
Analysing Internet Software Retrieval Systems: Modeling and

Performance Comparison∗

José Merseguer† Javier Campos

Eduardo Mena

Dpto. de Informática e Ingenieŕıa de Sistemas

Centro Politécnico Superior, Universidad de Zaragoza

Maŕıa de Luna,3, 50015 Zaragoza, Spain

phone: (+34)976761949 - fax: (+34)976761914

{jmerse,jcampos,emena}@posta.unizar.es

December 7, 2001

Abstract

Nowadays, there exist web sites that allow users to retrieve and install software in an easy

way. The performance of these sites may be poor if they are used in wireless networks; the

reason is the inadequate use of the net resources that they need. If these kinds of systems are

designed using mobile agent technology the previous problem might be avoided. In this paper,

we present a comparison between the performance of a software retrieval system especially

designed to be used in a wireless network and the performance of a software retrieval system

similar to the well-known Tucows.com web site.

In order to compare performance, we make use of a software performance process enriched

with formal techniques. The process has as important features that it uses UML as a design

notation and it uses stochastic Petri nets as formal model. Petri nets provide a formal

semantics for the system and a performance model.

Keywords: Software performance engineering, stochastic Petri nets, Internet, UML, mobile

agent technology
∗This work has been developed within the project UZ00-TEC-03 of the University of Zaragoza.
†Contact author

1



2

1 Introduction

The tasks of retrieving and installing software using Internet have become common in the last

years. There are sites (e.g., Tucows.com [3], Download.com [1] and GameCenter.com [2]) which

permit to perform these tasks in an easy and friendly way. But the process of selecting software

could become costly and sometimes slow: the user must select a great number of categories until

s/he finds the desired software, specially if s/he is a naive user. Every time the user selects a

category, the web site sends a new HTML page with the contents of the category. This technique

makes an intensive use of the network connection, which can result in a poor performance and

expensive communication cost (in a wireless environment). Thus, it would be interesting to get

results about the performance of these kind of systems to exactly know how costly this process

is.

A new technology, mobile agents [19], can aid to reduce the network connection time. We

recall in this paper a software retrieval service [13] belonging to the ANTARCTICA system [11]

which has been designed using mobile agents. The aim of this service is to propose an alternative

method to the current web-based software retrieval systems, called in this article “Tucows-like”

systems. The ANTARCTICA system has been designed to be used in wireless communication

environments where net speed is a problem, about 800 bytes/sec. in a GSM network. Therefore,

it promotes a better use of the net resources, thus supplying better performance results. In the

following, we refer to the ANTARCTICA software retrieval service as the “ANTARCTICA SRS”.

Our goal in this work is to compare the performance of Tucows-like systems with the per-

formance of the ANTARCTICA SRS using analytical software performance techniques. The

performance index under study for both systems is the network time, i.e., how much time the

network connection needs to be open in order to retrieve a software product. The impact of the

intelligent agents in the ANTARCTICA SRS will be analyzed too.

The software performance engineering [21] proposes evaluating performance of software sys-

tems in the early stages of the development process. Thus, if performance problems are detected,

it will be easier and less expensive to take the appropriate design decisions to solve them. The

Unified Modelling Language (UML) [6] is the design notation that we will use to model soft-

ware retrieval systems. The selection of UML is motivated because it is widely accepted by

the software engineering community and it fits very well in the software life cycle. Since we

are interested in performance aspects, we use UML extended with performance annotations. In

general, software systems are complex systems even more if they are distributed, so we advocate



3
the use of formal models to obtain performance indices. However UML lacks of the necessary

formal semantics to apply analytical techniques. Thus, we propose to semi-automatically ob-

tain Petri nets (PNs) [18] from UML diagrams and to use them to obtain performance indices.

PNs are a widely used formal model for concurrent systems and provided with a stochastic time

interpretation [4], they are suitable for performance evaluation. Concretely, we use stochastic

well-formed coloured nets (SWNs) [7].

There exist several works that combine design methodologies and performance modeling.

In [12] stochastic Petri nets are obtained from UML diagrams with performance evaluation

purpose. In our opinion, it is not clearly stated the translation process, and it is not clear how

the performance model is obtained. Therefore, it was not possible to test their technique in our

examples to compare their solution with ours. In [22] an approach to performance prediction

for the real time field is presented. It uses ROOM [20] as a development method and a layered

queuing network as a performance model, a prototype tool has been developed to assist the

process. A parallel work to our software performance process using UML and queueing networks

(QNs) is being developed in [9]. However, we claim that for the case of parallel and distributed

systems, as those presented in this paper, PNs improve the adequacy of QNs, since they provide

general synchronization mechanisms and validation techniques for logical properties. In the field

of stochastic process algebras, the work in [5] presents a language to describe functional and

performance aspects of software architectures inheriting the compositional nature of process

algebras. The advantages of our approach are twofold: the use of UML as design language,

a more suitable tool to describe software architectures and the availability of efficient analysis

algorithms and software tools for performance evaluation.

The rest of the paper is organized as follows. In section 2, the process followed to evaluate

software performance is described. In section 3, a Tucows-like software retrieval system is

modeled using UML and this model is translated into SWNs. In section 4, the ANTARCTICA

SRS is also modeled using UML and the models translated into SWNs. In section 5, we present a

comparison between performance figures for both approaches. Finally, some concluding remarks

are stressed in section 6.

2 The Software Performance Process

“The software performance engineering (SPE) is a method for constructing software systems

to meet performance objectives. SPE augments others software engineering methodologies; it



4
does not replace them” [21]. In this section, we briefly present a software performance process,

introduced in [15, 16], that will be applied in sections 3 and 4 to the software retrieval systems

proposed in the introduction. An interesting characteristic of this process is that it uses a

formal model (SWNs) to obtain performance indices. This formal model can be obtained semi-

automatically inside the software development process. In this way, without much effort, the

process allows to obtain a performance model as a by-product and it preserves the benefits of the

software design methodologies. A complementary approach to obtain the performance model,

based on “design patterns”[10], is being developed, it can be found in [14].

The performance of a system is traditionally obtained from its dynamic view. So, we

concentrate on developing the UML diagrams corresponding to the dynamic model. Unfortu-

nately, UML lacks of the necessary expressiveness to accurately describe the system load, which

is needed to obtain performance figures. To bridge the gap, we use a UML time extension

proposed in [15] to successfully deal with performance features at the design stage. Once the

UML models have been developed, we have to obtain performance indices from them. As UML

lacks of the necessary formal semantics to obtain them, we use PNs with this purpose. Our

approach is to provide a formal semantics to UML diagrams in terms of SWNs. Therefore, we

propose a translation from the UML time annotated diagrams into SWNs. This translation

will be performed using the techniques given in [15]. From SWNs, performance indices may

be computed by applying quantitative analysis techniques already developed in the literature.

