Evaluating Performance on Mobile Agents
Software Design

José Merseguer, Javier Campos, and Eduardo Mena

Dpto. de Informdtica e Ingenierfa de Sistemas, Zaragoza University, Spain,
{jmerse, jcampos,emena}@posta.unizar.es

Abstract. Software design and implementation using mobile agents are
nowadays involved in a scepticism halo. There exist researchers who ques-
tion its utility because it could be a new technology which no new skills
but could introduce new problems. Security and performance are the
most critical aspects for this new kind of software. In this contribution
we present a formal approach to analyze performance for this class of
systems. Our approach is integrated in the early stages of the software
development process. In this way, it is possible to predict expected be-
haviour without the necessity of carry out the complete implementation
phase. To show the approach, we model a software retrieval service sys-
tem in a pragmatic way, after the corresponding formal model is obtained
and analyzed in order to study performance.

Keywords: Software performance, Petri nets, UML, mobile agent

1 Introduction

In the last years, distributed software applications have increased their possibili-
ties making use of Internet capabilities, positioning distributed software develop-
ment as a very interesting approach. Client /server has become the key paradigm
to support distributed software development. It is widely recognized that there
exist four main technologies which advocate for client/server developments: re-
lational database management systems (RDBMS), TP monitors, groupware and
distributed objects. It is well accepted that distributed objects in conjunction
with mobile agents [14,11] technology are a very interesting approach to address
certain kind of software domains like electronic commerce, information retrieval
and network management and administration.

Although there exist researchers who question mobile software, because it
could be a new technology with no new skills but it could introduce new prob-
lems; mobile software takes sense in distributed environments [9]. This software
could make an inappropriate use of the net resources; in this way time con-
suming could become a problem for users. So we are concerned to develop new
techniques and methods which take care about these problems. In this context,
software performance [16] appears as a discipline inside software engineering
to deal with model performance on software systems design. Like many people

2 VIII Jornadas de Concurrencia

concerned about software performance, we believe that performance evaluation
must be accomplished during the early stages of software development.

Assuming Unified Modeling Language (UML) [2] as a standard notation to
model software systems, we propose an environment in which software analyst
models using UML. Unfortunately, UML lacks of expressivity desired to describe
performance skills. There have been several approaches to solve this lack [17,18].
One of the principals of our work is the study of the performance indices in mobile
agent systems, so we propose a UML time extension to deal with performance
skills on these kind of systems.

Our approach to solve the problem is as follows: we model the problem do-
main using UML, describing static and dynamic views when necessary. UML
models will give us the necessary background to obtain the corresponding for-
mal model expressed as Petri nets [1,4]. From the time extension of UML, we
derive a time interpretation of Petri nets leading to Generalized Stochastic Petri
Nets (GSPN) [1]. Performance indices may be computed for GSPN by applying
quantitative analysis techniques already developed in the literature.

The rest of the paper is organized as follows. In section 2, we describe a
system, based on agents, which has been taken from [12], it will introduce us in
a mobile agent environment. Sections 3 and 4 develop the UML models for the
system and give a proposal to annotate system load. Section 5 is dedicated to
transform UML diagrams into Petri nets in order to achieve the desired formal
model. Finally, some performance results and conclusions are presented.

2 An example: the software retrieval service in the
ANTARTICA system

In this section we briefly present ANTARTICA'. The system taken from [12]
that will be used as example along this paper. It will be the reference to study
performance on mobile agent system.

The goal of the system is to provide mobile computer users with different
services that enhance the capabilities of their computer. One of these services
is the software retrieval service, that allows users to select and download new
software in an easy and efficient way. This service has been thought to work in
a wireless network media and provides several interesting features:

The system manages itself the knowledge needed to retrieve software without

user intervention, using an ontology.

— The location and access method to access remote software is transparent to
users.

— A catalog browsing feature to help user in software selection.

— The system maintains up to date the information related to the software

available.

! Autonomous ageNT bAsed aRChitecture for cusTomized moblle Computing Assis-
tance.

VIII Jornadas de Concurrencia 3

In the following, we briefly describe the system paying attention in its compo-
nents. There exists a “majordomo” named Alfred, which is an agent specialized
in user interaction. There is a software manager agent whose task is to create a
catalog which will help the user to select the required software. Another agent,
the browser, will help the user in selecting the software. Finally, a Salesman
agent is in charge of performing any action previous to the instalation of the
selected software, like electronic commerce.

