
Exploiting Software Vulnerabilities
Software Vulnerabilities

Control-Flow Hijacking
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2023/2024

Master’s Degree in Informatics Engineering
University of Zaragoza

Room A.02, Ada Byron building



Outline

1 A Little Recap

2 Buffer Overflows

3 Defenses against Control-Flow Hijacking Attacks
Stack Data Protection
Non-Executable Stack
Write XOR eXecute (W∧X) Pages
Address Space Layout
Other Techniques of Defense

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 2 / 52



Outline

1 A Little Recap

2 Buffer Overflows

3 Defenses against Control-Flow Hijacking Attacks

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 3 / 52



Recap on. . .
Definitions

System/defender perspective
Attack surface

Exposure of a system to attacks

Vulnerability
Software flaw that can be exploited by an attacker

Attacker perspective
Attack vector

How the attack was carried out

Exploit
Succeed by taking advantage of a vulnerability

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 4 / 52



Recap on. . .
Vulnerabilities
Types of software vulnerabilities

Overflow
Buffer overflow
Heap overflow

NULL pointer dereference

Dynamic memory handling
Use-after-free
Double free
Allocator abuse

Number handling

Format strings

Uninitialized memory

Race conditions

Vulnerability databases

National Vulnerability Database (NVD), maintained by NIST (https://nvd.nist.gov/)

MITRE CVE (https://cve.mitre.org/)

Bugtraq (http://www.securityfocus.com/archive/1)

. . .

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 5 / 52

https://nvd.nist.gov/
https://cve.mitre.org/
http://www.securityfocus.com/archive/1


Today we talk about. . .

Control-Flow Hijacking

Attacker’s goal: to seize the target system
Run arbitrary code to hijack the control flow of a vulnerable application

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 6 / 52



Functions

Block of instructions that performs a specific task

Three components:
Input (values passed from the caller)
Body (code to perform the task)
Return value (to the caller)

Calling a function involves a branch in the control flow (i.e., jumping to
another location)

The return address is usually stored in the caller’s stack frame

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 7 / 52



Functions

int x = compute(arg0, arg1, ...)

What happens in the backstage before a function runs?
Parameters are configured to be passed to the function

Either through the stack or logical registers

The address of the next instruction after the call is also saved

What happens in the backstage after a function runs?
Return value is set

Normally, the logical register eax contains the return value of a function
Allocated variables (within the function) are removed from the stack
Registers used in the function are restored to their previous values
The control is transferred to the saved return address

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 8 / 52



Functions

int x = compute(arg0, arg1, ...)

What happens in the backstage before a function runs?
Parameters are configured to be passed to the function

Either through the stack or logical registers

The address of the next instruction after the call is also saved

What happens in the backstage after a function runs?
Return value is set

Normally, the logical register eax contains the return value of a function
Allocated variables (within the function) are removed from the stack
Registers used in the function are restored to their previous values
The control is transferred to the saved return address

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 8 / 52



Functions

Standard prologue
Occurs at the beginning of a function
Allocates space for local variables (on stack)
Saves registers to be reused in the body of the function

Standard epilogue
Occurs at the end of a function
Normally, undoes what was done in the prologue
Cleans up the stack
Restores register values

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 9 / 52



Functions

mov edi, edi

Common prologue on Windows

2-byte length instruction

Equivalent for a nop instruction, since it does nothing

Used to hot-patch a running executable, without stopping and restarting it
Can be overwritten with a relative jump of 2 bytes!

Further reading: Why do Windows functions all begin with a pointless MOV EDI, EDI instruction?. R. Chen, 2011.

https://devblogs.microsoft.com/oldnewthing/?p=9583

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 10 / 52

https://devblogs.microsoft.com/oldnewthing/?p=9583


Functions
Standard calling conventions

Calling conventions

Describes how data is passed in/out of functions

Implementation may vary by compiler

cdecl convention (most common)

Arguments are pushed onto the stack from right to left

Return value is placed in eax

The caller must clean the stack (removing passed parameters)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 11 / 52



Functions
Standard calling conventions

Calling conventions

Describes how data is passed in/out of functions

Implementation may vary by compiler

cdecl convention (most common)

Arguments are pushed onto the stack from right to left

Return value is placed in eax

The caller must clean the stack (removing passed parameters)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 11 / 52



