
Exploiting Software Vulnerabilities
Program Binary Analysis

« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2021/2022

Master’s Degree in Informatics Engineering
University of Zaragoza

Seminar A.25, Ada Byron building

Outline

1 Introduction to Program Binary Analysis

2 Static Analysis Techniques

3 Dynamic Analysis Techniques

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 2 / 37

Outline

1 Introduction to Program Binary Analysis

2 Static Analysis Techniques

3 Dynamic Analysis Techniques

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 3 / 37

Introduction

#include <stdio.h>

int main(int argc, char *argv[])
{

printf("hello world!\n");
return 0;

}

push ebp

mov ebp, esp

and esp, -16

sub esp, 16

call ___main

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _puts

mov eax, 0

leave

ret

Programs are written in text
Both source code and assembly!
Character sequences (bytes)
Difficult to work with (for humans, not for machines)
We need some structured representation

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 4 / 37

Introduction
Program Analysis

Automatically reason and derive properties about
the behavior of computer programs

Approaches

Static Program Analysis

Without running the program
The abstract model of the program is obtained and (symbolically) executed
Analysis performed through the abstract model
Examples: CFA, DFA, concolic execution, . . .

Dynamic Program Analysis

Running the program on some chosen inputs
Traces are collected and then analyzed
Analysis performed through these concrete executions
Examples: software testing, taint analysis, . . .

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 5 / 37

Introduction
Input program formats for analysis

Abstract model: all unnecessary information for analysis have been
removed. Only the necessary information remains

Source code: Keep track of high-level, human-readable information about
the program (variables, types, functions, etc.)

Bytecode: may vary depending on the bytecode considered, but keep a
record of little high-level information about the program, such as types and
functions. The programs are unstructured

Binary file: just keep track of statements in an unstructured way (no
for-loop, no clear argument passing in procedures, etc). No type, no names.
The binary file can include meta-data that can be useful for analysis
(symbols, debug, etc.)

Memory dump: Pure assembler instructions with a full memory state of the
current execution. We no longer have the meta-data of the executable file

Binary code is the closest format of what will be executed!

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 6 / 37

Introduction
Binary code vs. source code

What you code is not what you execute!

We want to analyze binary code. It can come as:

an executable file,

an object file,

a dynamic library,

a firmware,

a memory dump,

. . .

We do not trust to obtain the corresponding high-level source code

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 7 / 37

Introduction
Motivations

Why should we analyze binary programs?

Lack of high-level source code

Low-level assembly code embedded in source code

Legacy code

Commercial Off-the-shelf software (COTS)

App stores (for mobile phones and tablets)

Malware (or other “hostile” programs)

Technology forecast

Mistrust in the compilation chain

C compiler possibly buggy

Checking for low-level bugs (e.g., exploiting a stack buffer overflow)

Errors with strong hardware interconnection

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 8 / 37

Introduction
Understanding papers on Program Analysis

For those who keep track of such things, checkers in the research
system typically traverse program paths (flow-sensitive) in a for-
ward direction, going across function calls (inter-procedural) while
keeping track of call-site-specific information (context-sensitive)
and toward the end of the effort had some of the support needed
to detect when a path was infeasible (path-sensitive).

Note these terms

Flow-(in)sensitive

Inter-(intro)procedural

Context-(in)sensitive

Path-(in)sensitive

Further reading: A few billion lines of code later: using static analysis to find bugs in the real world. Al Bessey, Ken Block, Ben Chelf,

Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson Engler. Communications of the

ACM, vol. 53, iss. 2, pp. 66-75 (February 2010). doi: 10.1145/1646353.1646374

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 9 / 37

http://dx.doi.org/10.1145/1646353.1646374

Outline

1 Introduction to Program Binary Analysis

2 Static Analysis Techniques

3 Dynamic Analysis Techniques

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 10 / 37

Static Analysis Techniques
Control-Flow Graphs

Control flow within a function

Nodes: basic blocks
Sequence of consecutive program instructions
that have an entry point (first executed
instruction) and an exit point (last executed
instruction)
Entry and exit blocks

