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Abstract

This paper addresses the computation of lower
bounds for the steady-state throughput of stochas-
tic Petri nets with immediate and exponentially dis-
tributed service times of transitions. We try to deeply
bridge stochastic Petri net theory to untimed Petri
net and queueing networks theories. Previous results
for general service time distributions are improved for
the case of Markovian nets by considering some pes-
simistic transformation rules operating locally on the
net structure, its initial marking, and stochastic in-
terpretation. Special interest have the obtained results
for the case of live and bounded free choice nets and
live marked graphs systems.

1 Introduction

The computation of lower bounds for the through-
put of transitions, defined as the average number
of firings per time unit, of stochastic Petri nets
with immediate and exponentially distributed service
times of transitions is considered in this paper. Pre-
vious results for general service time distributions
[2%, 3%, 4%, 5%]1, based only on the net structure, on the
routing probabilities, and on the mean values of the
service time of transitions, are improved. Through-
put upper bounds for Markovian nets are studied in a
companion paper [4].

The improvement of the throughput lower bound,
for the particular case of exponential distributions, is
based on a kit of transformation rules. The first, a
multistep preserving reduction rule, allows to remove
some places without changing the exact throughput
of the net system model. The second group, sequence
and fork-join rules, reduces some subnets to a tran-
sition, usually preserving the average firing time, but
relaxing the probability distribution function (PDF)
(e.g. relaxing from a series of exponentials to a single
exponential of the same mean service time). The third
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group of transformation rules, fork and join transition
splitting, produces some kind of “stochastic desynchro-
nizations”, in the net model. Transition splittings can
be very pessimistic. Their interest becomes clear when
combination with fork-join reduction rules is possible.

The mentioned kit of transformation rules allows
to fully reduce any live and bounded 1-cut marked
graph (i.e., such that there exists at least one tran-
sition belonging to all circuits). Live and bounded
marked graphs (LBMG) can always be transformed
into 1-cut marked graphs (1-cut MG) while making
them slower by: (1) removing some circuits and chang-
ing the service time of some transitions or (2) changing
the net structure in such a way that a new immediate
transition belonging to all circuits is introduced.

The complete reduction of live and bounded free
choice systems (LBFC) is impossible with our kit of
reduction rules when we are looking for bounds. The
reason is that choices lead to hyperexponential-like
PDFs, that cannot be “stochastically smaller in mean”
than the exponential services with the same mean
value. Only if the reduced net has the topology of
state machine, plus eventually some places self-loops
around transitions, the reduction is totally satisfac-
tory. In these cases a queueing network (QN) topol-
ogy is obtained and classical product-form solutions
hold, leading to polynomial time computation of the
throughput for the transformed net system.

In general, the intuitive idea that decreasing the
service time of a transition leads to a slower system
is paradoxically wrong! Figure 1 shows a Markovian
net system where increasing the service time ss of ts,
while so € (0,2), the throughput decreases. Therefore
the idea of decreasing the throughput of a system by
slowing down one subsystem (e.g., a transition, as in
figure 1) does not hold in general, even if in practice
this will be true for most cases. Therefore in gen-
eral throughput approximations are computed. For
the particular classes of LBFC nets and live MGs, a
performance monotonicity property is shown to hold:
slowing down of a subsystem never allows better over-
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Figure 1: A first paradox: increasing the mean ser-
vice time sy of ¢t on the Markovian net system leads
to better overall throughput (Note: the underlying net
is simple, mono-T-semiflow, and state machine decom-
posable).
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Figure 2: An LBMG and three first transformations
preserving the throughput lower bound.
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Figure 3: Additional transformations for the net in
figure 2 preserving the throughput lower bound.

all throughput.

We assume that the reader is familiar with stochas-
tic Petri net (PN) models. Some notations and consid-
erations about the stochastic interpretation assumed
in what follows can be seen in the companion paper
[4].

The paper is organized as follows. In section 2 we
recall the throughput lower bounds for stochastic PNs
with general service time distributions (including both
deterministic and stochastic timing) derived in previ-
ous works. In sections 3, 4, and 5, different transfor-
mation rules are introduced.

Figures 2 and 3 present a reduction process for an
MG, using multistep preserving places, transitions in
sequence, fork-join subnets, and fork-splitting trans-
formation rules. Section 6 is devoted to state the com-
pleteness of the presented kit of transformation rules
with respect to 1-cut MGs. Section 7 introduces some
additional reduction rules making the all kit complete
for the class of live (possibly unbounded) MGs. Con-
clusions are summarized in section 8.

2 Bounds for general service PDFs

In this section we recall [3x, 4%, 5x] insensitive (i.e.,
for any PDF of services) throughput lower bounds
for stochastic PNs. In what follows ¢* is the limit
throughput vector and T'V) = 1/&'}‘ the mean interfir-
ing time of t; (the inverse of its throughput).



The performance of a model with infinite-server se-
mantics depends on the maximum degree of enabling
of the transitions. For this reason we recall here two
concepts of degree of enabling.

Definition 2.1 [5x] Let (N, Mo) be a net system and
t a given transition of N'. The enabling bound of t is
E(t) = max{k | 3M € R(N,My) : M > kPRE][t]}.
The liveness bound of t is L(t) = max{k | VM' €
R(N, Mo),3M € R(N, M"Y : M > kPRE[f]}.

The enabling bound is a behavioural property, of
complex computation. We recall its structural coun-
terpart.

Definition 2.2 [5x| Let (N, My) be a net system. The
structural enabling bound of a given transition t of N'
18:

SE(t) = max{k|Mo + C - & > kPRE[t]; & > 0}
(LPP1)

The following result relates the three above pre-
sented concepts:

Theorem 2.1 [4x] Let (N, M) be a net system.
i)VteT: SE(t) > E(t) > L(t).

i) If (N, My) is reversible (i.e., My is a home state),
then Yt € T: E(t) = L(t).