Functions
Standard calling conventions

stdcall convention

Similar to cdecl, but callee clears the stack

Convention used in Windows APIs

fastcall convention

Arguments are passed by registers, put on the stack when a large number of
arguments are required

For instance, the GCC and Microsoft compilers use the ecx and edx registers

The callee clears the stack

Return value is placed in eax

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 12 / 52



Functions
Standard calling conventions

stdcall convention

Similar to cdecl, but callee clears the stack

Convention used in Windows APIs

fastcall convention

Arguments are passed by registers, put on the stack when a large number of
arguments are required

For instance, the GCC and Microsoft compilers use the ecx and edx registers

The callee clears the stack

Return value is placed in eax

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 12 / 52



Functions
Standard calling conventions

thiscall convention

Used in C++ in object methods (member functions)

Includes a reference to the this pointer

Depends on the compiler:
In Microsoft compilers, ecx holds the this pointer and the callee clears the stack
In GNU compilers, the this pointer is pushed last and the caller clears the stack

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 13 / 52



Functions
#include <iostream >
using namespace std;
class Student {

public:
int id; //data member (also instance variable)
string name; //data member (also instance variable)

void imprime(){
cout << this -> id << endl;
cout << this -> name << endl;

}
};

_cdecl int echo(int x){
return x + 8;

}

int main() {
Student s1; //creating an object of Student
s1.id = 201;
s1.name = "Sonoo Jaiswal";
s1.imprime();
printf("echo: %d\n", echo(4));
return 0;

}

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 14 / 52



Functions

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 15 / 52



Functions

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 16 / 52



Functions

Pushing data on the stack: mov vs. push

push always subtracts 4 from the esp register

mov puts a value on the stack, but does not subtract from esp

Optimization issue: small performance gain at runtime
When used with the stdcall convention, the caller must make special settings

Inline functions

Eliminate costly control transfers

Useful for small functions, as their body is inlined with the caller’s body

No extra overhead for entry/exit

Occurs often with string-related functions

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 17 / 52



Functions

Pushing data on the stack: mov vs. push

push always subtracts 4 from the esp register

mov puts a value on the stack, but does not subtract from esp

Optimization issue: small performance gain at runtime
When used with the stdcall convention, the caller must make special settings

Inline functions

Eliminate costly control transfers

Useful for small functions, as their body is inlined with the caller’s body

No extra overhead for entry/exit

Occurs often with string-related functions

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 17 / 52



Outline

1 A Little Recap

2 Buffer Overflows

3 Defenses against Control-Flow Hijacking Attacks

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 18 / 52



Buffer overflows

Most common vulnerability in C/C++ programs

Credits: taken at 27/10/2022, https://nvd.nist.gov/

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 19 / 52

 https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119&isCpeNameSearch=false


Buffer overflows
A bit of history – the first BOF exploited

(BSD-derived) UNIX fingerd daemon
Utility that allows users to obtain information about other users
Usually used to identify the full name or login name of a user, whether a user is currently
logged in or not, and other user information

Morris worm (November 2 1988!)
Affected Sun 3 systems and VAX computers running 4 BSD UNIX variants
Exploited a buffer overflow in fingerd to create a remote shell

Further reading: The internet worm program: an analysis. E.H. Spafford. 1989. SIGCOMM Comput. Commun. Rev. 19, 1, 17–57. doi:

10.1145/66093.66095

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 20 / 52

http://dx.doi.org/10.1145/66093.66095
http://dx.doi.org/10.1145/66093.66095


Buffer overflows
What we need to know

How the stack works

Calling conventions

How system calls are made

Anything else?. . .

Target system CPU
Little-endian vs. big-endian

Target system operating system
UNIX vs. Windows: stack frame changes!

