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Abstract: A general iterative technique for approximate throughput computation of sto-

chastic live and bounded weighted T-systems is presented. It generalizes a previous technique

on stochastic marked graphs. The approach has two basic foundations. First, a deep under-

standing of the qualitative behaviour of weighted T-systems leads to a general decomposition

technique. Second, after the decomposition phase, an iterative response time approximation

method is applied for the throughput computation. Existence of convergence points for the

iterative approximation method can be proved. Experimental results generally have an error

of less than 5 %. The state space is usually reduced by more than one order of magnitude;

therefore, the analysis of otherwise intractable systems is possible.

Keywords: Petri nets, Stochastic systems, Approximation methods, Structural decompos-

ition, Performance evaluation

1 Introduction

Weighted T-systems (WTS) [25] are the weighted generalization of marked graphs (MG’s).

Stochastic Weighted T-systems (SWTS’s) are a subclass of stochastic Petri net (SPN) mod-

els [3]. SWTS’s allow the modelling of concurrency, synchronization and bulk movements

of jobs but not decisions. SWTS’s can be used for the modelling of assembly–disassembly

1This work has been developed within the projects TIC2003-05226 and DPI2003-06376 of the Spanish
science and technology ministry.
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systems. These systems can assemble several pieces to produce more complex ones or disas-

semble pieces in several simpler ones.

In this paper, we consider live and bounded SWTS’s with time and marking independent

exponentially distributed service times associated with transitions. Liveness is a necessary

condition for non null throughput of transitions (so the throughput approximation makes

sense), and boundedness is necessary (and sufficient for live SWTS) to obtain finite con-

tinuous time Markov chains (CTMC’s). A live and bounded SWTS is strongly connected,

consistent and reversible [24] so its isomorphic CTMC is ergodic [3] and hence has a unique

steady–state probability distribution. For this class of models, several computation techniques

have been presented in the literature. Exact performance results can be obtained from the

numerical solution of the isomorphic CTMC [3], but the state explosion problem makes in-

tractable the evaluation of large systems. The efficient computation of exact performance

indices of SWTS’s cannot be done analytically because local balance property does not hold

in general [15]. The alternative approach of bounds computation has been studied by several

authors using different techniques (see, e. g., [6, 8]).

Concerning approximation techniques, several proposals have been done. In [4], a method

is proposed for nets that admit a time scale decomposition based on near–complete decom-

posability of Markov chains. Near decomposability properties are also used in [11] for an

iterative approximate solution of weakly connected nets. In [7], some particular queueing

networks with subnetworks having population constraints are analyzed using flow equivalent

aggregation (i.e., a non-iterative technique) and Marie‘s method [19]. In [9], given an arbit-

rary cut (subset of places producing a net partition), a structural decomposition technique

is developed that allows to split a strongly connected MG in two subnets. With the subnets
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three aggregated systems are computed; two low level systems and a basic skeleton or high

level system. Each low level system is composed by one subnet and an aggregation of the other

one. The basic skeleton is composed by the aggregation of the two subnets. Each aggregated

subnet summarizes the behaviour of one subnet. With the aggregated systems, by means of

an iterative response time approximation algorithm, the throughput of the transitions of the

MG is approximated. The structural decomposition and iterative algorithm presented in [9]

is included in TimeNet tool [27]. In [26], an iterative approximation algorithm is developed

for some subclass of stochastic process algebras (SPA’s) and the TIPP tool [16] includes an

algorithm for response time approximation for another subclass of SPA’s.

In this paper we extend the technique in [9] in several ways: (1) The approximation tech-

nique do apply to the class of SWTS’s; (2) it will be possible to decompose the original net

in an arbitrary finite number of subnets (not only two); (3) the structure of the aggregated

systems is reduced (in terms of number of nodes) directly by the decomposition technique;

(4) and a formal proof for the existence of convergence points for the iterative algorithm is

included (proof also valid for the subclass considered in [9]). A first incomplete approach to

the technique was presented in [21]. This paper improves it by the reduction of the aggreg-

ated systems structure and the proof of existence of convergence points for the numerical

approximation algorithm.

In the case of MG’s the aggregated systems were exact projections (in terms of reachable

markings and firing sequences projected on the preserved nodes) of the original net. This

is not the case with WTS’s. With the intend of reducing the structure of the aggregated

systems, they preserve a weaker set of structural properties (liveness and boundedness in-

cluded) but it is sufficient to obtain good throughput approximations. Experimental results
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on several examples show fast convergence (3 to 5 iterations) with a final error of less than

5%. The state space is usually reduced by more than one order of magnitude.

The paper is organized as follows. In section 2, basic notations and fundamental proper-

ties on WTS’s and implicit places are presented. In section 3, the technique presented in [9]

is exposed by means of a simple example. Also the problems to extend the technique to the

class of SWTS’s will be arisen. Section 4 will be devoted to the study of structural prop-

erties of WTS’s (gain, weighted marking and resistance). Section 5 includes the structural

decomposition of WTS’s used in the rest of the paper. The iterative technique to compute

the throughput approximation is described in section 6. Section 7 includes some examples to

illustrate the introduced technique. Finally, concluding remarks are presented in section 8.

2 Basics notations

We assume the reader is familiar with concepts of P/T nets. Here we only present notations

used in later sections. For further extensions the reader is referred to [20, 14].

A P/T net is a 4–tuple (graph oriented definition) N = 〈P, T, F, W 〉, where P and T are

disjoint non empty sets of places and transitions (|P | = n, |T | = m), F ⊆ (P ×T )∪ (T ×P )

is the set of directed arcs and W : F −→ IN assigns a natural weight to each arc. P ∪ T

is the set of nodes. An alternative matrix oriented definition of P/T nets is a 4–tuple

N = 〈P, T,Pre,Post〉 with P , T the same as in the previous definition and Pre (Post)

the pre– (post–) incidence non negative integer matrix of size |P | × |T |. Ordinary nets are

P/T nets whose arcs have weight 1. The pre- and post-set of a node v ∈ P ∪ T are defined

respectively as •v = {u ∈ P ∪T |(u, v) ∈ F} and v• = {u ∈ P ∪T |(v, u) ∈ F}. The incidence

matrix of the P/T net is defined as C = Post−Pre.
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A vector m ∈ {ZZ+}|P | which assigns a non negative integer to each place is called

marking . A P/T system, or marked Petri net S = 〈N ,m0〉, is a P/T net N with an initial

marking m0. A transition t ∈ T is enabled at marking m if m ≥ Pre[P, t]. A transition t

enabled at m can fire yielding a new marking m′ = m + C[P, t] (reached marking). It

is denoted by m t−→m′. A sequence of transitions τ = {ti}n
i=1 is a firing sequence in S

if there exists a sequence of markings such that m0
t1−→m1

t2−→m2 . . . tn−→mn. In this case,

marking mn is said to be reachable from m0 by firing τ , and this is denoted by m0
τ−→mn.

The firing count vector σ of the firable sequence τ is a vector such that σ[t] represents

the number of occurrences of t ∈ T in τ . If m0
τ−→m, then we can write in vector form

m = m0 + C · σ, which is referred to as the linear state equation of the net. The set

L(S) = {τ |τ firable from m0} is the language of firing sequences of S. RS(S) is the set of all

reachable markings from m0. RG(S) is the reachability graph of S (a graph with RS(S) as

set of vertices and whose set of edges are the firing sequences of length 1 between vertices).

A P/T system is live when every transition can ultimately occur from every reachable

marking. A place p ∈ P is said to be k–bounded if m[p] ≤ k for all m ∈ RS(S). A P/T

system is said to be (marking) k–bounded if every place is k–bounded, and bounded if there

exists some k for which it is k–bounded. A marking m is a home state in S if it is reachable

from every reachable marking and S is reversible if m0 is a home state. S is deadlock-free

when at least one transition is enabled at every reachable marking.

A path in N is a sequence {x1, . . . , xn} of nodes such that (xi, xi+1) ∈ F for 1 ≤ i < n. A

circuit is a path such that (xn, x1) ∈ F . A path (circuit) is called simple if all its nodes are

different. We denote by P(x, y), the set of simple paths from x to y. N is strongly connected

if for every two nodes x, y of N there exist a path from x to y.

5



A p-semiflow is a vector y ≥ 0, y 6= 0 such that y · C = 0. A t-semiflow is a vector

x ≥ 0, x 6= 0 such that C · x = 0. A net is consistent if it has a t-semiflow x ≥ 1. A net is

conservative if it has a p-semiflow y ≥ 1.

A weighted T–system (WTS) or weighted marked graph is a P/T net such that each

place has exactly one input transition and exactly one output transition. From a queueing

network perspective, WTS’s are a mild generalization of Fork-Join Queueing Networks with

Blocking where bulk movements of jobs are allowed. Even if some results for WTS’s are

essentially parallel to those for the ordinary (non-weighted) case [25], there are interesting

differences that play an important role in the decomposition of WTS models.

3 Overview of the approximation technique

In this section we are going to expose the technique in [9] for throughput approximation in

MG’s by means of a simple example. Then we will see the problems to extend the technique

to the class of WTS’s.

In Fig. 1.a an MG is depicted. The approximation technique in [9] is based in a structural

decomposition of the original net. Given an arbitrary cut (subset of places producing a net

partition), the original net is split in two subnets. In Fig. 1 the cut is composed by places

B1 and B2. With the subnets three aggregated systems are computed; two low level systems

(LS1 and LS2 in Fig. 1.b and Fig. 1.c respectively) and a basic skeleton (BS) or high level

system (Fig. 1.d). Each low level system is composed by one subnet and an aggregation of

the other one. The BS is composed by the aggregation of the two subnets. The aggregation

of subnets is done by means of implicit places. Each aggregated subnet summarizes the

behaviour of one subnet. After that, with the aggregated systems, by means of an iterative
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Figure 1: (a) An MG and its (b) LS1, (c) LS2 and (d) BS.

response time approximation algorithm, the throughput of the transitions of the MG is

approximated. For example, in Fig. 1, assuming all transition rates equal to 1.0 with single

server semantics, the exact steady–state throughput of all transitions on the original net is

0.8. The original MG has 53130 reachable states, LS1 and LS2 have 10626 and BS 1771.

Applying the iterative algorithm of [9] to the aggregated systems, we obtain an approximation

for the throughput of transitions equal to 0.804093 (+0.51% of relative error).