Edge: control flows from A to B

Applications

Compiler optimizations

Data-flow analysis (taint analysis)

Behavioral-based monitors

Credits: https://en.wikipedia.org/wiki/Control_flow_graph

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 11 / 37

https://en.wikipedia.org/wiki/Control_flow_graph

Static Analysis Techniques
Call Graphs

Interprocedural CFG. Information flow between functions

Nodes: functions

Edge: A could call B

Types: static, dynamic (record of program execution)

Application: find never called procedures

Tools available for automatic generation of call graphs
Credits: https://en.wikipedia.org/wiki/Call_graph

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 12 / 37

https://en.wikipedia.org/wiki/Call_graph

Static Analysis Techniques
Disassembling

Roughly speaking, read PUSH EAX instead of 0x50
Many tools see https://en.wikibooks.org/wiki/X86_Disassembly/Disassemblers_and_Decompilers

Win32Dasm
OllyDBG (it is also a debugger)
IDA Pro (it is also a debugger)
r2 (it is also a debugger)

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 13 / 37

 https://en.wikibooks.org/wiki/X86_Disassembly/Disassemblers_and_Decompilers

Static Analysis Techniques
Disassembling

Main challenges

Variable-length instruction sets: overlapping instructions

Mixed data and code: misclassify data as instructions

Indirect jumps: any location could be the beginning of an instruction!

Start of functions: when calls are indirect

End of functions: when there is no dedicated return instruction
Handwritten assembly code may not meet standard call conventions

Code compression: the code of two functions overlaps

Self-modifying code

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 14 / 37

Static Analysis Techniques
Decompilation – example
int __stdcall sub_40162C(HWND hDlg, int a2, int a3, int a4){

HICON v4; // eax@2

UINT v5; // eax@5

switch (a2) {

case 272:

v4 = LoadIconA(hInstance , (LPCSTR)0x64);

SendMessageA(hDlg, 0x80u, 1u, (LPARAM)v4);

break;

case 273:

if (a3 == 126) {

v5 = GetDlgItemTextA(hDlg, 128, dword_40542D , 14);

if ((signed int)v5 > 12 || (signed int)v5 < 4) {

MessageBoxA(hDlg,"Sorry username must be at least 4

characters\r\nlong

and not more than 12 characters.", "Sorry", 0x10u);

} else {

lstrcpyA(dword_403306 , dword_40542D);

GetDlgItemTextA(hDlg, 129, byte_405462 , 27);

if (sub_401901() == 1) {

sub_401A9B();

byte_404372 = 1;

MessageBoxA(hDlg, "Registration done. Thank you for registering

this

program!", "Thank you!", 0x40u);

EndDialog(hDlg, 0);

EnableWindow(dword_403363 , 0);

SetWindowTextA(

dword_4054A7 ,

"X-Convertor v1.0 2005 by TDC and BoR0\r\n\n

Coded by\t: TDC and BoR0\r\nVersion\t\t: 1.0\r\nRelease

date\t: 18-08-2005\r\n \r\nX-Convertor converts up to 4KB

each convert.\r\n \r\nRegistered version. Thank you.\r\n");

lstrcatA(byte_403330 , dword_403306);

SetWindowTextA(dword_4054AB , byte_403330);

}

else {

++byte_4053B8;

if (byte_4053B8 == 3) {

MessageBoxA(hDlg, "Your serial is not correct",

"Sorry", 0x10u);

byte_4053B8 = 0;

EndDialog(hDlg, 0);

} else {

MessageBoxA(hDlg, "Your serial is not correct",

"Sorry", 0x10u);

}

}

}

} else {

if (a3 == 127) {

byte_4053B8 = 0;

EndDialog(hDlg, 0);

}

}

break;

case 16:

byte_4053B8 = 0;

EndDialog(hDlg, 0);

break;

}

return 0;

}

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 15 / 37

Static Analysis Techniques
Decompilation

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 16 / 37

Static Analysis Techniques
Decompilation
Main challenges

Disassembly: first step of any decompiler!

