
Web-based versus mobile agent-based software

retrieval systems: Performance comparison?

Jos�e Merseguer, Javier Campos, and Eduardo Mena

Dpto. de Inform�atica e Ingenier��a de Sistemas, University of Zaragoza, Spain

fjmerse,jcampos,emenag@posta.unizar.es

Abstract. Formal methods are the most suitable way to model and an-

alyze several kinds of software systems. However, conventional methods

are gaining placed in Software Engineering �eld because they can be eas-

ily applied in all the stages of the software life cycle. The combination

of formal and conventional methods could be an interesting approach to

describe and analyze some software aspects, as for example, the perfor-

mance of the system. In this way, we make use of a software performance

process enriched with formal techniques. The process has as important

features that it uses UML as a design notation and it uses stochastic

Petri nets as formal model. Petri nets provide a formal semantics for the

system and a performance model, while UML supplies the framework

and tools to document the system.

The process is used in this article to present a performance comparison

between software retrieval systems. Nowadays, there exist web sites that

allow users to retrieve and install software in an easy way. The perfor-

mance of these sites may be poor if they are used in wireless networks;

the reason is the inadequate use of the net resources they need. In this

article, we show that if this kind of systems are designed using mobile

agent technology the previous problem might be avoided.

Keywords: Software performance engineering, stochastic Petri nets, Inter-

net, UML, wireless networks, mobile agent technology.

1 Introduction

The tasks of retrieving and installing software using Internet have become com-

mon in the last years. There are sites (e.g., Tucows.com [3], Download.com [1],

and GameCenter.com [2]) which permit to perform these tasks in an easy and

friendly way. But the process of selecting the software could become costly and

sometimes slow: the user must select a great number of categories until s/he

�nds the desired software, specially if s/he is a naive user. Every time the user

selects a category, the web site sends a new HTML page with the contents of

the category. This technique makes an intensive use of the network connection,

which can result in a poor performance and expensive communication cost (in

a wireless environment). Thus, it would be interesting to get results about the

performance of this kind of systems to exactly know how costly is this process.

? This work has been developed within the project UZ00-TEC-03 of the University of

Zaragoza.



2 IX Jornadas de Concurrencia

A new technology, mobile agents [14], can aid to reduce the network con-

nection time. We recall in this paper a software retrieval service belonging to

the ANTARCTICA system [9] which has been designed using mobile agents.

The aim of this service is to propose an alternative method to the current web-

based software retrieval systems, called in this article \Tucows-like" systems.

The ANTARCTICA system has been though to be used in wireless communica-

tion environvents where net speed is a problem, say 800 bytes/sec. is real in GSM

networks. Therefore, it promotes a better use of the net resources, thus supply-

ing better performance results. In the following, we refer to the ANTARCTICA

software retrieval service as the \ANTARCTICA SRS".

Software performance engineering [16] proposes evaluating performance of

software systems in the early stages of the development process. Thus, if per-

formance problems are detected, it will be easier and less expensive to take

the appropriate design decisions to solve them. The Uni�ed Modelling Language

(UML) [4] is the design notation that we will use to model software retrieval

systems. The selection of UML is motivated because it is widely accepted by the

software engineering community and it �ts very well in the software life cycle.

Since we are interested in performance aspects, we use UML extended with per-

formance annotations. In general, software systems are complex systems even

more if they are distributed, so we advocate for the use of formal models to

obtain performance indices. But UML lacks of the necessary formal semantics

to apply analytical techniques. Thus, we propose to semi-automatically obtain

Petri nets (PNs) [13] from UML diagrams and to use them to obtain perfor-

mance indices. PNs are a widely used formal model for concurrent systems and

provided with a stochastic time interpretation, they are suitable for performance

evaluation. Concretely, we use stochastic well-formed coloured nets (SWNs) [5].

Our goal in this work is to compare the performance of Tucows-like systems

with the performance of the ANTARCTICA SRS using analytical software per-

formance techniques. The performance index under study for both systems is

the network time, i.e., how much time the network connection needs to be open

in order to retrieve a software product. Also, it will be studied the impact of the

intelligent agents in the ANTARCTICA SRS.

