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1 Introduction

The computation of performance bounds is a complementary approach to exact and approximate analysis
for the evaluation of stochastic Petri net systems. Previous results exist concerning insensitive throughput
bounds of such systems [4, 5, 6], meaning that the bounds, computed by linear programming techniques,
only take into account the mean values of service times associated to the firing of transitions and the
routing rates associated with transitions in conflict. Therefore, those bounds are insensitive to the form
of the probability distribution functions of service times and to the exact conflict resolution policies.

This paper, a fully revised version of [8], gives an improvement for the throughput upper bound, looking
at some embedded product-form queueing networks [3, 17]. Throughput lower bounds can be improved
using Petri nets reduction theory ideas [7].

Stochastic Petri net systems are usually introduced as Petri nets with the addition of a stochastic
timing interpretation. General distributions for service times and arbitrary policies for the resolution of
conflicts can be considered for these stochastic systems. From a different point of view, stochastic Petri
net systems can be seen also as classical queueing networks with the addition of a general synchronization
scheme. Other proposals can be found in the literature for the inclusion of synchronization primitives in
queueing systems, but usually they represent ad hoc extensions for the modelling of fork-join’s or passive
resources (e.g., [11, 22]), and many times they are used only as a description language for simulation
techniques [22].

The following analogies can be found between queueing networks and stochastic net systems [5]:

e Queues are represented by places.
e Timed transitions represent the service stations.

e The number of servers at each station is related to the maximum reentrance or maximum self-
councurrency which is possible for a timed transition (enabling bound concept).
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e The unconditional routing (i.e., from one station to another with probability one) is defined with
the arc(s) joining a transition to its output place(s), while the conditional routing (decisions) is
modelled with conflicts of immediate transitions.

e Customers distribution in the queueing network and marking in the net system play analogous
roles.

The particular topology of classical product-form closed monoclass queueing network can be found in
a subclass of Petri net systems called P-components (i.e., strongly connected state machines: systems not
allowing synchronization of tasks). Therefore, these systems with an adequate stochastic interpretation
are amenable to be analysed using product-from solutions even with the addition of self-loop places with
a given number of tokens (for the modelling of limited number of servers at transitions). Larger classes
of product-form stochastic Petri net systems can be found in [16, 18].

One of the advantages of the merging of Petri nets and queueing networks theories is that it brings
to a general class of synchronized queueing networks all the knowledge about the logical analysis (e.g.,
deadlock freeness, boundedness, fairness,...) of Petri nets and the performance analysis techniques of
queueing networks.

The computation of insensitive upper bounds for the throughput of transitions of stochastic net
systems [4, 5, 6] is achieved by considering the subnets generated by P-semiflows (left annullers of the
incidence matrix of the net) and assuming that the transitions in the isolated subnets are delay nodes
(infinite-server semantics). In other words, the bounds are computed through a decomposition of the
system.

The key idea for the improvement presented in this paper is to consider the waiting time in queues
due to a limited number of servers present at transitions in the steady state (liveness bound). From the
stochastic net system we extract subnets with the topology of queueing networks. Since the enabling of
transitions in the whole system is more constrained, the throughput of each of the subnets should be an
upper bound for the throughput of the entire system. Restricting to the search of embedded queueing
networks we look for upper bounds that can be computed in polynomial time using well-known results
of product-form monoclass queueing networks theory, such as balanced throughput upper bounds [24],
throughput upper bounds hierarchies [12], or exact mean value analysis [21]. At the same time, a new
light to the strong relation between queueing networks and stochastic Petri net systems (or synchronized
queueing networks) is given.

Embedded queueing networks can be extracted from the entire model looking at the subnets generated
by minimal (support) P-semiflows having state machine topology. To be able to freely use the product-
form solution theorems [3, 17], we need to impose an additional restriction: the choice between any two
transitions in conflict in the subnet should be free in the whole net (i.e., both transitions have the same
precondition). This fact guarantees that the conflicts among transitions are solved according to a marking
independent discrete probability distribution.

For the particular case of free choice nets [15], it is well-known that if they allow a live and bounded
marking (the net is said to be structurally live and structurally bounded) they can be fully decomposed
into strongly connected subnets with state machine topology (P-components), while the choices in the
whole net are obviously free. Some attention will be paid to this subclass of net systems, whose liveness
and boundedness can be computed in polynomial time [5, 13].

Basics of Petri nets notation: Let us recall some notation about Petri nets (we refer the reader to
[19] for a nice survey). N = (P, T, Pre, Post) is a net with n = |P| places and m = |T'| transitions.
If the Pre and Post incidence functions take values in {0,1}, N is said ordinary. PRE, POST, and
C = POST — PRE are n x m matrices representing the Pre, Post, and global incidence functions.
Vectors Y >0,Y?.C =0 (X >0,C-X = 0) represent P-semiflows, also called conservative components
(T-semiflows, also called consistent components). The support of a P-semiflow (T-semiflow) is defined
as ||Y|| = {p € PIY(p) # 0} (|| X]|| = {t € T|X(t) # 0}). A (P-or T-) semiflow is called minimal if



it has minimal support. M (M) is a marking (initial marking). (N, Mp) is a net system (or marked
net), with A" as underlying net. If A" is an ordinary net such that V¢ € T : |*t] = [t*] = 1, it is called
a state machine. A P-component is a strongly connected state machine. P-components define minimal
P-semiflows, but the reverse is not true in general. If A is ordinary and Vp € P : |*p| = |p®| = 1, the net
is a marked graph. If N is ordinary and Vp € P : |p®| > 1 = *(p®) = {p}, then (N, Mp) is a free choice
system. Finally, o represents a firable sequence, while & is the firing count vector associated to o. If M
is reachable from My (i.e., do such that My[o)M), then M = My+ C -3 >0 and & > 0.

