
Exploiting Software Vulnerabilities
Software Vulnerabilities

Integer Overflows and Format String Bugs
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2021/2022

Master’s Degree in Informatics Engineering
University of Zaragoza

Seminar A.25, Ada Byron building



Outline

1 Integer Vulnerabilities
Wraparound
Overflow
Truncation
Signedness errors

2 Format String Vulnerability
Formatted Output Functions
Description of the Vulnerability
Mitigation Strategies

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 2 / 35



Outline

1 Integer Vulnerabilities
Wraparound
Overflow
Truncation
Signedness errors

2 Format String Vulnerability

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 3 / 35



Integer Vulnerabilities
Types of integer vulnerabilities

Overflow
Occurs at runtime when the result of an integer expression exceeds the maximum value
for its respective type
For instance, two 8-bit unsigned integers may require up to 16 bits

Underflow
Occurs at runtime when the result of an integer expression is less than its minimum
value. So it wraps to the maximum integer for the integer type
For instance, subtracting 0 − 1 and storing the result in a 16-bit unsigned integer will
result in a value of 216 − 1 (not −1)

Truncation
Occurs when assigning an integer with a greater width to a smaller width
For instance, converting an int to a short discards the leading bits of the int value,
resulting in a (potential) information loss

Signedness error
Occurs when a signed integer is interpreted as unsigned, or vice versa
In the two-complement representation, such conversions cause the sign bit to be
interpreted as the most significant bit (i.e., 232 − 1 , −1)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 4 / 35



Integer Vulnerabilities
Examples
struct pixmap {
unsigned char *p;
int x;
/* xsize */
int y;
/* ysize */
int bpp;

};
typedef struct pixmap pix;
......
void readpgm(char *name, pix * p) {
/* read pgm */...
pnm_readpaminit(fp, &inpam);
p->x=inpam.width;
p->y=inpam.height;

if(!(p->p=(char *)malloc(p->x*p->y)))

F1("Error at malloc");
for(i=0; i<inpam.height; i++){
pnm_readpamrow(&inpam, tuplerow);

for(j = 0; j<inpam.width; j++)

p->p[i*inpam.width+j]=sample;

}
}

void getComm(unsigned int len, char *src){
unsigned int size;

size = len - 2;

char *comm = (char *)malloc(size + 1);

memcpy(comm, src, size);

return;
}

static inline u32 *decode_fh(u32 *p, struct svc_fh *fhp) {
int size;
fh_init(fhp, NFS3_FHSIZE);

size = ntohl(*p++);

if (size > NFS3_FHSIZE)

return NULL;

memcpy(&fhp->fh_handle.fh_base, p, size);

fhp->fh_handle.fh_size = size;
return p + XDR_QUADLEN(size);

}

int detect_attack(u_char *buf, int len, u_char *IV){
static word16 *h = (word16 *) NULL;
static word16 n = HASH_MIN_ENTRIES;
register word32 i, j;
word32 l;
...
for(l=n; l<HASH_FACTOR(len/BSIZE); l=l<<2);
if (h == NULL) {
debug("Install crc attack detector.");

n = l;

h = (word16 *) xmalloc(n*sizeof(word16));

} else
for (c=buf, j=0; c<(buf+len); c+=BSIZE, j++){

for (i = HASH(c) & (n - 1); h[i] != UNUSED; i = (i + 1) & (n - 1))

...;

h[i] = j;

}
}

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 5 / 35



Integer Vulnerabilities
Exploiting integer bugs

Usually, they are indirectly exploited
Arbitrary code execution

For instance, insufficient memory allocation exploited by buffer overflows, heap
overflows, overwrite attacks, etc.