The rest of the paper is organized as follows. In section 2, the process fol-

lowed to evaluate software performance is described. In section 3, a Tucows-like

software retrieval system is modeled using UML and this model is translated

into SWNs. In section 4, the main characteristics of the ANTARCTICA SRS

are described. In section 5, we present a comparison between performance �g-

ures for both approaches. Finally, in section 6, some concluding remarks and

related work are stressed.

2 The software performance process

\The software performance engineering (SPE) is a method for constructing soft-

ware systems to meet performance objectives. SPE augments others software

engineering methodologies; it does not replace them" [16]. In this section, we



IX Jornadas de Concurrencia 3

{time}
Do:examine

for
download

{1K}

{1K}
{1K}

{1K}

wait

select_category(url)

^webServer.select_URL(url)

{20K..30K}

{1K}

{1K}

{1K}

{1K}

reply {file_size}

get(html_page)

^user.observe(html_page)

^user.succ_install

^webServer.download(url)

[^user.satisfied]select_sw(url)
{1K}

[not_satisfied]

download(url)

^Browser.reply(file)
WAIT

{1sg.} {1sg.}

{20K..30K}

{1K}
select_URL(url)

(d)

(a)

(c)

(b)

^Browser.get(html_page)

Do:find_html_pageDo:find_file

{1K}

{file_size}

for
wait

wait

{1K}

[satisfied]^Browser.select_sw(url)

^Browser.select_category(url)

succ_install()

html page

observe(html_page)

{1K}

WebServer

{20K..30K}

[satisfied]

WAIT

{0.1}

get(html_page)

download(url)

{1K}
succ_install()

{file_size}

{1K}

{1K}

{1K}

select_sw(url)

{20K..30K}
observe(html_page)

{1K}

select_URL(url)

select_category(url)

Browser

1..n

Fig. 1. (a) Annotated sequence diagram for the Tucows-like system. Annotated STDs

for the Tucows-like system: (b) user, (c) the web server, and (d) browser

brie
y present a software performance process, introduced in [11, 10], that will

be applied in sections 3 and 4 to the software retrieval systems proposed in

the introduction. An interesting characteristic of this process is that it uses a

formal model (SWNs) to obtain performance indices. This formal model can

be obtained semi-automatically inside the software development process. In this

way, without much e�ort, the process allows to obtain a performance model as

a by-product and it preserves the bene�ts of the software design methodologies.

2.1 Modeling using performance annotated UML diagrams

The process begins by modeling the system dynamics in a conventional way. The

UML dynamic diagrams [4] will guide the process. Sequence diagrams and state

transition diagrams (STDs) will be used in this paper. Activity diagrams are not

used because we are not interested in modeling the actions performed by the

systems that we model.

Figure 1.a depicts an example of sequence diagram, that will be explained

later on. A sequence diagram represents messages sent among objects. Messages

sent among objects on the same computer are considered as no time consuming



4 IX Jornadas de Concurrencia

in the scope of the modeled system (for instance, the messages sent between the

user and the browser in Figure 1.a). Messages sent among objects on di�erent

computers, those which travel through the net, will consume time as a function

of the message size and the net speed (for instance, in Figure 1.a the messages

sent between the browser and the web server). Each message size is annotated

inside braces. For instance, the select URL message is labelled with f1 Kbyteg
in Figure 1.a. It is also possible to annotate the size with a range in the UML

common way (like the get message with label f20K..30Kg in Figure 1.a). If the

message size is unknown, the annotation is a label representing a performance

parameter (e.g., the return of the download message is annotated with the label

f�le sizeg, also in Figure 1.a).

In a sequence diagram, conditions represent the possibility for the associated

message to be dispatched. Annotations, also between braces, express the event

probability success associated with each condition (for instance, see probabil-

ity f0.1g associated with the condition [satis�ed] in Figure 1.a). A range or a

probability (unknown) parameter are accepted too as event probability success.