Now, we are going to include weights in the example. In Fig. 2.a a WTS is depicted.

Given the same cut as in the previous example, the original net is split in two subnets. If

we try to apply the technique presented in [9] to this WTS, we can use the same implicit

places to “aggregate” the subnets, producing the low level systems LS1 (Fig. 2.b) and LS2

(Fig. 2.c) and the basic skeleton BS (Fig. 2.d). The original WTS has 462 reachable states,

but LS1 and LS2 have 10626, and BS has 1771. So, we have not reduced at all the state

space in the “aggregated” systems. Instead of that, we have increased their sizes. Obviously,
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Figure 2: (a) A WTS and its (b) LS1, (c) LS2 and (d) BS.

with “aggregated” systems bigger than the original one, no good approximations can be

expected. Assuming all transition rates equal to 1.0 with single server semantics, the exact

steady–state throughput of all shadow transitions on the original net is 0.384396. Applying

the iterative algorithm of [9] to the “aggregated” systems, we obtain an approximation for

the throughput of transitions equal to 0.205574, in other words a −46.52% of relative error

(unacceptable for an approximation technique). This example shows that it is not trivial to

directly apply the technique presented in [9] for MG’s to WTS’s.

Which is the problem? In our opinion, the problem deals with the deficient treatment of

the arc weights. The weights of the arcs induce synchronizations on transitions. In Fig. 2.a

the arcs with weight 20 induce a synchronization on the internal transitions (the white ones).

When a subnet is reduced by means of an implicit place these internal synchronizations

disappear in the aggregated systems leading to aggregated systems with more reachable

states than the original net and a poor approximation. To improve the approximations a
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deeper understanding on the behaviour of WTS’s is needed. The synchronizations induced

by the weights of the arcs need to be taken into account.

4 Structural properties

The subsection 4.1 is devoted to the study of the structural properties of WTS’s needed for

the rest of the paper. In subsection 4.2 implicit places in WTS are presented.

4.1 Gain, weighted marking and resistance

To decompose a WTS some basic properties on the behaviour of WTS’s must be known.

These properties are defined on paths of the WTS’s connecting transitions; they are the

gain, weighted marking and resistance. Gain and weighted marking must be preserved in

order to obtain live and bounded aggregated systems. Resistance is proposed to improve the

numerical results of the approximate analysis technique overviewed in section 3.

The gain was introduced in [25] for weighted circuits. In a live and bounded WTS any

weighted circuit has gain equal to 1 (i.e. it is neutral). In this paper, the concept of gain is

extended to weighted paths connecting transitions. The gain of a weighted path represents

the mean firing ratio between the last transition and the first one.

Definition 1 Gain of a path. Let 〈N ,m0〉 be a WTS, π = (t0p1t1p2 . . . pntn) a path in N

from transition t0 to tn. Let ri = W (ti−1, pi), si = W (pi, ti) with 1 ≤ i ≤ n. The gain of π

is G(π) =
∏n

i=1
ri

si
∈ Q+ \ {0}.

p p2

p13

t 1 t 2 t 31

2

2 4

Figure 3: Path with G = 1/2, M = 3/2 and its reduction preserving G and M .
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The gain of a path (see Fig. 3) depends only on the weights of its arcs. In an MG’s any

path has gain equal to 1. From Def. 1 immediately follows that if a path π3 = π1 ◦ π2 is the

concatenation of two given paths, then G(π3) = G(π1) ·G(π2).

To reduce subnets in MG’s the sum of tokens in a path played an important role (see [9]).

A weighted marking is the natural extension to WTS’s of the sum of tokens in MG’s. The

weighted marking M(π,m) of a path π at marking m can be interpreted as the number of

firings of the first transition needed to reach m in π being initially empty (if rational tokens

and rational number of firings were allowed).

Definition 2 Weighted marking of a path. Let S = 〈N ,m0〉 be a WTS, π = (t0p1t1 . . .

pntn) a path in N from t0 to tn. Let ri = W (ti−1, pi), si = W (pi, ti) with 1 ≤ i ≤ n. For

each m ∈ RS(S), the weighted marking of π in m is M(π,m) =
∑n

i=1

(
m[pi]

ri

∏i−1
j=1

sj

rj

)
∈ Q+.

Weighted marking (see Fig. 3) depends not only on the structure (weights of the arcs) but

also on the marking of places. In the case of MG’s, the weighted marking of any path is the

sum of tokens in its places. From Def. 1 and 2 immediately follows that if a path π3 = π1 ◦π2

is the concatenation of two given paths then M(π3,m) = M(π1,m) + M(π2,m)
G(π1)

. From Def. 2

immediately follows that the weighted marking of a path π only changes if the initial or the

final transition in the path fire (M(π,m) is increased by 1 if the initial transition is fired and

is decreased by 1/G(π) if the final transition is fired). For live and bounded WTS’s we have:

Theorem 3 (Proof in App. 1) Let S = 〈N ,m0〉 be a live and bounded WTS and π a circuit

in N . Then G(π) = 1 (see [25]) and M(π,m) = M(π,m0) ≥ 1 for all m ∈ RS(S).

This theorem establishes that the weighted marking in any circuit is constant (greater

than or equal to 1) for any reachable marking.
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Theorem 4 (Proof in App. 1) Let S = 〈N ,m0〉 be a live and bounded WTS, ti, to two

transitions in N and π1, π2 two paths in N from ti to to. Then G(π1) = G(π2) and there

exists q ∈ Q such that ∀m ∈ RS(S), M(π1,m)−M(π2,m) = q.

This theorem shows that in a live and bounded WTS, all paths connecting the same

ordered pair of transitions must have the same gain and the difference of their weighted

markings is the same in all reachable markings. Moreover, the path with greater weighted

marking has always “trapped tokens” due to the synchronizations inside the path. As any

live and bounded system is strongly connected, the concept of gain between two transitions

is well defined by the previous theorem.

Definition 5 Gain between transitions. Let S be a live and bounded WTS and ti, to two

transitions. The gain from ti to to, denoted by G(ti, to), is the gain of any path from ti to to.

Applying the relation between gain of concatenated paths, immediately follows that in

any live and bounded WTS G(ta, tc) = G(ta, tb) · G(tb, tc) for any ta, tb, tc transitions in the

WTS. Let gk = [G(tk, t1), . . . , G(tk, tn)], be the gain vector from tk.

Theorem 6 (Proof in App. 1) Let 〈N ,m0〉 be a live and bounded WTS, C its incidence

matrix, tk ∈ T and gk the gain vector from tk. Then C · gk = 0 (i. e. gk is a T-semiflow).

This theorem establishes that the gain vector is a T-semiflow. With the gain and the

weighted marking it is possible to reduce subnets in a WTS preserving liveness and bounded-

ness, so we could now extend the technique in [9] to live and bounded WTS’s. But simple

examples (see example of Fig. 2 in section 3) show that the throughput approximations may

be very poor (−46.52% error in that example). To solve this problem we propose to take into
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account the synchronizations of tokens due to the weights of the arcs. These synchroniza-

tions increase the response time of the subnets in WTS’s. For example, in Fig. 2.a, we have

paths between shadow transitions in the same subnet with gain equal to 1, but the weights

induce a synchronization in the middle transition. It is needed to fire twenty times the first

transition in order to fire twenty times the final transition. Then, liveness and boundedness

preservation is not enough to obtain good approximations.

We introduce another concept, the resistance of a path, to take into account its internal

synchronizations. The resistance of a path is independent of the gain and more complex

to introduce. First we will study the case of an isolated path (concept of resistance) and

later the case of several paths between transitions (concept of behavioural resistance). The

resistance of a path is a structural concept representing the mean number of firings of the

first transition needed to fire the last transition assuming the path initially empty.

Definition 7 Resistance of a path. Let S = 〈N ,m0〉 be a WTS, π = (t0p1t1p2 . . . pntn) a

path in N from t0 to tn. Let ri = W (ti−1, pi), si = W (pi, ti) with 1 ≤ i ≤ n . The resistance

of π is: RE(π) = max1≤j≤n{∏j
i=1

si

ri
} ∈ Q+ \ {0}.

T0 T1 T2 T3 T4

RE=6

RE=3

RE=3/2

RE=3

3 2 24

Figure 4: Path with resistance 6.

The resistance of a path only depends on the weights of the arcs and it is a positive
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rational number. The resistance can be seen as the effort of a cyclist in a mountain stage in

the “French Tour”. A place with output weight bigger than the input one supposes an extra

resistance to the path because more firings of the initial transitions are needed to fire the

final one. For instance, the resistance of the path in Fig. 4 is 6 (the maximal difficulty in

the path is reached in T3, so on this case RE(π) = max1≤j≤4{∏j
i=1

si

ri
} =

∏3
i=1

si

ri
). Given a

path π from t0 to tn, there exists a transition ti such that RE(π) =
∏j

i=1 si/ri (T3 in Fig. 4),

so the subpath πi from t0 to ti has RE(πi) = RE(π) = 1/G(πi). From Def. 7 and Def. 1

immediately follows that if a path π3 = π1 ◦ π2 then RE(π3) = max
{
RE(π1),

RE(π2)
G(π1)

}
.

Proposition 8 (Proof in App. 1) Let 〈N ,m0〉 be a live and bounded WTS. Let π be a

circuit in N . Then M(π,m0) ≥ RE(π).

P1

P3 P4

P5 P6

P2

T1 T2

10 10

5 5

8

P3 P4

T1 T2

P56

55

Figure 5: (a) Behavioural resistance between transitions and (b) its reduction.

In a WTS several paths joining two transitions may appear. For example, in Fig. 5.a,

there are 3 paths from T1 to T2. If the WTS is live and bounded, all these paths must have

the same gain (1 in this case) but they can have different resistance (10; 5 and 1 in this

case). The weighted marking of the paths are 8; 2 and 0. By Th. 4, the path with minimal

weighted marking (the third one) traps 8 tokens on the first path and 2 tokens on the second

one. The trapped tokens in a path decrease its “behavioural resistance” (with respect to

its resistance) to fire the last transition. The trapped tokens can be seen as a permanent

provisioning in race mitigating the effort of the cyclist (see Fig. 4). So, the trapped tokens
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must be taken into account in order to define the behavioural resistance. The behavioural

resistance of a path is defined to be the resistance of the path (i. e. the resistance of the

isolated path) decreased by the trapped weighted marking of the path (quantity depending

on the rest of the WTS). The formal definition of the behavioural resistance will be done by

means of an algorithm in the section 5. In the case of Fig. 5.a, the first path has behavioural

resistance 10 − 8 = 2, the second one 5 − 2 = 3 and the third one 1 − 0 = 1. So the path

with maximum behavioural resistance is the second one. In Fig. 5.b the proposed reduction

of Fig. 5.a is depicted (this reduction will be exposed in section 5). The first path is one

with maximum behavioural resistance (it is not unique in general) and the second one has

the minimal weighted marking (it is not unique in general), to preserve the possible trapped

tokens in the first one (in this way the behavioural resistance of the first path is maintained).