Denial of Service
For instance, excessive memory allocation or infinite loops

Attacks to bypass sanitization
For instance, skipping an upper bounds check that ignores unexpected negative integer
values

Logic errors
For instance, manipulating the reference counter by forcing a referenced object to be
freed prematurely

Further reading: Understanding Integer Overflow in C/C++. W. Dietz et al. ACM Trans. Softw. Eng. Methodol. 25, 1, Article 2

(December 2015) doi: 10.1145/2743019

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 6 / 35

http://dx.doi.org/10.1145/2743019


Integer Vulnerabilities
Consequences

Silent break
Compiler optimizations can result in the exploitation of undefined behavior

Time bombs
Today works, but improvements in optimization technologies can take advantage of it

Illusion of predictability
Some compilers, at some optimization levels, have predictable behavior for some
undefined operations

Informal dialects
Some compilers have flags to force the two-complement behavior on signed overflows

Non-standard standards
Meaning of overflow changes between standards (e.g., 1 << 31)

Implementation defined in ANSI C and C++98
Undefined by C99 and C11

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 7 / 35



Integer vulnerabilities
Wraparound – unsigned data types

Any calculation involving unsigned operands can never overflow

What if the result of an operation cannot be represented by the resulting
unsigned integer type?

The result is reduced by modulo the number that is one greater than the largest
value that can be represented by the resulting type

Can occur with addition and multiplication operations

n-bit addition/subtraction operations require n + 1 bits of precision
Similarly, multiplying n-bit requires 2n bits of precision

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 8 / 35



Integer vulnerabilities
Wraparound – unsigned data types

How to avoid them?

Check the wraparound, either before performing the operation that
would cause it to occur or after

<limits.h> limits are useful, but note that naive use of them does not
work:

unsigned i , j , sum;
i f (sum + i > UINT_MAX)

/ / Too b ig e r r o r
else

sum += i ;

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 9 / 35



Integer vulnerabilities
Overflow – signed data types

Occurs when a signed integer operation results in a value that cannot
be represented in the resulting type

Signed integer overflow is undefined behavior in C, allowing
implementations to silently wrap (the most common behavior), trap, or
both

Since signed integer overflow produces a silent wraparound in most existing
C compilers, some programmers assume that this is a well-defined
behavior

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 10 / 35



Integer vulnerabilities
Find and fix overflows

Shift operations

Operand values are checked for limits

If the verification passes, then the shift is made

Arithmetic operations

Problem: n-bit addition/subtraction operations require n + 1 bits of
precision

Similarly, multiplying n-bit requires 2n bits of precision
In C, addition, subtraction, multiplication, negation, and division can result in overflow
or underflow
When −2n−1 is negated or divided by −1, the result overflows and wraps back to −2n−1

Three different methods can be applied

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 11 / 35



Integer vulnerabilities
Find and fix overflows

Detecting overflow for an operation on two signed integers s1 and s2

Precondition test:

((s1 > 0) ∧ (s2 > 0) ∧ (s1 > (INT_MAX − s2)))∨

((s1 < 0) ∧ (s2 < 0) ∧ (s1 < (INT_MAX − s2)))

Post-condition test of CPU flag (overflow flag)

Post-condition test of width extension
Convert s1 and s2 to a broader type
Perform the operation
Check if the result is within the limits w.r.t. the original (narrower) type

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 12 / 35



Integer vulnerabilities
Truncation

Occurs as a result of an assignment or cast from a type with a larger
width to a type with a smaller width

Data may be lost if the value cannot be represented in the resulting
type

For instance, adding c1 and c2 in the following program fragment produces a value
outside the limits of unsigned char, considering an implementation where
unsigned char is represented using 8 bits (28 − 1 = 255)

unsigned char sum, c1, c2;

c1 = 200;
c2 = 90;
sum = c1 + c2;

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 13 / 35



Integer vulnerabilities
Signedness errors

Conversion rules
A set of rules that provides a mechanism to produce a common type
when

Both operands of a binary operator are balanced with a common type
The second and third arguments of the conditional operator (? :) are balanced with a
common type

Balancing conversions involve two operands of different types
One or both operands can be converted

Many operators that accept integer operands perform conversions
using the usual arithmetic conversions, including *, /, %, +, -, <, >, <=,
>=, ==, !=, &, ∧, |, and the condition operator ? :