Target language: the assembly code may not correspond to any source
code

Library functions

Instruction compiler-dependent equivalents
int a= 0→ mov eax, [a]; xor eax, eax

Target architecture artifacts: unnecessary jumps-to-jumps

Structured control-flow

Compiler optimizations: unrolling loops, shifts, adds, . . .

Loads/stores: operations on arrays, records, pointers, and objects

Self-modification code: typically, the segment code should be unchanged,
although there are programs that modify themselves!

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 17 / 37

Static Analysis Techniques
Data Flow Analysis

Analyze the effect of each basic block

Compose basic block effects to derive information at the limits of the basic
blocks

Framework for providing facts about programs. Based on all paths
through the program (including infeasible paths as well)

Derive information about the dynamic behavior of a program by
examining only the code statically

Useful for. . .

Program debugging: what definitions (of variables) can reach a program
point?

Program optimizations: constant folding, copy propagation, elimination of
common subexpressions, etc.

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 18 / 37

Static Analysis Techniques
Data Flow Analysis

Consider the statement a = b + c

Statement effects

Uses variables (b , c)

“Kills” a previous definition (old value of a)

New definition (a)

Compose effect of statements→ effect of a basic block
Locally exposed usage: usage of a data item that is not preceded in the basic block by a
data item definition
Any definition of a data item removes (kills) all definitions of the same data item that
reach the basic block
Locally available definition: last definition of the data item in the basic block

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 19 / 37

Static Analysis Techniques
Data Flow Analysis

Facts
a + b is available
a ∗ b is available
a + 1 is available

Let’s calculate the facts that hold
for each program point!

Entry

x = a + b

y = a * b

if(y > a)

End

a = a + 1

x = a + b

false

true

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 20 / 37

Static Analysis Techniques
Data Flow Analysis

Statement Gen Kill
x = a + b a + b
y = a * b a ∗ b
y > a

a = a + 1 a + b
a ∗ b

a + 1

Entry

x = a + b

y = a * b

if(y > a)

End

a = a + 1

x = a + b

false

true

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 20 / 37

Static Analysis Techniques
Data Flow Analysis

Forward versus backward: data flow from the inside out (vs outside in)

Must versus may: at joint points, just keep the facts that hold on all paths
(vs. any path) that are joined

Must May
Forward Available expressions Reaching definitions

Backward Very busy expressions Live variables

Limitations

Data-Flow Analysis is good for analyzing local variables
What happens to values stored in the heap?
Not modeled on traditional data flow

Suppose *x = p
Assume all data flow facts are killed
Or assume writing via x can affect any variable whose address has been taken

In general, it is difficult to analyze pointers

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 21 / 37

Static Analysis Techniques
Symbolic Execution

Allows us to scale and model all the possible executions of a program

Concrete versus symbolic execution
Tests work, but each test only explores one possible execution path

Symbolic execution generalizes testing
Allows unknown symbolic variables in evaluation
Checks the feasibility of the program paths

Main challenges

Path explosion

Modeling statements and environments

Constraint resolution

Further reading: Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. A Survey of Symbolic

Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (July 2018), 39 pages. doi: 10.1145/3182657

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 22 / 37

http://dx.doi.org/ 10.1145/3182657

Static Analysis Techniques
Symbolic Execution

1 int f(int x, int y)
2 {
3 if(x > y)
4 {
5 x = x + y;
6 y = x - y;
7 x = x - y;
8 if(x - y > 0)
9 perror("Error!");

10 }
11
12 return x + y;
13 }

x 7→ α, y 7→ β

x 7→ α+ β

y 7→ β

α+ β

x 7→ α+ β

y 7→ α

x 7→ β

y 7→ α

perror β+ α

feasible path

feasible pathinfeasible path

α > βα ≤ β

true

true

β − α > 0 β − α ≤ 0

How to decide which branches are feasible?
Combine the path condition with the branch condition and ask an

SMT solver!
Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 23 / 37

Static Analysis Techniques
Symbolic Execution – example: bug finding

Catch the error! What value triggers it?