In order to get a complete view of the system dynamics, a STD for each class

with relevant dynamic behaviour must be developed, as those depicted in Figures

1.b, 1.c and 1.d. To study performance aspects on a STD, two elements are

meaningful, the activities and the guards. In the following, we brie
y comment

the annotations used in these kind of diagrams.

Activities represent tasks performed by the object, therefore, they consume

computation time that must be annotated. The annotation will be done between

braces. For example, see in Figure 1.c the bold label f1 sec.g close to the activity
�nd �le. If it is necessary, minimum and maximum values will be annotated.

Guards show conditions in a transition. They must hold in order to �re the

event that they label. The probability associated to them, already annotated in

the sequence diagrams, are also indicated in STDs to gain readability. In the

same way, the size of the messages may be annotated or omitted.

2.2 From performance annotated UML diagrams to SWNs

From the performance annotated UML diagrams it will be interesting to obtain

performance indices for the system. But, as we said, UML lacks of the necessary

formal semantics to apply quantitative analysis techniques to obtain them. Even

more, it is not suitable to specify some system aspects, for example concurrency,

which is fundamental in performance evaluation. Therefore, the UML diagrams

will be translated into SWNs, which allow to obtain performance indices, taking

the proper decisions for the unspeci�ed system requirements.

The strategy to obtain the SWNs from the performance annotated UML

diagrams is as follows.

1. Derivation of a SWN from each STD. These SWNs will be called component

nets. They represent the behaviour for each class with the underlying SWN

formal semantics. To obtain a component net from a STD several rules must

be applied, details can be found in [11], the following are the most important:



IX Jornadas de Concurrencia 5

{ Each state of the STD is represented by a place, with the same name,

in the SWN.

{ For each transition in the STD, there will be in the SWN:

(a) A transition with the same as the event which labels the transition

in the STD.

(b) An arc from the place (which represents the initial state in the STD)

to the transition in the SWN (which represent the transition in the

STD).

(c) An arc from the transition in the SWN (which represent the transi-

tion in the STD) to the place (which represents the �nal state in the

STD).

{ Guards in the STD will become immediate transitions with the associ-

ated corresponding probabilities for the resolution of con
icts.

{ Activities inside a state of a STD are considering as time consuming,

so in the SWN they will be considered as timed transitions; the rate of

the exponentially distributed service time of the timed transitions are

obtained automatically from the time annotation of the STD.

As an example, see in Figure 2 the component nets obtained from the STDs

in Figure 1.

2. Obtaining a SWN for the system. From the component nets, and guided by

the sequence diagram/s, a complete SWN for the system is obtained. Tran-

sitions in the component nets that represent the same message are synchro-

nized if the message has wait semantics; on the other hand, if the message

has no wait semantics the transitions are connected with an extra place,

modeling a communication bu�er.

The outcome SWN models the behaviour of the whole system. Figure 3 depicts

an example of a complete net obtained from the component nets in Figure 2

and from the sequence diagram in Figure 1.a. The performance �gures for the

system are obtained by analyzing the complete SWN for the system.

3 Modeling the Tucows-like software retrieval system

There are a variety of software retrieval systems, as the popular web sites Tu-

cows.com [3], Download.com [1] or Gamecenter.com [2], that provide Internet

users with facilities to retrieve and install software. These systems allow users

to �nd software in two di�erent ways, by using a keyword-based search engine

or by navigating through categories especially designed to make the task easier.

The software architecture of these kind of systems for the navigation facility

is basically the same, therefore, it is possible to model how these kind of systems

work, making a number of assumptions, without loosing reality with respect

to performance aspects. We will refer to these kind of systems as Tucows-

like systems. Our intend is to evaluate performance indices for a Tucows-like

system in order to compare them with those obtained for the ANTARCTICA

SRS (modeled and evaluated in [10]).



6 IX Jornadas de Concurrencia

The keyword-based search engine o�ers help to those users that know some

features of the wanted software. This search facility will not be considered in

this paper since it does not exist its counterpart in the ANTARCTICA SRS,

therefore no comparison can be made. The navigation facility consists of several

web pages residing in a server and organized as categories linked between them

in a way that guides the user to �nd the software. For instance, a number of

these systems present an initial web page where the categories correspond with

di�erent operating systems, say Windows 2000, Windows 95/98, Linux or Unix

Themes. The ANTARCTICA SRS o�ers a mechanism to retrieve software similar

to the navigation facility, but it makes use of intelligent agents to perform the

task, therefore a performance comparison can be made between the two systems.