If we changed the initial marking of Fig. 5.a, deleting the tokens in P2 and P4, then the

behavioural resistance of the paths would be 10− 0 = 10; 5− 0 = 5 and 1− 0 = 1 so in this

case the first path would be the one with maximum behavioural resistance.

4.2 Implicit places and WTS’s

An implicit place never is the unique restricting the firing of its output transitions. Let N

be any net and N p the net resulting from adding a place p to N . If m0 is an initial marking

of N , mp
0 denotes the initial marking of N p and m0[p] = mp

0[p]. The incidence vector of

place p is denoted as Cp.

Definition 9 [22] Implicit place (IP). Let S a P/T system and p a place to be added

(provided with m0[p] tokens). Then p is an implicit place (IP) with respect to S (or equival-

ently, it is an implicit place in Sp) if L(Sp) = L(S).
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A place is an IP depending on the initial marking m0. Places which can be implicit for

any m0 are said to be structurally implicit (SIP). Inside the class of SIP’s we are interested in

the so called marking structurally implicit places (MSIP) whose structural characterization

is given in the following result.

Theorem 10 [22, 12] Marking structurally implicit place (MSIP). Let N a P/T net

and p 6∈ P a place with incidence vector Cp. The place p is an MSIP in N p if and only if

there exists y ≥ 0 such that Cp = y ·C.

From this characterization of an MSIP p, a method to compute an initial marking of p

making it implicit with respect to S is presented in [12]. In the following, we characterize

a special class of MSIP’s within the class of live and bounded WTS’s called TT-MSIP’s

(transition to transition MSIP). These places have only one input arc and one output arc,

so Sp (the P/T system resulting from the addition of a MSIP p to S) is also a WTS. The

incidence vector of a TT-MSIP is a linear combination of the incidence vectors of the places

in any path from the input transition to the output transition of the place.

Theorem 11 (Proof in App. 1) Let S = 〈N ,m0〉 be a live and bounded WTS and p 6∈ P

a place to be added with •p = t, p• = t′ and G(t, t′) = g1

g2
. If W (t, p) = g1 and W (p, t′) = g2

then p is a TT-MSIP with respect to S.

The following result gives an initial marking of a TT-MSIP in order to make implicit the

place. This marking is computed from the weighted marking of the existing paths from the

input transition of p to its output transition.

Theorem 12 (Proof in App. 1) Let S = 〈N ,m0〉 be a live and bounded WTS and t, t′
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two transitions such that G(t, t′) = g1

g2
. Let p 6∈ P be a TT-MSIP with W (t, p) = g1 and

W (p, t′) = g2. If m0[p] ≥ mmin
0 (p) = bg1 ·min{M(π,m0) | π ∈ P(t, t′)}c then p is implicit.

The computation of the initial marking of a TT-MSIP needed to make the place implicit

can be done with a slight modification of the all shortest path Floyd algorithm [2] that will

be explained in the next section. Next theorem gives a sufficient condition to reduce the

number of TT-MSIP’s needed to resume subnets in a WTS.

Theorem 13 (Proof in App. 1) Let S = 〈N ,m0〉 be a live and bounded WTS; ti, tj, tk

three transitions in N , and pik, pkj, pij three TT-MSIP’s from ti to tk, tk to tj and ti to tj

respectively, with the initial marking function mmin
0 for pik, pkj, pij given in theorem 12. If

there exists a minimal weighted marking path in N from ti to tj through tk, then pij is an

implicit place with respect to the system generated by places pik, pkj.

5 Structural decomposition of WTS’s

The basic idea is the following: a live and bounded WTS is split into K subnets by a cut B

defined through some places (see in Fig. 6.a a cut in K = 2 subnets). From the cut and the

subnets we define K + 1 aggregated systems: K low level systems (LS1, . . . ,LSK ; see Figs.

6.b and 6.c) and a high level system or basic skeleton (BS; see Fig. 6.d). These systems will

be obtained by substitution (what we call “aggregation”) of the so called subnets, defined

from the cut B, by a set of nodes. Each LS i has one subnet obtained from the cut and

the rest subnets are aggregated. In the BS all subnets are aggregated. The aggregation

of subnets for WTS supposes an extension of that in [9] for MG in the sense that this

aggregation applied to an MG produces exactly the same aggregated systems of [9].
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Figure 6: (a) A system and its (b) LS1, (c) LS2 and (d) BS.

Definition 14 Let S = 〈N ,m0〉 be a WTS with N = 〈P, T, F, W 〉. A subset of places

B ⊆ P is said to be a K-cut (K ≥ 2) of N if there exists K subnets Ni = 〈Pi, Ti, Fi,Wi〉

with 1 ≤ i ≤ K of N such that:

i)
⋃K

i=1 Ti = T and Ti ∩ Tj = ∅ for 1 ≤ i, j ≤ K, i 6= j.

ii) Pi = •Ti ∪ Ti
• for 1 ≤ i ≤ K.

iii)
⋃K

i=1 Pi = P and
⋃

i 6=j (Pi ∩ Pj) = B for 1 ≤ i, j ≤ K.

iv) Fi = F ∩ ((Pi × Ti) ∪ (Ti × Pi)) and Wi = W |Fi
for 1 ≤ i ≤ K.

The transitions in TI = •B∪B• are the interface transitions. The other ones are the internal

transitions.
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Depending on the selection of the cut, different levels of aggregation may be obtained.

So, the efficiency of the entire technique is directly affected by the cut selection. It is beyond

the scope of this paper to develop a detailed analysis on the cut selection procedure. But

from the intensive experiments already achieved, the intuitive “cut the model into equal size

pieces” idea (in terms of reachable markings) seems to work very well in practice.

Once a cut is defined on a WTS, the aggregated systems must be computed. To do that a

set of nodes will be computed to reduce each subnet of the cut. For each subnet the interface

transitions (shadow transitions in Fig.6) will be preserved (these transitions will resume the

response time of the subnet). To reduce a subnet in a WTS it is necessary to preserve the

gain between interface transitions (to obtain live and bounded aggregated systems) and the

maximum behavioural resistance between interface transitions (to get “good” throughput

approximations). To compute these gains and behavioural resistances we will translate the

nets language to the graph language. The net structure of a WTS can be represented as a

directed graph whose vertices are the transitions and the edges are the places joining them.

The first computation to be done is the gain vector g1 (Th. 6) such that g1(ti) = G(t1, ti).

To simplify notation in this section, we will denote g1 as g. To compute g a classical breadth

first search of the WTS (graph form) can be done [13]. We omit the complete exposition

of the algorithm for conciseness. Any live and bounded WTS is strongly connected, so

the search visits all vertices. Any new vertex is connected to a visited vertex by an edge

whose gain can be computed from the arc weights. The algorithm begins the search on t1 so

g(ti) = G(t1, ti) and G(ti, tj) = g(tj)/g(ti) for all ti, tj ∈ T .

The next computation to be done is the minimal weighted marking and the maximum

behavioural resistance between transitions. In order to include information about the gain,
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weighted marking and resistance in the graph, labels to the edges will be associated. Each

label has three components. The first one represents the resistance (see Def. 7) of the edge,

the second one represents the weighted marking of the edge and the third one the gain of the

edge. From the labels of the edges, by applying simple operations, it is possible to compute

the minimal weighted marking and the maximum behavioural resistance between any pair

of transitions in the WTS. The operations are the following.

Definition 15 Let be S = (Q+×Q+×Q+\{0})∪0 ( 0 is a special element), and 1 = (0, 0, 1).

The following operators are defined on S:

i) Extension operator ¯: (r1, w1, g1)¯ (r2, w2, g2) = (max{r1, r2/g1}, w1 + w2/g1, g1g2);

(r, w, g)¯ 0 = 0¯ (r, w, g) = 0¯ 0 = 0.

ii) Summary operator ⊕: (r1, w1, g)⊕ (r2, w2, g) =
(
max
i=1,2

{ri − wi}+ min
i=1,2

{wi}, min
i=1,2

{wi}, g
)
;

(r, w, g)⊕ 0 = 0⊕ (r, w, g) = (r, w, g) and 0⊕ 0 = 0.

The set S is the domain of possible labels, the extension operator ¯ computes the label

of a path from the labels of subpaths and the summary operator ⊕ selects between two paths

joining the same two transitions the path with maximum behavioural resistance (and the

path with minimal weighted marking in the case of equal behavioural resistance). In this

way we have a recursive definition of the gain, behavioural resistance and weighted marking

of a path. 1 is the label of the empty path and 0 is the label for the non–existent path.

To compute the paths with maximum behavioural resistance and the paths with minimal

weighted marking we will follow the general framework for solving path problems in directed

graphs (see [13], pp. [570–575] for the details). This framework is based on the algebraic

structure of semirings. A closed semiring is a 5-tuple (S,⊕,¯, 0, 1), where S is a set of
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elements, ⊕ (summary operator) and ¯ (extension operator) binary operations in S and 0,

1 elements of S satisfying: (S,⊕, 0) and (S,¯, 1) are monoids (i.e. they satisfy associative

property and they have identity element); 0 is an annihilator for ¯; ⊕ is commutative and

idempotent; ¯ distributes over ⊕; ⊕ is well defined for countable sequences of elements of S;

associativity, commutativity and idempotence apply to infinite summaries; ¯ distributes over

infinite summaries of elements of S. In the special case of WTS’s the summary operator

always applies to labels of paths with the same origin and destination, so with the same gain

(th. 4). Thus, some conditions of closed semiring can be relaxed. A relaxed closed semiring

is a closed semiring in wich the summary operator ⊕ only applies to labels of paths with the

same origin and destination and the empty or non–existent path.