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 21 / 52



Buffer overflows
Linux x86 process memory layout

0xFFFFFFFF kernel space
(1GiB)

0xC0000000 user stack
⇓

0x40000000 shared libraries

⇑ runtime heap
bss

⇑ static data
0x08048000 (ELF binary loaded here)
0 unused

Check output of: cat /proc/<PROCESS PID>/maps

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 22 / 52



Buffer overflows
Stack frame

%esp→
– – callee saved registersx

local variables

exception handlers (if any)
stack frame pointer (%ebp)
return address

arguments
+ +

Stack Pointer (%esp): top of the stack

Base Pointer (%ebp): base of the current frame

Function arguments belong to the previous stack frame
Each function defines its own stack frame

Note: Stack grows to lower memory addresses

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 23 / 52



Buffer overflows
Stack concepts summary

The stack stores abstract data

Last-In-First-Out (LIFO) policy

Assembly instructions of interest:
push: inserts an item on top of the stack, and decreases %esp by 4 bytes (dword size)
pop: eliminates the item at the top of the stack, and increments %esp by 4 bytes

call: inserts as the address of the next instruction which immediately follows the call
on top of the stack, and decreases %esp by 4 bytes
Return of functions. %esp is incremented after execution. They accept an optional
immediate value, which increments more %esp

retn: near return, retrieves the top of the stack and sets it as %eip
retf: far return, retrieves two dwords from the top of the stack and sets them
as %eip and cs (code segment), respectively. Note that although cs is word
size, it takes two dwords off from stack!

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 24 / 52



Buffer overflows
Stack concepts summary

The stack stores abstract data

Last-In-First-Out (LIFO) policy

Assembly instructions of interest:
push: inserts an item on top of the stack, and decreases %esp by 4 bytes (dword size)
pop: eliminates the item at the top of the stack, and increments %esp by 4 bytes
call: inserts as the address of the next instruction which immediately follows the call
on top of the stack, and decreases %esp by 4 bytes
Return of functions. %esp is incremented after execution. They accept an optional
immediate value, which increments more %esp

retn: near return, retrieves the top of the stack and sets it as %eip
retf: far return, retrieves two dwords from the top of the stack and sets them
as %eip and cs (code segment), respectively. Note that although cs is word
size, it takes two dwords off from stack!

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 24 / 52



Buffer overflows
Stack concepts summary
On 32-bit architectures

Function arguments

Return address

Local variables

On 64-bit architectures

Also stores function arguments, but differs from 32-bit architectures:
UNIX uses System V Application Binary Interface (ABI): first 6 integer (or pointer)
arguments to a function are passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, and %r9);
from the 7th argument onwards, the stack is used
Microsoft ABI: only 4 registers are used (%rcx, %rdx, %r8, and %r9); from the 5th
argument onwards, the stack is used

Return address

Local variables

Further reading: http://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 25 / 52

http://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64


Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

readName:

push ebp

mov ebp, esp
sub esp, 264
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-264]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

%eip: push ebp

. . . −

x
%esp→ @rtn address

. . . +

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 26 / 52



Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

readName:
push ebp

mov ebp, esp

sub esp, 264
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-264]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

%eip: mov ebp, esp

. . . −

x%esp→ %ebp
@rtn address

. . . +

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 26 / 52



Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

readName:
push ebp
mov ebp, esp

sub esp, 264

sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-264]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

%eip: sub esp, 264

. . . −

x%ebp=%esp→ %ebp
@rtn address

. . . +

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 26 / 52



Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

readName:
push ebp
mov ebp, esp

sub esp, 264

sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-264]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

%eip: sub esp, 264 (after)

. . . −

%esp→ (offset 264)

x
%ebp→ %ebp

@rtn address
. . . +

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 26 / 52



Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

readName:
push ebp
mov ebp, esp
sub esp, 264
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8

lea eax, [ebp-264]

push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

%eip: lea eax, [ebp-264]

. . . −

%esp→
@username ←%ebp - 264

x
%ebp→ %ebp

@rtn address
. . . +

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 26 / 52



Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

. . . −

%esp→
@username ←%ebp - 264

x
%ebp→ %ebp

@rtn address
. . . +

What if username is more than 264 bytes long?

The adjacent memory to username is overwritten, since scanf does not check for
any buffer limits (it is an insecure function)
Arbitrary code execution, since %eip will pop the top value of the stack when the
function returns!

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 27 / 52



Buffer overflows
Example

void readName(){
char username[256];
printf("Type user name: ");
scanf("%s", username);

}

. . . −

%esp→
@username ←%ebp - 264

x
%ebp→ %ebp

@rtn address
. . . +

What if username is more than 264 bytes long?
The adjacent memory to username is overwritten, since scanf does not check for
any buffer limits (it is an insecure function)
Arbitrary code execution, since %eip will pop the top value of the stack when the
function returns!