1 int bar(int i)
2 {
3 int j = 2*i;
4 i++;
5 i = i*j;
6 if (i < 1)
7 i = -i;
8
9 i = j/i;

10 return i;
11 }

False branch condition i = (iin + 1)2iin
(iin + 1)2iin ≥ 1

True branch condition i = −(iin + 1)2iin
(iin + 1)2iin < 1

Division by zero creates problems. . .
False branch is always safe
(i > 0,∀iin |(iin + 1)2iin ≥ 1)
What about the true branch?
−(iin + 1)2iin = 0→ iin = −1, iin = 0

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 24 / 37

Static Analysis Techniques
Symbolic Execution – example: bug finding

Catch the error! What value triggers it?

1 int bar(int i)
2 {
3 int j = 2*i;
4 i++;
5 i = i*j;
6 if (i < 1)
7 i = -i;
8
9 i = j/i;

10 return i;
11 }

False branch condition i = (iin + 1)2iin
(iin + 1)2iin ≥ 1

True branch condition i = −(iin + 1)2iin
(iin + 1)2iin < 1

Division by zero creates problems. . .

False branch is always safe
(i > 0,∀iin |(iin + 1)2iin ≥ 1)
What about the true branch?
−(iin + 1)2iin = 0→ iin = −1, iin = 0

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 24 / 37

Static Analysis Techniques
Symbolic Execution – example: bug finding

Catch the error! What value triggers it?

1 int bar(int i)
2 {
3 int j = 2*i;
4 i++;
5 i = i*j;
6 if (i < 1)
7 i = -i;
8
9 i = j/i;

10 return i;
11 }

False branch condition i = (iin + 1)2iin
(iin + 1)2iin ≥ 1

True branch condition i = −(iin + 1)2iin
(iin + 1)2iin < 1

Division by zero creates problems. . .
False branch is always safe
(i > 0,∀iin |(iin + 1)2iin ≥ 1)
What about the true branch?

−(iin + 1)2iin = 0→ iin = −1, iin = 0

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 24 / 37

Static Analysis Techniques
Symbolic Execution – example: bug finding

Catch the error! What value triggers it?

1 int bar(int i)
2 {
3 int j = 2*i;
4 i++;
5 i = i*j;
6 if (i < 1)
7 i = -i;
8
9 i = j/i;

10 return i;
11 }

False branch condition i = (iin + 1)2iin
(iin + 1)2iin ≥ 1

True branch condition i = −(iin + 1)2iin
(iin + 1)2iin < 1

Division by zero creates problems. . .
False branch is always safe
(i > 0,∀iin |(iin + 1)2iin ≥ 1)
What about the true branch?
−(iin + 1)2iin = 0

→ iin = −1, iin = 0

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 24 / 37

Static Analysis Techniques
Symbolic Execution – example: bug finding

Catch the error! What value triggers it?

1 int bar(int i)
2 {
3 int j = 2*i;
4 i++;
5 i = i*j;
6 if (i < 1)
7 i = -i;
8
9 i = j/i;

10 return i;
11 }

False branch condition i = (iin + 1)2iin
(iin + 1)2iin ≥ 1

True branch condition i = −(iin + 1)2iin
(iin + 1)2iin < 1

Division by zero creates problems. . .
False branch is always safe
(i > 0,∀iin |(iin + 1)2iin ≥ 1)
What about the true branch?
−(iin + 1)2iin = 0→ iin = −1, iin = 0

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 24 / 37

Static Analysis Techniques
Symbolic Execution – example: class exercise

Which values of a and b make the assert fail?

1 void foo(int a, int b)
2 {
3 int x = 1, y = 0;
4 if (a != 0){
5 y = 3 + x;
6 if (b == 0)
7 x = 2*(a + b);
8 }
9 assert(x - y != 0);

10 }

σ = {a 7→ α, b 7→ β}

π = true
int x = 1, y = 0

State 1

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = true
if (a != 0)

State 2

(you can continue it. . .)

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 25 / 37

Static Analysis Techniques
Symbolic Execution – example: class exercise

Which values of a and b make the assert fail?