The techniques that we will use are those implemented in the GreatSPN tool [8].

2.1 Modeling the Behaviour of a System Using Performance Annotated UML

Diagrams

The process begins by modeling the system dynamics in a conventional way. The UML dynamic

diagrams [6] will guide the process. Use case diagrams, sequence diagrams and statechart dia-

grams will be used in this paper. Activity diagrams are not used because we are not interested

in modeling the concrete actions performed by the systems that we model.

Figure 1 depicts an example of use case and sequence diagram, that will be explained later

on. A sequence diagram represents messages sent among objects. Messages sent among objects

on the same computer are considered as no time consuming in the scope of the modeled system

(for instance, the messages sent between the user and the browser in Figure 1.b). Messages sent

among objects on different computers, those which travel through the net, will consume time



5

(a) (b)

1..n

{20K..30K}

[satisfied]

get(html_page)

{0.1}

observe(html_page)

{1K}
select_category(url)

select_URL(url)

select_sw(url)
{1K}

{1K}

{20K..30K}

{1K}
download(url)

{1K}
succ_install()

{file_size}

Browser WebServer

search engine

Navigation

facility

Keyword-based
User

1-p

p

Figure 1: (a) Use cases for the Tucows-like system and (b) annotated sequence diagram for the

navigation facility use case.

as a function of the message size and the net speed (for instance, in Figure 1.b the messages

sent between the browser and the web server). Each message size is annotated inside braces.

For instance, the select URL message is labelled with {1 K} in Figure 1.b. It is also possible
to annotate the size with a range in the UML common way (like the get message with label

{20K..30K} in Figure 1.b). If the message size is unknown, the annotation is a label representing
a performance parameter (e.g., the return of the download message is annotated with the label

{file size}, also in Figure 1.b).

In a sequence diagram, conditions represent the possibility for the associated message to be

dispatched. Annotations, also between braces, express the event probability success associated

with each condition (for instance, see probability {0.1} associated with the condition satisfied in

Figure 1.b). If the probability is unknown, the annotation is a label representing a performance

parameter.

In order to get a complete view of the system dynamics, a statechart for each class with

relevant dynamic behaviour must be developed, as those depicted in Figure 2. To study perfor-



6

(b)

(c)

(a)

[^user.satisfied]select_sw(url)

^webServer.download(url)

{file_size}

get(html_page)

^user.observe(html_page)
{1K}

^user.succ_install

{1K}

{1K}

{1K}
WAIT

{1K}

reply

select_category(url)

^webServer.select_URL(url)

{20K..30K}

{1K}

download(url) select_URL(url)

Do:find_html_pageDo:find_file

{20K..30K}
^Browser.get(html_page)

{1sec.}

{1K}

^Browser.reply(file)
WAIT

{1sec.}

{1K}

{file_size}

{1K}
[satisfied]^Browser.select_sw(url)

{1K}
observe(html_page)

[not_satisfied]

wait

{1K}
succ_install()

{1K}

{1K}
^Browser.select_category(url)wait

{time}
Do:examine

for
html page

wait
download

for

Figure 2: Annotated statecharts for Tucows-like system: (a) user, (b) browser, and (c) the web

server.

mance aspects on a statechart, two elements are meaningful, the activities and the guards. In

the following, we briefly comment the annotations used in these kind of diagrams.

Activities represent tasks performed by the object, therefore they consume computation

time that must be annotated. The annotation will be done between braces. For example, see in

Figure 2.c the bold label {1 sec.} close to the activity find file. If it is necessary, minimum and

maximum values will be annotated.

Guards show conditions in a transition. They must hold in order to fire the event that they

label. The probability associated to them, already annotated in the sequence diagrams, are also

indicated in the statecharts to gain readability. In the same way, the size of the messages may

be annotated or omitted.

2.2 Translation of the Performance Annotated UML Diagrams into SWNs

From the performance annotated UML diagrams it is interesting to obtain performance indices

for the system. But, as we said before, UML lacks of the necessary formal semantics to ap-

ply quantitative analysis techniques to obtain them. Even more, it is not suitable to specify



7
some system aspects, for example concurrency, which is fundamental in performance evaluation.

Therefore, the UML diagrams will be translated into SWNs, which allow to obtain performance

indices, taking the proper decisions for the unspecified system requirements.

The strategy to obtain the SWNs from the performance annotated UML diagrams is as

follows.

1. Derivation of a SWN from each statechart. These SWNs will be called component nets.

They represent the behaviour of each class with the underlying SWN formal semantics.

To obtain a component net from a statechart several rules must be applied, details can be

found in [15]; the following are the most important:

• Each state of the statechart is represented by a place, with the same name, in the
SWN.

• For each transition in the statechart, there will be in the SWN:

(a) A transition with the same name as the event that labels the transition in the

statechart.

(b) An arc from the place (which represents the initial state in the statechart) to the

transition in the SWN (which represents the transition in the statechart).

(c) An arc from the transition in the SWN (which represents the transition in the

statechart) to the place (which represents the final state in the statechart).

• Guards in the statechart becomes immediate transitions with the associated corre-
sponding probabilities for the resolution of conflicts.

• Activities inside a state of a statechart are considered as time consuming, so in
the SWN they are expressed as timed transitions. The rate of the exponentially

distributed service time of the timed transitions are obtained automatically from the

time annotation of the statechart.

As example, see in Figure 3 the component nets obtained from the statecharts in Figure 2.

2. Obtaining a SWN for the system. From the component nets, and guided by the sequence

diagram(s), a complete SWN for the system is obtained. Transitions in the component

nets that represent the same message are synchronized if the message has wait semantics;

on the other hand, if the message has no wait semantics the transitions are connected

with an extra place, modeling a communication buffer.



8
The outcome SWN models the behaviour of the whole system. Figure 4 depicts an example of

a complete net obtained from the component nets in Figure 3 and from the sequence diagram

in Figure 1.b. The performance figures for the system are obtained by analyzing the complete

SWN for the system.