The next theorem gives us the proof of the existance of a dynamic programming algorithm

to compute in polynomial time the path with minimal weighted marking and the path with

maximum behavioural resistance between any pair of transitions in a WTS.

Theorem 16 (Proof in App. 2) Let S = (Q+×Q+×Q+ \ {0})∪ 0 be the domain of posible

labels and ¯,⊕ the operators of Def. 15. Then 〈S,⊕,¯, 0, 1〉 is a relaxed closed semiring.

With this algebraic environment, following the general framework for solving path prob-

lems in directed graphs presented in [13], we can assure that there exists a dynamic program-

ming algorithm to compute the path with maximum resistence joining any pair of vertices

in a graph. This algorithm is nothing more than a generalization of the well-known Floyd’s

all pairs shortest path algorithm [2].

Algorithm 17 Max. behavioural resistances and min. WM computation.

input: G := (V, A),m0 WTS (graph form) and initial marking; Gain vector g
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R matrix of max. behav. resist. Init: R(i, j) := W (pij , tj)/W (ti, pij ⇔ ∃pij ∈ P , i 6= j;

R(i, j) = 0 otherwise.

L matrix of min. weighted markings. Init: L(i, j) := m0[pij ]/W (ti, pij) ⇔ ∃pij ∈ P , i 6= j;

L(i, i) := 0;L(i, j) = ∞ ⇔6 ∃pij ∈ P

K = 0 matrix of maximum behavioural resistance paths vertices.

for k := 1 to n do

for i := 1 to n, i 6= k do

for j := 1 to n, j 6= k do

l := L(i, k) + L(k,j)g(i)
g(k) ; m := min{L(i, j), l}; r := max

{
R(i, k), R(k,j)g(i)

g(k)

}
− l + m

R(i, j) := R(i, j)− L(i, j) + m

if m < L(i, j) then L(i, j) := m

if r > R(i, j) then R(i, j) := r;K(i, j) := k

end for

end for

end for

output: Matrices R, L, K

This algorithm assumes that the n transitions are numbered beginning with the n′ internal

transitions (see Def. 14). Initially, the elements R(i, i) = L(i, i) = 0 are the result of

1 ⊕ λ(i, i) = (0, 0, 1) (the empty path has label 1 = (0, 0, 1) and λ(i, i) = (r, w, 1), w ≥ r

by prop. 8). The elements R(i, j),L(i, j) with i 6= j are initialized with the resistance

and weighted marking of the edges of the graph. If (ti, tj) 6∈ A then we put R(i, j) = 0,

L(i, j) = ∞ representing the minimal possible resistance and maximum possible weighted

marking. The three nested loops compute, for any pair of transitions (ti, tj), one path of

maximum behavioural resistance from ti to tj (in R and K) and the minimal weighted

marking of any path from ti to tj (in L). The external loop indicates the vertex k to

explore. For the values i, j, k of the vertices, the algorithm compares the optimal paths

already computed from i to j with a new path formed by the optimum path from i to k

concatenated with the optimum path from k to j. In the case of the behavioural resistance,
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the algorithm selects, according to the operator ⊕, the one with more behavioural resistance.

In the case of the weighted marking, the algorithm selects the one with less weighted marking.

This weighted marking is also the not trapped weighted marking of the paths from ti to tj

(see Theorem 4). Then, after the iteration k of the external loop, R(i, j) is the maximum

behavioural resistance and L(i, j) is the minimal weighted marking of the paths from ti to tj

passing through vertices of index less than or equal to k. Thus, the output of the algorithm

gives the maximum behavioural resistances (R) and minimal weighted markings (L) between

any pair of transitions of the WTS. The matrix K (see Floyd algorithm [2]) keeps track of

the vertices of the optimal paths in terms of behavioural resistance. The complexity of this

algorithm is O(n3) in time and O(n2) in memory (n = |T |).

The reduction of the minimal weighted marking path from ti to tj (G(ti, tj) = p/q) can

be done (Th. 11 and 12) by means of a TT-MSIP pij with W (ti, pij) = p,W (pij, tj) = q and

m0[pij] = bp · L(i, j)c (see place p13 in Fig. 3 reducing the path from t1 to t3). Taking into

account theorem 13, the number of TT-MSIP’s needed to reduce the subnets can be reduced

if a minimal weighted marking path between any pair of interface transitions passes through

another interface transition. So, with an aditional n × n matrix B in the last algorithm

we can keep track if the optimum path between a given pair of transitions contains another

interface transition. Moreover, the algorithm can be slightly modified to select among all

the optimal paths between a given pair of trasitions one of them passing through another

interface transition in order to reduce the number of TT-MSIP’s.

With respect to the behavioural resistance, given any pair (t0, tn) of transitions with

several paths between them, only one with minimal weighted marking and only one with

maximal behavioural resistance will be kept (see in Fig. 5 an example of reduction of sev-
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eral paths). The path with maximum behavioural resistance can be reduced by means of a

immediate transition (replica of the transition t where the path reaches its maximum resist-

ance) and two TT-MSIP’s (one from t0 to t and another one from t to tn). The path with

minimal weighted marking is kept only to maintain the trapped tokens in the path with

maximum behavioural resistance and it can be reduced to a TT-MSIP from t0 to tn. Now,

the aggregated systems can be computed.

Definition 18 Let 〈N ,m0〉 be a live and bounded WTS, B ⊆ P a K-cut of N . The

extended system ES = 〈EN ,m0
EN 〉 is the net system obtained from 〈N ,m0〉 by adding

the places and transitions needed to reduce the minimal weighted marking paths and the

maximum behavioural resistance paths between interface transitions. The low level system

LS i = 〈LN i,m0
i〉, 1 ≤ i ≤ K is the net system obtained from ES by deleting the places

of
⋃

j 6=i Pj \ B and the transitions of
⋃

j 6=i Tj \ TI. The high level system (or basic skeleton)

BS = 〈BN ,m0
BN 〉 is the net system obtained from ES by deleting the places of

⋃K
i=1 Pi \ B

and the transitions of
⋃K

i=1 Ti \ TI.

Each LS i maintains the subnet Ni and reduces the other ones (see LS1 and LS2 in

Fig. 6.b and 6.c). In the BS all subnets are reduced (see Fig. 6.d). The important point

is that proceding in this way, projections of reachable markings and firing sequences of the

original system are preserved in the aggregated systems, what seems good untimed properties

to keep in order to obtain good approximations.

Theorem 19 (Proof in App. 1) Let S = 〈N ,m0〉 be a live and bounded WTS, B ⊆ P a

K-cut of N . The ES, LS i, 1 ≤ i ≤ K and BS are live and bounded WTS; L(ES)|T = L(S)

and RS(ES)|P = RS(S).
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6 Iterative technique

6.1 The pelota algorithm

The technique for an approximate computation of the throughtput that we present now

is, basically, a response time approximation method [1, 9]. The interface transitions of Nj

in LS i (j 6= i) approximate the response time of all the subsystem Nj.

Algorithm 20 Pelota algorithm

input: 〈S, w〉 live and bounded stochastic WTS

select a K-cut B ⊆ P of N and derive LSi, BS for 1 ≤ i ≤ K

select initial service rates µ
(0)
t for t ∈ Tj ∩ TI, 2 ≤ j ≤ K (their rates in 〈S, w〉)

n := 0 (counter for iteration steps)

repeat

n := n + 1

for i := 1 to K do

solve LSi with:

In: rates µ(n)
l of transitions Tl ∩ TI, 1 ≤ l < i

rates µ(n−1)
l of transitions Tl ∩ TI, i < l ≤ K

Out: relative rates µi and throughput χ(n)
i of transitions Ti ∩ TI

solve BS (find scale factor λ) with:

In: rates µ(n)
l of transitions Tl ∩ TI, 1 ≤ l < i

rates µ(n−1)
l of transitions Tl ∩ TI, i < l ≤ K

relative rates µi and throughput χ(n)
i of transitions Ti ∩ TI

Out: rates µ(n)
i = λ ·µi of transitions Ti ∩ TI such that χ(n)

BS = χ(n)
i

end for

until convergence of {χ(n)
i }K

i=1

output: throughput {χ(n)
i }K

i=1 of transitions 〈S, w〉

In live and bounded WTS’s the relative throughput of transitions are determined by the

structure of the net. Thus, with an approximation of the throughput of any transtion we

can obtain approximations for the other ones with the same percentage error. The proposed

algorithm is basically the same that this in [9].
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In the above procedure, once a K-cut has been selected and given some initial values µ
(0)
t

for service rates of all interface transitions except those in N1, the isomorphic CTMC of

aggregated subsystem LS1 is solved. The selection of the initial values of interface transitions

rates does not affect (under our experience) to the accuracy of the method. A simple option

is putting the initial rate of the transitions in the model. From the solution of that CTMC,

the first estimation χ
(1)
1 of the throughput of transitions T1∩TI can be computed. Then, the

initial estimated values of service rates of interface transitions T1∩TI must be derived. To do

that, we take the initial values µ
(0)
t for service rates of transitions in T1∩TI and we search in

the BS a scale factor for all these rates such that the throughput of BS and the throughput

of LS1, computed before, are equal. There is no problem with the different throughput

of interface transitions in LS i and BS because by construction the relative throughput of

transitions in the aggregated systems are the same (theorem 6). The same procedure is

executed for each LS i in a cyclic way. Each time we solve the LS i we obtain in the BS a

new estimation of the rates of Ti ∩TI. The previous steps are repeated until convergence is

achieved (for instance, when the difference of the estimated throughput of transitions in two

iterations is below 0.1%).

With regard to the computation of the ratios among interface transition rates in LS i,

the mean enabling degree et of transition t ∈ Ti ∩ TI can be computed (infinite server of

transitions assumed). Then we put µ
(n)
i [t] = χ

(n)
i [t]/et. To compute the mean enable degree

only the nodes to resume the subnet Ni are taken into account. In this way, we compute

a performance index related with the same interface transition in the BS. For example,

in Fig. 6.c, to compute the relative rate of interface transition I22 we compute the mean

enabling degree of transition I22 taking into account only the implicit places H21, H24. So,
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the relative rate of transition I22 is equal to (infinite server semantics)
XLS2

[I22]

E[max{M [H21],M [H24]}] .

For single server semantics, the mean enabling degree of a given transition is substituted by

the probability to be enabled. For example, the relative rate of transition I22 is equal to

(single server semantics)
XLS2

[I22]

P{M [H21]>0,M [H24]>0} .