The system was proposed using different technologies, namely CORBA [13],
HTTP and mobile agents. Some performance tests were applied to different
implementations, in order to select the best way of accessing remote software.
Conclusions were the following:

— Time corresponding to CORBA and mobile implementations are almost
identical for a wide range of files to be downloaded.

— Mobile agent approaches are fast enough to compete with client/server ap-
proach.

Although considering the importance and the relevance of the results of the
work, we would like to stress the enormous cost of implementing different pro-
totypes in order to evaluate the performance of the different alternatives. We
could model the system with a pragmatic approach using UML and annotate
consistently the system load. After that, we can interpret the UML models in
terms of Petri nets and derive the corresponding performance model which will
be properly analyzed. This analysis is used to evaluate the system.

Thus, we have worked with the authors of the cited paper in order to obtain
the UML models corresponding to the system, and also we have all together
annotated the system load, taking their experiments and experience as basis.
Later, we have translated the UML diagrams into the corresponding formal
ones. Results look promising.

3 Modeling the system using UML notation

In the previous section we have explained the general features of the target
system. Now we focus on modeling it using UML notation. We have considered
UML and not the notation of methodologies such as OMT [7], OOSE [10] or
Fusion [6] because of its wider acceptance in the software engineering community.

The system description in UML accomplishes with static and dynamic views
in order to give a complete description of the system. For the sake of simplicity
and for the convenience of our problem we only describe the dynamical view
of the system, since performance indices are defined in terms of the dynamic
behaviour of the system.

Figure 1 shows the target use cases needed to describe the dynamic behaviour
of the system. We deal with three different use cases, “show services”, “download
software” and “electronic commerce”. Also we can see the unique actor which
interacts with the system, the “user”. The first two use cases are described in
the following.

4 VIII Jornadas de Concurrencia

Show
Services
Dowload
— Software

User
Electronic
Commerce

Fig. 1. Use Cases

Show services use case description. — Principal event flow: the use case
goal is to show to the user the available services offered by the system.
In the list of services there would appear the download software service.

Download software use case description. — Principal event flow: the
user requests the system for the desired software. The majordomo, Al-
fred, is concerned to get a catalog and must show it to the user, who
selects the software s/he needs.

— Exceptional event flow: if the user is not satisfied with the catalog pre-
sented, s/he can ask for a refinement of the catalog. This process could
be repeated as many times as necessary until selecting a concrete piece
of software.

Electronic commerce use case description. — Principal event flow: the
goal is to provide the user an electronic commerce activity.

Show services use case and electronic commerce use case are out of the scope
of this article, thus we concentrate on download software operation.

In order to understand the problem, it is interesting a more detailed descrip-
tion of the download software use case. Thus, a sequence diagram [2] has been
developed to treat accurately the mentioned use case, see figure 2.

Sequence diagrams show how objects interact, but to take a complete view
of the system dynamics, it is also interesting to understand the life of objects.
In UML, the state transition diagram is the tool to describe this aspect of the
system. For each class with relevant dynamic behavior a state transition dia-
gram must be specified. Thus, we are going to present the corresponding state
transition diagrams for our system.

Alfred state transition diagram. The example supposes that Alfred is al-
ways present in the system, no event creation is relevant for our purposes.
So the state transition diagram begins when a view_services event is sent
to the user. Alfred’s behaviour is typical for an object server behaviour. It
waits for an event requesting a service (select_sw_service, show_catalog_GUI,
refine_catalog or select_sw). For each of these requests it performs a concrete
action, and when it is completed, a message is sent to the corresponding ob-
ject in order to complete the task. After the message is sent, Alfred returns
to his wait state to serve another request. Figure 3 shows Alfred’s behaviour.

VIII Jornadas de Concurrencia 5

(1K) i

l
i
|

| select_sw_service(info) i
I
I
I
i

(1K)

(1K)

create_catalog(info_plus) -
create_browser(cl) BrowserAgent

1 (100K)
-n (100K) show. catalog_GUI(c1)
observe_GUI_catalog(cl)
(0.9) (1K)
[not satisfied] refine i t) ax)
refine_catal og(refinement_plus)
" 0.2 100K
satisfied] [\(nfoi)need] moreJmE)rmat\())n(reflnernernz, ci)
,,,,,,,,,,, L CLC
(1K)
select_sw(name)
(1K)
select_sw(name)

(1K)
create_sdlesman(info_sale) -

]
delete_browser !

info_sale plus (1K)
e

(1K)
request(info_sale)

electronic_commerce

Fig. 2. Sequence diagram for download software

The stereotyped transition < more_services > points out that Alfred may
attend for other services that are not of interest here.

