



Exploitation Mitigation Techniques in the Windows OS
SEH-based exploit

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 10 / 41



Exploitation Mitigation Techniques in the Windows OS
SEH-based exploit

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 10 / 41



Exploitation Mitigation Techniques in the Windows OS
SafeSEH

Build flag (/safeSEH)

Compatible with any executable module – only for x86 targets

Workflow:
At the time of the exception, Windows determines to which module the handler address
belongs
If the module was compiled with safeSEH, checks if the handler address is contained in
the module’s safe exception handler table
Control flow is not transferred if it is not present in the table
If the module was not compiled with safeSEH, the exploit will work without problems...

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 11 / 41



Exploitation Mitigation Techniques in the Windows OS
SafeSEH – How to exploit it

Change your exploit to a non-SEH-based exploit

Look for modules without safeSEH

Minimal conditions necessary for exploitation when the app is
non-safeSEH enabled (its base address contains null bytes!):

Shellcode must be BEFORE the SEH record overwritten
Jump to it with a reverse jump
Raise an exception somehow

How does SafeSEH works? (before MS12-001 Security Bulletin)
API KiUserExceptionDispatcher (ntdll)

Stack pointer? (FS:[4], FS:[8])
Is a module near you or your own application? If so, check if the SEH handlers are
registered (using the Load Configuration Directory, LCD)
If modules do not have LCD, run the handler
Doesn’t match any loaded modules? Then, run it

Further reading: D. Litchield, Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 12 / 41



Exploitation Mitigation Techniques in the Windows OS
SafeSEH – Bypassing SafeSEH in Windows

Already done!

In Windows XP, enabled in system modules

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 13 / 41



Exploitation Mitigation Techniques in the Windows OS
SEHOP

Introduced in Vista SP1, Win7, Win 2008 (check this link)

Verifies that the thread’s list of exception handlers is intact before allowing
any of the registered handlers to be called
Native OS defense

Runtime defense
Disabled by default in Windows 7 and in Windows Vista, but enabled in Windows Server
2008

Last SEH chain handler: FinalExceptionHandler (ntdll)
RtlIsValidHandler (ntdll) checks if the handler is valid

Check A. Sotirov, “Bypassing Browser Memory Protections”,
http://taossa.com/archive/bh08sotirovdowd.pdf

Bypassing method proposed in
http://www.sysdream.com/sites/default/files/sehop_en.pdf

Warning, there is not yet a publicly known and working exploit yet (AFAIK)

Some programs may not work when enabled

Further reading: Microsoft docs

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 14 / 41

http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://taossa.com/archive/bh08sotirovdowd.pdf
http://www.sysdream.com/sites/default/files/sehop_en.pdf
https://support.microsoft.com/en-us/help/956607/how-to-enable-structured-exception-handling-overwrite-protection-sehop


Exploitation Mitigation Techniques in the Windows OS
SEHOP

SafeSEH vs. SEHOP

Very similar: both help mitigate attempts to overwrite exception handlers

SEHOP is more complete (applies to non-safeSEH modules)

SafeSEH only works on Windows versions earlier than Windows Vista SP1,
while SEHOP works on Windows Vista SP1 and later

The more protections, the better: use both in your programs!

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 15 / 41



Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 16 / 41



Exploitation Mitigation Techniques in the Windows OS
Data Execution Prevention

Introduced in Windows XP SP2, 2003 Server SP1

Does not protect against other attacks

Compatible with other defenses
Comes in two ways:

Hardware (discussed in previous lectures)
Software (as in SafeSEH, build flag)

Execution of a protected memory region: ACCESS_VIOLATION exception
(error code 0xC0000005)

Different configurations
OptIn: only kernel/system modules are protected
OptOut: all protected, except specific applications
AlwaysOn: all, without exception (cannot be disabled by the app in execution)
AlwaysOff: no enable; cannot be enabled by the app in execution

System boot variable (file boot.ini)
Option /noexecute = policy

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 17 / 41



Exploitation Mitigation Techniques in the Windows OS
Data Execution Prevention

Different ways to bypass DEP in Window
ret2libc (or variants)

Jump to existing code. Use that code for your own purposes

ZwProtectVirtualMemory

Unprotect memory pages

NtSetInformationProcess

Allows a process to change its DEP policy

SetProcessDEPPolicy

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 18 / 41



Exploitation Mitigation Techniques in the Windows OS
Data Execution Prevention – in Windows 7

. . . −

%esp→ retn
retn

@SetProcessDEPPolicy xesp
0x00000000
junk value
junk value
junk value

. . . +

Recall pushad order: eax, ecx, edx, ebx, original esp, ebp, esi, and edi

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 19 / 41



Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 20 / 41



Exploitation Mitigation Techniques in the Windows OS
Address Space Layout Randomization (ASLR)