The computation of the scale factor in the BS can be implemented with a linear search.

Now the BS has considerably fewer states than the original one. In each iteration of this

linear search, the isomorphic CTMC of the BS is solved. Note that only in the first iteration

the CTMC is completely derived. For later iterations only some values must be changed.

6.2 About convergence of the method

The next step will be to prove the existence of convergence points for the numerical algorithm.

To do that, we need some results given by other authors. In [18] continuity of the steady–state

probability vector π on the entries of the infinitesimal generator Q of the CTMC of any SPN

is proved. As the elements of Q are continuous on the transition rates and many steady–state

performance indices (such that throughput or mean marking of places) can be expressed as

continuous functions on π, continuity of throughput of any transition on the entries of Q

and on the transitions rates can be assured for any SPN. In [5] monotonicity of throughput

transitions on transition rates and on the topology of the WTS is proved. Monotonicity on

transition rates means that if we increase (decrease) the rate of any transition, the throughput

of any other transition will not be decreased (increased). Monotonicity on the topology means

that if we add new places and/or transitions to a WTS we do not increase the throughput of

any transition. Finally, in [10] by means of a linear programming problem, an upper bound

for the mean firing time of a transition in any live and bounded SPN is obtained. Taking
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the inverse of the upper bound for the mean firing time of a transition we can obtain a lower

bound for the throughput of the transition.

Theorem 21 (Proof in App. 1) The linear search on the BS in Alg. 20 always converges.

To prove the existence of convergence points for the algorithm 20, a functional form of the

algorithm will be used. Let λ = (λ1, . . . , λK) be the vector of rates for interface transitions.

In each iteration n of the algorithm, a new vector λ(n) is computed, so the algorithm can be

expressed in the following form:

Algorithm 22 Functional form for pelota algorithm.

input: λ(0) initial rates for interface transitions

n := 0 (counter for iteration steps)

repeat

n := n + 1

λ(n) := A(λ(n−1))

until convergence of λ(n)

output: throughput {χi(λ(n))} of transitions 〈S, w〉

Theorem 23 (Proof in App. 1) The function A : (IR+)M −→ (IR+)M (M = |IT |) of

algorithm 22 is continuous and there exist a non empty, convex and compact set S ⊂ (IR+)M

such that A(S) ⊆ S. Then, there exists x ∈ S such that A(x) = x.

This theorem establishes that the iterative algorithm has convergence points. To assure

the convergence of the algorithm or the uniqueness of the solution, stronger properties of

function A must be proved, contraction for example, but there is not success for the moment.

With regard to the accuracy of the results, no formal proof gives positive answer to the

question, but an extensive battery of numerical experiments has shown us that the algorithm

converges in 3 to 5 iteration steps and the error is less than 5% in the worst cases.
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7 Examples

In this section, we present several numerical results of the application of the iterative tech-

nique previously introduced. Among all the tested cases, we have selected the following two

WTS’s. The first one (already introduced in Fig. 6.a) is structurally asymmetric. Assum-

ing all transition rates equal to 1.0 and single server semantics, the exact throughput of the

reference transition I11 is 0.119353. The net has 319680 reachable states. The aggregated

systems LS1, LS2 and BS are depicted in Fig.6.(b), (c) and (d) respectively and they have

27362, 10640 and 783 reachable states respectively.

In Table 1 we present the iteration steps of the method for this case. Columns χ(I11) are

the estimated values for throughput of transition I11 at each iteration step. Columns µij are

the estimated relative rates of interface transition Iij computed in LS i and columns λ are the

scale factors modifying the previous relative rates, computed in the BS. Convergence of the

method is obtained in this case in 3 iteration steps. The error for this example was +1.32%.

As a second example, let us consider the WTS depicted in Fig. 7.a. Any splitting of the

net will generate strongly coupled aggregated systems. This fact makes the system difficult

to study and puts our method through a rigorous test.

We select the following cut: B = {Bi}8
i=1. The corresponding ES is depicted in Fig. 7.b.

The low level systems are depicted in Figs. 8.a and 8.b. The BS is that of Fig. 8.c. The

Service rates 1.0
LS1 LS2

X (I11) µ11 µ12 µ13 λ X (I21) µ21 µ22 µ23 λ
0.135420 0.864370 0.203130 0.135420 1.007942 0.059609 0.059609 0.178827 0.245863 0.765510
0.120868 0.773185 0.181302 0.120868 1.027901 0.060469 0.060469 0.181408 0.249409 0.767521
0.120930 0.773566 0.181394 0.120930 1.027788 0.060464 0.060464 0.181395 0.249391 0.767521
0.120929 0.773565 0.181394 0.120929 1.027788 0.060464 0.060464 0.181394 0.249390 0.767521
X (I11) exact: 0.119353 Error: +1.32%

Table 1: Iteration results for the WTS in Fig. 6.
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Figure 7: (a) A WTS’s and (b) its ES.

isomorphic CTMC of the original WTS has 90171 states (the same as the ES), while the

low level systems and the BS have 10751, 9256 and 989 states, respectively.

We consider three different situations from different transition service rates (we assume

single server semantics in all cases). In the first case, arbitrarily chosen service rates (from

left to right and from top to bottom) 2,3,2,3,6,3,2,4,10,8,2,4,4,6,8,5. The exact throughput

of transition I11 is 0.778787 in this case. In Table 2 we present the iteration steps of the

method for this case. The legend is the same as in the table 1. Convergence of the method

is usually obtained in 3 to 5 iteration steps. The error for this example was −0.22%.

In the second case, we suppose all transitions rates equal to one in the original system

(representing a symmetric timing case, in the sense that both sides of the system have

response time of the same order of magnitude). The exact throughput of I11 is 0.217662.
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Figure 8: (a) LS1, (b) LS2 and (c) BS corresponding to the WTS in Fig 7.

The error of the approximated value is −0.45%. On the other hand, if a very asymmetric

timing is considered (service rates differ in three orders of magnitude for both subsystems,

as given in the third case of Table 2), the exact throughput of I11 is 0.027686 leading up to

an error of +0.02%.

With regard to the accuracy of the method in other cases, no formal proof gives positive

answers, but extensive testing allow us to assure that the error of the method is usually

below 5%.
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Variable service rates
LS1 LS2

X (I11) µ11 µ12 µ13 µ14 λ X (I21) µ21 µ22 µ23 µ24 λ
0.8091 0.8276 0.0949 0.0674 0.6525 1.0388 1.5125 0.1741 0.1690 0.2379 0.1205 1.1279
0.7803 0.7939 0.0897 0.0650 0.5583 1.0523 1.5461 0.1785 0.1735 0.2516 0.1355 1.1067
0.7775 0.7881 0.0893 0.0648 0.5459 1.0541 1.5531 0.1795 0.1744 0.2534 0.1377 1.1042
0.7771 0.7873 0.0893 0.0648 0.5445 1.0544 1.5540 0.1796 0.1745 0.2536 0.1379 1.1040
0.7771 0.7872 0.0893 0.0648 0.5443 1.0544 1.5541 0.1796 0.1745 0.2536 0.1379 1.1039
X (I11) exact: 0.778787 Error: -0.22%

Service rates equal to 1
LS1 LS2

X (I11) µ11 µ12 µ13 µ14 λ X (I21) µ21 µ22 µ23 µ24 λ
0.2448 0.4630 0.0826 0.0408 0.5676 1.0145 0.4274 0.4575 0.2525 0.2140 0.1958 1.0523
0.2187 0.4078 0.0735 0.0365 0.4187 1.0323 0.4324 0.4636 0.2559 0.2216 0.2150 1.0423
0.2168 0.4028 0.0728 0.0361 0.4086 1.0354 0.4333 0.4647 0.2565 0.2220 0.2165 1.0418
0.2167 0.4025 0.0728 0.0361 0.4081 1.0355 0.4334 0.4647 0.2565 0.2220 0.2166 1.0417
0.2167 0.4024 0.0728 0.0361 0.4081 1.0355 0.4334 0.4647 0.2565 0.2220 0.2166 1.0417
X (I11) exact: 0.217662 Error: -0.45%

Service rates 10, 1
LS1 LS2

X (I11) µ11 µ12 µ13 µ14 λ X (I21) µ21 µ22 µ23 µ24 λ
0.0399 0.0040 0.0013 0.0007 0.2429 1.0118 0.0554 0.6568 0.3415 0.2232 0.2990 1.0409
0.0277 0.0028 0.0009 0.0005 0.1095 1.5438 0.0554 0.6571 0.3416 0.2233 0.3002 1.0396
0.0277 0.0028 0.0009 0.0005 0.1093 1.5438 0.0554 0.6571 0.3416 0.2233 0.3002 1.0396
0.0277 0.0028 0.0009 0.0005 0.1093 1.5746 0.0554 0.6572 0.3416 0.2233 0.3002 1.0396
X (I11) exact: 0.027686 Error: +0.02%

Table 2: Iteration results for the WTS in Fig. 7.

8 Conclusions

The approximation technique presented here is mainly based on decomposition and aggreg-

ation of the obtained submodels. In order to aggregate subnets in weighted T–systems it is

necessary to preserve some complex structural characteristics in order to achieve good ap-

proximation results. Our election was to preserve the gain, the minimal weighted marking

and the maximum behavioural resistance between each pair of interface transitions. The

preservation of the gain and minimal weighted marking assures liveness and boundedness of

the obtained submodels. The preservation of the maximum behavioural resistance reflects

part of the response time of the aggregated subnets that is due to the synchronization im-

posed by the weights of the arcs. Its preservation improves the approximation results. A

dynamic programming algorithm was presented to compute in polynomial time on the net

size the three selected characteristics (gain, weighted marking and behavioural resistance).

31



This decomposition algorithm supposes a generalization with respect to the previous one for

marked graphs [9] in the following terms: First, a more general class of nets (with weights)

is treated and the decomposition technique in this paper applied to a marked graph pro-

duces the same aggregated systems that the previous technique for marked graphs; second

the original model can be decomposed in a finite number of subnets, not only two; finally,

the number of nodes needed to reduce the subnets is directly reduced by the reduction al-

gorithm. The efficiency of the proposed technique is directly influenced by the selected cut.

Further research should be done in order to optimize this efficiency. However, from extensive

experiments already achieved, the intuitive “cut the model into equal size pieces” approach

(in terms of reachable markings) seems to give the best results.