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 14 / 35



Integer vulnerabilities
Signedness errors

Example of conversion on x86-32
unsigned i n t u i = UINT_MAX;
signed char c = −1;

i f ( c == u i ) {
p r i n t f ( " −1 = 4 ,294 ,967 ,295?\n " ) ;

}

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 15 / 35



Integer vulnerabilities
Signedness errors

Some notes

Implicit conversions simplify C programming

Please note: conversions have the potential to lose or misinterpret
data

Avoid conversions that result in:
Loss of value (cast to a type where the magnitude of the value cannot be represented)
Loss of sign (cast from signed type to unsigned type resulting in loss of sign)

Conversions of integers to a type with greater range and the same
signedness are guaranteed safe for all data values in all compliant
implementations

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 16 / 35



Outline

1 Integer Vulnerabilities

2 Format String Vulnerability
Formatted Output Functions
Description of the Vulnerability
Mitigation Strategies

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 17 / 35



Formatted output functions

Consist of a format string and a variable number of arguments
The format string provides a set of instructions that are interpreted by the formatted
output function

By controlling the content of the format string, a user can control
execution of the formatted output function

Format string

Character sequences consisting of ordinary characters (excluding %)
and conversion specifiers

Ordinary characters are copied unchanged to the output stream

Conversion specifiers indicate how to convert arguments and write the
results to the output stream

Starts with the %, interpreted from left to right

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 18 / 35



Formatted output functions

Consist of a format string and a variable number of arguments
The format string provides a set of instructions that are interpreted by the formatted
output function

By controlling the content of the format string, a user can control
execution of the formatted output function

Format string

Character sequences consisting of ordinary characters (excluding %)
and conversion specifiers

Ordinary characters are copied unchanged to the output stream

Conversion specifiers indicate how to convert arguments and write the
results to the output stream

Starts with the %, interpreted from left to right

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 18 / 35



Formatted output functions
Conversion specifiers

%[flags] [width] [.precision] [{length-modifier}] conversion-specifier

Additional arguments are ignored, if the number of arguments is greater
than the conversion specifiers

Results are undefined, if the number of arguments is less than the
conversion specifiers

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 19 / 35



Format string vulnerability

Known since 1999 and exploited since 2000

Unlike BOF, it is considered a programming error

Easy to find

Exploitation techniques are basic

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 20 / 35



Format string vulnerability
Real examples

Application Found by Impact Years
wu-ftpd 2.* security.is remote root > 6
Linux rpc.statd security.is remote root > 4
IRIX telnetd LSD remote root > 8
Qualcomm Popper 2.53 security.is remote user > 3
Apache + PHP3 security.is remote user > 2
NLS / locale CORE SDI local root ?
screen Jouko Pynnönen local root > 5
BSD chpass TESO local root ?
OpenBSD fstat ktwo local root ?

Adapted from https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 21 / 35

https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf


Format string vulnerability

When does it appear?

When user input is included in an ANSI C format function (in part or in full)

void error(char *s)
{

fprintf(stderr, s);
}

What if *s is equal to “%s%s%s%s%s%s”?

Program will crash (most likely): Denial-of-Service

Otherwise, the contents of the stack will be printed: privacy issues

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 22 / 35



Format string vulnerability

When does it appear?

When user input is included in an ANSI C format function (in part or in full)

void error(char *s)
{

fprintf(stderr, s);
}

What if *s is equal to “%s%s%s%s%s%s”?

Program will crash (most likely): Denial-of-Service

Otherwise, the contents of the stack will be printed: privacy issues

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 22 / 35



Format string vulnerability

When does it appear?

When user input is included in an ANSI C format function (in part or in full)

void error(char *s)
{

fprintf(stderr, s);
}

What if *s is equal to “%s%s%s%s%s%s”?

Program will crash (most likely): Denial-of-Service

Otherwise, the contents of the stack will be printed: privacy issues

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 22 / 35



Format string vulnerability
Unsafe functions

fprintf

printf

sprintf

snprintf

vfprintf

vprintf

vsprintf

vsnprintf

setproctitle

syslog

Others like err*, verr*, warn*, vwarn*

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 23 / 35



Format string vulnerability

Functionality
Simple conversion from C datatypes to string representation
The representation format can be specified
The resulting string is processed (e.g., output to stdout, stderr, syslog, etc.)