@) If (N, My) is an LBFC system, then ¥Vt € T':
SE(t) = E(t) = L(t).

Theorem 2.1.iii allows, for LBFC systems, to com-
pute L(t) in polynomial time, solving (LPP1). Ac-
cording to the next results, insensitive lower bounds
on throughput for LBMGs and LBFC net systems can
be computed in polynomial time.

Theorem 2.2 [3%, 4x] For any LBFC net with a speci-
fication of the mean service times s; for eacht; € T it
s not possible to assign PDFs to the transition service
times such that the mean interfiring time of transition
t; is greater than I‘E‘S = Z;nzl v]@ SES—ZtJ-V indepen-
dently of the topology of the net, where Uj(-l) is the visit
ratio to transition t;, normalized for t; (i.e., vz@ =1).
For LBMGs, #¥) = 1 and the bound is reachable for
some assignement of PDF's to the service time of tran-
sitions.

The interpretation of the above result is as follows:
a tight upper bound for the mean interfiring time of
an LBMG (all its transitions have equal throughput)
can be obtained putting in series the activity of all
transitions (stations in QN terminology) and with a
number of servers equal to its liveness bound.

Ps

Figure 4: A second paradox: removing ps all liveness
bounds go down to zero (i.e., the resulting net system
has a total deadlock).

Liveness bounds of transitions of MG in figure
2.a are L = (3,3,3,3,4,3,3,3,2,2,2,2)T.  Assum-
ing the following vector of service times: § =
(1,1,10,10,6,14,0,2,1,1,1,1)% the insensitive upper
bound for the mean interfiring time is (theorem 2.2):
't = 16.16. This value can be reached for some
PDFs. Nevertheless, if services are exponential the ex-
act mean interfiring time of transitions is I' = 6.9665.

In the following, information about the PDFs will
allow us to improve our estimation of throughput
lower bounds.

3 Multistep preserving places

In this section we are looking for a reduction rule
that preserves all performance indices of a stochas-
tic net system, for all possible stochastic interpreta-
tions. Thus we are looking for a reduction rule that,
on the underlying net system, preserves the set of
servers that can simultaneously work. According to
this, transitions cannot be removed and our reduc-
tion rule must consider only places. More technically
speaking, we are interested in those places whose elim-
ination preserves the multisets of transitions simulta-
neously firable.

Places represent constraints to the firing of tran-
sitions of a net model. Therefore, removing a place
usually leads (e.g., pis in figure 2.a) but not always
to an increase of the liveness bounds of transitions.
Nevertheless, a counterintuitive fact is shown in figure
4. In some other cases the elimination of a place does
not change the liveness bound of any transition (e.g.,
p1g in figure 2.a).

The elimination of implicit places [10%] preserves
the firing sequences of the net system. Nevertheless
concurrency and mutual exclusion properties are not
preserved. Therefore a generalization of the implicit
place concept is needed: multistep preserving place.

Let (./\7 , My) be the net system obtained by remov-
ing place p in (N, Mp).



Definition 3.1 Let (N, My) be a net system. A mul-
tiset of transitions S is a multistep of (N, M) iff
M € R(N,My) s. t. M > PRE - S, where S is the
characteristic vector of the multiset.

Definition 3.2 [5] The place p is multistep preserving
in (N, Mo) iff its elimination preserves the multisteps.

From the above definition the next result can be
stated:

Theorem 3.1 Let p be a multistep preserving place
in the live and structurally bounded system (N, My).
Removing p preserves the following properties:

1. Structural boundedness.

2. The enabling and liveness bounds, thus liveness
and all the performance indices (throughput, queue
lengths,. .. ) for any stochastic interpretation (Marko-
vian or not).

3. The number of reachable markings, thus the size of
the embedded Markov chain of the Markovian PN.

Basically, removing multistep preserving places al-
lows the application of other transformation rules as
those presented in the next paragraphs.

Because SE(t) > E(t) > L(t) (theorem 2.1), the
following characterization can be done using convex
geometry/linear programming theory. The result de-
rives in a straighforward way from [5] and it is close
to results in [10%].

Let C(p) be the row associated to p in C, and C
the incidence matrix obtained by removing C(p) in C.

Theorem 3.2 [5] Assuming N is structurally live and
structurally bounded, a sufficient condition for p being
multistep preserving in (N, My) is:

)Y >0 s.t. YT.C=C(p).

ii) Mo(p) = YT - My + 0, where § = max{PRE[p| -
SIM=My+C-S;M>PRE-S;M,3,8>0

Theorem 3.2 says that the places we will be able to
remove are marking structurally implicit [10%] (condi-
tion i), provided with a certain initial marking (con-
dition ii). Places pig and pig in figure 2.a accomplish
condition i.

The above results allow to state a reduction rule as
follows. Note that there are no conditions/changes at
stochastic level.

Ry: Reduction Rule for Multistep Preserving
Places:

Structural conditions: 3Y > 0s.t. YT .C = C(p).
Marking conditions: My(p) > Y71 - Mo + 0.
Stochastic conditions: None.

Structural changes: P = P\{p}; F = F\{(t,p), (p,t)}

Marking changes: None.
Stochastic changes: None.

Place py9 in figure 2.a is multistep preserving (Y =
0,6 =2).