In this section, we apply the software performance process to the navigation

facility of the Tucows-like systems.

3.1 System description and modeling assumptions

In a Tucows-like system, the user navigates, with the help of a browser, through

di�erent HTML pages (representing software categories and descriptions of con-

crete pieces of software) until s/he �nds a piece of software that satis�es her/his

needs. Then, that piece of software is downloaded.

It must be assumed that the user spends some time reading the information

presented by the system. An exponentially distributed random variable with

parameter �examine (�examine is obtained as the inverse of the time in seconds)

will be used to model several kinds of users.

The number of HTML pages that the user must navigate until s/he �nds

the software is diÆcult to estimate (it depends on her/his experience). The

probability that the user �nds the software by selecting n categories models

di�erent kinds of users, from naive users, those who need to visit many categories

to �nd the software, to expert users, those who �nd the software visiting very

few categories.

Whenever the user requests an HTML page or a concrete piece of software,

the web server must perform the corresponding activities to �nd the page or the

piece. The time consumed by these activities will be modeled as exponentially

distributed random variables with parameters �findHTML and �findFile.

The browser, in the client machine, sends messages through the net to the

web server in the server machine and vice versa. A exponentially distributed

random variable with parameter �mi
will model the time spent by the message i

navigating through the net. Notice that the messages sent between the user and

the browser do not consume net resources.

3.2 UML diagrams with performance annotations

In this section we model the dynamic view of the Tucows-like system using

UML notation as proposed in [11]. The sequence diagram in Figure 1.a shows

the messages sent among the objects in the system with the purpose to retrieve

the piece of software that the user needs. Two di�erent kinds of messages can be



IX Jornadas de Concurrencia 7

distinguished, those that travel through the net (sent between the browser and

the web server) and those that do not (sent between the user and the browser).

This feature will be relevant in the SWN model in order to associate time to

transitions that represent messages send through the net, taking into account

the assumptions made in the previous section.

The sequence diagram in Figure 1.a begins with a select category(url) mes-

sage, its size is f1 Kbyteg, sent by the user to the browser. It represents the

\click" performed by the user in the browser to select a category in a HTML

page. The rest of the diagram describes in the same way the steps explained in

the previous section for selecting software.

In order to get a complete description of the Tucows-like system dynamics and

its load, we are going to develop the STD for each class with relevant dynamic

behaviour.

User state transition diagram. In Figure 1.b, the behaviour of a user is

represented. The user is in the wait state until s/he activates the select category

event. This event sets the user in the wait for HTML page state. The observe

event, sent by the browser, allows the user to perform the examine activity that

has associated the label ftimeg. This label models the time that the user spends

reading the HTML page. This activity will be translated in the SWN net in an

exponentially distributed transition, and by modifying its rate di�erent kinds

of users can be modeled, as we pointed out in the previous section. Once the

activity is performed two situations can arise:

{ If the requested software is not present in the current HTML page the user

returns to the wait state.
{ In other case, the user sends the select sw(url) message to the browser, where

url means the direction where the software is located in the server, and

enters in the wait for download state. When the browser ful�lls the necessary

activities to complete the download, it sends to the user the succ install()

message and the user returns to the wait state.

Browser state transition diagram. Figure 1.d shows the browser's STD. The

browser behaves as a server object: it is waiting for user's requests, represented

by select category and select sw events.

When a select category event arrives requesting a url, the browser sends to

the web server the select URL message and waits for a new HTML page. When

the web server obtains results, it triggers the get event attaching the new HTML

page, whose estimated size is f20K..30Kg. Since this message is sent through the

net, it will be translated in the SWN as an exponentially distributed transition

with rate �mget
, as we pointed out in the previous section. After that, the HTML

page is shown to the user.