(1msg)
Do:add_infol

(1K)
Manager.get_catalog(info_plus)

(1K) S
select_sw_service(info)

(100K)
. show_catalog_GUI(ci)
<<more_services>>

{ (1s9)
Do:create_GUI(c)

~user.observe_GUI_catalog(ci)
(0.2) (1K) (100K)
[Muser.satisfied] select_sw(name

(0.9) (1K)
[not Muser.satisfied]refine_catal og(refinement)

1m

egflK)
~browser.refine_catal og(refinement_plus)

Fig. 3. State transition diagram for Alfred

6 VIII Jornadas de Concurrencia

Software manager state transition diagram. Like Alfred, the software
manager behaves as an object server. It is waiting for a request event
(more_information, get_catalog, request) to enable the necessary mechanism
to accomplish the task. Figure 4 shows its state transition diagram; it is
interesting to note the actions performed to respond the get_catalog request.
First, an ontology is consulted and, after that, two different objects are cre-
ated, those involved in task management.

(1K..100K)
more_information(refinement2,ci)

(10sg)
Do:get_info

(100K1browsa,veply(caal 0g)

10
Do: (crems%)_catal og

catalog.create_cptalog(info_plus) (1K)

Do: create_browser
1sg

efte browser(ci) (1K)

(1K)
get_catalog(info_plus)

—

(1K)
request(info_sale)

Do:add_info4 (1msg)
Asalesman.reply(info_sale_plus) (1K)

Fig. 4. State transition diagram for the software manager

Browser state transition diagram. State transition diagram in Figure 5 de-
scribes the Browser’s life. It is as follows: once the Browser is created it
must go to the MU_Place, where invokes Alfred’s shows_catalog_GUI method
to offer it the previously obtained catalog. At this state it can attend two
different events, refine_catalog or select_sw. If the first event occurs there
are two different possibilities: if the browser has the necessary knowledge to
solve the task, a refine action is directly performed, but if actually it has
not this background, the browser must obtain information from the software
manager, by sending a more_information request. If the second event occurs,
select_sw event, the browser must create a salesman instance and die.

linfo_need tavel]_ (0010 S place
amo (100K)) (1K)
creste,_browser(c) ~alfred.show_catalog_GUI (i refine_catalog(refinement_plus

(1K)

@ delete_browser Asalesman.create_salesman(info_sale)

[info_need Jmf W

reply
[not info_need] (1§)
Do refine

d)

Aafred.show_catalog_GUI(ci+1)

(100K) [info_need travel]

Doigoto_MU_Place
(100K)

Fig. 5. State transition diagram for the browser

VIII Jornadas de Concurrencia 7

Salesman State Transition Diagram. The Salesman’s goal is to give elec-
tronic commerce services, as we can see in Figure 6. After its creation it asks
the software manager for sale information. With this information the elec-
tronic commerce can start. This is a complex task that must be described
with its own use case and sequence diagram but it is out of the scope of this

paper.

(1K)

.cree(e_sal esman(info) request(info_sdle)

(1msg)
Do: add_info_sale]

begin_electronic_commerce|

end_electronic_commerce
Do: electronic_commerce

Fig. 6. State transition diagram for the Salesman

The developed models are expressive enough to accomplish with different
implementations. It remarks the necessary independence between methodologies
and final implementations. So, we can use these models to develop CORBA,
mobile agents, etc. based applications. But this lack could be not desirable in
certain cases. For example, in the system we are treating we do not know how
many majordomos should attend requests, how many concurrent users can use
the system, etc. However, a formal modeling with Petri nets allows that most of
these questions are well solved.

The design proposed in [12] deals with one user and one majordomo. Petri
nets allow to represent cases such as:

1. One user and one majordomo. The proposed system.
2. Many users and many majordomos.

We can see as less effort offers more results, due to avoid the necessity of
implementing the system for predicting performance figures.