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 27 / 52



Buffer overflows
Basic stack exploit

. . . −

%esp→
@username ←%ebp - 264x

%ebp→ %ebp
@rtn address

(shellcode will be
placed here) +

xor eax, eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx, esp
push eax
push ebx
mov ecx, esp
mov al, 0xb
int 0x80

NOTE: shellcode runs on the
stack

1 Insert your shellcode on the stack
Shellcode: originally, the minimal code to launch a shell (i.e., exec(“/bin/sh”)). Today, any
code injected regardless of its purpose

2 Manipulate @rtn address to return to your shellcode
Look for assembly instructions that allow redirection of execution to %esp
When the vulnerable function ends, the shellcode runs!

Further reading: Smashing The Stack For Fun And Profit. Aleph One, Phrack 49 (1996), http://phrack.org/issues/49/14.html

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 28 / 52

http://phrack.org/issues/49/14.html


Buffer overflows
Insecure libc functions – (non-exhaustive list)

strcpy→ strncpy→ strlcpy/strcpy_s (Windows CRT)

strcat→ strncat→ strlcat/strcat_s (Windows CRT)

strtok

sprintf→ snprintf

vsprintf→ vsnprintf

gets→ fgets/gets_s

scanf/sscanf→ sscanf_s (Windows CRT)

snscanf→ _snscanf_s (Windows CRT)

strlen→ strnlen_s (Windows CRT)

Some safe versions are misleading

strncpy, strncat can leave strings unfinished – be careful!

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 29 / 52



Buffer overflows
Corrupting method pointers – Heap overflow

ptr →

FP1 → method #1
FP2 → method #2
FP3 → method #3
vtable

data
Object o

. . .

buf[100]

. . .

vtable (FP1)
vtable (FP2)
vtable (FP3)

. . .

ptr (points to vtable)

data
. . .

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 30 / 52



Buffer overflows
Corrupting method pointers – Heap overflow

ptr →

FP1 → method #1
FP2 → method #2
FP3 → method #3
vtable

data
Object o

. . .

buf[100]

. . .

vtable (FP1)
vtable (FP2)
vtable (FP3)

. . .

ptr (points to vtable)

data
. . .

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 30 / 52



Buffer overflows
How to hunt overflows. . .

Find the overflow

Configure the operating system correctly (core dump?)

Issue malformed inputs with specific endings
Automated tools (fuzzers)

If the application crashes, check the CPU registers for the endings

Build the exploit

Analyze overflow conditions

Check if the overflow can lead to arbitrary code execution
Not easy, given the latest built-in defenses at the OS level

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 31 / 52



Buffer overflows
How to hunt overflows. . .

Find the overflow

Configure the operating system correctly (core dump?)

Issue malformed inputs with specific endings
Automated tools (fuzzers)

If the application crashes, check the CPU registers for the endings

Build the exploit

Analyze overflow conditions

Check if the overflow can lead to arbitrary code execution
Not easy, given the latest built-in defenses at the OS level

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 31 / 52



Outline

1 A Little Recap

2 Buffer Overflows

3 Defenses against Control-Flow Hijacking Attacks
Stack Data Protection
Non-Executable Stack
Write XOR eXecute (W∧X) Pages
Address Space Layout
Other Techniques of Defense

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 32 / 52



Defeating control-flow hijacking attacks
Approaches

1 Fix bugs:
Audit software to find bugs (there are automated tools – soundness?)
Re-code software in a type-safe language

2 Allow overflow, but prevent injected code from running

3 Insert runtime code to detect overflows
Process stops when overflow is detected

Further readings: SoK: Eternal War in Memory. L. Szekeres, M. Payer, T. Wei and D. Song. 2013 IEEE Symposium on Security and

Privacy, Berkeley, CA, 2013, pp. 48–62. doi: 10.1109/SP.2013.13

Memory Errors: The Past, the Present, and the Future. V. van der Veen, N. dutt-Sharma, L. Cavallaro, H. Bos (2012). In Research in

Attacks, Intrusions, and Defenses. RAID 2012. LNCS, vol 7462. Springer. doi: 10.1007/978-3-642-33338-5_5

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 33 / 52

http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1007/978-3-642-33338-5_5


Defeating control-flow hijacking attacks
Stack data protection

Stack cookies

Detect stack-based overflows by:
1 In the function prologue, push a magic number
2 In the function epilogue, check this value

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 34 / 52



Defeating Control-Flow Hijacking Attacks
Stack cookies

Initial ideas come from StackGuard (Crispin Cowan, 1997)