ASLR randomizes the base address of exe/dll/stack/heap
Introduced in Windows Vista
Not on every running app (like Linux), but on every reboot
Enabled by default (except for Internet Explorer 7)
Build flag: /DYNAMICBASE (VS 2005 SP1)

Specific value in PE header, DllCharacteristics = 0x40

Registry key: HKLM\CurrentControlSet\Control\Session Manager\Memory Management
MoveImages: 0 (never), -1 (always), other (value of DllCharacteristics)

Bypassing ASLR

Low entropy on 32-bit systems: only the high nibble is randomized, we
can control the eip in some circumstances

Look for modules with ASLR disabled (as before with SafeSEH)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 21 / 41



Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 22 / 41



Exploitation Mitigation Techniques in the Windows OS
Control Flow Guard

Prevents exploitation of memory corruption vulnerabilities (in
particular, avoids arbitrary code execution)

Build-level defense:
Available in Visual Studio 2015
“CFG-compatible” programs
See https:
//docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard for
detailed instructions on how to enable it (/guard:cf build and linker flags)
A 16-byte length list is added per module, containing valid destinations

Kernel-level defense:
Knows valid indirect branching destinations
Implements the logic necessary to check if an indirect branching destination is valid

Enforces integrity on indirect calls (forward-edge CFI)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 23 / 41

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard


Exploitation Mitigation Techniques in the Windows OS
Control Flow Guard

Credits: https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 24 / 41

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard


Exploitation Mitigation Techniques in the Windows OS
Control Flow Guard

How does it work?

Program execution stops immediately when CFG verification fails

Each indirect call/jmp is preceded by a _guard_check_icall call to check
the validity of the target

Further reading: https://lucasg.github.io/2017/02/05/Control-Flow-Guard/

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 25 / 41

https://lucasg.github.io/2017/02/05/Control-Flow-Guard/


Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 26 / 41



Exploitation Mitigation Techniques in the Windows OS
Patch Guard

Also known as Kernel Patch Protection (KPP)

Introduced in 64-bit editions of Windows

Prevents kernel patching

Received a lot of criticism from the infosec community
It is argued that KPP is unsound: it cannot completely prevent kernel patching
Good summary of weaknesses and limitations in
https://en.wikipedia.org/wiki/Kernel_Patch_Protection

Several methods have been published to bypass it:
“Bypassing PatchGuard on Windows x64” (http://www.uninformed.org/?v=3&a=3)
“Subverting PatchGuard Version 2” (http://uninformed.org/index.cgi?v=6&a=1)
“A Brief Analysis of PatchGuard Version 3”
(http://uninformed.org/index.cgi?v=8&a=5)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 27 / 41

https://en.wikipedia.org/wiki/Kernel_Patch_Protection
http://www.uninformed.org/?v=3&a=3
http://uninformed.org/index.cgi?v=6&a=1
http://uninformed.org/index.cgi?v=8&a=5


Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 28 / 41



Exploitation Mitigation Techniques in the Windows OS
Windows User Access Control (UAC)

Introduced in Windows Vista
Helps prevent unauthorized changes to the OS

Verified vs. unknown software publisher

Every program that activates a UAC window has a shield symbol (in the
bottom-right corner of its program icon)

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 29 / 41



Exploitation Mitigation Techniques in the Windows OS
Microsoft Authenticode

Code signing standard used by Windows to digitally sign files that
adopt the Windows PE format

Follows the PKCS#7 structure: signature (hash value of the PE file), a
timestamp (optional), and the certificate chain

Supports MD5 (for backward compatibility), SHA-1, and SHA-256
hashes

A Windows PE can be dual-signed

The certificate chain is based on a trusted root certificate by using X.509
chain-building rules

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 30 / 41



Exploitation Mitigation Techniques in the Windows OS
Microsoft Authenticode

Comes in two forms: embedded or catalog-based signature
Both follow the Abstract Syntax Notation One (ASN.1) format
The embedded signature is a WIN_CERTIFICATE structure in the Security directory
entry within the Data directories array of the optional PE header
Catalog-based: catalog (.cat) files

Collect digital signatures from an arbitrary number of files
Signed, to prevent unauthorized modifications
Located in the system32/catroot directory
catdb database, which follows the Extensible Storage Engine format

Signature verification is performed by the WINTRUST and CRYPT32
DLLs

Further reading: D. Uroz and R. J. Rodríguez, Characteristics and Detectability of Windows Auto-Start Extensibility Points in Memory