How does a format function work?
The format string, in fact, controls the behavior of the function
Type of parameters to print
Parameters are stored on the stack (pushed), either directly (value) or indirectly
(reference)

The calling function knows how many parameters were pushed, as it
has to make stack correction after returning (by calling convention, more
on this later)

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 24 / 35



Format string vulnerability
Specifier Output Example Passed as
%d or i Signed decimal integer 392 value
%u Unsigned decimal integer 7235 value
%o Unsigned octal 610 value
%x Unsigned hexadecimal integer 7fa value
%X Unsigned hexadecimal integer (uppercase) 7FA value
%f Decimal floating point, lowercase 392.65 value
%F Decimal floating point, uppercase 392.65 value
%e Scientific notation (mantissa/exponent), lowercase 3.9265e+2 value
%E Scientific notation (mantissa/exponent), uppercase 3.9265E+2 value
%g Use the shortest representation: %e or %f 392.65 value
%G Use the shortest representation: %E or %F 392.65 value
%a Hexadecimal floating point, lowercase -0xc.90fep-2 value
%A Hexadecimal floating point, uppercase -0XC.90FEP-2 value
%c Character a value
%s String of characters sample reference
%p Pointer address b8000000 value
%n Nothing printed. The corresponding argument must be a pointer to

a signed int. The number of characters written so far is stored in the
pointed location.

reference

%% A % followed by another % character will write a single % to the
stream.

% –

Taken from http://www.cplusplus.com/reference/cstdio/printf/

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 25 / 35

http://www.cplusplus.com/reference/cstdio/printf/


Format string vulnerability
Example

printf("Values %d, %d, %08x\n", y, x, &x);
do_stuff(); // this call is in 0xBAADF00D address

_main:
.....
mov eax, DWORD PTR [esp+24]
lea edx, [esp+24]
mov DWORD PTR [esp+12], edx
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+28]
mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp], OFFSET FLAT:LC0
call _printf

0xBAADF00D:
call _do_stuff
mov eax, 0
leave
ret

. . . −

%esp→

x
%ebp→ %ebp (inside printf)

0xBAADF00D
address of format string

value of y
value of x

address of variable x

. . . +

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 26 / 35



Format string vulnerability

Channeling problem When two different types of information channels
are merged into one and special escape characters (or sequences) are
used to distinguish which channel is currently active

One channel is data channel (not parsed, just copied): output strings

The other channel is a control channel: format specifiers

NOTE: channeling issues are not security holes, but they make the bugs
exploitable

Types

Type 1: format string is partially user-supplied

Type 2: a user-supplied string partially or completely is indirectly passed to
a formatted output function

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 27 / 35



Format string vulnerability
Examples by type

Type 1
char tmpbuf[512];
snprintf (tmpbuf, sizeof (tmpbuf), "foo: %s", user);
tmpbuf[sizeof (tmpbuf) - 1] = '\0';
syslog (LOG_NOTICE , tmpbuf);

Type 2
int Error (char *fmt, ...);
...
int someotherfunc (char *user)
{

...
Error(user);
...

}

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 28 / 35



Format string vulnerability
Feasible attacks
Denial of Service

Reading an unallocated memory address crashes the application

Read-what-where

Interesting format specifiers: %s, %p
Walk up reading the entire contents of the stack

printf("%s"); // will print the top of the stack
printf("%5$s"); // will print the 5th element of the stack

Write-what-where

Interesting format specifier: %n
Writes to a specified variable the number of bytes already written

int i;

printf("foobar%n", (int *)&i); // after, i = 6

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 29 / 35



Format string vulnerability
Feasible attacks
Denial of Service

Reading an unallocated memory address crashes the application

Read-what-where

Interesting format specifiers: %s, %p
Walk up reading the entire contents of the stack

printf("%s"); // will print the top of the stack
printf("%5$s"); // will print the 5th element of the stack