4 Rules almost-preserving local mean
traversing time

In this section, we introduce two local reduction
rules that almost preserve the mean traversing time of
the subnet being reduced. This means that the rules
presented here preserve the mean traversing time of
the reduced subnet by a single token, in the simplest
cases (we define the mean traversing time of one sub-
net by a token as the mean time elapsed since the
token enters in the subnet until it goes out). In the
most general cases, the mean traversing time of the
subnet by a token can be increased by the rules. In
all cases, the mean interfiring time of the whole net is
increased. Thus a lower bound of throughput can be
computed.

In particular, sequences of transitions (with expo-
nentially distributed service times) and fork-join sub-
nets (including parallel transitions with exponential
service times) are reduced to single transitions with
exponentially distributed service time. Although they
preserve the mean traversing time of the reduced sub-
net, the random traversing time of that subnet is in-
creased in the sense of a stochastic ordering relation.
Technical details concerning this ordering relation are
collected in section 4.1. The reduction rules are for-
mally presented in section 4.2, together with the effect
whose application has in the global throughput for the
case of LBFC nets (and in particular for LBMGs).

4.1 Stochastic order relation

Let us suppose that two non-negative random vari-
ables (r.v.), X and Y, are such that Y gives more
weight to the extreme wvalues than X does; in other
words, Y has more variability than X. This fact,
which can be formally stated saying that E[g(X)] <
E[g(Y")] for all nondecreasing convex functions g, can
be shown to be equivalent [1] to the next order relation
between r.v.:

Definition 4.1[1] Let X and Y be non-negative r.v.
with PDFs F and G, respectively. X is said to be
stochastically smaller in mean than Y, written X <Y,
iff for all x > 0, [FF(t)dt < [ G(t)dt, where
F=1-FandG=1-G.

In particular, if X and Y have the same mean value,
X <Y is one way of guaranteeing that Var(X) <
Var(Y), because g(z) = z? is convex and E[X] =
E[Y].



Now, we present a class of r.v. that are stochas-
tically smaller in mean (i.e., they have less variabil-
ity) than exponential r.v., provided that they have the
same mean values.

Definition 4.2 [1] A non-negative r.v. X with PDF
F is said to be mew better than wused in expecta-
tion (NBUE) iff its mean value E[X] is finite and
[ZF(t)ydt < E[X]F(a) for all a > 0 such that
F(a) > 0.

For the exponential PDF | the inequality of defini-
tion 4.2 holds as strict equality, so this type of PDF
can be regarded as extreme in the class of NBUE. The
next theorem referes to this fact:

Theorem 4.1[1] If X is NBUE and Y is ezponential
such that E[X] = E[Y], then X <Y.

In the sequel, we recall that sum and “max” oper-
ators over exponentially distributed r.v. give NBUE
PDFs, that can be upper bounded, in (<)-relation
sense, with exponential r.v. with the same mean (ac-
cording to theorem 4.1).

Theorem 4.2 [1] If X1,..., X, are independent and
exponential r.v., then X; + --- + X,, s NBUE dis-
tributed.

Then, from theorems 4.1 and 4.2, the next result
follows:

Corollary 4.1 If X,,...,X,,,Y are independent and
exponential r.v. with E[Y] = E[X1] + --- + E[X,],
then X;1 +---+ X, <Y.

Analogous results hold for the “max” operator:

Theorem 4.3 [1] If X;,...,X,, are independent and
exponential r.v., then max{Xy,...,X,} is NBUE dis-
tributed.

Corollary 4.2 If X, ..
exponential r.v. with E[Y] = E[max{Xy,..
then max{Xy,...,Xp} <Y.

., X, Y are independent and
- X}l

We remark that, if X;, ..., X, are independent and
exponentially distributed (with s; = E[X;]), the mean
value of the r.v. max{Xy,..., X,} can be easily com-
puted as [1]:

E[max{Xy,.. . =
—Xhm( + ) T A D (5 g )T
R (_1)”‘*‘1(% S i)*l
(1)
In the next subsection, corollaries 4.1 and 4.2 justify
the use of two reduction rules of sequential and parallel

transitions for the computation of throughput lower
bounds of LBFC nets (and in particular for LBMGs):
they are based on the substitution of the sum and the
maximum (respectively) of exponential r.v. for other
exponential variable with equal mean value.

4.2 The reduction rules

Let us formally introduce the reduction rules for
transitions in sequence and for parallel transitions. In
the simplest cases, the mean traversing time of the
reduced subnets are preserved and the throughput of
the whole net decreases. The rules for the most gen-
eral cases reduce the throughput of the net and also
increase the mean traversing time of the subnets.
4.2.1 Transitions in sequence

Intuitively, this transformation makes indivisible
the service time of two transitions representing el-
ementary actions which always occur one after the
other and leads to no side condition.

Definition 4.3 Two transitions t; and t are in se-
quence iff 13 = {p12} = *t.

Note that more general cases with several places
between transitions t; and t» can be reduced to the
elementary one defined above, after the elimination of
multistep preserving places (reduction rule presented
in section 3).

Given two transitions in sequence, t; and t2, with
exponential services and means s; and ss, a direct
application of corollary 4.1 suggests to substitute both
transitions and the connecting place p1o for a single
transition ¢;, sum of ¢; and ¢, with exponential service
and mean s1 + ss.

R;: Reduction Rule for Sequences:

Structural conditions: (N, Mp) contains two transi-
tions in sequence, t; and t2, connected through pio.
Marking conditions: None.

Stochastic conditions: The r.v. X; and X5 associated
to the transitions ¢; and t» must be exponential (it
holds also for NBUE PDFs).

Structural changes: P =P\ {p12}; T =T\ {t1,t:} U
{ti2}, where t1o ¢ T'; F' = F\ {(t1,p12), (P12,t2)} U
{(p,t12)lp € .tl}U;{v(tw,p)U?E t3}- .
Marking changes: My(p) = Mo(p) if p & *t1, Mo(p) =
Mo(p) + Mo(p12) if p € *t1.