Forensics. Digital Investigation, vol. 28, pp. S95–S104, 2019. doi: doi: 10.1016/j.diin.2019.01.026

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 31 / 41

http://dx.doi.org/10.1016/j.diin.2019.01.026


Exploitation Mitigation Techniques in the Windows OS
Windows User Access Control (UAC)

Bypassing UAC

Privilege escalation

DLL hijacking

Windows Registry modification (disabling UAC through Registry keys)

Abuse of trusted certificates
Compromised certificates (i.e., stolen/sold)
Trusted certificates issued directly to malware developers

Examples: https://attack.mitre.org/techniques/T1548/002/

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 32 / 41

https://attack.mitre.org/techniques/T1548/002/


Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 33 / 41



Exploitation Mitigation Techniques in the Windows OS
AppLocker

Introduced in Windows 7

Application allowlisting technology

Allows the user to restrict the programs that can be run based on the
path, publisher, or hash of the program

Can be applied to individual users and groups
Can be configured through Group Policy

Bypassing methods:

Using allowlisted locations
Execution delegated to a allowlisted program
DLL hijacking

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 34 / 41



Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 35 / 41



Exploitation Mitigation Techniques in the Windows OS

Enhanced Mitigation Experience Toolkit
https://technet.microsoft.com/en-us/security/jj653751

Security mitigations against known attacks
Recall the demos: DOES NOT prevent attacks (but
helps mitigate them!)

EOL statement: July 21, 2018

Good description of the defense techniques
provided by EMET in the Guía de Seguridad de las
TIC CCN-STIC 950: RECOMENDACIONES DE
EMPLEO DE LA HERRAMIENTA EMET (download
it here)

Many of these defenses have been integrated into
the Windows 10 kernel

Credits: http://compushooter.com/microsoft-support-of-windows-xp-to-end-this-april-2014/

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 36 / 41

https://technet.microsoft.com/en-us/security/jj653751
https://www.ccn-cert.cni.es/pdf/guias/series-ccn-stic/guias-de-acceso-publico-ccn-stic/2154-ccn-stic-950-recomendaciones-de-empleo-de-la-herramienta-emet-1/file.html
 http://compushooter.com/microsoft-support-of-windows-xp-to-end-this-april-2014/


Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 37 / 41



Hardware-Enforced Stack Protection

Introduced in Windows 10

Enforces integrity on return addresses on the stack (backward-edge CFI)

Requires support for hardware shadow stacks:
Intel’s Control-flow Enforcement Technology
AMD shadow stacks

How it works?
New logical register (SSP, Shadow Stack Pointer)
Page table extensions to identify shadow stack pages and protect them against attacks
New assembly instructions: incssp, rdssp, saveprevssp, rstorssp

Requires also software support: new linker flag (/CETCOMPAT)

Credits: https://techcommunity.microsoft.com/

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 38 / 41

 https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/understanding-hardware-enforced-stack-protection/ba-p/1247815 


Outline

1 Structured Exception Handlers

2 Data Execution Prevention

3 Address Space Layout Randomization (ASLR)

4 Control Flow Guard

5 Patch Guard

6 Windows UAC

7 AppLocker

8 The Microsoft EMET tool

9 Hardware-Enforced Stack Protection

10 Trusted Platform Module
Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 39 / 41



Trusted Platform Module

Introduced in Windows 11 (it requires a TPM v2 chip)

On-chip specially designed for security purposes – mandatory!

Virtualization-based security
Separates the security data and its accesses from the rest of the hardware
That is, it prevent attackers from accessing your computer and leaking your data

Microsoft has reconsidered its initial decision
The obligation to have TPM can be disabled, if your computer does not have a TPMv2
chip on board

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 40 / 41



Trusted Platform Module

Introduced in Windows 11 (it requires a TPM v2 chip)

On-chip specially designed for security purposes – mandatory!

Virtualization-based security
Separates the security data and its accesses from the rest of the hardware
That is, it prevent attackers from accessing your computer and leaking your data

Microsoft has reconsidered its initial decision
The obligation to have TPM can be disabled, if your computer does not have a TPMv2
chip on board

Software Defenses [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 40 / 41



Exploiting Software Vulnerabilities
Software Defenses

Exploitation Mitigation Techniques in theWindows OS
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2023/2024

Master’s Degree in Informatics Engineering
University of Zaragoza

Room A.02, Ada Byron building


	A Little Recap...
	Structured Exception Handlers
	Data Execution Prevention
	Address Space Layout Randomization (ASLR)
	Control Flow Guard
	Patch Guard
	Windows UAC
	AppLocker
	The Microsoft EMET tool
	Hardware-Enforced Stack Protection
	Trusted Platform Module
	