3 Modeling Tucows-like Software Retrieval Systems

There are a variety of software retrieval systems, as the popular web sites Tucows.com [3],

Download.com [1] or Gamecenter.com [2], that provide Internet users with facilities to retrieve

and install software. These systems allow users to find software in two different ways, by using a

keyword-based search engine and by navigating through categories especially designed to make

this task easier.

The software architecture of these kind of systems for the navigation facility is basically the

same, therefore, it is possible to model how these kind of systems work, making a number of

assumptions, without losing reality with respect to performance aspects. We will refer to these

kind of systems as Tucows-like systems. Our intent is to evaluate performance indices for a

Tucows-like system in order to compare them with those obtained for the ANTARCTICA SRS.

The keyword-based search engine helps users that know some features of the wanted software.

This search facility will not be considered in this paper since it can not be used by naive users

that do not known the concrete software that they need. The navigation facility consists of

several web pages residing on a server and organized as categories linked between them in a way

that guides the user to find the software. For instance, a number of these systems present an

initial web page where the categories correspond to different operating systems, say Windows

2000, Windows 95/98, Linux or Unix. The user selects the desired category and a new web page

with several topics like multimedia, browsers or Internet tools is loaded; in this way the user can

continue the search of the software. The ANTARCTICA SRS offers a mechanism to retrieve

software similar to the navigation facility, but it makes use of intelligent agents to perform the

task, therefore a performance comparison can be made between the two systems.

In this section, we describe and model the navigation facility of the Tucows-like systems.

According to the software performance process described in the previous section, we are going

to model the Tucows-like system using UML enhanced with performance annotations. Later,

this model, represented by a number of diagrams, will be converted into an SWN by applying

the rules given in [15] and summarized in section 2. Therefore, we will obtain a formal model



9
as the input for the analytical techniques in order to obtain the desired performance indices for

the system.

3.1 System Description of a Tucows-like System and Modeling Assumptions

In a Tucows-like system, the user navigates, with the help of a browser, different HTML pages

(representing software categories and descriptions of concrete pieces of software) until s/he finds

a piece of software that satisfies her/his needs. Then, that piece of software is downloaded.

In short, the process of selecting software by navigating HTML pages is as follows: The user

“clicks” on a category, then the browser requests the web server for the corresponding HTML

page. The web server returns the HTML page to the browser, which presents it to the user.

After reading this page, the user can “click” on another link in order to access a new web page

with other categories or a list of software under the current category. This process is repeated

until the user finds a software that fulfills her/his needs. Then the browser requests the selected

software, which is downloaded into the user computer.

It must be considered that the user spends some time reading the information presented

by the system. An exponentially distributed random variable with rate λexamine (λexamine is

obtained as the inverse of the time in seconds) will be used to model several kinds of users.

The number of HTML pages that the user must navigate until s/he finds the software is

difficult to estimate (it depends on her/his experience). The probability that the user finds the

software by selecting n categories models different kinds of users, from naive users, those who

need to visit many categories to find the software, to expert users, those who find the software

visiting very few categories.

Whenever the user requests an HTML page or a concrete piece of software, the web server

must perform the corresponding activities to find the page or the piece. The time consumed by

these activities will be modeled by variables with rates λfindHTML and λfindF ile.

The browser, on the client machine, sends messages through the net to the web server on the

server machine and vice versa. A variable with rate λmi models the time spent by the message

i navigating through the net. Notice that local messages sent between the user and the browser

do not consume net resources.

It could be argued that exponential assumption is not realistic for the modeling of network

delays, and that heavy tailed distributions would be better. However, a performance model

must many times lose in accuracy of the representation of reality in order to be able to be an-



10

wait

RS
P3

R
P4

R
P5

R

examineobserve
not_satisfiedBrowser.select_category

Browser.select_sw

succ_install

<x>

<x>

<x>
<x>

<x><x>

<x>

<x>

<x><x> <x><x>

R:c

request:c

S:m

(a)

wait RS

P2
R

P5
R

P7
R

P8
RP11 R

reply

user.observeget

user.succ_install

webServer.selectURL

select_category

webServer.download select_sw

<x>

<x><x>

<x>

<x><x> <x><x>

<x><x>

<x><x> <x>
<x> <x>

R:c
request:c
S:m

(b)

wait

P2

P3 P4

P5

Browser.reply

downloadselect_URL

Browser.get

find_filefind_html_page

(c)

Figure 3: Component PNs for the Tucows-like system: (a) user, (b) browser, (c) web server.

alyzed. Anyhow, the possibility of representing delays with non-exponential distributions could

be considered in the future if simulation techniques are used instead of the analytic approach

followed here.

3.2 UML Diagrams with Performance Annotations for a Tucows-like System

In this section we model the dynamic view of the Tucows-like system using UML notation as

proposed in [15]. The use case diagram (see Figure 1.a) shows the two possible scenarios for

the system: the navigation facility and the keyword-based search engine. It has been developed

following the notation given in [9] where p means the probability that the user executes the

scenario. We assume that p=1 because we are not interested in the keyword-based search engine,

in this way all user executions correspond to the navigation facility.

The sequence diagram in Figure 1.b shows a detailed description of the “navigation facility”

scenario. It shows the messages sent among the objects in the system with the purpose to retrieve

the piece of software that the user needs. Two different kinds of messages can be distinguished,



11
those that travel through the net (sent between the browser and the web server) and those that

do not (sent between the user and the browser). This feature will be relevant in the SWN model

in order to associate time to transitions that represent messages sent through the net, taking

into account the assumptions made in the previous section.

The sequence diagram begins with a select category(url) message, its size is {1 Kbyte}, sent
by the user to the browser. It represents the “click” performed by the user in the browser to

select a category in an HTML page. The rest of the diagram describes in the same way the

steps explained in the previous section for selecting software.

In order to get a complete description of the Tucows-like system dynamics and its load, we

are going to develop the statechart for each class with relevant dynamic behaviour.

User statechart diagram. In Figure 2.a, the behaviour of a user is represented. The user is

in the wait state until s/he activates the select category event. This event sets the user in

the wait for HTML page state. The observe event, sent by the browser, allows the user to

perform the examine activity that has associated the label {time}. This label models the
time that the user spends reading the HTML page. This activity will be translated in the

SWN net in a transition, and by modifying its rate different kinds of users can be modeled,

as we pointed out in the previous section. Once the activity is performed two situations

can arise:

• If the requested software is not present in the current HTML page the user returns
to the wait state.

• In other case, the user sends the select sw(url) message to the browser, where url

means the web address where the software is located in the server, and enters in the

wait for download state. When the browser fulfills the necessary activities to complete

the download, it sends to the user the succ install() message and the user returns to

the wait state.