Stochastic changes: The r.v. X5 associated to t15 has
an exponential PDF with mean E[Xi»] = E[X1] +
E[X3]. The (exponential) r.v. associated to other
transitions remain unchanged.

According to corollary 4.1, the random service time
of the new transition t;o is stochastically greater in
mean than the random traversing time of the subnet



consisting of t1, p12, and t2, while the mean value of
the traversing time is preserved. Concerning the whole
throughput, the previous reduction usually produces
a slower one. This fact is guaranteed if LBFC systems
are considered.

Theorem 4.4 Let (N, My) be a net system and
(N, ]\70> that obtained applying Ryi. The following
statements hold:

1. Liveness and boundedness are preserved.

2. The size of the state space is reduced.

3. If N is LBFC, then: (a) the reduced net N is
also LBFC and (b) the throughput of any transition
(different from t,; and ts) of the reduced net is less
than or equal to the original one.

Proof: Statements 1, 2, and 3.a are obvious. Concerning the
throughput, it must be pointed out that:

1. Either there exists a fork-join subnet including the reduced
transitions whose mean traversing time is augmented by the
reduction rule or the mean interfiring time of transitions in the
whole net is preserved.

2. In a LBFC net, if the mean traversing time of a subnet is
increased, then the throughput of the whole net decreases.

In order to prove claim 1, consider two transitions ¢, and
t, of the net such that [t3| > 1, |*ty| > 1, and such that there
exists a directed path from t, to t; and other directed path
from t2 to t, (where ¢; and t» are the transitions in sequence
being reduced). If such transitions ¢, and ¢, do not exist, then
the considered net is a state machine, thus it is isomorphic to a
product-form closed monoclass queueing network with infinite
servers in all stations (delay stations), and the result stated
in the theorem is true (the throughput does not change after
the reduction). Assume that ¢, and ¢, exist. Then the mean
traversing time (by a single token) of the subnet generated by
the paths connecting t, with ¢ is less than or equal to the mean
traversing time (by a single token) of the same subnet after the
reduction (notice that the subnet includes transitions ¢; and
t2). The proof of this claim, that uses the results presented
in section 4.1, can be found in [7], in the framework of PERT
models with exponential timing. It is based on the fact that
the mean value of the maximum among sums of NBUE r.v. is
less than or equal to the mean value of the maximum among
the corresponding sums of exponential r.v. with the same mean
than the original NBUE PDFs.

In order to prove claim 2, we recall that LBFC nets can be
decomposed into several state machines (P-components) con-
nected by means of synchronization transitions [3]. Moreover,
from the definition of FC nets, if p, and pp are input places to a
synchronization transition ¢, then ¢ is the unique output transi-
tion of pg and pp. In other words, once a synchronization tran-
sition has been enabled in an FC net, its firing is unavoidable.
Then, if the mean (by a single token) time of a subnet increases
after the reduction rule, the effect can be a greater amount of
waiting time at synchronization transitions, but never the in-
creasing of the throughput of transitions. =

As an example, transitions t3 and tsg in the net
depicted in figure 2.d are in sequence, and can be re-
duced to a single transition t,53.

The net in figure 1 is simple, mono-T-semiflow and
state machine descomposable. This leads to the con-
clusion that the decrease of the throughput of the
transformed net is not guaranteed for such net sub-
classes that are so close to FC nets in the net sub-
classes hierarchy.

(a) (b) (©)

(@ (e) ® (&

Figure 5: Generalizations of the reduction of se-
quences.

Some generalizations of the reduction rule pre-

sented above can be considered:

1. When transitions in sequence have their liveness bounds re-
duced by means of self-loop places (see figure 5.a). In these
cases, a first pessimistic transformation can be made substi-
tuting the self-loop places by a single place connecting the two
transitions in sequence, like is depicted in figure 5.b. This trans-

formation mantains the liveness bound of both transitions but
reduces the marking bound of place between them. After that,

the reduction rule presented above can be aplied to the transi-
tions in sequence, leading to the subnet of figure 5.c. We remark
that this generalization of the rule does not preserve the mean
traversing time of the reduced subnet: the mean traversing time
is increased, therefore the reduced net is slower than the origi-
nal. From a QN prespective the reduction consist in removing
the queue represented by pi12 and fusing stations ¢; and ¢y into
a single one with mean service time s1 + s2.

2. Literature on reduction/transformation techniques for the
qualitative analysis of PNs (e.g., [2, 8]) gives ideas on pos-
sible rules for stochastic PNs. Our stochastic reductions are
based on the substitution of some subnets for exponentially dis-
tributed transitions, thus increasing the r.v. in the (<)-relation
sense, and increasing the coefficient of variation to 1 (see sec-
tion 4.1). Therefore, rules including choices and multiple at-
tributions must not be considered, since they lead to hyper-
exponential PDFs (with coefficients of variation greater than
1) that cannot be stochastically bounded with exponentials.
However, some classical reduction rules (without choices and
multiple attributions) like those depicted in figure 5.d and 5.f
can be considered. The transitions ¢; and ¢z in figures 5.d
and 5.f can be reduced to the single transition ¢12 in figures 5.e
and 5.g, respectively, with exponential service time, and mean
s12 = $1+s2. The throughput of the obtained net is, in general,
less than the original.