Write-what-where

Interesting format specifier: %n
Writes to a specified variable the number of bytes already written

int i;

printf("foobar%n", (int *)&i); // after, i = 6

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 29 / 35



Format string vulnerability
Feasible attacks
Denial of Service

Reading an unallocated memory address crashes the application

Read-what-where

Interesting format specifiers: %s, %p
Walk up reading the entire contents of the stack

printf("%s"); // will print the top of the stack
printf("%5$s"); // will print the 5th element of the stack

Write-what-where

Interesting format specifier: %n
Writes to a specified variable the number of bytes already written

int i;

printf("foobar%n", (int *)&i); // after, i = 6

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 29 / 35



Format string vulnerability
Exploitation goals

Overwriting the Global Offset Table
Holds the address of each library function used by an ELF program
Independent of stack or heap particulars
The control-flow execution is hijacked right after the program invokes the override
function

DTORS (in programs compiled with GNU GCC)
Destructor table section (termination routines)
Overwrite the pointer to the shellcode and thus the control-flow execution is hijacked
when the program exits

C library hooks
Present in the GNU C library and other proprietary libraries
Hooks legitimately used by memory profiling and debugging tools
Control-flow execution is hijacked when the program invokes malloc, realloc,
realloc, etc. (before the actual function is run)

__atexit structures
Generic handler, runs when a Linux program invokes exit

Function pointers
Commonly used by daemons for command processing or to simulate termination routine
handlers

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 30 / 35



Format string vulnerability
Real example today: 2011 BMW 330i

Associated CVE: CVE-2017-9212 (it also exists in Mercedes-Benz AMG,
CVE-2020-16142)

Credits: https://twitter.com/__Obzy__/status/864704956116254720

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 31 / 35

https://twitter.com/__Obzy__/status/864704956116254720


Format string vulnerability
Real example today: Audi A7 2014

Credits: https://tiger-team-1337.blogspot.com/2020/10/audi-a7-2014-mmi-mishandles-format.html

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 32 / 35

https://tiger-team-1337.blogspot.com/2020/10/audi-a7-2014-mmi-mishandles-format.html


Mitigation strategies

Dynamic format strings

Design your code so that the user selects from a preexisting format
string, rather than incorporating user input directly into the format
string

Byte written restriction

Avoid buffer overflows that restrict the number of bytes written by
formatted output functions

Use the precision field as part of the %s conversion specifier
sprintf(buf, "Wrong command: %s\n", user);⇒
sprintf(buf, "Wrong command: %.495s\n", user);
Even better if you use snprintf instead

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 33 / 35



Mitigation strategies
C11 Annex K functions

Provide functions fprintf_s, printf_s, snprintf_s, sprintf_s,
vfprintf_s, vprintf_s, vsnprintf_s, vsprintf_s

Differ from their non-_s counterparts by:
Not compatible with the %n format conversion specifier
Constraint violation if pointers are null or format string is invalid

PLEASE NOTE: these functions cannot avoid format string vulnerabilities
that crash a program or are exploited to view memory

That is, they only prevent from write-what-where attacks

GNU C compiler flags

-Wformat, -Wformat-nonliteral, -Wformat-security
-Wformat checks calls to formatted output functions, examine the format string, and
checks that the correct number and types of arguments are supplied
-Wformat-nonliteral warns if the format string is not a literal string and cannot be
verified
-Wformat-security warns about calls to formatted output function that represent
potential security issues

Software Vulnerabilities [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 34 / 35



Exploiting Software Vulnerabilities
Software Vulnerabilities

Integer Overflows and Format String Bugs
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2021/2022

Master’s Degree in Informatics Engineering
University of Zaragoza

Seminar A.25, Ada Byron building


	Integer Vulnerabilities
	Wraparound
	Overflow
	Truncation
	Signedness errors

	Format String Vulnerability
	Formatted Output Functions
	Description of the Vulnerability
	Mitigation Strategies

	