Browser statechart diagram. Figure 2.b shows the browser’s statechart. The browser be-

haves as a server object: it is waiting for user’s requests, represented by select category

and select sw events.

When a select category event arrives requesting a url, the browser sends to the web server

the select URLmessage and waits for a new HTML page. When the web server obtains it, it

triggers the get event attaching the new HTML page, whose estimated size is {20K..30K}.
Since this message is sent through the net, it will be translated in the SWN as a transition



12
with rate λmget , as we pointed out in the previous section. After that, the HTML page is

shown to the user.

When a select sw event arrives requesting a url that contains a piece of software a download

message with the url is sent to the web server. The browser waits for the reply message

that contains the requested file with size file size, it will be translated in the SWN in a

transition with rate λmreply
. Finally, the file is installed (succ install).

Web server statechart diagram. As the browser, the web server behaves as a server object.

It is waiting for a request (select URL and download) from the browser. For each request,

the web server performs the corresponding actions to serve it (find html page and find file).

When the actions are completed, it sends the corresponding message to the browser. Fig-

ure 2.c shows the web server’s statechart diagram.

3.3 Modeling the Tucows-like System with SWNs

PNs are a suitable formalism for the modeling of concurrent phenomena. There are situations

that cannot be expressed with UML diagrams but they can be perfectly described with PNs. For

example, with a PN we can exactly model how many concurrent requests to download software

the system might serve; UML diagrams cannot express that.

In this section, we detail the SWN model for the Tucows-like system. The nets have been

obtained by applying the translation rules, given in [15] and schematically shown in section 2.

In order to model situations that the Petri nets can express but the UML notation cannot, the

appropriate decisions will be taken and commented.

Figure 3 represents the component nets, those obtained from the statecharts, for the Tucows-

like system and Figure 4 represents the net for the whole system, obtained by synchronizing the

component nets. We start describing the component nets.

User component net. The number of tokens in the place wait models how many concurrent

users supports the system. This parameter cannot be modeled in the UML diagrams.

The firing of the transition named Browser.select category models the dispatch to the

browser of a message to specialize the current HTML page, it will arrive when the tran-

sition named observe fires. The firing of the transition named examine models the time

spent by the user reading the information presented in the new HTML page. After the

end of the reading, a choice will determine whether the user is satisfied with any of the



13
products shown (firing of the immediate transition Browser.select sw), or not (firing of the

immediate transition not satisfied).

The firing of the immediate transition named succ install models the arrival of a message

to confirm that the retrieval of the software has been successfully completed.

Browser component net. The number of tokens in the place wait models how many concur-

rent browser access to the system. The colour is the same as in the user component net

to identify each browser with a user. This parameter cannot be modeled in the UML

diagrams.

The firing of the transition named select category models the arrival of messages from the

user requesting for a specialization of the category that s/he has examined, the transition

is immediate because both, the sender and the receiver, are in the client machine. The

request is sent to the web server through the net, therefore consuming time by firing the

timed transition named webServer.select URL. The firing of transitions get and user.observe

models, respectively, the obtaining of the HTML page with new categories and its dispatch

to the user.

The firing of the transition named select sw models the arrival of messages from the user

requesting a concrete piece of software. The request is sent to the web server through

the net by firing the timed transition named webServer.download. The firing of the timed

transition named reply models the obtaining of the file requested by previous transition.

Finally, the firing of the transition named user.succ install models the advertisement to the

user that the retrieve of the software has been successfully completed.

The select category and select sw transitions will be synchronized in the complete net with

the transitions in the user component net with the same name.

Web server component net. The number of tokens in the place wait models how many con-

current processes the web server has launched to attend browser’s requests. This param-

eter could not be modeled in the UML diagrams.

The firing of the timed transition named select URL models the arrival of a remote message

to request for a new HTML page. The firing of the timed transition named downloadmodels

the arrival of a remote message to request for a concrete piece of software. The firing of

the timed transition named find html page models the completion of the search for a new

HTML page. The firing of the timed transition named find file models the completion of

the search for a requested piece of software. The firing of the timed transition named



14

P4

R

wait_WebServer

P2

R
P3

R

P5

R

wait_Browser
RS

P10
R

buffer_download

R

P12

R

P13
R

P15

R

wait_user

RS

P17
R

uffer_select_sw
R

buffer_get

R

P25 R

P28

R
buffer_reply

R

P26
R

download_browser

select_URL get_browserget

examine

find_file

find_html_page

reply

select_category

select_sw_user

not_satisfied

observe

Browser.replydownload_webServer

select_sw_browser

succ_install

<x>

<x>

<x>

<x>

<x>

<x>

<x><x> <x><x>

<x>

<x> <x>

<x>

<x>

<x>

<x>

<x><x>

<x><x>

<x>

<x><x>

<x><x>

<x> <x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x>

R:c
request:c
S:m

Figure 4: Complete SWN for the Tucows-like system.

Browser.get models the dispatch of the HTML page to the browser. Finally, the firing of

the timed transition named Browser.reply models the dispatch of the file to the browser.

The select URL, download, Browser.get and Browser.reply transitions will be synchronized

in the complete net with the transitions in the browser component net with the same name.

As we said before, the net for the whole system, depicted in Figure 4, is obtained by applying

the rules given in [15]. These rules basically state that if two transitions in different nets represent

the same message (the sender and the receiver), they must be connected using an intermediate

buffer place (no wait semantics) or they must be synchronized in a unique transition (wait

semantics). If the message travels through the net, then the transitions are timed and two

situations can arise:

• If they are connected in the complete net by using an intermediate buffer place then only
one of them remains as a timed transition, and the other will be converted into an im-

mediate transition. As an example, see the timed transition named download in the web

server component net (Figure 3.c) and the timed transition named webServer.download in

the browser component net (Figure 3.b). In the complete net (Figure 4) the timed tran-

sition named download browser models the time spent by the message navigating through

the net and the immediate transition named download webServer models the reception of

the message.

• If the synchronization in the complete net is modeled using only one transition, it remains



15

Figure 5: Architecture for the ANTARCTICA SRS.

as a timed transition. As example, see the timed transition named select URL in the web

server component net (Figure 3.c) and the timed transition named webServer.select URL

in the browser component net (Figure 3.b); in the complete net (Figure 4) the timed

transition named select URL models the time spent by the message navigating through the

net and the reception of the message.