With respect to the throughput approximation algorithm, we used basically the same

response time approximation method used for marked graphs in [9], called pelota algorithm,

that iteratively solves the isomorphic CTMC of each aggregated system. Existence of con-

vergence points for the pelota algorithm have been proved (proof also valid for the algorithm

for marked graphs in [9]). Extensive numerical experiments using this method showed fast

convergence (3 to 5 iteration steps), small error (less than 5%) and the approximate compu-

tation of throughput can be achieved with a considerable saving of time and memory (more

than one order of magnitude in many cases).
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Université Paris VI, Paris, France, October 1990.

[8] J. Campos, G. Chiola, and M. Silva. Ergodicity and throughput bounds of Petri nets with

unique consistent firing count vector. IEEE Transactions on Software Engineering, 17(2):117–

125, February 1991.

[9] J. Campos, J. M. Colom, H. Jungnitz, and M. Silva. Approximate throughput computation of

stochastic marked graphs. IEEE Transactions on Software Engineering, 20(7):526–535, July

1994.

[10] J. Campos and M. Silva. Embedded product-form queueing networks and the improvement of

performance bounds for Petri net systems. Performance Evaluation, 18(1):3–19, July 1993.

[11] G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic Petri nets models. In

Proceedings of the 4th International Workshop on Petri Nets and Performance Models, pages

74–83, Melbourne, Australia, December 1991. IEEE Computer Society Press.

[12] J. M. Colom and M. Silva. Improving the linearly based characterization of P/T nets. In

G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer

Science, pages 113–145. Springer-Verlag, Berlin, 1991.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press and

McGraw-Hill, 1990.

[14] F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F.B. Vernadat. Practice of Petri Nets

in Manufacturing. Chapman & Hall, London, 1993.

33



[15] S. Haddad, P. Moreaux, M. Sereno, and M. Silva. Structural characterization and qualitative

properties of product form stochastic petri nets. In 22th International Conference on Applic-

ation and Theory of Petri Nets, Newcastle Upon Tyne, U. K., June 2001.

[16] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Compositional perform-

ance modelling with the TIPPtool. Performance Evaluation, 39(1-4):5–35, February 2000.

[17] G. Klambauer. Aspects of Calculus. Springer-Verlag, Berlin, 1986.

[18] V. Mainkar and K. Trivedi. Fixed point iteration using stochatic reward nets. In Proceedings of

the 6th International Workshop on Petri Nets and Performance Models, pages 21–30, Durham,

North Carolina, USA, October 1995. IEEE-Computer Society Press.

[19] R. A. Marie. An approximate analytical method for general queueing networks. IEEE Trans-

actions on Software Engineering, 5(5):530–538, September 1979.

[20] T. Murata. Petri nets: Properties, analysis, and applications. Proceedings of the IEEE,

77(4):541–580, April 1989.
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Appendix 1

Theorem 3 Let S = 〈N ,m0〉 be a live and bounded WTS and π a circuit in N . Then

G(π) = 1 (see [25]) and M(π,m) = M(π,m0) ≥ 1 for all m ∈ RS(S).

Proof: In [25] there is a proof for G(π) = 1. Then, the firing of tn modifies the weighted marking

by 1 − 1/G(π) = 0. So the weighted marking is the same in any reachable marking. Now, let

m ∈ RS(S) such that tn is enabled in m (so m[pn] ≥ sn). By Def. 2, M(π,m) ≥ m[pn]
rn

∏n−1
i=1

si
ri
≥

∏n
i=1

si
ri

= 1/G(π) = 1 ∀m ∈ RS(S). ♦

Theorem 4 Let S = 〈N ,m0〉 be a live and bounded WTS, ti, to two transitions in N and

π1, π2 two paths in N from ti to to. Then G(π1) = G(π2) and there exists q ∈ Q such that

∀m ∈ RS(S), M(π1,m)−M(π2,m) = q.

Proof: If G(π1) 6= G(π2) we can suppose without loss of generality that G(π1) < G(π2). Firing

any other transition than to does not modify M(π2)−M(π1) and each firing of to increases M(π2)−

M(π1) by 1/G(π1)− 1/G(π2) > 0 which contradicts boundedness (by liveness). So G(π1) = G(π2)

and M(π2)−M(π1) is constant for any reachable marking. Let be q = M(π1,m0)−M(π2,m0) ∈ Q.

Then M(π1,m)−M(π2,m) = q for all m ∈ RS(S). ♦

Theorem 6 Let 〈N ,m0〉 be a live and bounded WTS, C its incidence matrix, tk ∈ T and

gk ∈ (Q+)|T | the gain vector from tk. Then C · gk = 0 (i. e. gk is a T-semiflow).

Proof: We will prove that C[p] · gk = 0 for all p ∈ P . Let ti = •p, to = p•, r = W (ti, p) and

s = W (p, to). Then G(ti, to) = r
s and C[p] · gk = rgk(ti) − sgk(to) = rG(tk, ti) − sG(tk, to) =

s(G(tk, ti) r
s −G(tk, to)) = s(G(tk, ti) ·G(ti, to)−G(tk, to)) = s(G(tk, to)−G(tk, to)) = 0. ♦

Proposition 8 Let 〈N ,m0〉 be a live and bounded WTS. Let π be a circuit in N . Then

M(π,m0) ≥ RE(π).

Proof: Let {pi}n
i=1, {ti}n

i=1 be the places and transitions of π and ri, si with 1 ≤ i ≤ n the weights

of the arcs of π (ri for transition to place arcs and si for place to transition arcs). Let i be the
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integer such that RE(π) =
∏i

j=1
sj

rj
. We will observe the firing of transition ti. Let m ∈ RS(S)

s. t. ti is enabled in m. Then m[pi] ≥ si so M(π,m) ≥ m[pi]
ri

∏i−1
j=1

sj

rj
≥ ∏i

j=1
sj

rj
= RE(π). By

theorem 3, M(π,m0) = M(π,m) so M(π,m0) ≥ RE(π). ♦

Theorem 11 Let S = 〈N ,m0〉 be a live and bounded WTS and p 6∈ P a place to be added

with •p = t, p• = t′ and G(t, t′) = g1

g2
. If W (t, p) = g1 and W (p, t′) = g2 then p is a TT-MSIP

with respect to S.

Proof: S is live and bounded, so strongly connected. Let π be any path from t to t′. By Def. 5

G(π) = G(t, t′). Let p the complementary place of p. Then π′ = π ◦ p is a circuit of gain 1,

so it is a conservative component (see [25]). Then, there exists y ≥ 0 with y|π′ ≥ 1 such that

y · Cp = 0 (Cp is the incidence matrix of N p). Let be y′ = y|N and y = y[p] ≥ 1. Then

0 = y ·Cp = y′ ·C + y ·Cp = y′ ·C− y ·Cp ⇒ Cp = (y′/y) ·C. Now, y′ ≥ 0 and y ≥ 1, so p is a

TT-MSIP (by theorem 10). ♦

Theorem 12 Let S = 〈N ,m0〉 be a live and bounded WTS and t, t′ two transitions such

that G(t, t′) = g1

g2
. Let p 6∈ P be a TT-MSIP with W (t, p) = g1 and W (p, t′) = g2. If

m0[p] ≥ mmin
0 [p] = bg1 ·min{M(π,m0) | π ∈ P(t, t′)}c then p is implicit.

Proof: Let π ∈ P(ti, to). Then G(π) = G(ti, to). Let {pi}n
i=1, {ti}n

i=0 be the nodes of π (t0 = ti,

tn = to) and ri = W (ti−1, pi), si = W (pi, ti), 1 ≤ i ≤ n. G(π) = G(ti, to) = g1

g2
=

∏n
i=1

ri
si

. We can

suppose that g1 =
∏n

i=1 ri and g2 =
∏n

i=1 si, so mmin
0 [p] = g1 ·min{M(π,m0) | π ∈ P(ti, to)} ∈ IN.

We will prove that L(S) = L(Sp).

L(Sp) ⊆ L(S). S is constructed from Sp by removing constraints for firing transitions (place p).

L(S) ⊆ L(Sp). We will prove that ∀mp ∈ RS(Sp) s. t. mp[q] ≥ W (q, to)∀ q ∈ •to \ {p} then

mp[p] ≥ g2. Let π ∈ P(ti, to) in N with minimal weighted marking (π always exists because a non

simple path has greater weighted marking than the contained simple one (th. 3) and P(ti, to) is

finite). Let π′ = tipto be a path in N p. π, π′ ∈ P(ti, to) in N p. By construction, G(π) = G(π′)

and M(π,m0) = M(π,mp
0) = M(π′,mp

0), so M(π,mp) = M(π′,mp)∀mp ∈ RS(Sp). Let be

mp ∈ RS(Sp) s. t. mp[q] ≥ W (q, to)∀ q ∈ •to\{p}. Then mp[pn] ≥ sn, so M(π,mp) ≥ 1/G(π) = g2

g1
,
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in other words, M(π′,mp) = M(π,mp) ≥ g2

g1
. As M(π′,mp) = mp[p]

g1
, then mp[p] ≥ g2. Thus,

place p is implicit for m0[p] = mmin
0 [p] = bg1 ·min{M(π,m0) | π ∈ P(ti, to)}c. Increasing m0[p]

only traps tokens in p (by th. 4, because the minimal weighted marking from ti to to does not

change), so p is implicit for m0[p] ≥ mmin
0 [p]. ♦

Theorem 13 Let S = 〈N ,m0〉 be a live and bounded WTS; ti, tj, tk three transitions in N ,

and pik, pkj, pij three TT-MSIP’s from ti to tk, tk to tj and ti to tj respectively, with the

initial marking mmin
0 given in theorem 12. If there exists a minimal weighted marking path

in N from ti to tj through tk, then pij is an implicit place with respect to the system generated

by places pik, pkj.