4.2.2 Fork-join subnets

In this section, corollary 4.2 is used in order to re-
duce a fork-join subnet to a single transition. The
most simple case of fork-join subnet that can be con-
sidered is depicted in figure 6.a. In this case, if tran-
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Figure 6: Elementary fork-joins and their reduction.

sitions t; and t; have exponential services X; and X,
with means s; and s, they are reduced to a single
transition (figure 6.b) with exponential service time
and mean E[max{X;, X2}] = h(s1, s2), where h is the
function defined in equation (1). Therefore, the mean
traversing time of the reduced subnet by a single token
has been preserved. However, by corollary 4.2 the ran-
dom service time of the new transition ¢1» is stochasti-
cally greater in mean than the random traversing time
of the reduced subnet (which is the maximum between
two exponential r.v.). Concerning the throughput of
the whole net, similar arguments to those in theo-
rem 4.4 can be used to assure that the throughput
of the net derived after reduction is smaller than the
one of the original net. A trivial extension can be ap-
plied if the fork-join subnet includes more than two
transitions in parallel, using corollary 4.2.

In a more general situation, depicted in figure 6.c,
several tokens are trapped in the fork-join, and the
mean traversing time of the subnet is less than the one
of the subnet of figure 6.a. A pessimistic assumption in
this case consists in supposing that the K trapped to-
kens are always in place pi"* when transition ¢ is fired.

Then the mean traversing time of the subnet can be
K+1

—_——
upper bounded by E[max{Xi,min{X,,...,X>}}] =
h(s1, #%7), where h is once more the function defined
in equation (1). And now, since min{Xs,...,Xo} is
exponentially distributed, the subnet can be reduced
to a single transition with exponential service time and
mean equal to h(sy, s2/(K+1)), increasing the random
traversing time in the (<)-relation sense (by corol-
lary 4.2). The reader can notice that, before the ap-
plication of previous reduction, “non-trapped tokens”
must be removed from the inside of the fork-join and
added to the input places of transition tp.

In figure 7.a an example of the most general case
of fork-join that we consider is depicted. In this case,
some tokens can be trapped in the fork-join, and also
self-loop places can limit the liveness bound of in-
volved transitions. We present now the formal def-

(b)
Figure 7: A more general fork-join.

inition of the reduction rule, for these general cases
(in fact, more than two transitions in parallel can be
involved in the fork-join).

R>: Reduction Rule for Fork-Join Subnets:

Structural conditions: (N, My) contains a set T =
{t1,...,t,} of parallel transitions included between a
fork transition, ¢y, and a join transition, ¢ .

Marking conditions: None.

Stochastic conditions: The r.v. Xi,...,X, associ-
ated to the transitions in T must be exponential, with
means Sy, ..., Sp.

Structural changes: Let P = *(T) U (T)®. Then: P =
P\ PU{pr,ps}, wherepp,p; ¢ P; T =T

{t'}, wheret' ¢ T; F=Fn (P xT)U (T x
{r,pr), (pr,t"), (', ps), (ps, ts)}

Marking changes: Let be k; = My(pi™) + Mo(p2™t),
where pi" = t%. N *t;, and pd*t =2 Ny, i=1,...,r.
Let be k& = min{k;|i = 1,...,r}. Then, Mg(p) =
Mo(p) it p € P\ P,Mo(p) = kifp = pr, Mo(p) =
Oif p=mpy.

Stochastic changes: The r.v. X' asociated to the
transition ¢’ has an exponential PDF with mean

EX'] =h (min{L(tlL;}kl—k-i-l}’ R min{L(trs)fkr—kH})’
where ki,...,k., k are the constants defined above,
and L(t;) is the liveness bound of t;, 7 = 1,...,r. The
(exponential) r.v. associated to other transitions re-
main unchanged.

Note that if ¢; are self-loop free then k; —k = L(t;) —
L(tp),i = ].,...,’I‘.

According to corollary 4.2, the following result can
be derived, with similar arguments to theorem 4.4. In
fact it follows easily for safe nets, while in the case of
non-safe nets it is necessary to check that the mean
traversing time of k tokens through the fork-join (in
which some additional tokens can be trapped) is less
than the mean traversing time of the same k tokens
through the new transition resulting from the reduc-
tion. This computation can be made straightforward
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Figure 8: Particular cases of fork-joins.

using order statistics of exponential r.v. (see, e.g., [6]).
We omit it by the lack of space.

Theorem 4.5 Let (N, My) be a net system and
(N, ]\70> that obtained applying Ry. The following
statements hold:

1. Liveness and boundedness are preserved.

2. The size of the state space is reduced.

3. If N is LBFC, then: (a) the reduced net N s
also LBFC and (b) the throughput of any transition
(different from those in T) of the reduced net is less
than or equal to the original one.

As an example, let us consider again the net in
figure 2. Transitions t3 and t4 in figure 2.b belong
to a fork-join, thus they can be reduced to a single

transition t34 applying the above rule (figure 2.c).

The reader can notice that some particular schemes, seem-
ingly different to the previous general one, can be easily trans-
formed into fork-join subnets. As an example consider the net
in figure 8.a. For this net, the fork and join transitions are
the same: t. They can be made visible, by splitting ¢ into two
different transitions ¢tz and t; with a connecting place (see fig-
ure 8.b). After that, the fork-join reduction rule can be applied.

Another particular scheme is depicted in figure 8.c. In this
case, the place p can be split into two places connected through
an immediate transition (see figure 8.d) and the fork-join reduc-
tion rule can also be applied.

5 Splitting transitions

Multistep preserving places, sequence transitions,
and fork-join subnets are reduction rules leading to
net systems with smaller state (marking) space. Nev-
ertheless, they do not allow the reduction of net sys-
tems like that in figure 2.c.

In this section a new transformation rule is intro-
duced. It is not a reduction rule in the sense that the
state space of the transformed net system tends to
be larger than the original one. From a performance
point of view, it does not preserve the mean traversing

time of the subnet involved in the transformation, be-
cause it replicates the transition to split. So, where are
the advantages of this new rule 7 The answer is that
it allows to proceed further in the reduction process
using again the previous rules.