4 The ANTARCTICA Software Retrieval Service

In this section we present the ANTARCTICA SRS [13]. The goal of the system is to provide

mobile computer users with a service to select and download software in an easy and efficient

way. Efficient because the system optimizes battery consumption and wireless communication

costs. It provides several interesting features:

• The system manages the knowledge needed to retrieve software without user intervention,

using an ontology.

• The location and access method to remote software is transparent to users.

• There is a “catalog” browsing feature to help user in software selection.

• The system maintains up to date the information related to the available software.



16
The ANTARCTICA SRS is situated in a concrete server called the GSN1. Agents are exe-

cuted in contexts denominated places [17]. Mobile agents can travel from one place to another.

The service incorporates two places: one place on the user computer called the Mobile User

place, and other situated on the GSN, called the Software place (see Figure 5).

Some of the advantages of the use of mobile agents, related to accessing remote information,

are the following:

• They encapsulate communication protocols.

• They do not need synchronous remote communications to work.

• They can act in an autonomous way and carry knowledge to perform local interactions at

the server system instead of performing several remote procedure calls.

• They can make use of remote facilities and perform specific activities at different locations.

4.1 System Description of the ANTARCTICA SRS and Modeling Assump-

tions

The procedure that the ANTARCTICA SRS supports for the software retrieval process is the

following: the user sends requests for software to an agent (Alfred). The request is sent to the

GSN and an agent (the browser) is created. The user receives the visit of the browser, which

helps the user to select the most appropriate software by browsing a catalog customized to that

concrete user. The user can request more detailed information until s/he finally selects a piece

of software. Then a new agent arrives to the user computer (the salesman) with the selected

piece of software.

In the following such agents are described, grouped in two categories:

1. The user agent. Alfred is an efficient majordomo that serves the user and is in charge

of storing as much information about the user computer, and the user her/himself, as

possible.

2. Information exploitation. The software manager agent creates and provides the browser

agent with a catalog of the available software, according to the needs expressed by Alfred

(on behalf of the user), i.e., it is capable to obtain customized metadata about the under-

lying software. For this task, the software manager consults an ontology. The software
1The Gateway Support Node is the proxy that provides services to computer users.



17
SwManagerAlfred

electronic_commerce

request(info_sale)

select_sw(name)

select_sw(name)

get_catalog(info_plus)

{1K}
refine_catalog(refinement)

observe_GUI_catalog(c1)

create_browser(c1)

c1:Catalogcreate_catalog(info_plus)

c i+1

{prob}{0.1}

1..n

{1K}

{1K..100K}

{1K}

select_sw_service(info)

[info_need] more_information(refinement2, ci)[satisfied]

refine_catalog(refinement_plus)

[not satisfied]

show_catalog_GUI(c1)

BrowserAgent

info_sale_plus

(b)(a)

Service

Retrievalp

User

delete_browser

Salesman
create_salesman(info_sale)

{1K}

{1K}

{100K}

{1K}

{1K}

{100K}

{1K}

{1K}

{1K..100K}

{1K}

{0.9}

{100K}

Figure 6: (a) Use case for the ANTARCTICA SRS and (b) annotated sequence diagram for the

retrieval service use case.

itself can be either stored locally on the GSN or accessible through the web in external

data sources. Thus, the GSN can have access to a great number of distinct software for

different systems, with different availability, purpose, etc. The goal of the browser agent

is to interact with the user in order to refine a catalog of software until the user finally

chooses a concrete piece of software. When this is done, the salesman agent carries the

program selected by the user to her/his computer, performs any electronic commerce inter-

action needed (which depends on the concrete piece of software), and installs the program,

whenever possible.

The assumptions given in section 3.1 for the Tucows-like system remain valid for the

ANTARCTICA SRS with the following interpretations: Now, the user spends some time read-

ing the catalog presented by Alfred; the probability that the user finds the software by selecting

n catalogs models different kind of users; the software manager consumes time consulting an

ontology to create the catalog or to find the piece of software; some of the messages sent among

the browser, the software manager, the salesman and Alfred travel through the net.

Moreover the following assumptions must be taken into account for the ANTARCTICA SRS:

As the browser is an intelligent agent, sometimes it does not ask for information to the software



18
manager, but if it does it, then it will performed using remote procedure call (RPC) or traveling

through the net; the size of the catalog could be parameterized.

In the following the software performance process is applied to the ANTARCTICA SRS,

as we did for the Tucows-like system in section 3. Therefore, the UML diagrams, the SWNs

components and the SWN net for the system will be obtained. The SWN net for the system

(see Figure 9) will be used in the next section to obtain performance results. It is interesting to

compare the performance of the ANTARCTICA SRS with the performance of the Tucows-like

system, in order to obtain conclusions about the impact of mobile agent technology in a wireless

network (low speed, costly, disconnections).

4.2 UML Diagrams with Performance Annotations for the ANTARCTICA

SRS

As in section 3.2, we model the system using the performance extended UML notation. Figure

6.a depicts the use case diagram needed to describe the dynamic view of the system. It shows

that the user is the unique actor that interacts with the system. The probability p=1 reflects

that only one scenario is possible for the system.

The sequence diagram in Figure 6.b describes in detail the “retrieval service” scenario.

It begins with the request select sw service(info) performed by the user to the majordomo

and the message sent by it to the software manager in order to compose the first catalog,

get catalog(info plus). Immediately, the catalog and the browser are created and the system

advances according with the process previously defined.

For each agent a statechart is modeled, they are briefly commented in the following:

Alfred statechart diagram. Alfred is always present in the system, no creation event is rel-

evant for our purposes. Its behaviour is typical for a server object. It waits for an

event requesting a service (select sw service, show catalog GUI, refine catalog or select sw).

For each request it performs the necessary activities and it returns to its wait state to

serve another request. Figure 7.a shows Alfred’s statechart. The stereotyped transition

� more services � means that Alfred may attend other services that are not of interest

here.