4 UML extensions to deal with performance

Pragmatic object-oriented methodologies such as [6,7,10] do not deal with per-
formance skills. So, we can say that there does not exist an accepted method to
model and study system performance in the object-oriented software develop-
ment process. This lack implies that there does not exist a well-defined language
or notation to annotate system load, system delays and routing rates. On the
contrary, formal specification languages, such as LOTOS [15], or Petri nets [1],
have considered and studied the problem in depth. Thus, there exist several
proposals where we can learn from.

In this context, as we remarked before, it is our objective to propose a UML
extension to deal with performance on the software analysis and design stages.

We considered that our proposal must accomplish with both, the method
and the notation. First, the method will give us the relevant parameters to be

8 VIII Jornadas de Concurrencia

into account and the process to model the system. We advocate for a pattern
oriented approximation. Lately, design patterns [8] have gained relevance in soft-
ware development due to their simplicity and flexibility. But this will be subject
of future research. Second, the notation is treated in this work.

In order to have a complete performance notation, the UML behavioral and
structural models must be considered. Also, performance will play a prominent
role in the implementation diagrams. In this paper, we are going to fix our at-
tention only in behavioral aspects, concretely in the sequence diagram and the
state transition diagrams. Future works will deal with the rest of the UML dia-
grams to describe behaviour (use case diagrams, activity diagrams, collaboration
diagrams), structural aspects, and implementation diagrams.

4.1 Sequence diagrams

In a sequence diagram, messages sent between objects are represented. Normally,
a message is considered as no time consuming in the scope of the modeled system.
But in a mobile agent system, we distinguish between messages sent by objects
on the same computer and messages sent between objects on different computers,
those which travel by the net. The first kind of messages will be considered as no-
time consuming. The second kind will consume time as a function of the message
size and the net performance (speed). Here an annotation, between brackets, will
be made indicating the message size. Also it will be possible to annotate a range
for the size in the UML common way. For instance, in Figure 2 select_sw_service
message is labeled with (1 Kbyte), while show_catalog_GUI requires the movement
of (100 Kbytes)

In a sequence diagram, conditions represent the possibility of a message to be
sent or not. An annotation, also between brackets, expressing the event probabil-
ity success will be associated to each condition. A range is accepted too. See, for
instance, probability (0.9) associated in Figure 2 to the condition not_satisfied.

4.2 State Transition diagrams

In a state transition diagram two elements will be considered, the activities and
the guards.

Activities represent tasks performed by the object in a given state. Such
activities consume computation time that must be measured and annotated.
The annotation will be between brackets indicating the time needed, with the
possibility of indicating a range if the activity requires it. See, for example, bold
labels between brackets in Figure 3, 4, 5, 6.

Guards show conditions in a transition that must be held in order to fire
the corresponding event. A probability must be associated to them. It will be
annotated in the same way that guards in the sequence diagram were annotated.
See for instance label (0.9) in Figure 3.

VIII Jornadas de Concurrencia 9

5 Modeling with Petri nets

At this point, we have modeled the system with UML notation, and also the
load has been taken into account through the sequence diagram and the state
transition diagrams. So, a pragmatic approach of the system has been obtained.
But this representation is not precise enough to express our needs. Remember
that we want to predict system behaviour in two different ways. First, we want
to study how the system works with only one user served by one majordomo.
On the other hand, it is also of our interest to know the system behaviour when
several users are served by only one majordomo, or by several majordomos.

In order to obtain answers to our questions, we need to apply performance
analytic techniques to the UML diagrams developed. But there is a lack in this
field because no performance model exist for UML, so the pragmatic model is
not, expressive enough. Also, we need to express system concurrency, but UML
models concurrency in a very poor way. Thus, it is required a formal model of
the system with concurrency capabilities.

To solve these lacks, we have chosen Petri nets as formal model, because it
has the remarked concurrent capabilities and also there exist well-known analytic
techniques to study system performance in stochastic Petri net models.

In this section we model with Petri nets the first of the two proposed systems
(one user and one majordomo), the second will be developed in a future work.
For the first system, GSPN have the expressive power to accomplish the task.
To study the second system stochastic well-formed coloured Petri nets [4] are of
interest. Once the system is modeled, we use analytic techniques implemented
in a tool [3] to obtain the target performance requirements.