When a select sw event arrives requesting a url that contains a piece of

software a download message with the url is sent to the web server. The browser

waits for the reply message that contains the requested �le with size �le size, it

will be translated in the SWN in a transition with rate �mreply
. Finally, the �le

is installed (succ install).



8 IX Jornadas de Concurrencia

wait

RS
P3

R
P4

R
P5

R

examineobserve
not_satisfiedBrowser.select_category

Browser.select_sw

succ_install

<x>

<x>

<x>
<x>

<x><x>

<x>

<x>

<x><x> <x><x>

R:c

request:c

S:m

(a)

Fig. 2. Component PNs for the Tucows-like system: (a) user, (b) browser, (c) web

server.

Web server state transition diagram. As the browser, the web server be-

haves as a server object. It is waiting for a request (select URL and download)

from the browser. For each request, the web server performs the corresponding

actions to serve it (�nd html page and �nd �le). When the actions are completed,

it sends the corresponding message to the browser. Figure 1.c shows the web

server's state transition diagram.

3.3 Modeling the system with SWNs

In this section, we detail the SWN model for the Tucows-like system. The nets

have been obtained by applying the translation rules, given in [11] and schemat-

ically shown in section 2. In order to model situations that the Petri nets can

express but the UML notation cannot, the appropriate decisions will be taken

and commented.

Figure 2 represents the component nets, those obtained from the STDs, for

the Tucows-like system and Figure 3 represents the net for the whole system, ob-

tained by synchronizing the component nets. We start describing the component

nets.

User component net. The number of tokens in the place wait models how

many concurrent users supports the system. This parameter can not be modeled

in the UML diagrams.

The �ring of the transition named Browser.select category models the dis-

patch to the browser of a message to specialize the current HTML page, it will

arrive when the transition named observe �res. The �ring of the transition named



IX Jornadas de Concurrencia 9

P4

R

wait_WebServer

P2

R
P3

R

P5

R

wait_Browser
RS

P10
R

buffer_download

R

P12

R

P13
R

P15

R

wait_user

RS

P17
R

uffer_select_sw
R

buffer_get

R

P25 R

P28

R
buffer_reply

R

P26
R

download_browser

select_URL get_browserget

examine

find_file

find_html_page

reply

select_category

select_sw_user

not_satisfied

observe

Browser.replydownload_webServer

select_sw_browser

succ_install

<x>

<x>

<x>

<x>

<x>

<x>

<x><x> <x><x>

<x>

<x> <x>

<x>

<x>

<x>

<x>

<x><x>

<x><x>

<x>

<x><x>

<x><x>

<x> <x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x>

R:c
request:c
S:m

Fig. 3. Complete SWN for the Tucows-like system.

examine models the time spent by the user reading the information presented

in the new HTML page. After the end of the reading, a choice will determine

whether the user is satis�ed with any of the products shown (�ring of the im-

mediate transition Browser.select sw), or not (�ring of the immediate transition

not satis�ed).

The �ring of the immediate transition named succ install models the arrival

of a message to con�rm that the retrieve of the software has been successfully

completed.

Browser component net. The number of tokens in the place wait models how

many concurrent browser access to the system. The colour is the same as in the

user component net to identify each browser with a user. This parameter cannot

be modeled in the UML diagrams.

The �ring of the transition named select category models the arrival of mes-

sages from the user requesting for a specialization of the category that s/he

has examined, the transition is immediate because both, the sender and the re-

ceiver, are in the client machine. The request is sent to the web server through

the net, therefore consuming time by �ring the timed transition named web-

Server.select URL. The �ring of transitions get and user.observe models, respec-

tively, the obtaining of the HTML page with new categories and its dispatch to

the user.

The �ring of the transition named select sw models the arrival of messages

from the user requesting a concrete piece of software. The request is sent to

the web server through the net by �ring the timed transition named web-

Server.download. The �ring of the timed transition named reply models the ob-

taining of the �le requested by previous transition. Finally, the �ring of the

transition named user.succ install models the advertisement to the user that the

retrieve of the software has been successfully completed.



10 IX Jornadas de Concurrencia

The select category and select sw transitions will be synchronized in the com-

plete net with the transitions in the user component net with the same name.