Enhanced by Hiroaki Etoh with ProPolice (2000)
Later renamed to SSP (Stack-Smashing Protector), included in mainstream GCC
version 4.1

Types of canaries:

Null canary (all zeros; 0x00000000)
Terminator canary (0x000aff0d)

0x00 stops strcpy() (and related functions)
0x0a and 0x0d stop gets() (and related functions)
0xff (EOF) stops other functions

Random canary

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 35 / 52



Defeating control-flow hijacking attacks
Stack cookies

How to protect information stored after the vulnerable buffer?
Add a canary after each buffer and check each time before accessing
any other data stored after it

Good idea, may be a compiler modification
However, not practical: performance impact

Reorder local variables on the stack to move the sensitive data out of the
way of the buffer overflow

Side effect of compiler optimizations
Implemented as an intentional protection in ProPolice: ideal stack layout

Places local buffers at the end of the stack frame
Relocates other local variables before them

Also introduced by Microsoft Visual Studio (/GS feature)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 36 / 52



Defeating control-flow hijacking attacks
Stack cookies

Ideal stack layout does not always exist...

Multiple local buffers are placed one after another

Structure members cannot be rearranged (interoperability issues)

Particular structures (like arrays of pointers) can be overflowed or be treated
as sensitive information, depends on the semantics

Functions with a variable number of arguments remain unprotected

Dynamically created buffers on the stack (e.g., alloca()) are placed at the
top of the stack frame

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 37 / 52



Defeating control-flow hijacking attacks
Stack cookies

readName:
push ebp
mov ebp, esp
sub esp, 264
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-264]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
leave
ret

(stack cookies disabled)

readName:
push ebp
mov ebp, esp
sub esp, 280
mov eax, DWORD PTR gs:20
mov DWORD PTR [ebp-12], eax
xor eax, eax
sub esp, 12
push OFFSET FLAT:.LC0
call printf
add esp, 16
sub esp, 8
lea eax, [ebp-268]
push eax
push OFFSET FLAT:.LC1
call __isoc99_scanf
add esp, 16
mov eax, DWORD PTR [ebp-12]
xor eax, DWORD PTR gs:20
je .L2
call __stack_chk_fail

.L2:
leave
ret

(stack cookies enabled)Bypassing it is still possible

On Windows, SEH-based exploits

On UNIX-like systems, we need a memory leak (or bruteforce)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 38 / 52



Defeating control-flow hijacking attacks

BOF exploitation steps

1 Place code in the stack (in the same vulnerable buffer)

2 Overwrite a return address

3 Jump to it

Non-executable stack

First implemented for DEC on Alpha in Feb 1999

Enabled by default on most desktop platforms, such as Linux, macOS,
and Windows

Main weaknesses:
Still allows the return address to be abused, overwriting it with an arbitrary location
Does not prevent the execution of code already present in the process memory or
code injected in other data areas

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 39 / 52



Defeating control-flow hijacking attacks

BOF exploitation steps

1 Place code in the stack (in the same vulnerable buffer)

2 Overwrite a return address

3 Jump to it

Non-executable stack

First implemented for DEC on Alpha in Feb 1999

Enabled by default on most desktop platforms, such as Linux, macOS,
and Windows

Main weaknesses:
Still allows the return address to be abused, overwriting it with an arbitrary location
Does not prevent the execution of code already present in the process memory or
code injected in other data areas

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 39 / 52



Defeating control-flow hijacking attacks
Non-executable stack

Bypassing techniques

return-into-libc (ret2libc for short)
Use libc function addresses as return addresses
The attacker does not require any shellcode to take control of a target, they simply
redirect the execution of the control flow as they wish
We will talk about this more in deep in the last part of the course!