Now we are going to obtain a Petri net for each system class. Obviously,
every annotated state transition diagram will give us the guide, and the following
general rules will be applied:

— Two different kind of transitions were identified. Those which do not spend
net resources and those which do. The first kind will be translated into im-
mediate transitions (that fire in zero time). The second kind will be timed
transitions. The mean of the exponentially distributed time for the transi-
tion is calculated as a constant function of the message size and net speed.
More elaborated proposals like [5] could be taken into account, but we have
considered more important to gain simplicity.

— Actions inside a state of the state transition diagram are considered as time
consuming, so in the Petri net model we consider them also as timed tran-
sitions. The time is calculated from the CPU and disk operations needed to
perform the action.

— Guards in the state transition diagram will become immediate transitions
with the associated corresponding probabilities for the resolution of conflicts.

— States in the state transition diagram will be places in the Petri net. But
there will be not the unique places in the net, because additional places will
be needed as an input to conflicting immediate transitions.

10 VIII Jornadas de Concurrencia

end_ec

wait_for_service

electronic_commerce

3

afred.select_sw_services

wait_UserforCatalog

observe_GUI_catalog

begin_ec afred_refine_catalog

=
L=

afred.select_sw PA

Q%I%gﬁl

P15

Fig. 7. User Petri net component

select_sw_service . I show_GUI_catalog

select_software

add_info3 ' . \ add_info2

Fig. 8. Alfred Petri net component

VIII Jornadas de Concurrencia

get_info P8 browser.reply
S

ore_information_remote
MNe

more_information_|ocal

Fig. 9. SwManager Petri net component

- refine_catalog_browser P7 info_need_travel
salesman.create_salesman /
P6
P11
mm delete_browser P10
afred.show_catalog_GUI goto_Sw_Place
P
create_browser_agent
P12

goto_MU_Place

not_info_need or_local

% P
n
info_need_travell

Fig. 10. BrowserAgent Petri net component

11

12 VIII Jornadas de Concurrencia

user.electronic_commerce Po \/ user.end_ec
P5 PL
user.begin_ec -— create_salesman
end_add_info_sde P2
add_info_sde

SwManager.reques
begin_add_info_sale

Fig. 11. Salesman Petri net component

Figures 7, 8, 9, 10 and 11 represent the nets needed to model our system
components taking into account the previous rules.

The sequence diagram will be the guide to obtain a complete Petri net for
the system from the previous component nets. We must consider that UML
distinguishes, in a concurrent system, two different kind of messages in a sequence
diagram:

— those represented by a full arrowhead (wait semantics)
— those represented by a half arrowhead (no-wait semantics).

The following rules will be used to obtain the target net system. But first
must be taken into account that, for every message in the sequence diagram,
there exist two transitions with the same name in two different component nets,
the net representing the sender and the net representing the receiver.

— If the message has wait semantics, only one transition will appear in the net
system, this transition will support the incoming and outcoming arcs from
both net components.

— If the message has no-wait semantics, the two transitions will appear in the
net system and also an extra place will be added modeling the communica-
tion buffer. This place receives an arc from the sender transition and adds
an arc to the receiver transition.

The net system for the example is shown in Figure 12. It has been obtained
supposing that all the messages have wait semantics. That is the case here be-
cause the example supposes only one user requesting every time.

In order to understand how to apply the previous rules, we are going to ex-
plain how to obtain the observe_GUI_catalog transition in the net system Figure
12 from the observe_GUI_catalog message sent by Alfred to the user in the se-
quence diagram. We can observe in Alfred’s net Figure 8 and in the user’s net

13

VIII Jornadas de Concurrencia

B0INBSI0LBS 1M

B0INBS NS 109
Bopro BO 8ed
e I

e, O~

Bopwro apen pd
81d
L1d
bo pus II\'NW?EM%N/- 967 uibeq
o Tow

ofes oI PPe pUe

[5)
Tojui ppe Led

Borolopesn[iem

Ve

Boers aulpl
1
Ll

6Td s ojul ppe

as ojul ppe” uibeq

g—u

Boera™ N9 Fh.