The figure 2.c and 2.d show how the transition ¢, is
split into two transitions t,¢2. This is called a fork-
splitting, because the split transition is a fork one (i.e.,
[t* > 1).

After that splitting for the net in figure 2.d, 6* =
0.1350 and &' = 0.0718, and the state space has
grown from 1011 to 3066 markings. Nevertheless, the
application of sequence and fork-join rules to the net
of figure 2.d leads to the system in figure 3.e. In table
1, it is shown that the error of the insensitive bound
computed with the system in figure 2.c is 46% and in
3.e only 36%.

Definition 5.1 Let N = (P, T, F) be a net, tr €T is
a 1-fork transition ff:

i) tp is a fork transition (i.e. |t |=q¢>1)

it) *tp = {pr} and | py |=| *pr |=1

Let ¢ty be a fork transition, t}. = {pZJrl |7:1,...,q}
where ¢ =| 3. |, and *pp = t. The r.v. associated to
tr is X, exponentially distributed with mean sp.
Rj3: Transformation Rule for Fork Splitting:
Structural conditions: N has a 1-fork transition tp.
Marking conditions: None.

Stochastic conditions: None.

Structural changes: P = P\ {pp} U b | j
Lo.,ahpp € P T =T\ {tr}U{ty | j =
17"'7q})7 ti" gT’ F= E\{(prtF)7(tF7pg+1) | .7 =
1... 7Q} U {(fap]F)a (p]F7t%‘)> (t%',pg+1) | J=1... ,Q}-
Marking changes: Mo(p) = My(p)ifp € P\
{pr}; Mo(py) = Mo(pr)Vji=1,...,q.

Stochastic changes: The new transitions, denoted t%,
j=1,...,q have associated r.v. X};,j =1,...,q with
the same PDF than Xp.

With similar arguments to theorem 4.4, the follow-
ing theorem can be proved:

Theorem 5.1 Let (N, M) a net system and (N, M)
the obtained fork-splitting transition ty.

1. N is structurally live and structurally bounded iff N
is (i.e. structural liveness and structural boundedness
are preserved).

2. The state space of (N, My) is never smaller than
that of (N, Mo).

3. If N is LBFC then: (a) N is also LBFC and (b)
the throughput of any transition of the reduced net is



less than or equal to the original one (equality holds
only when the splitted transition is immediate).

For join-gplitting, denoted R4: Join-Splitting,
formal definition (the reverse of fork-splitting) and
transformation rules are not included here, by the lack
of space. Finally, theorem 5.1 equally holds for join-
splitting.

When we compute a throughput bound using fork-
splitting or its reverse join-splitting, we will not ob-
tain the same insensitive bound. These two possibil-
ities and the choice of the transition to split, give us
several heuristics for the transformation process, and
also we get differents bounds. Some of these heuris-
tics could be: (1) use only fork-splitting; (2) use only
join-splitting; (3) choose among the candidate transi-
tions to be split, the one with minimun mean service
time and apply Rs or R4 according to the nature of

the transition.

The quantitative results of the transformation pro-
cess illustrated in figures 2 and 3 are shown in ta-
ble 1. |T'ang| represents the cardinal of the tangible
reachable markings set. It correspond to the ex-
act mean interfiring time of the net (in fact, of any

transition). ¥’ is an upper bound for the mean
interfiring time of transitions of the MG (computed us-
ing theorem 2.2). The relative error in the last column
of each row in the table is computed between the exact
throughput of the net in figure 2.a and the insensitive
throughput lower bound of the net corresponding to

that row (1/T¥_ ). The estimated bound has been
improved from 16.16 to 10.49 (56% error to 33% error).
An additional improvement (15% error) is presented

in the next section.

[ Table 1 ]

Net [Tang| | Cezact }‘fwm Error
a (Fig.2) 8698 | 6.9665 | 16.16 | 56%
b (Fig.2) 8698 6.9665 16.16 56%
¢ (Fig.2) 1011 | 7.0414 | 1291 | 16%
d (Fig.2) 3066 | 7.0421 | 13.91 | 49%
e (Fig.3) 187 | 7.1893 | 10.91 | 36%
f(Fig.3) 540 | 7.2225 | 1191 | 41%
g (Fig.3) 336 | 7.2250 | 12.91 | 46%
h (Fig.3) 43 [ 7.5847 | 1049 | 33%

6 Complete reduction for 1-cut MGs
In the following we prove that the previous kit of
transformation rules constitute a complete system to
reduce any 1-cut MG to an elementary net containing
a single transition and a single place. The subclass of
1-cut MGs represent a generalization of the classical
PERT model, in such a way that cyclic behaviours can
be modeled, as well as many different classes of non-
shared resources for the realization of activities (to-
kens at places of the net). We impose the restriction
that every cycle of the MG cross a common transition.
This subclass is denoted 1-cut MGs, recalling the so-
called cut set space of a graph (cut-set of a connected

graph is a set of edges whose removal would disconnect
the graph).

Definition 6.1 Let N' = (P,T,F) be an MG. N is
a l-cut MG Zﬁ mYG{Pfsemiflows} ||YT : PRE” 7é ®7
where ||[YT - PRE|| = {t € T|YT - PRE > 0} is the
support of Y - PRE.

In order to prove that one set of reduction rules is
complete we have to do three things: first, we con-
struct a function associated with the net, and show
that after applying anyone of the reduction rules, the
value of the function decreases. Second, we prove that
the elementary net has a minimum value for this func-
tion. And, third we prove that we always can apply
some reduction rule until we get the elementary net.