Assumptions on the stochastic interpretation: In this paper we consider stochastic net systems
with general distributions for the service times of transitions. Only mean values of these variables are
used, denoted s; for each transition t; of the net. We assume that a transition ¢ enabled K times in a
marking M (i.e., K = max{k|M > kPRE]Jt]}) works at speed K times that it would work in the case it
was enabled only once (infinite-server semantics or delay node, with queueing networks terminology). Of
course, an infinite-server transition can always be constrained to a “k—server” behaviour by adding one
place that is both input and output (self-loop with multiplicity one) for that transition and marking it
with k tokens. Other kinds of marking or time dependency of service times are forbidden. We assume that
timed transitions may never be in conflict. For the modelling of conflicts we use immediate transitions
with the addition of (marking and time independent) routing rates R. In other words, for the subset of
immediate transitions {t1,...,tx} C T being in conflict at each reachable marking, we suppose that the
constants r1,...,r, € IR" are explicitly defined in the system interpretation in such a way that when
t1,...,t; are simultaneously enabled, transition ¢; (i = 1,...,k) fires with relative rate Ti/(2§:1 )
In this way, routing is completely decoupled from duration of activities. The only restriction that this
decoupling imposes to the system is that preemption cannot be modelled with two timed transitions
(in conflict) competing for the tokens (i.e., according to the terminology in [1], race policy cannot be
modelled; our constraint is equivalent to the use of a preselection policy for the resolution of conflicts
among timed transitions).

The paper is organized as follows. In section 2 we recall the insensitive throughput upper bounds for
stochastic net systems derived in previous works. An interpretation in terms of some subnets is given. In
section 3, an improvement of the previous bounds is proposed by computing the throughput of queueing
networks generated by P-semiflows with limited-server semantics for transitions. Algorithmic aspects of
this improvement are studied in section 4. Special attention is devoted to live and bounded free choice
systems. Finally, the addition of implicit places [10] can have an additional advantage to improve the
bounds, since new closed queueing networks embedded in the whole net can be created. Conclusions are
summarized in section 5.

2 Insemnsitive throughput upper bounds and their interpretation

In this section we consider the steady-state behaviour of stochastic net systems (ordinary or not) under
weak ergodicity assumption for the firing and the marking processes [4]:
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where 7 represents the time, M, and &, are the marking at time 7 and the firing count vector until
this time, respectively, M and &* are constants, and almost everywhere convergence is assumed (in other
words, a set of sample paths with probability one give the same estimation of average values). M and
0™ are called the limit average marking and the limit throughput vector, respectively. Additionally we
assume that the residence time of a token at each place (time spent by the token within the place) is
bounded; therefore,
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where R, (p;) is the residence time at p; of the nth token that arrives to this place. This condition is

assured for live and bounded net systems if a locally fair consumption of tokens at each place is assumed

(for instance, FIFO discipline or random order for the selection of the tokens assure condition (2) while

LIFO discipline can lead to an infinite waiting time of a token at a place).

Three of the most significant performance measures for a closed region of a network in the analysis
of queueing systems are related by Little’s formula: the average number of customers, the output rate
(throughput), and the average time spent by a customer within the region. If weak ergodicity of firing
and marking processes (1) and condition (2) over the residence times at every place are verified then
Little’s result can be applied to each place p; of the net (conditions (ii), (iv), and (ix) of Theorem 2 in
[14] hold) as follows:

M(p;) = (PRE[pi] - ") R(p:) (3)

where PRE[p;] is the it" row of the pre-incidence matrix of the underlying Petri net, thus PRE[p;] - 7*
is the output rate of place p;, and R(p;) = limy, oo n™* Y p_, Ri(p;) is the average residence time at p;.