Web server component net. The number of tokens in the place wait models

how many concurrent processes has opened the web server to attend browser's

requests. This parameter could not be modeled in the UML diagrams.

The �ring of the timed transition named select URLmodels the arrival of a re-

mote message to request for a new HTML page. The �ring of the timed transition

named downloadmodels the arrival of a remote message to request for a concrete

piece of software. The �ring of the timed transition named �nd html page mod-

els the completion of the search for a new HTML page. The �ring of the timed

transition named �nd �le models the completion of the search for a requested

piece of software. The �ring of the timed transition named Browser.get models

the dispatch of the HTML page to the browser. Finally, the �ring of the timed

transition named Browser.reply models the dispatch of the �le to the browser.

The select URL, download, Browser.get and Browser.reply transitions will be

synchronized in the complete net with the transitions in the browser component

net with the same name.

As we said before, the net for the whole system, depicted in Figure 3, is

obtained by applying the rules given in [11].

4 The ANTARCTICA Software Retrieval Service

The goal of the ANTARCTICA SRS [9] is to provide mobile computer users with

a service to select and download software in an easy and eÆcient way. EÆcient

because the system optimizes battery consumption and wireless communication

costs. It provides several interesting features:

{ The system manages the knowledge needed to retrieve software without user

intervention, using an ontology.

{ The location and access method to remote software is transparent to users.

{ There is a \catalog" browsing feature to help user in software selection.

{ The system maintains up to date the information related to the available

software.

The software performance process given in [11] was applied to the ANTARC-

TICA SRS in [12, 10]. The UML diagrams, the SWNs components and the SWN

net for the system were obtained. The SWN net for the system will be used

in the next section to obtain performance results. It will be interesting to com-

pare the performance of the ANTARCTICA SRS with the performance of the

Tucows-like system, in order to obtain conclusions about the impact of mobile

agent technology in a wireless network (low speed, costly, disconnections).

5 Performance results

The results presented in this section have been obtained from the complete SWNs

which model the Tucows-like system (see Figure 3) and the ANTARCTICA

SRS (see [10]). It is of our interest to study how much time the systems need



IX Jornadas de Concurrencia 11

to be connected to the net, network time, in the presence of a user request.

Also, it is interesting to know how much intelligent the browser agent in the

ANTARCTICA SRS must be, to obtain the same or better results than the

Tucows-like system.

In order to obtain the network time in the Tucows-like system, the through-

put of the succ install transition will be calculated by computing the steady-state

distribution of the isomorphic Continuous Time Markov Chain (CTMC) with

GreatSPN [6]. The inverse of the previous result gives the network time. In the

ANTARCTICA software system the target transition is select sw service.

To study the network time, we have developed a test taking into account the

following scenarios:

1. To test the user re�nement request, we have considered six di�erent possi-

bilities. A user requesting a mean of 5, 10, 20, 30, 40 and 50 re�nements1

(modeling di�erent expertise of the user).

2. Two di�erent kinds of users have been considered: a user who spends 10 sec.

to study the information presented by the system (web page or a software

catalog) and a user who spends 60 sec. in that task (modeling the information

processing speed of the user).

3. We have considered two cases for the net speed : 1 Kbytes/sec. and 5

Kbytes/sec. By considering these low speed values we want to compare the

performance of both approaches in a wireless computing environment (real

GSM network speed is around 800 bytes/sec).

For the ANTARCTICA SRS, we have also considered:

1. A browser which does not need to ask for information to the software man-

ager the 70% of the times that the user asks for a re�nement. When the

browser needs information, it requests the information by a remote proce-

dure call (RPC).