Proof: Let π3 be a minimal weighted marking path from ti to tj through tk and π1, π2 the

sub–paths of π3 from ti to tk and tk to tj respectively. π1 and π2 are minimal weighted marking

paths from ti to tk and tk to tj respectively. Let ri, si with 1 ≤ i ≤ n be the weights of the arcs

of π1 and r′i, s′i with 1 ≤ i ≤ m the weights of the arcs of π2. Let r =
∏n

i=1 ri, s =
∏n

i=1 si,

r′ =
∏n

i=1 r′i and s′ =
∏n

i=1 s′i. We can suppose, without loss of generality that W (ti, pik) = r,

W (pik, tk) = s and m0[pik] = brM(π1,m0)c = rM(π1,m0) (because rM(π1,m0) ∈ ZZ+). Similarly,

W (tk, pkj) = r′, W (pkj , tj) = s′, m0[pkj ] = r′M(π2,m0), W (ti, pij) = rr′, W (pij , tj) = ss′ and

m0[pij ] = rr′M(π3,m0). Let π be the path (tipiktkpkjtj). By theorem 4, G(π) = G(π3) = rr′
ss′ and

M(π,m0) = m0[pik]
r + sm0[pkj ]

rr′ = M(π1,m0) + M(π2,m0)
G(π1) = M(π3,m0). So π is another minimal

weighted marking path from ti to tj . By theorem 12, pij is also implicit with respect to the path π.

♦

Theorem 19 Let S = 〈N ,m0〉 be a live and bounded WTS, B ⊆ P a K-cut of N . The ES,

LS i, 1 ≤ i ≤ K and BS are live and bounded WTS; L(ES)|T =L(S) and RS(ES)|P = RS(S).

Proof: ES is constructed from S by adding some places (TT-MSIP’s) and immediate transitions.

So, ES is a WTS. All these nodes are the reduction (preserving the gain and weighted marking) of

existing paths in S. So L(ES)|T = L(S) and RS(ES)|P = RS(S). Thus, ES is live and bounded.
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Now, the LSi, 1 ≤ i ≤ K and BS are constructed from ES by reducing some nodes, thus removing

constraints to the firing of transitions, so the aggregated systems are also live WTS. To prove

boundedness, in [25] it is proved that a WTS is live and bounded if and only if all cycles are live

and they have gain equal to 1. As ES is live and bounded, any cycle is live and has gain equal

to 1. By construction, any cycle in the aggregated systems is also a cycle in ES, so all cycles in

the aggregated systems are live and have gain equal to 1, so the aggregated systems are live and

bounded WTS. ♦

Theorem 21 The linear search on the BS in algorithm 20 always converges.

Proof: Given the aggregated system LSi and arbitrarily chosen vectors of rates λj with 1 ≤

j ≤ K, j 6= i for transitions in Tj ∩ TI, the algorithm 20 computes for LSi the vectors χi and µi

of throughput and relative rates of transitions in Ti ∩ TI. We select a reference transition t ∈

Ti ∩ TI. Let χBS(λ) : IR+ −→ IR+ be the function that computes the throughput of t in BS with

(λ1, . . . , λµi, . . . ,λK) as vector of transition rates. We will prove the existence of λ ∈ IR+ such

that χBS(λ) = χi[t]. Obviously χBS(λ) is a continuous non decreasing function in IR+. χBS(0) = 0

because if a transition in a WTS has rate 0, then it never fires. χBS(λ) is a bounded function because

if λ is arbitrarily increased the transitions in TI \ Ti maintain the throughput bounded. Taking

the initial rates wi of transitions in Ti ∩ TI in LSi, there exists λ′ ∈ IR+ such that wi ≤ λ′µi,

so by monotonicity on the topology and on the transition rates χBS(λ′) ≥ χi[t]. Thus, χBS(λ)

is continuous on [0, λ′] and χBS(0) < χi[t] ≤ χBS(λ′). By Darboux property [17] there exists

λ ∈ (0, λ′] such that χBS(λ) = χi[t]. ♦

Theorem 23 The function A : (IR+)M −→ (IR+)M (M = |IT |) of algorithm 22 is continuous

and there exist a non empty, convex and compact set S ⊂ (IR+)M such that A(S) ⊆ S. Then,

there exists x ∈ S such that A(x) = x.

Proof: Given the rates λ of interface transitions, the algorithm computes (by means of LS1)

χ1 and µ1, the vector of throughput and relative rates of transitions in T1 ∩ TI. χ1 is continuous

on transitions rates, so it is continuous on λ. Given t ∈ T1 ∩ TI, µ1[t] is the quotient between
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the throughput χ1[t] (continuous on λ) and the enabling degree et of t in LS1 by means of the

nodes of reduction. This enabling degree can be expressed as a continuous function on the steady–

state probability vector of LS1, so it is continuous on λ. Also, by liveness of LS1 et > 0, so

χ1[t] is continuous on λ for all t ∈ T1 ∩ TI. The proof of theorem 21 shows that the function

χBS(λ) : IR+ −→ IR+ such that χBS(λ) = χ1[t] is continuous, bounded and monotonic for any

t ∈ T1 ∩ TI, so there exists inverse function and it is continuous, thus the scale factor λ computed

in the BS is continuous on λ, so the new rates λχ1 of transitions in T1 ∩ TI are continuous on λ.

By induction on the low level systems, λ(1) = A(λ) is continuous.

Now, Taking λ(0) = (∞, . . . ,∞), the throughput of transitions in LSi are finite and strictly positive

because the internal transitions in Ni have finite rates. Let χ the maximum throughput obtained

for a transition in a LSi in this manner. The maximum throughput obtained for any transition in

the iterative algorithm is χ. In BS, by putting λ = 1/χ ∈ (0,∞) as the rate for a transition, and

making immediate the other ones, we obtain χ as the throughput in BS for this transition. So, the

maximum rate obtained for any transition in the iterative algorithm is λ. Let S = [0, λ]M ⊆ (IR+)M .

Clearly, S is non empty (λ > 0), compact convex set and A(S) ⊆ S. Now, by applying the Brower

fixed point theorem [23], there exists x ∈ S such that A(x) = x. ♦
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Appendix 2

Theorem 16 Let S = (Q+ ×Q+ ×Q+ \ {0}) ∪ 0 be the domain of possible labels and ¯,⊕

the operators of definition 15. Then 〈S,⊕,¯, 0, 1〉 is a relaxed closed semiring.

Proof: i.1) 〈S,⊕, 0〉 is a monoid.

a) Closure: s ⊕ 0, 0 ⊕ s ∈ S for all s ∈ S. Now, (r1, w1, g) ⊕ (r2, w2, g) has g ∈ Q+ \ {0} as third

component and min{w1, w2} ∈ Q+ as second component. The first component is clearly a rational

number. Now, let wj = min{w1, w2} (with j = 1 ór 2). Then maxi=1,2{ri − wi}+ mini=1,2{wi} ≥

rj − wj + wj = rj ≥ 0, so the first component of (r1, w1, g)⊕ (r2, w2, g) is a non negative rational.

b) Identity: By definition.

c) Associativity: Let s1, s2, s3 ∈ S. Two cases:

c.1) Some si is equal 0. As 0 is identity element for ⊕, we have: 0⊕(s2⊕s3) = s2⊕s3 = (0⊕s2)⊕s3;

s1 ⊕ (0⊕ s3) = s1 ⊕ s3 = (s1 ⊕ 0)⊕ s3; s1 ⊕ (s2 ⊕ 0) = s1 ⊕ s2 = (s1 ⊕ s2)⊕ 0.

c.2) si 6= 0, i = 1, 2, 3. This case can be proved by associativity of min and max in Q+.

i.2) 〈S,¯, 1〉 is a monoid.

a) Closure: g ∈ Q+ \ {0} so 1/g ∈ Q+ \ {0}. Now, max, + are internal in Q+ and · is internal in

Q+ \ {0}.

b) Identity: 1 = (0, 0, 1), so 1¯0 = 0¯1 = 0; (r, w, g)¯1 = (r, w, g)¯ (0, 0, 1) = (max{r, 0/g}, w +

0/g, g · 1) = (r, w, g); 1¯ (r, w, g) = (0, 0, 1)¯ (r, w, g) = (max{0, r/1}, 0 + w/1, 1 · g) = (r, w, g).

c) Associativity: Let s1, s2, s3 ∈ S. Two cases:

c.1) Some si = 0. As 0 is annuller for ¯, we have: 0¯ (s2¯ s3) = 0 and (0¯ s2)¯ s3 = 0¯ s3 = 0;

s1¯(0¯s3) = s1¯0 = 0 and (s1¯0)¯s3 = 0¯s3 = 0; s1¯(s2¯0) = s1¯0 = 0 and (s1¯s2)¯0 = 0.

c.2) si = (ri, wi, gi) 6= 0, i = 1, 2, 3. s1 ¯ (s2 ¯ s3) = s1 ¯
(
max

{
r2,

r3
g2

}
, w2 + w3

g2
, g2g3

)
=

(
max

{
r1,

r2
g1

, r3
g1g2

}
, w1 + w2

g1
+ w3

g1g2
, g1(g2g3)

)
=

(
max

{
r1,

r2
g1

}
, w1 + w2

g1
, g1g2

)
¯ (r3, w3, g3) =

(s1 ¯ s2)¯ s3.

ii), iii), iv) 0 is annuller for ¯, ⊕ is commutative and idempotent by definition.

v) ¯ distributes over ⊕. Let s1, s2, s3 ∈ S. Two cases:
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v.1) Some si = 0: 0 ¯ (s2 ⊕ s3) = 0 and (0 ¯ s2) ⊕ (0 ¯ s3) = 0 ⊕ 0 = 0; (s2 ⊕ s3) ¯ 0 = 0 and

(s2¯0)⊕(s3¯0) = 0⊕0 = 0; s1¯(0⊕s3) = s1¯s3 and (s1¯0)⊕(s1¯s3) = 0⊕(s1¯s3) = s1¯s3;

(0 ⊕ s3) ¯ s1 = s3 ¯ s1 and (0 ¯ s1) ⊕ (s3 ¯ s1) = 0 ⊕ (s3 ¯ s1) = s3 ¯ s1; s1 ¯ (s2 ⊕ 0) = s1 ¯ s2

and (s1¯ s2)⊕ (s1¯ 0) = (s1¯ s2)⊕ 0 = s1¯ s2; (s2⊕ 0)¯ s1 = s2¯ s1 and (s2¯ s1)⊕ (0¯ s1) =

(s2 ¯ s1)⊕ 0 = s2 ¯ s1.

v.2) si = (ri, wi, gi) 6= 0, i = 1, 2, 3. In order for the summaries to make sense, there must be

g2 = g3 = g.

s1 ¯ (s2 ⊕ s3) = (r1, w1, g1) ¯
(
max
i=2,3

{ri − wi} + min
i=2,3

{wi}, min
i=2,3

{wi}, g
)

=
(
max

{
r1,

1
g1

(
max
i=2,3

{ri −

wi}+ min
i=2,3

{wi}
)}

, w1 + 1
g1

min
i=2,3

{wi}, g1g
)
. Moreover

(s1 ¯ s2)⊕ (s1 ¯ s3) =
(
max

{
r1,

r2
g1

}
, w1 + w2

g1
, g1g

)
⊕

(
max

{
r1,

r3
g1

}
, w1 + w3

g1
, g1g

)
=

(
max

{
max

{
r1,

r2
g1

}
− w1 − w2

g1
, max

{
r1,

r3
g1

}
− w1 − w3

g1

}
+ min

{
w1 + w2

g1
, w1 + w3

g1

}
,

min
{
w1 + w2

g1
, w1 + w3

g1

}
, g1g

)
.