UBWSS[ES 91
Ozd oed
eBeue VS 1EM [EOO[UOIIBULLIOJUT B0 %kl mMS 0j0b
'l
Iz -) Svd v
Lrd iBSAMO1] BoRIeY aulpl ovd Zojui ppe
PRI} peeu” Oju|
E00[| Emcwoi
L™
Téd)0We” Lo eWLLIo U 3low hd

m— p3OUOJUI JOU

96
05O

BSMOI OP P ==

Aidorsesmoiq K&

Sed (-

_So__o\umm:\oé ,\Q I
| teren peuou F

4 ; NS P

z z So\msoa

eun_

a%eld NN 0106 led IN9 Bopemro Mous ged

U
Wby esmoIg resI0

Fig. 12. The Petri net for the whole system

14 VIII Jornadas de Concurrencia

Figure 7 the presence of that transition. So, in the net system the transition
appears with the union of the incoming and outcoming arcs of the components,
synchronizing in this way the lifes of the objects.

The results shown in the next section are obtained from the net system in
Figure 12.

6 Performance results

As we have said in the previous section, the developed nets model the case
in which the system is used by only one user who is attended by only one
majordomo.

It is of our interest to study the system response time in the presence of a
user request. To obtain response time, first the throughput of the select_sw_service
transition, in the net system, will be calculated, by computing the steady state
distribution of the isomorphic Continuous Time Markov Chain (CTMC) with
[3]; finally the inverse of the previous result gives the system response time. We
want to know which are the system critical parts to accomplish the request and
identify its importance. There exist two possible parts which can decrease system
performance. First, the browser traveling by the net to the “software place” to
obtain new catalogs. Second, the user requesting for a refinement of the catalog
showed because s/he is not satisfied with it.

Table 1. System response time for an intelligent Browser

RPC |browser travels
5 | 5,4716 5,7313

10| 9,1374 9,1334

60 | 44,6827 49,4559

110(877,1929 980,3921

Table 2. System response time for a dummy Browser

RPC |browser travels
5 | 6,1546 7,2369

10| 10,3971 12,3915

60 | 50,6585 62,4219

110{1041,6666 1282,0512

In order to study the two possible system critical parts, we have developed
a test taking into account the following possibilities:

VIII Jornadas de Concurrencia 15

1200

Q
1<)
S

P

©
=3
S

—e— Browser RPC call

—=— Browser travels soft. place

IS
1=}
S

N
=3
15}

Response time (minutes)
(=2}
(=3
(=]

I

0 50 100 150

o

Mean no. refinements

Fig. 13. RPC vs. travelling for an intelligent Browser

1400

£ 1200 F
2
£ 1000 &
E 800 —e— Browser RPC call
'i 600 —m— Browser travels soft. place
£ 400
&
g 20 —7

0 : ' !

0 50 100 150

Mean no. refinements

Fig. 14. RPC vs. travelling for a dummy Browser

— When the browser is requested for a new catalog there exist several possi-
bilities:

e The browser has enough information to accomplish the task or he needs
to ask for the information. The first case supposes probability equal to 0
in the more_information transition, the second supposes probability 1 in
the same transition. We have considered eleven different possibilities in
a range that varies from a probability equal to 0, to a probability equal
to 1, increasing the probability 0.1 each time.

e When the browser needs information to perform the task, it may request
it by a remote procedure call (RPC) (represented in the net system by the
info_need_local transition) or it may travel by the net to the Software_place
(represented in the net system by the info_need_travel transition). In this
case, we have also considered the same eleven different possibilities. As an
example, if the probability to perform a RPC is 0.4 then the probability
to travel by the net will be 0.6.

— To test the user refinement request, we have considered four different pos-
sibilities. A user requesting a mean of five, ten, sixty, and one hundred and
ten refinements.

In Tables 1 and 2 we show some interesting results taken from our test. The
complete test is not presented because of its extent.

Table 1 shows system response time (in minutes) supposing the browser has
enough information to perform the task with a probability of 0.7 (an “intelli-

16 VIII Jornadas de Concurrencia

gent” browser). Column one indicates a probability equal to 0.3 to perform a
RPC, so there is not a probability to travel to the Software_place. Column two
indicates a probability equal to 0.3 to travel to the Software_place, so there is
not a probability to perform a RPC.

Table 2 shows system response time (in minutes) supposing the browser has
enough information to perform the task with a probability of 0.3 (a “dummy”
browser). Column one indicates a probability equal to 0.7 to perform a RPC,
so there is not a probability to travel to the Software_place. Column two indi-
cates a probability equal to 0.7 to travel to the Software_place, so there is not a
probability to perform a RPC.