2. The size of the catalog obtained by the browser is 50 Kbytes.

Figure 4 shows network time (in minutes) for the Tucows-like system and the

ANTARCTICA SRS in di�erent scenarios. Concretely in Figure 4.b we can ob-

serve that when the net speed is 1 kbyte/sec., the user is naive and performs 50

re�nements (the worst case), then the ANTARCTICA SRS is almost thirteen

seconds faster than the Tucows-like system. The same results are obtained if

the user is expert, see Figure 4.a. However, when the net speed is increased to

5 kbyte/sec. (see Figure 4.d), the di�erences decrease, and if the user performs

more than thirty re�nements the ANTARCTICA SRS behaves worse. In conclu-

sion, we can say that the ANTARCTICA approach behaves much better than

a Tucows-like system for low network speed. Di�erences between the two ap-

proaches become less signi�cant for a higher network speed. Taking this analysis

as basis we could estimate which approach is better for a given situation.

About the intelligence of the ANTARCTICA SRS browser agent, Figure 5

give us interesting results. This �gure shows the same scenarios than Figure

4.a and 4.b, but varying the intelligence of the ANTARCTICA SRS browser,

1 We mean by re�nement a \click" in a Tucows-like system and a catalog re�nement

in the ANTARCTICA SRS.



12 IX Jornadas de Concurrencia

(a) (b)

(c) (d)

0

5

10

15

20

25

30

35

40

refinements

m
in

u
te

s

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776

ANTARCTICA 5,062778453 7,208765859 11,49425287 15,69365976 20,08032129 24,72799209

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

refinements

m
in

u
te

s

TUCOWS 9,331840239 17,1998624 32,93807642 48,30917874 64,35006435 81,30081301

ANTARCTICA 10,10713564 16,51800463 29,29115407 41,8760469 55,00550055 68,87052342

5 10 20 30 40 50

m
in

u
te

s

0

2

4

6

8

10

12

14

16

18

refinements

TUCOWS 1,782912566 3,242542153 6,191183754 9,082652134 12,10360687 16,35590448

ANTARCTICA 1,868041545 3,06710833 5,462689828 7,813720894 10,26904909 12,85016705

5 10 20 30 40 50 0

10

20

30

40

50

60

70

refinements
m

in
u

te
s

TUCOWS 6,811061163 12,5502008 24,01536984 35,23608175 49,75124378 56,88282139

ANTARCTICA 8,304268394 12,37317496 23,24500232 39,40110323 52,24660397 59,31198102

5 10 20 30 40 50

Fig. 4. Network time for di�erent scenarios: (a) and (b) represent a net speed of 1

Kbyte/sec, (c) and (d) represent a net speed of 5 Kbyte/sec., (a) and (c) represent a

\user delay" of 10 sec., (b) and (d) represent a \user delay" of 60 sec. The intelligence

of the ANTARCTICA's browser has been set to 70%.

(a) (b)

Fig. 5. (a) and (b) represent the same scenarios than Figures 4.a and 4.b, respectively,

but varying the intelligence of the ANTARCTICA SRS browser.



IX Jornadas de Concurrencia 13

from a browser that needs to ask for information the 100% of the times to

a browser that needs to ask for information the 0% of the times. When the

intelligence of the browser is less than 40 (it does not need to ask for information

the 40% of the times) the ANTARCTICA SRS behaves worse than the Tucows-

like system. However, when the intelligence of the browser does not need to ask

for information the 40% of the times or more, then ANTARCTICA SRS obtains

similar or better results than a Tucows-like system.

6 Conclusions and Related work

In this paper we have compared the performance between a classical software

retrieval system (the so-called Tucows-like system) and another one proposed

using mobile agents (the ANTARCTICA SRS). The comparison has been per-

formed by applying to each of them a software performance evaluation process,

which has as a major advantage that it is integrated in the early stages of the

software life cycle.

We would like to stress the following points:

{ The combination of a UML performance extension and SWNs is expressive

enough to model complex distributed software systems even taking into ac-

count di�erent technologies. It must be remarked that a performance formal

model (SWN) can be obtained semi-automatically from the UML perfor-

mance annotated diagrams in the context of the software life cycle.

{ Di�erent scenarios can be tested easily by using this process without invest-

ing time in implementing prototypes.

{ As a result of our tests, we can aÆrm that the ANTARCTICA SRS be-

haves better than Tucows-like system when the net speed is slow. So, the

ANTARCTICA SRS is appropriate for wireless environments.