1 void foo(int a, int b)
2 {
3 int x = 1, y = 0;
4 if (a != 0){
5 y = 3 + x;
6 if (b == 0)
7 x = 2*(a + b);
8 }
9 assert(x - y != 0);

10 }

σ = {a 7→ α, b 7→ β}

π = true
int x = 1, y = 0

State 1

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = true
if (a != 0)

State 2

(you can continue it. . .)

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 25 / 37

Static Analysis Techniques
Symbolic Execution – solution to the class exercise above

σ = {a 7→ α, b 7→ β}

π = true
int x = 1, y = 0

State 1

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = true
if (a != 0)

State 2
σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = α = 0
assert(x - y != 0)

State 12
σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = α = 0 ∧ (1 − 0 , 0)
(assert holds)

State 13

Feasible path (a = 0,∀β ∈ Z)

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = α = 0 ∧ (1 − 0 = 0)
(assert fails)

State 14

Infeasible path

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 0}
π = α , 0
y = 3 + x

State 3

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 4}
π = α , 0
if (b == 0)

State 4

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 4}
π = α , 0 ∧ β = 0
x = 2*(a + b)

State 5

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 4}
π = α , 0 ∧ β , 0
assert(x - y != 0)

State 9

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 4}
π = α , 0 ∧ β , 0 ∧ (1 − 4 , 0)
(assert holds)

State 10

Feasible path (a , 0, β , 0)

σ = {a 7→ α, b 7→ β, x 7→ 1, y 7→ 4}
π = α , 0 ∧ β , 0 ∧ (1 − 4 = 0)
(assert fails)

State 11

Infeasible path

σ = {a 7→ α, b 7→ β, x 7→ 2(α+ β), y 7→ 4}
π = α , 0 ∧ β = 0
assert(x - y != 0)

State 6

σ = {a 7→ α, b 7→ β, x 7→ 2(α+ β), y 7→ 4}
π = α , 0 ∧ β = 0 ∧ α+ β , 2
(assert holds)

State 7
σ = {a 7→ α, b 7→ β, x 7→ 2(α+ β), y 7→ 4}
π = α , 0 ∧ β = 0 ∧ α+ β = 2
(assert fails)

State 8

Feasible path (a , 2, b = 0) Feasible path (a = 2, b = 0)

F

T

T

F

T
F

T
F

T

F

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 26 / 37

Outline

1 Introduction to Program Binary Analysis

2 Static Analysis Techniques

3 Dynamic Analysis Techniques

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 27 / 37

Dynamic Analysis Techniques
Debugging

Run the program instructions with special software: debuggers
We can see the values of each CPU register, stack, memory, etc.

Source code vs. binary debugging

Breakpoints: stops execution when reached
Software (memory) breakpoints
Hardware breakpoints
In run, read, or write operations

Step into / step onto

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 28 / 37

Dynamic Analysis Techniques
Debugging (example: OllyDBG)

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 29 / 37

Dynamic Analysis Techniques
Fuzzing

Roughly speaking, “fuzzing means. . . ” (quoting Iñaki Rodríguez-Gastón)

Form of vulnerability analysis in application programs

Black-box approach (at the beginning): no prior knowledge of the internal
aspects of the program

Evolved to a white-box approach: state-of-the-art fuzzers “learn” from program
behavior

The application is given many anomalous (unexpected, invalid, or
random data) inputs

The application is monitored for any signs of error
Unexpected behavior
Crashes

Buffer overflow
Integer overflow
Memory corruption errors
Format string bugs

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 30 / 37

Dynamic Analysis Techniques
Fuzzing

Roughly speaking, “fuzzing means. . . ” (quoting Iñaki Rodríguez-Gastón)

Form of vulnerability analysis in application programs

Black-box approach (at the beginning): no prior knowledge of the internal
aspects of the program

Evolved to a white-box approach: state-of-the-art fuzzers “learn” from program
behavior

The application is given many anomalous (unexpected, invalid, or
random data) inputs