Definition 6.2 Let N = (P, T, F) be a 1-cut MG, with
t € Ny IYT - PRE||. The spread of N, denoted by
SP(N,t), is the following pair of numbers:

SP(N,8) = (IPL X, d(t8) - (It7] = 1)
where d(t;,t) is the number of places between t and t
in the minimum path which contains both.

In the sequel >, d(t;,t) - (Jt7| — 1) is denoted by
D(T).

Property 6.1 SP(N,t) = (1,0) for the elemen-
tary net N (with P = {p},T = {t}, and F =
{(,1), (t,p)}).

Definition 6.3 Let N = (P, T,F) and N' =
(P',T'".F') be MGs. We say that SP(N,t) <
SP(N',t) iff:

i) |P| < |P'| and D(T) = D(T") or

ii) D(T) < D(T").

Theorem 6.1 The rules Ry,...,Rs decrease the
spread of N.

Proof: Multistep Preserving Places: If we apply Ro we elim-
inate the implicit places of the net. We have N' = (P, T, F)
and SP(WNV,t) = (|P|,D(T)) . After applying Ry we have
N' = (P',T,F) with SP(N',t) = (|]P| — k,D(T)), where k is
the number of multistep preserving places. Hence SP(N’,t) <
SP(N,t).

Transitions in sequence: If we apply R; between two transi-
tions ¢; and t; we reduce the spread of the net. We have
SP(Nt) = (I[P, D(T)). After Ry, SP(N',t) = (|P'|,D(1"))
with: D(1") = Z”};l d(t;,t) - (Jt?] — 1) and |P'| = |P| - 1.

1#i,j

If d(t;,t) = k then d(t;,t) = k + 1 because t; and t; are in
sequence, then [t?| = |*¢;| = 1 and |t}| = a. So, it is easy to see
that D(T) = D(T") +a — 1.

Fork-join subnets: When we apply R to t;, ...1; we also
reduce the spread of the net. SP(N,t) = (|P|,D(T)); af-
ter Ry we have SP(N’,t) = (|P'|,D(T")) with: D(T') =
D(T) — (|t?] — k — 1) -d(t;,t) and |P'| = |P| — (2k — 2) where t;
is the fork transition.

Splitting Transition: If we apply Rz (or R4 in the reverse) to t;
and t;, it is not obvious that we reduce the spread of the net,



Figure 9: (j) Stochastic net system obtained from that
in figure 3.h by removing the cycle with p15 — t1958 —
pi11. The mean service time of ¢}, is computed with
the net in (i).

while it is easy to see that we increase its size (number of places
and transitions). If we make explicit the term of ¢; and ¢; in
D(T): D(T) = Y "=y d(ti,t) - (JtP] — 1) +n-(a—1)+ (n +
l#i,j
1) - (k — 1), where d(t;,t) = n, d(t;,t) = n+ 1, \t]’| = a and
[t?| = k. After Rz we have: D(T") = >."* d(t,t) -
1#5,15;1<j<k
(It = 1) +n-(a+ (k—1)—1) and |P'| = |P[+ (k — 1). It is
easy to see that D(T") < D(T') because k > 2.

So, we have proved that the value of function SP decreases
when we apply any transformation rule to our net. =

Lemma 6.1 Let N be a strongly connected MG, with-
out structurally implicit places. If It s. t. t € Ny ||V
PRE)|| (i.e., there exists at least one special transition
included in all circuits ), then {t*} N {*'} # 0 =
|*t'| = 1).

Proof: Suppose that |*¢'| > 1. Then {*¢'} D {p,q} . As N is
strongly connected, there exists a path from ¢ to g ; if this path

includes ¢’ then there exists a cycle not including ¢. If the path
does not include ' then p is a structurally implicit place. =

Theorem 6.2 Let N be a 1-cut MG. The kit of trans-
formation rules C = {Ry, Ry, Ra, R3} reduces N to the
elementary net.

Proof: Let be t € ﬂY ||lYT . PRE||. In order to see that C is
a complete set of transformation rules, we will prove that if we
cannot use Rj, R2 or Rp, then we can apply Rs3.

Denote by ti,...,t; the transitions following t. As we cannot
apply Ro, by lemma 6.1 we know that [*t;| =1,i =1,...,l. We
also cannot apply Ri, so [ > 2.

Then we know that: 1) > 2 ; and 2) [*t;]|=1,i=1,...,1.

Consider two cases. Case 1: 35 :1 < i <1 :|t?] > 2. Then
we can apply R3. Case 2: Vi:1 <4 <[:|t?] = 1. Denote t]
the transitions following t; for i = 1,...,0 and [t?| = p;.

If 35,1 <4 <, st |*t] = 1, we could apply Ry which
contradicts the hypothesis. Then |*¢}| > 2,7 =1,...,l. We also
know that Vi: 1 <i <lip; € {*t;};1 < j <[ Ifi#j then we
can apply Ra.

At this point we reach a contradiction. In order to prove it
we define an orden relation between transitions in the following
way: we say that t; is lower than t;., denoted t] < t;., if there
exists a path from ¢} to t;. which does not include t. It is easy
to see that < is a strict partial order relation: (1) Irreflexive: If
there exists a path from ¢/ to ¢} not containing t, this means that
there exists a cycle which does not include ¢. (2) Antisymmetric:
By the same reason. (3) Transitive: Obvious.

There exists a minimal element in t},...,t;. Let | be this
element, then Vm : 1 < m < [ there exists a path from ¢} to t],

Figure 10: After the introduction of the immediate
transition 6 in the net in figure 3.e, a 1-cut MG is
obtained (thus complete reduction is possible).

that does not include t, but there does not exist a path from
t7,, to t| not containing ¢, then |*¢]| = 1, because in other case
we have a cycle that does not include ¢. =

Therefore the kit of rules {Rp, R1, R2, Rs} is com-
plete for reducing the 1-cut MG subclass and the com-
puting complexity is polynomial in the number of tran-
sitions of the net. In the same way, the complete
reduction using R, instead Rj is straightforward be-
cause the reverse of a 1-cut MG is also a 1-cut MG.