We will prove that the two expressions are equal. The third components are g1g; w1+ 1
g1

min
i=2,3

{wi} =

w1 + min
{

w2
g1

, w3
g1

}
= min

{
w1 + w2

g1
, w1 + w3

g1

}
, so the second components are also equal. Only the

equality of the first components must be proven:

max
{
max

{
r1,

r2
g1

}
− w1 − w2

g1
, max

{
r1,

r3
g1

}
− w1 − w3

g1

}
+ min

{
w1 + w2

g1
, w1 + w3

g1

}
=

max
{
max

{
r1,

r2
g1

}
− w2

g1
, max

{
r1,

r3
g1

}
− w3

g1

}
− w1 + w1 + 1

g1
min{w2, w3} =

max
{
r1 − w2

g1
, r2−w2

g1
, r1 − w3

g1
, r3−w3

g1

}
+ 1

g1
min
i=2,3

{wi} = max
{
r1 + 1

g1
max
i=2,3

{−wi}, 1
g1

max
i=2,3

{ri − wi}
}
+

1
g1

min
i=2,3

{wi} = max
{
r1 − 1

g1
min
i=2,3

{wi}, 1
g1

max
i=2,3

{ri − wi}
}
+ 1

g1
min
i=2,3

{wi} =

max
{

r1,
1
g1

(
max
i=2,3

{ri − wi}+ min
i=2,3

{wi}
)}

. So s1 ¯ (s2 ⊕ s3) = (s1 ¯ s2)⊕ (s1 ¯ s3).

Now: (s2 ⊕ s3)¯ s1 =
(
max
i=2,3

{ri − wi}+ min
i=2,3

{wi}, min
i=2,3

{wi}, g
)
¯ (r1, w1, g1) =

(
max

{
max
i=2,3

{ri − wi}+ min
i=2,3

{wi}, r1
g

}
, min
i=2,3

{wi}+ w1
g , gg1

)
. Moreover

(s2 ¯ s1)⊕ (s3 ¯ s1) =
(
max

{
r2,

r1
g

}
, w2 + w1

g , gg1

)
⊕

(
max

{
r3,

r1
g

}
, w3 + w1

g , gg1

)
=

(
max

{
max

{
r2,

r1
g

}
− w2 − w1

g , max
{
r3,

r1
g

}
− w3 − w1

g

}
+ min

{
w2 + w1

g , w3 + w1
g

}
,

min
{
w2 + w1

g , w3 + w1
g

}
, gg1

)
.

We will prove that the two expressions are equal. The third components are g1g; the second ones are

also equal: min
i=2,3

{wi}+ w1
g = min

{
w2 + w1

g , w3 + w1
g

}
. Only the equivalence of the first components
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must be proven:

max
{
max

{
r2,

r1
g

}
− w2 − w1

g , max
{
r3,

r1
g

}
− w3 − w1

g

}
+ min

{
w2 + w1

g , w3 + w1
g

}
=

max
{
max

{
r2,

r1
g

}
− w2,max

{
r3,

r1
g

}
− w3

}
− w1

g + w1
g + min

i=2,3
{wi} =

max
{
r2 − w2, r3 − w3,

r1
g − w2,

r1
g − w3

}
+ min

i=2,3
{wi} = max

{
max
i=2,3

{ri − wi}, r1
g + max

i=2,3
{−wi}

}
+

min
i=2,3

{wi} = max
{
max
i=2,3

{ri − wi}, r1
g − min

i=2,3
{wi}

}
+ min

i=2,3
{wi} = max

{
max
i=2,3

{ri − wi}+ min
i=2,3

{wi}, r1
g

}
.

So (s2 ⊕ s3)¯ s1 = (s2 ¯ s1)⊕ (s3 ¯ s1).

vi) Summary of sequences is well defined. Let {si}∞i=1 ⊆ S be a sequence of labels. If ∃si = 0 it

can be removed from the summary. So, if {si | si 6= 0}∞i=1 is finite then
⊕∞

i=1 ∈ S is well defined

(by closure of ⊕). If {si | si 6= 0}∞i=1 is infinite, in order for the summary to make sense, the

labels {si}∞i=1 must be associated to paths πi with the same origin (t) and destination (t′). Then

si = (ri, wi, g) for all i ∈ IN and the summary has the same gain g. The second component of

the summary is min∞i=1{wi}. We will prove that this minimum exists and it is a non negative

rational number. All wi ≥ 0 so min∞i=1{wi} ≥ 0. The numbers wi are weighted markings of paths

in the WTS from t to t′. Given a transition t, any edge pj of the WTS (graph form) adds a fixed

quantity qj ∈ Q+ to the weighted marking of any path with the edge. Given any rational number w,

for any edge pj in the graph there exist a finite natural number nj such that njqj ≤ w. Then,

given w1 as rational number, there exist only a finite number of paths from t to t′ with weighted

marking less or equal than w1. So, min∞i=1{wi} exists and it is a non negative rational number.

The first component of the summary is R = max∞i=1{ri−wi}+min∞i=1{wi}. Let πj be a path of the

summary with minimal weighted marking wj . Then R = max∞i=1{ri−wi}+wj ≥ rj−wj+wj = rj ≥

0. So, the first component is non negative. It must be proven that there exist max∞i=1{ri−wi} ∈ Q.

By definition of ⊕, the behavioural resistance of a path is the resistance decreased by the trapped

weighted marking due to synchronizations with other paths. Let REi = RE(πi) (resistance) and

Wi = REi−ri the trapped weighted marking of the path πi for i ∈ IN. We will prove that {REi}∞i=1,

{Wi | Wi ≤ REi}∞i=1 and {wi | wi ≤ ri}∞i=1 are finite sets.

A similar reasoning shows that {REi}∞i=1 is a finite set. Given an initial transition, any edge pj

of the graph gives a fixed level of resistance uj ∈ Q+ \ {0} to any path passing through pj and
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REi = maxpj∈πi{uj}. Now, {pj} is finite, so {uj} is finite, thus {REi}∞i=1 ⊆ Q+ \ {0} is also finite.

Let RE = max∞i=1{REi} ∈ Q+ \ {0}. Now ri = REi − Wi ≤ REi ≤ RE ∀i ∈ IN so {wi | wi ≤

ri}∞i=1 ⊆ {wi | wi ≤ RE}∞i=1. As {wi | wi ≤ RE}∞i=1 is finite then {wi | wi ≤ ri}∞i=1 is also finite.

Finally, Wi is the trapped weighted marking in πi, so the difference of weighted markings of paths

in the summary, thus {Wi | Wi ≤ RE}∞i=1 is finite. As {Wi | Wi ≤ REi}∞i=1 ⊆ {Wi | Wi ≤ RE}∞i=1

then {Wi | Wi ≤ REi}∞i=1, is also finite. Summarizing {REi}∞i=1 and {Wi | Wi ≤ REi}∞i=1 are finite

sets, so {REi −Wi | REi −Wi ≥ 0}∞i=1 = {ri | ri ≥ 0}∞i=1 is finite; {wi | wi ≤ ri}∞i=1 is finite, so

{ri − wi | ri − wi ≥ 0}∞i=1 is also a finite non empty set (a path with minimal weighted marking is

in this set). Then max∞i=1{ri − wi} = max{ri − wi | ri − wi ≥ 0}. Moreover, ri − wi ∈ Q for all

i ∈ IN, so max∞i=1{ri − wi} ∈ Q+.

vii) Commutativity, associativity and idempotence applies to the summary of sequences: Labels 0

can be removed (this is equivalent to a summary with a unique label 0). In other case, applying

commutativity e idempotence of ⊕, the labels (r, w, g) can be commuted and the repeated instances

can be removed.

viii) ¯ distributes over summary of sequences. Let a, bi ∈ S with i ∈ IN. Two cases:

a) bi = 0 for all i ∈ IN. Then a ¯ (
⊕∞

i=1 bi) = a ¯ (
⊕∞

i=1 0) = a ¯ 0 = 0 and
⊕∞

i=1(a ¯ bi) =
⊕∞

i=1(a ¯ 0) =
⊕∞

i=1 0 = 0; (
⊕∞

i=1 bi) ¯ a = (
⊕∞

i=1 0) ¯ a = 0 ¯ a = 0 and
⊕∞

i=1(bi ¯ a) =
⊕∞

i=1(0¯ a) =
⊕∞

i=1 0 = 0.

b) ∃bi 6= 0. By vii, we can suppose bi 6= 0 ∀i ∈ IN. By induction on part v, ¯ distributes

over finite summaries. For
⊕∞

i=1 bi (see part vii) ∃n,m ∈ IN s. t. rn − wn = max∞i=1{ri − wi}

and wm = min∞i=1{wi}. Then ∃k1 ∈ IN (k1 = max{n, m}) s. t.
⊕∞

i=1 bi =
⊕k

i=1 bi ∀k ≥ k1.

Similarly, ∃k2 ∈ IN s. t.
⊕∞

i=1(a ¯ bi) =
⊕k

i=1(a ¯ bi) ∀k ≥ k2. Let k = max{k1, k2}. Then

a ¯ (
⊕∞

i=1 bi) = a ¯ (
⊕k

i=1 bi) =
⊕k

i=1(a ¯ bi) =
⊕∞

i=1(a ¯ bi); (
⊕∞

i=1 bi) ¯ a = (
⊕k

i=1 bi) ¯ a =
⊕k

i=1(bi ¯ a) =
⊕∞

i=1(bi ¯ a). ♦
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