The results obtained in Tables 1 and 2 are shown in a graphical way in
Figures 13 and 14 . We can observe as a result, that the browser’s knowledge
is more important for system response time than the agent travelling to the
Software_place. We still work in the performance parameters to obtain more
precise results.

7 Conclusions

The main goal of this paper is to present an approximation to evaluate per-
formance in design mobile agent software. We have used a system designed for
providing mobile computer users with a software retrieval service as test. We
summarize the contributions in the following items:

— A model to evaluate software performance has been integrated in the software
life cycle. It has been done in the early stages of the modeling process. Thus,
when performance or functional requirements change, it will be easy and less
expensive to assume them. Moreover, the approach permits to obtain the
performance figures in an automatic way, beginning from the UML models
the component Petri nets are systematically achieved, and from these the
net system, finally the net system allows performance evaluation.

— UML semantics is not as well defined as desired, so our approach brings a
formal semantics based on Petri nets to model the system. This is crucial to
apply any technique to analyze rigorously system performance.

— Concurrency is ambiguously expressed in UML, but when the translation to
Petri nets is performed a concurrent well defined model is gained, so different
kinds of concurrent systems could be analyzed.

— The modeled example presents a complex system which is expensive to im-
plement. Our approach offers an analytic way of evaluating such kind of
systems without having to implement several prototypes.

References

1. M. Ajmone Marsan, G. Balbo, and G. Conte, A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems, ACM Transactions
on Computer Systems 2 (1984), no. 2, 93-122.

10.

11.

12.

13.

14.

15.

16.

17.

18.

VIII Jornadas de Concurrencia 17

G. Booch, I. Jacobson, and J. Rumbaugh, OMG Unified Modeling Language spec-
ification, June 1999, version 1.3.

G. Chiola, A graphical Petri net tool for performance analysis, Proceedings of the
374 International Workshop on Modeling Techniques and Performance Evaluation
(Paris, France), AFCET, March 1987.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic well-formed
coloured nets for symmetric modelling applications, IEEE Transactions on Com-
puters 42 (1993), no. 11.

J. Dilley, R. Friedrich, T. Jin, and J. Rolia, Web server performance measurement
and modeling techniques, Performance Evaluation (1998), no. 33, 5-26.

D. Coleman et Al., Object oriented development. the Fusion method, Object Ori-
ented, Prentice Hall, 1994.

J. Rumbaugh et Al., Object oriented modeling and design, Prentice-Hall, 1991.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
reusable object-oriented software, Addison-Wesley, 1995.

C. Harrison, D. Chess, and A. Kershenbaum, Mobile agents: are they a good idea?,
Mobile Object Systems: Towards the Programmable Internet, 1997, pp. 46—48.

I. Jacobson, M. Christenson, P. Jhonsson, and G. Overgaard, Object-oriented soft-
ware engineering: A use case driven approach, Addison-Wesley, 1992.

E. Kovacs, K. Réhrle, and M. Reich, Mobile agents OnTheMove -integrating an
agent system into the mobile middleware, Acts Mobile Summit (Rhodos, Grece),
June 1998.

E. Mena, A. Illarramendi, and A. Gofi, Customizable software retrieval facility for
mobile computers using agents, proceedings of the 7th International Conference on
Parallel and Distributed Systems (ICPADS’2000), workshop International Flexible
Networking and Cooperative Distributed Agents (FNCDA’2000) (Iwate (Japan)),
IEEE Computer Society, July 2000.

Object Management Group, The common object request broker: Architecture and
specification, June 1999, Revision 2.3.

E. Pitoura and G. Samaras, Data management for mobile computing, Kluwer Aca-
demic Publishers, 1998.

N. Rico and G.V. Bochman, Performance description and analysis for distributed
systems using a variant of LOTOS, 10th International IFIP Symposium on Pro-
tocol Specification, Testing an Validation, July 1990.

C. U. Smith, Performance engineering of software systems, The Sei Series in Soft-
ware Engineering, Addisson—Wesley, 1990.

G. Waters, P. Linington, D. Akehurst, and A. Symes, Communications software
performance prediction, 13th UK Workshop on Performance Engineering of Com-
puters and Telecommunication Systems (Ilkley), Demetres Kouvatsos Ed., July
1997, pp. 38/1-38/9.

M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, A wide band approach to
integrating performance prediction into a software design environment, proceedings
of the 1st International Workshop on Software Performance (WOSP’98), 1998.