Improved techniques:
ret2plt
ret2syscall
ret2strcpy, ret2gets (or read(), recv(), recvfrom() variants)
ret2data
ret2text, ret2code, ret2dl-resolve
Chained ret2code (or chained ret2libc)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 40 / 52



Defeating control-flow hijacking attacks

W∧X (memory) pages

Logical extension of non-executable stacks

Non-executable writable pages and non-writable executable pages

Term coined by Theo de Raadt (founder and main architect of OpenBSD)

First implementation of W∧X : 1972! (Multics on the GE-645 mainframe)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 41 / 52



Defeating control-flow hijacking attacks

W∧X (memory) pages

Logical extension of non-executable stacks

Non-executable writable pages and non-writable executable pages

Term coined by Theo de Raadt (founder and main architect of OpenBSD)

First implementation of W∧X : 1972! (Multics on the GE-645 mainframe)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 41 / 52



Defeating control-flow hijacking attacks
Write XOR eXecute (W∧X) pages

The PaX project (Oct 2000)
Linux kernel patch for Intel x86 hardware
Today, it is available for almost all hardware platforms
It was never included in mainstream Linux distribution, although today most distributions
have some kind of W∧X

On-chip support for non-executable pages came a bit later
NX: Non-eXecutable feature (AMD Athlon 64; Sept 2003)
ED: Execute-Disable feature (Intel P4 Prescott; Feb 2004)
XN: eXecute-Never feature (ARM v6)

Software that took advantage of hardware support emerged a few
months later

Linux kernel patches (via PaX project)
Microsoft Windows XP Service Pack 2 (Data Execution Prevention; DEP – opt-in by
default)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 42 / 52



Defeating control-flow hijacking attacks
Can we still execute arbitrary injected code when W∧X is on?

Do we really need to inject new code? Otherwise, ret2code

Is there a page with W+X permissions? If so, ret2strcpy or ret2gets

Can we chain the existing code, using ret2code, to write an executable file
to disk and then run it?

Is there a way to turn the protection off?
SetProcessDEPPolicy / ZwSetInformationProcess on Windows platforms

Can we change the permissions of a specific memory region from W∧X to
W+X?

VirtualProtect on Windows platforms
mprotect on GNU/Linux platforms

note: PaX does not allow a page to be W+X, nor X after W
In kernel, it requires the memory address to be aligned to 4KiB

Can we create a new memory region with W+X permissions?
VirtualAlloc() on Windows platforms
mmap() on Unix-like platforms

As before, not allowed if PaX is installed
You will first need to copy the injected code and then jump there
(chained ret2code: mmap-strcpy-code)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 43 / 52



Defeating control-flow hijacking attacks
Can we still execute arbitrary injected code when W∧X is on?

Do we really need to inject new code? Otherwise, ret2code

Is there a page with W+X permissions? If so, ret2strcpy or ret2gets

Can we chain the existing code, using ret2code, to write an executable file
to disk and then run it?
Is there a way to turn the protection off?

SetProcessDEPPolicy / ZwSetInformationProcess on Windows platforms

Can we change the permissions of a specific memory region from W∧X to
W+X?

VirtualProtect on Windows platforms
mprotect on GNU/Linux platforms

note: PaX does not allow a page to be W+X, nor X after W
In kernel, it requires the memory address to be aligned to 4KiB

Can we create a new memory region with W+X permissions?
VirtualAlloc() on Windows platforms
mmap() on Unix-like platforms

As before, not allowed if PaX is installed
You will first need to copy the injected code and then jump there
(chained ret2code: mmap-strcpy-code)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 43 / 52



Defeating control-flow hijacking attacks

ret2libc allows us to bypass non-executable stacks
Addresses of functions are known and are part of the attacker’s input

ASCII Armored Address Space (AAAS)

Linux kernel patch that loaded all shared libraries into memory
addresses starting with a null byte

Similar idea to terminator canaries

Protects against strcpy-like exploitation, but not gets

Still vulnerable to other ret2- attacks

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 44 / 52



Defeating control-flow hijacking attacks

ret2libc allows us to bypass non-executable stacks
Addresses of functions are known and are part of the attacker’s input

ASCII Armored Address Space (AAAS)

Linux kernel patch that loaded all shared libraries into memory
addresses starting with a null byte

Similar idea to terminator canaries

Protects against strcpy-like exploitation, but not gets

Still vulnerable to other ret2- attacks

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 44 / 52



Defeating control-flow hijacking attacks

Address Space Layout Randomization (ASLR)

Randomizes the address of everything (libraries, image, stack, and heap)

Prevents the attacker from knowing where to jump or where to point pointers

First implemented in PaX for Linux in 2001:
“unless every address is randomized and unpredictable, there’s always going to be room
for some kind of attack”

Introduced in Windows Vista (2007)

NOTE: if the attacker can inject code and there is enough room for nops, an
approximate address can be enough to achieve reliable code execution