User statechart diagram. In Figure 7.b, the behaviour of a user is represented. The user is

in the wait state until s/he activates a select sw service event. This event sets the user in

the waiting for catalog state. The observe GUI catalog event, that could be sent by Alfred,



19

{0.9}

show_catalog_GUI(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

{0.1}

{1K}

{100K}

{1K}

{1K}

^browser.select_sw(name)

^user.observe_GUI_catalog(ci)

Do:add_info3 Do:add_info2

Do:add_info1

Do:create_GUI(c)

[^user.satisfied]select_sw(name)

<<more_services>>
WAIT

select_sw_service(info) ^SwManager.get_catalog(info_plus)

{1K}

{1sec.}

{1K}

{100K}

{1K}

{1sec.}

{1sec.}

{1sec.}

(a)

[not satisfied]^Alfred.refine_catalog(refinement)

^Alfred.select_sw(name)
{1K}

WAIT

{1K}

Do:observe

observe_GUI_catalog(c1)
{100K}

{0.9}

^Alfred.select_sw_service(info)

catalog
Waiting for

{1K}

(b)

WAIT

request(info_sale)

Do:add_info4

^salesman.reply(info_sale_plus)

^browser.reply(catalog)
{100K}

{0.5sec..50sec}

{1K}

{1sec}

get_catalog(info_plus)

[info_need] more_information(refinement2,ci)
{1K..100K}{prob}

Do:get_info

{1K}

Do: create_catalog

Do: create_browser

^browser.create_browser(ci) {1K}

^catalog.create_catalog(info_plus)

{1sec}

{1 min}
{1K}

{1K}

(c)
{1K}

create_salesman(info)
{1K}

^SwManager.request(info_sale)

^User.end_electronic_commerce

^User.begin_electronic_commerce

Do: electronic_commerce

Do: add_info_sale
{1sec}

(d)

Do:goto_Sw_place

[not info_need]
Do: refine

Do:goto_MU_Place

^alfred.show_catalog_GUI(ci+1)^salesman.create_salesman(info_sale)

[not info_need or info_need_local]

refine_catalog(refinement_plus)

{100K}

{1K..100K}

{100K..200K}

{1K}

{100K}

Do:goto_MU_Place WAIT

[info_need_travel]

[info_need_local]

reply

{prob}

{prob}

{prob}

{prob}

{prob}

^SwManager.more_informa

create_browser(c)

delete_browser

select_sw(name)

^alfred.show_catalog_GUI(ci)

[info_need_travel]

{1K..100K}

tion(refinement2, ci)

{1K}

{1sec}

{1K}{100K} {100K}

(e)

Figure 7: Annotated statecharts for the ANTARCTICA SRS: (a) Alfred, (b) user, (c) software

manager, (d) salesman and (e) browser.



20
allows the user to examine the catalog in order to look for the desired software. If it is

in the catalog, the user sends the select sw event to Alfred, in other case s/he sends the

refine catalog event.

Software manager statechart diagram. Like Alfred, the software manager behaves as a

server object. It is waiting for a request event (more information, get catalog, request).

When one of them arrives, it performs the necessary activities to accomplish it. Figure 7.c

shows its statechart diagram. It is interesting to note the actions performed to respond

the get catalog request: first, the catalog with the available software is created, after that,

the browser is created.

Salesman statechart diagram. The salesman’s goal is to give e-commerce services, as we can

see in Figure 7.d. After its creation it asks the software manager for sale information. With

this information the e-commerce can start. This is a complex task that must be described

with its own use case and sequence diagram which is out of the scope of this work.

Browser statechart diagram. The statechart diagram in Figure 7.e describes the browser’s

life. It is as follows: once the browser is created it must go to theMU place, where it invokes

Alfred’s shows catalog GUI method to visualize the previously obtained catalog. At this

state it can attend two different events, refine catalog or select sw. If the first event occurs

there are two different possibilities: first, if the browser has the necessary knowledge to

solve the task, a refinement action is directly performed; second, if it currently has not this

knowledge, the browser must obtain information from the software manager, by sending

a more information request or by travelling to the software place. If the select sw event

occurs, the browser must create a salesman instance and die.

4.3 Modeling the ANTARCTICA SRS with SWNs

As performed in section 3.3 for the Tucows-like system, in this section the nets obtained by

applying the process for the ANTARCTICA SRS are described.

Figure 8 represents the component nets for the ANTARCTICA SRS and Figure 9 represents

the net for the whole system, obtained by synchronizing the component nets. In the following,

we highlight the most remarkable characteristics of them and their relations with the modeling

assumptions. The net for the salesman is not commented due to its simplicity.

Alfred component net. It is important to note that all the transitions add infoX model the



21

wait_Alfred

P36

P3P4

P5

P6

P7

P8

P9

show_GUI_catalog

add_info3

add_info1

user.observe_GUI_catalog

Sw_Manager.getcatalog

add_info2

create_GUI

browser.select_sw_browser

browser.refine_catalog

refine_catalogselect_software

select_sw_service

(a)

P15 R

P7

R

wait_for_service

Rm1
wait_UserforCatalog

R

P4

R

P6
R

observe_GUI_catalog

alfred.select_sw_service

alfred_refine_catalog

alfred.select_sw

electronic_commerce

end_ec

begin_ec
<x> <x>

<x>

<x>

<x> <x>

<x>

<x>

<x>
<x><x><x>
<x><x>

R:c
request:c
S:m
m1:m

(b)

wait

P3

P4

P5

P6

P7

P8

add_info4

request

salesman.reply

get_catalog

browser.reply

more_information_remote

browser.create_browser
create_catalog

get_info

more_information_local

(c)

P1Rm1

P2R

begin_add_info_sale
R

end_add_info_sale R

P5 R

P6
R

SwManager.request

create_salesman

user.electronic_commerce

add_info_sale

user.end_ec

user.begin_ec

<x>

<x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>
R:c

request:c

S:m
m1:m

(d)

P1 Rm1

P2
R P3R

wait R

P5
R

P6 R

P7

R

P8
R

P9
R

P10
R

P11
R

P12
R

P13
R

P15
R

P16
R

P17
R

P18
R

P19
R P20

R

SwManager.more_information_remot

reply_local

reply_remote

goto_MU_Place2

create_browser_agent

alfred.show_catalog_GUI

refine_catalog_browser

select_sw_browser

salesman.create_salesman

goto_Sw_Place

refine

goto_MU_Place

not_info_need_or_local

info_need_travel1

SwManager.more_information_local

info_need_local

info_need_travel

not_info_need

delete_browser
<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

<x>

<x> <x>

<x>

<x>

<x>

<x> <x>

<x>

<x> <x>

<x>

<x><x>

<x> <x>

<x>

<x>

<x>
<x> <x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

R:c
request:c

S:m
m1:m

(e)

Figure 8: Component PNs for the ANTARCTICA SRS: (a) Alfred, (b) user, (c) software man-

ager, (d) salesman and (e) browser.



22
activities performed by Alfred to manage the information.