{ As a future work, we plan to give semantics to the UML diagrams in terms

of Petri nets.

Concerning related work, in [8] stochastic Petri nets are obtained from UML

diagrams with performance evaluation purpose. In our opinion, it is not clearly

stated the translation process, and it is not clear how the performance model

is obtained. Therefore, it has not been possible to test their technique in our

examples to compare their solution with ours. In [17] an approach to perfor-

mance prediction for the real time �eld is presented. It uses ROOM [15] as a

development method and a layered queuing network as a performance model, a

prototype tool has been developed to assist the process. A parallel work to our

software performance process using UML and SWNs is being developed in [7].

However, we claim that for the case of parallel and distributed systems, as those

presented in this paper, Petri nets improves the adequacy of queue network, since

they provide general synchronization mechanisms and validation techniques for

logical properties.

Acknowledgements:We would like to thank Laura Recalde for all the helpful
collaboration.



14 IX Jornadas de Concurrencia

References

1. CNET Inc., 1999. http://www.download.com.

2. CNET Inc., 1999. http://www.gamecenter.com.

3. Tucows.com inc., 1999. http://www.tucows.com.

4. G. Booch, I. Jacobson, and J. Rumbaugh, OMG Uni�ed Modeling Language spec-

i�cation, June 1999, version 1.3.

5. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic well-formed

coloured nets for symmetric modelling applications, IEEE Transactions on Com-

puters 42 (1993), no. 11, 1343{1360.

6. G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, GreatSPN 1.7: GRaphical

Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation

24 (1995), 47{68.

7. V. Cortellesa and R. Mirandola, Deriving a queueing network based performance

model from UML diagrams, Proceedings of the Second International Workshop

on Software and Performance (WOSP2000) (Ottawa, Canada), ACM, September

2000, pp. 58{69.

8. P. King and R. Pooley, Using UML to derive stochastic Petri nets models, Proceed-

ings of the Fifteenth Annual UK Performance Engineering Workshop (J. Bradley

and N. Davies, eds.), Department of Computer Science, University of Bristol, July

1999, pp. 45{56.

9. E. Mena, A. Illarramendi, and A. Go~ni, A software retrieval service based on

knowledge-driven agents, Cooperative Information Systems CoopIS'2000 (Eliat,

Israel), Opher Etzion, Peter Scheuermann editors. Lecture Notes in Computer Sci-

ence, (LNCS) Vol. 1901, Springer, September 2000, pp. 174{185.

10. J. Merseguer, J. Campos, and E. Mena, Evaluating performance on mobile agents

software design, Actas de las VIII Jornadas de Concurrencia (Cuenca, Spain)

(Diego Cazorla, ed.), Universidad de Castilla-la Mancha, June 2000, pp. 291{307.

11. J Merseguer, J Campos, and E. Mena, Performance evaluation for the design of

agent-based systems: A Petri net approach, Proceedings of the Workshop on Soft-

ware Engineering and Petri Nets, within the 21st International Conference on Ap-

plication and Theory of Petri Nets (Aarhus, Denmark) (Mauro Pezz�e and Sol M.

Shatz, eds.), University of Aarhus, June 2000, pp. 1{20.

12. J. Merseguer, J. Campos, and E. Mena, A performance engineering case study:

Software retrieval system, Performance Engineering. State of the Art and Current

Trends (R. Dumke, C. Rautenstrauch, A. Schmietendorf, and A. Scholz, eds.),

Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 2001, To appear.

13. T. Murata, Petri nets: Properties, analysis, and applications, Proceedings of the

IEEE 77 (1989), no. 4, 541{580.

14. E. Pitoura and G. Samaras, Data management for mobile computing, Kluwer Aca-

demic Publishers, 1998.

15. B. Selic, G. Guleckson, and P. Ward, Real-time object-oriented modeling, Wiley,

1994.

16. C. U. Smith, Performance engineering of software systems, The Sei Series in Soft-

ware Engineering, Addison{Wesley, 1990.

17. M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, A wide band approach to

integrating performance prediction into a software design environment, Proceedings

of the 1st International Workshop on Software Performance (WOSP'98), 1998.