Theorem 6.3 Let N be a 1-cut MG. The kit of trans-
formation rules C = {Ry, Ry, Ra, Ry} reduces N to the
elementary net.

As a final remark, just point out that, even if theo-
rems 6.2 and 6.3 say that from a logical point of view
R3 or R4 can be indifferently used, the quantitative
results may be not the same!

7 Additional transformation rules

The basic aim of this section is to show that all
LBMGs can be reduced to l-cut MGs, being possi-
ble to obtain, by transformations, a lower bound on
throughput. The techniques will be presented in a
generalized and formalized way in a forthcoming pa-
per. Here we bound ourselves to the presentation of
some basic ideas in an informal illustrative way.

Since the computation of the performance lower
bound of live and unbounded MGs can be reduced
to the computation of the performance bounds of sev-
eral LBMG components [2x], a full reduction theory
for live MGs is available.

Any LBMG (thus strongly connected) can be trans-
formed in many ways into 1-cut MG by removing some
a few cycles. For example, removing p15 — t1258 — P11



in the MG of figure 3.h a 1-cut MG is obtained: all
cycles go through t9. A simple way of removing the
cycle p15 — t1258 — P11 is to substitute the service time
of t10, S10, by 7y = S10 + S1258. The throughput of
the resulting MG will be smaller and the previous re-
duction rules can be safely applied to compute a lower
bound. Nevertheless, in general, s7, = $10+ 51258 may
be too pessimistic because this means a total sequen-
tialization between t19 and t1255.

What about a more reasonable value for s} leading
to a slower system? Omne way of proceeding consists
of making immediate the service time of tg,t},,, and
t17263412. After the obvious reduction of immediate
transitions (e.g, p13 and p},, p1s and p?; are fused) the
MG in figure 9.i is obtained. Removing the place self-
loop on an immediate transition and fusing p;» with
its predecessor, a particular case of the fork-join rule
can be recognized and s}, = 3.72. Therefore by re-
moving the cycle p15 — t1258 — p11 and substituting
s10 by sTo = 3.72, slower performance is obtained (fig-
ure 9.j). Now the MG is 1-cut. Once all computations
have been done I' = 8.6101 and I'** = 9.125.

[ Table 2 ]
Net |Tang| | Tezact u Error
a (Fig.2) 8689 [ 6.9665 | 16.16 | 56%

[ j(Figi0) ] 18 | 80214 | 991 | 29% |
[ Full red. of j || 1 [ 86101 | 9.125 | 23% |
K (Fig.11) 85 [ 70125 [ 1112 [ 37%

T (Fig.11) 239 | 7.0150 | 1145 | 39%

m (Fig.11) 14 | 7.9872 | _9.62 27%
Full red of m 1 8.23 8.23 15%

An alternative way of obtaining a 1l-cut MG is
adding an immediate transition such that all cycles
go through it. The MG in figure 10.k has been ob-
tained from the MG in figure 3.e by adding an im-
mediate transition which synchronizes all circuits (P-
invariants), preserving the liveness of the net. The in-
troduction of the new transition clearly will decrease
the performance of the original net. Thus, once again
we are safely working to compute a lower bound on
throughput. A subsequent reduction process is illus-
trated in figure 10. Once all computations have been
done I'** = 8.23. And its inverse is closer to the exact
throughput of the original net (15% error, see table 2).

In general, neither technique is better than the
other. The quality of the result depends on the struc-
ture, mean service times, and initial marking. The
problem of which heuristic to apply at a certain mo-
ment of the transformation process, together with the
formalization and generalization will be considered in
detail in a forthcoming paper.

8 Conclusions

We have addressed the computation of lower bounds
for the throughput of transitions in stochastic PN mod-

els (or the corresponding synchronized queueing net-
works). The class of PDFs associated to the firing of
transitions has been defined as exponential, neverthe-
less for some rules (sequence and fork-join) any NBUE
PDF can be considered. The improvement over the
computation of the insensitive lower bounds (i.e. those
based only on the net structure, the routing probabil-
ities, and the mean service times) can be appreciable.

Technically speaking, a kit of transformation rules
produces local pessimistic temporal behaviour, leading
in general to an approximation for throughput. For
the cases of LBFC systems (thus for LBMGs), lower
bounds have been shown to be obtained. The intro-
duced transformation rules can be classified from the
performance perspective as follows: (1) Multistep pre-
serving places rule: does not change the performance
(for any stochastic interpretation). (2) Sequence
and fork-join rules: preserve or almost-preserve the
traversing time of the reduced subnet. (3) Transition
splitting rules: destroy a fork or a join replicating the
transition. They are interesting only if other trans-
formation rules are applicable later, in particular the
fork-join.

These rules allow to fully reduce 1-cut MGs, and
have been proved useful in the reduction of the state
(marking) space of many net systems. Finally, tech-
niques to transform an MG into a 1-cut MG have been
introduced in a simple illustrative way.

An extension of ideas presented in this paper con-
cern the approximate analysis of performance. In this
case, the presented rules plus other taking into account
the reduction of choices are being considered. In order
to derive “reasonable” approximations of true perfor-
mance, both the first and second moments of PDFs
are being kept in the transformation rules. The com-
bination of lower bounds with upper bounds [4] and
approximation techniques should be an important step
to elaborate an “educated guess” of performance with
reasonable computational cost.
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