User component net. The number of tokens in the place wait for service models how many

concurrent users supports the system. This parameter cannot be modeled in the

UML diagrams. The assumption, time reading the catalog, is modeled in the transi-

tion observe GUI catalog. The choice between the transitions alfred refine catalog and al-

fred select sw models the assumption about the probability that the user finds the software

by selecting n catalogs.

The firing of the immediate transition named end ec models the arrival of a message “end

electronic commerce” to confirm that the retrieval of the software has been successfully

completed.

Software manager component net. The assumption that expresses that the software man-

ager consumes time consulting an ontology to create the catalog or to find the piece of

software is modeled by the transition get info. The number of tokens in the place wait

models how many concurrent browsers the software manager can attend. This parameter

could not be modeled in the UML diagrams.

Browser component net. Despite the difficult readability of this net, it must be pointed out

that among others it reflects the important assumption that states that sometimes the

browser does not ask for information to the software manager, but if it does it, then

it will performed using RPC or traveling through the net. Transitions not info need,

info need local, info need travel, not info need or local, goto MU Place and goto MU Place2,

are involved in its modeling.

5 Performance Results

The results presented in this section have been obtained from the complete SWNs which model

the Tucows-like system and the ANTARCTICA SRS (Figures 4 and 9 respectively). It is of our

interest to study how much time the systems need to be connected to the net, network time, in

the presence of a user request. Also, it is interesting to know how intelligent the browser agent in

the ANTARCTICA SRS must be in order to obtain better results than the Tucows-like system.

To obtain the network time in the Tucows-like system, the throughput of the succ install

transition will be calculated by computing the steady-state distribution of the isomorphic Con-

tinuous Time Markov Chain (CTMC) with GreatSPN [8]. The inverse of the previous result



23

P1
R

wait_SwManager

P5
R

P6
R

P7R

P8 R

wait_UserforService
Rm1

wait_UserforCatalog
R

P15
R

P16R

P17R P18
R

P19 Rm1

P20
R

begin_add_info_saleR

P22RP23 R
end_add_info_saleR

P25
Rm1

P26
R

P27
R

wait_Browser R

P29
R

P30
R

P31
R

wait_Alfred

P35
R

P36
R

P37

R

P38

R

P39 R

P40
R

P41
R

P42
R

P43
R

P46
R

P44
R

P45
R

P47
R

P49
R

P48
R

P50
R

P51
R

P52
R

P53
R

P54
R

P55
R

P56
R

goto_MU_Place2
browser.reply

get_info

observe_GUI_catalog

more_information_remote

goto_MU_Place

goto_Sw_Place

add_info_sale

show_catalog_GUI

create_catalog

add_info4

create_salesman

add_info3

add_info2

add_info

refine

create_BrowserAgentcreate_GUI

info_need_travel

info_need_local

select_sw

refine_catalog

T39

not_info_need

salesman.reply

request

select_sw_browser

refine_catalog_browser

select_sw_service
get_catalog

t38

t37

t36

electronic_commerce

not_info_need_or_local
info_need_travel1

more_information_local

delete_browser

begin_ec end_ec

<x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x>

<x><x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

<x> <x>

<x>

<x>

<x> <x>

<x><x><x>

<x>
<x>

<x>

<x>

<x> <x>

<x>

<x>
<x>

<x>

<x><x>

<x>
<x>

<x><x>

<x>

<x>

<x>
<x>

<x>

<x>

<x><x>

<x> <x>

<x>

<x>

<x><x>

<x> <x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>
<x> R:c

request:c

S:m

m1:m

Figure 9: Complete SWN for the ANTARCTICA SRS.

gives the network time. In the ANTARCTICA SRS the target transition is select sw service.

To study the network time, we have developed a test taking into account the following

scenarios:

1. To test the user refinement request, we have considered six different possibilities. A user

requesting a mean of 5, 10, 20, 30, 40 and 50 refinements2 (modeling different expertise of

the user).

2. Two different kinds of users have been considered: a user who spends 10 sec. to study

the information presented by the system (web page or a software catalog) and a user who

spends 60 sec. in that task (modeling the information processing speed of the user).

3. We have considered two cases for the net speed : 1 K/sec. and 5 K/sec. By considering

these low speed values we want to compare the performance of both approaches in a

wireless computing environment (real GSM network speed is around 800 bytes/sec.).

For the ANTARCTICA SRS, we have also considered:

1. A browser which does not need to ask for information to the software manager agent the
2We mean by refinement a “click” in a Tucows-like system and a catalog refinement in the ANTARCTICA

SRS.



24

(a) (b)

(c) (d)

0

5

10

15

20

25

30

35

40

refinements

m
in

u
te

s

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776

ANTARCTICA 5,062778453 7,208765859 11,49425287 15,69365976 20,08032129 24,72799209

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

refinements

m
in

u
te

s

TUCOWS 9,331840239 17,1998624 32,93807642 48,30917874 64,35006435 81,30081301

ANTARCTICA 10,10713564 16,51800463 29,29115407 41,8760469 55,00550055 68,87052342

5 10 20 30 40 50

m
in

u
te

s

0

2

4

6

8

10

12

14

16

18

refinements

TUCOWS 1,782912566 3,242542153 6,191183754 9,082652134 12,10360687 16,35590448

ANTARCTICA 1,868041545 3,06710833 5,462689828 7,813720894 10,26904909 12,85016705

5 10 20 30 40 50 0

10

20

30

40

50

60

70

refinements

m
in

u
te

s

TUCOWS 6,811061163 12,5502008 24,01536984 35,23608175 49,75124378 56,88282139

ANTARCTICA 8,304268394 12,37317496 23,24500232 39,40110323 52,24660397 59,31198102

5 10 20 30 40 50

Figure 10: Network time for different scenarios: (a) and (b) represent a net speed of 1 K/sec.,

(c) and (d) represent a net speed of 5 K/sec., (a) and (c) represent a “user delay” of 10 sec.,

(b) and (d) represent a “user delay” of 60 sec. The intelligence of the ANTARCTICA’s browser

has been set to 70%.

70% of the times that the user asks for a refinement. When the browser needs information,

it requests the information by RPC.