This technique is known as NOP-sled or NOP slide

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 45 / 52



Defeating control-flow hijacking attacks
ASLR

Is there anything left in a predictable address?
In most cases, yes:

Images are usually compiled to run in a fixed known memory address
No relocatable shared dynamic libraries
Improvement: PIE (Position Independent Execution) code, on Linux platforms
(2005)

ret2code approaches

Can we guess the randomly generated addresses?
It depends. Low entropy on 32-bits
On 32-bit Windows, even lower entropy

Is there a clever way to find these addresses?
Is there a memory leak available?
Brute-forcing is always an option

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 46 / 52



Defeating control-flow hijacking attacks
ASLR

Some final remarks

On Windows, threads of the same application share the memory layout

On Unix, fork processes replicates the parent memory layout

ASLR is a very strong protection against code execution exploits, but
most operating systems do not offer a complete solution

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 47 / 52



Defeating control-flow hijacking attacks
ASLR on Windows

Stack location:

The time stamp counter (TSC) of the current processor is shifted and
masked to a 5-bit value (25 options)

Added to another 9-bit TSC-derived value to make up the base address of
the stack

Heap location:

TSC shifted and masked to a 5-bit value (25 options), multiplied by 64KiB

The possible heap address ranges from 0x00000000 to 0x001f0000

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 48 / 52



Defeating control-flow hijacking attacks
ASLR on Windows

Executable images location:

Load displacement by calculating a δ value each time an app runs

8-bit pseudo-random number→ only one of 256 possible locations
TSC shifts four places, and then divides modulo 254 and adds 1
The result is then multiplied by the allocation granularity of 64 KiB

This δ value is added to the preferred load address of the image file

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 49 / 52



Defeating control-flow hijacking attacks
Address Space Layout Randomization (ASLR) in Windows

Shared libraries location:
Load offset is calculated with a system-wide per-boot value called the
image bias

Stored in a global memory state structure (MI_SYSTEM_INFORMATION), in field
MiState.Sections.ImageBias)

Calculated only once per startup

Shared memory region between 0x50000000 and 0x78000000

First DLL is always ntdll. We can calculate its image base address as:
0x78000000 - (ImageBias + NtDllSizein64KBChunks)*0x10000 (32-bit)
0x7FFFFFFF0000 - (ImageBias64High + NtDllSizein64KBChunks)*0x10000
(64-bit)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 50 / 52



Other techniques of defense

Probabilistic methods

Instruction Set Randomization

Data Space Randomization: randomizes the representation of data stored
in memory (not location). Encrypts all variables, not just pointers, and using
different keys

Generic methods

Data Integrity: spatial memory integrity (protect against invalid memory
writes)

Data Flow Integrity: checks read instructions to detect data corruption
before use

Other defenses against hijacking the flow of control

Code Pointer Integrity

Control Flow Integrity (CFI)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 51 / 52



Other techniques of defense

Probabilistic methods

Instruction Set Randomization

Data Space Randomization: randomizes the representation of data stored
in memory (not location). Encrypts all variables, not just pointers, and using
different keys

Generic methods

Data Integrity: spatial memory integrity (protect against invalid memory
writes)

Data Flow Integrity: checks read instructions to detect data corruption
before use

Other defenses against hijacking the flow of control

Code Pointer Integrity

Control Flow Integrity (CFI)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 51 / 52



Other techniques of defense

Probabilistic methods

Instruction Set Randomization

Data Space Randomization: randomizes the representation of data stored
in memory (not location). Encrypts all variables, not just pointers, and using
different keys

Generic methods

Data Integrity: spatial memory integrity (protect against invalid memory
writes)

Data Flow Integrity: checks read instructions to detect data corruption
before use

Other defenses against hijacking the flow of control

Code Pointer Integrity

Control Flow Integrity (CFI)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2023/2024 51 / 52



Exploiting Software Vulnerabilities
Software Vulnerabilities

Control-Flow Hijacking
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2023/2024

Master’s Degree in Informatics Engineering
University of Zaragoza

Room A.02, Ada Byron building


	A Little Recap
	Buffer Overflows
	Defenses against Control-Flow Hijacking Attacks
	Stack Data Protection
	Non-Executable Stack
	Write XOR eXecute (WX) Pages
	Address Space Layout
	Other Techniques of Defense

	