The application is monitored for any signs of error
Unexpected behavior
Crashes

Buffer overflow
Integer overflow
Memory corruption errors
Format string bugs

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 30 / 37

Dynamic Analysis Techniques
Fuzzing

Charlie Miller’s “five lines of Python” dumb fuzzer

Found vulnerabilities in PDF readers and MS Powerpoint

numwrites = random.randrange(math.ceil((float(len (buf)) / FuzzFactor))) + 1
for j in range (numwrites):

rbyte = random.randrange(256)
rn = random.randrange(len(buf))
buf[rn] = "%c"%(rbyte);

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 31 / 37

Dynamic Analysis Techniques
Fuzz Testing

A simple example: HTTP GET requests
Standard HTTP GET request

GET /index.html HTTP/1.1

Anomalous requests
AAAAAA. . . AAAA /index.html HTTP/1.1
GET ///////index.html HTTP/1.1
GET %n%n%n%n%n%n.html HTTP/1.1
GET /AAAAAAAAAAAAA.html HTTP/1.1
GET /index.html HTTTTTTTTTTTTTP/1.1
GET /index.html HTTP/1.1.1.1.1.1.1.1
etc.

Types of fuzzers

Mutation-based fuzzing

Generation-based fuzzing

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 32 / 37

Dynamic Analysis Techniques
Taint analysis

Can you measure the influence of the input data on the application?

Data comes from tainted sources (any external input) and ends up in tainted
sinks

Flow from X to Y : an operation that uses X to derive a value Y

Tainted value: if the source of the value X is untrustworthy (e.g.,
user-supplied string)

Object X operation Object Y
data

derived
from X

Taint Propagation

Object X tainted the object Y

Taint operator t : X 7→ t(Y)

The taint operator is transitive
X 7→ t(Y) and Y 7→ t(Z), then X 7→ t(Z)

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 33 / 37

Dynamic Analysis Techniques
Taint analysis

Main challenges

Tainted addresses
Distinguishing between memory addresses and cells is not always appropriate
Taint granularity is important (bit, byte, word, etc.)

Undertainting
Dynamic taint analysis does not adequately handle some types of information flow

Overtainting
Deciding when to introduce a taint is often easier than deciding when to remove it

Detection time vs. attack time
When used for attack detection, dynamic taint analysis may generate an alert too late

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 34 / 37

Dynamic Analysis Techniques
Dynamic Binary Instrumentation

adding arbitrary code during the execution of a binary

What insert? → instrumentation function

Where? → add places

Advantages

No need to recompile/relink every time

Allow to find on-the-fly code

Dynamically generated code

Allow to instrument a process already
running (attach)

Main disadvantage

Overhead⇒⇓ performance

Running code

Arbitrary

code

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 35 / 37

Dynamic Analysis Techniques
Dynamic Binary Instrumentation

adding arbitrary code during the execution of a binary

What insert? → instrumentation function

Where? → add places

Advantages

No need to recompile/relink every time

Allow to find on-the-fly code

Dynamically generated code

Allow to instrument a process already
running (attach)

Main disadvantage

Overhead⇒⇓ performance

Running code

Arbitrary

code

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 35 / 37

Dynamic Analysis Techniques
Placing DBI in the context of dynamic analysis

Binary

Hardware

Debugger

Debugging

Hardware

Binary

Virtualization

Hardware

Binary

DBI

Binary

Emulation

Hardware

Emulador

Executable transformation

Full control over execution

No architectural support needed

Credits: J-Y. Marion, D. Reynaud Dynamic Binary Instrumentation for Deobfuscation and Unpacking. DeepSec, 2009

Program Binary Analysis [CC BY-NC-SA 4.0 © R.J. Rodríguez] 2021/2022 36 / 37

Exploiting Software Vulnerabilities
Program Binary Analysis

« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

Course 2021/2022

Master’s Degree in Informatics Engineering
University of Zaragoza

Seminar A.25, Ada Byron building

	Introduction to Program Binary Analysis
	Static Analysis Techniques
	Dynamic Analysis Techniques
	