2. The size of the catalog obtained by the browser is 50 K.

Figure 10 shows network time (in minutes) for the Tucows-like system and the ANTARC-

TICA SRS in different scenarios. Concretely in Figure 10.b we can observe that when the net

speed is 1 K/sec., the user is naive and performs 50 refinements (the worst case), then the

ANTARCTICA SRS is almost thirteen minutes faster than the Tucows-like system. The same

results are obtained if the user is expert, see Figure 10.a. However, when the net speed is in-

creased to 5 kbyte/sec. (see Figure 10.d), the differences decrease, and if the user performs

more than thirty refinements the ANTARCTICA SRS behaves worse. In conclusion, we can

say that the ANTARCTICA approach behaves much better than a Tucows-like system for low

network speed. Differences between the two approaches become less significant for a higher net-



25

(a)

(b)

Figure 11: (a) and (b) represent the same scenarios than Figures 10.a and 10.b, respectively,

but varying the intelligence of the ANTARCTICA SRS browser.



26
work speed. Taking this analysis as basis we could estimate which approach is better for a given

situation.

Concerning the intelligence of the ANTARCTICA SRS browser agent, Figure 11 give us in-

teresting results. This figure shows the same scenarios than Figure 10.a and 10.b, but varying

the intelligence of the ANTARCTICA SRS browser, from a browser that needs to ask for infor-

mation the 100% of the times to a browser that needs to ask for information the 0% of the times.

When the intelligence of the browser is less than 40 (it needs to ask for information the 60%

of the times) the ANTARCTICA SRS behaves worse than the Tucows-like system. However,

when the intelligence of the browser is greater than 40% then the ANTARCTICA SRS obtains

similar or better results than a Tucows-like system.

6 Conclusions

In this paper we have compared the performance between a classical software retrieval system

(the so-called Tucows-like system) and another one proposed using mobile agents (the ANTARC-

TICA SRS). The comparison has been performed by applying to each of them a software per-

formance evaluation process, which has as a major advantage that it is integrated in the early

stages of the software life cycle.

We would like to stress the following points:

• The combination of a UML performance extension and SWNs is expressive enough to
model complex distributed software systems even taking into account different technolo-

gies. It must be remarked that a performance formal model (SWN) can be obtained

semi-automatically from the UML performance annotated diagrams in the context of the

software life cycle.

• Different scenarios can be tested easily by using this process without investing time in
implementing prototypes.

• As a result of our tests, we can affirm that the ANTARCTICA SRS behaves better than

Tucows-like system when the net speed is slow or when the net speed is faster but the

intelligence of the system is greater. So, the ANTARCTICA SRS is appropriate for wireless

environments.



27

References

[1] CNET Inc., 1999. http://www.download.com.

[2] CNET Inc., 1999. http://www.gamecenter.com.

[3] Tucows.com inc., 1999. http://www.tucows.com.

[4] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with

generalized stochastic petri nets, John Wiley Series in Parallel Computing - Chichester,

1995.

[5] M. Bernardo, P. Ciancarini, and L. Donatiello, AEMPA: A process algebraic description

language for the performance analysis of software architectures, Proceedings of the Second

International Workshop on Software and Performance (WOSP2000) (Ottawa, Canada),

ACM, September 2000, pp. 1–11.

[6] G. Booch, I. Jacobson, and J. Rumbaugh, OMG Unified Modeling Language specification,

June 1999, version 1.3.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic well-formed coloured

nets for symmetric modelling applications, IEEE Transactions on Computers 42 (1993),

no. 11, 1343–1360.

[8] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, GreatSPN 1.7: GRaphical Editor

and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation 24 (1995), 47–

68.

[9] V. Cortellesa and R. Mirandola, Deriving a queueing network based performance model

from UML diagrams, Proceedings of the Second International Workshop on Software and

Performance (WOSP2000) (Ottawa, Canada), ACM, September 2000, pp. 58–70.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of reusable

object-oriented software, Addison-Wesley, 1995.

[11] A. Goñi, A. Illarramendi, E. Mena, Y. Villate, and J. Rodriguez, ANTARCTICA: A multi-

agent system for internet data services in a wireless computing framework, NSF Workshop

on an Infrastructure for Mobile and Wireless Systems (Scottsdale, Arizona (USA)), Octo-

ber 2001.



28
[12] P. King and R. Pooley, Using UML to derive stochastic Petri nets models, Proceedings of

the Fifteenth Annual UK Performance Engineering Workshop (J. Bradley and N. Davies,

eds.), Department of Computer Science, University of Bristol, July 1999, pp. 45–56.

[13] E. Mena, A. Illarramendi, and A. Goñi, A software retrieval service based on knowledge-

driven agents, Cooperative Information Systems CoopIS’2000 (Eliat, Israel), Opher Et-

zion, Peter Scheuermann editors. Lecture Notes in Computer Science, (LNCS) Vol. 1901,

Springer, September 2000, pp. 174–185.

[14] J. Merseguer, J. Campos, and E. Mena, A pattern-based approach to model software per-

formance, Proceedings of the Second International Workshop on Software and Performance

(WOSP2000) (Ottawa, Canada), ACM, September 2000, pp. 137–142.

[15] J Merseguer, J Campos, and E. Mena, Performance evaluation for the design of agent-based

systems: A Petri net approach, Proceedings of the Workshop on Software Engineering and

Petri Nets, within the 21st International Conference on Application and Theory of Petri

Nets (Aarhus, Denmark) (Mauro Pezzé and Sol M. Shatz, eds.), University of Aarhus, June

2000, pp. 1–20.

[16] J. Merseguer, J. Campos, and E. Mena, A performance engineering case study: Software

retrieval system, Performance Engineering. State of the Art and Current Trends (R. Dumke,

C. Rautenstrauch, A. Schmietendorf, and A. Scholz, eds.), Lecture Notes in Computer

Science, (LNCS) Vol. 2047, Springer-Verlag, Heidelberg, 2001, pp. 317–332.

[17] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,

D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White, MASIF,

the OMG mobile agent system interoperability facility, Proceedings of Mobile Agents ’98,

September 1998.

[18] T. Murata, Petri nets: Properties, analysis, and applications, Proceedings of the IEEE 77

(1989), no. 4, 541–580.

[19] E. Pitoura and G. Samaras, Data management for mobile computing, Kluwer Academic

Publishers, 1998.

[20] B. Selic, G. Guleckson, and P.T. Ward, Real-time object-oriented modeling, John Wiley &

Sons, 1994.



29
[21] C. U. Smith, Performance engineering of software systems, The Sei Series in Software

Engineering, Addison–Wesley, 1990.

[22] M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, A wide band approach to integrating

performance prediction into a software design environment, Proceedings of the 1st Interna-

tional Workshop on Software Performance (WOSP’98), 1998.