In the study of computer systems, Little’s law is frequently used when two of the related quantities
are known and the third one is needed. This is not exactly the case here. In this case, R(p;) and
M (p;) are unknown, while information about &* can be easily computed only for some (interesting) net
subclasses. Let us define the relative firing frequency vector or vector of visit ratios to transitions as
# € e &*, where T = 1/0*(t;) represents the mean interfiring time of transition ¢; (i.e., the inverse
of its throughput). Here we consider stochastic net systems whose vector of visit ratios to transitions can
be computed in polynomial time from the net structure A' and from the relative frequency of conflict
resolutions R (i.e., the routing rates associated with decisions). As an example, let us consider the net
system depicted in figure 1. For this net, the vector of visit ratios for transitions can be computed by
solving the following linear system of equations:

C-7M =0 A7V >0

rio (ty) = roo™ (1y); (4)
rav (ty) = rao® (t3);

’U(l)(tl) =1

where 71 and ry (r3 and r4) are the routing rates used for the resolution of the conflict between ; and
ty (respectively, t3 and t4). The first set of equations (implying that 7(Y) is a T-semiflow) are the flow
balance equations written for each place (input and output flows of tokens are equal, provided that the
places are bounded). The second (third) equation is directly derived from the fact that conflict between
t1 and t2 (respectively, t3 and t4) is free and rates r; and ro (respectively, r3 and ry) are fixed. The
fourth equation is the normalization for transition ¢;.

Equations like (4) have been shown to characterize the vector of visit ratios for important net sub-
classes such as, for instance, live and bounded mono-T-semiflow systems [4] and live and bounded free
choice systems [5]. Unfortunately, for other subclasses like simple net systems, the relative firing frequency
vector also depends on the initial marking My and on the service times of transitions [5].

Timed transitions can never be in conflict, so that either all output transitions of a place p; are
immediate or p; has a unique output transition, say t;, and t; is timed. Then, in the later case M(p;) =
(PRE[pz] - 5*)R(pl) = PRE[pi,ti]U*(ti)R(pi) Z PRE[pi,ti]U*(ti)Si = Z;nzl PRE[pi,tj]U*(tj)Sj (the
inequality follows from the fact that the residence time R(p;) of a token at place p; with only one
output transition is greater than or equal to the service time s; of that transition). So that [V (p;) >
Z?L:l PRE[pi, tj]l“(i)a* (tj)Sj = Z;nzl PRE[Z?@, t]’]’U(i) (tj)Sj, hence:

I3 > PRE - DY (5)



Figure 1: A live and bounded stochastic Petri net system.

where D) is the vector of average service demands of transitions, with components:

DO(t) € 500 (1)) (6)

If all output transitions of place p; are immediate, then M (p;) = PRE[pi]ﬁ(i) = 0, thus inequality
(5) holds for all place p;.

P-semiflows Y are non-negative left annullers of the incidence matrix C' (i.e., YT - C = 0), thus
VM : YT -M =YY" M, for all reachable marking M. Therefore, Y1 -M =Y My. Now, premultiplying
by Y the relation (5), the following lower bound for the mean interfiring time of a given transition ¢; can
be derived:

, YT .PRE-D®
r® > - - 7
- YE{PEI;?’r)riiflow} YT. My ( )
The previous lower bound has been formulated in [4] in terms of a fractional programming problem
and later, after some considerations, transformed into a linear programming problem [20]:

Property 2.1 [4] For any live and bounded system, a lower bound for the mean interfiring time @ of
transition t; can be computed by the following linear programming problem:

rd > mazimum YT .-PRE- D@
subject to Y1 -C =0
YT . My=1
Y >0

(LPP1)



If the solution of the above problem is unbounded and since it is a lower bound for the mean interfiring
time of transition ¢;, the non-liveness can be assured (infinite interfiring time). If the visit ratios of all
transitions are non-null (i.e., 7 > 0), the unboundedness of the above problem implies that a total
deadlock is reached by the net system. Anyhow, the unboundedness of (LPP1) means that there exists
an unmarked P-semiflow, and obviously the net system is non-live: if Y1 - C = 0 and Y;* - My = 0, then
VM Vp € ||Yi||: M(p) =0, and the input and output transitions of p are never firable.

The basic advantage of property 2.1 lies in the fact that the simplex method for the solution of a
linear programming problem has almost linear complexity in practice, even if it has exponential worst
case complexity. In any case, algorithms of polynomial worst case complexity can be found in [20].

In order to interpret property 2.1, let us consider again the net system of figure 1. Assuming, for
instance, that all routing rates associated with output transitions at conflicts in p; and p; are equal
to one, then the system (4) gives @) = I (I is a vector with all entries equal to one). Therefore,
according to (6), the vector of average service demands for transitions normalized for ¢; is DO =
(0,0,0,0, s5, s, 57,0,0, 510, 511) T, because transitions t;, ta, t3, 4, tg, and tg are assumed to be immediate.

The minimal P-semiflows (minimal support solutions of Y7 - C' = 0,Y > 0) of this net are:

and the application of (LPP1) gives:

' > max{ (s5+ s¢ + 510)/3,
(s¢ + 7+ 511)/2,
$10 + S11,

85}

Now, let us consider the P-semiflow decomposed view of the net: the four subnets generated by Y7,
Y5, Y3, and Yy are depicted in isolation in figure 2. Formally speaking, if V; is a minimal P-semiflow of
a net N = (P, T, Pre, Post), the subnet generated by Y; is N; = (P;, T}, Pre;, Post;) where P; = ||Y;]|
(the support of the P-semiflow), T; = *P; U P? (i.e., the subset of input or output transitions of places
belonging to F;), and Pre;, Post; are the functions Pre, Post restricted to P; x T;.

The quantities under the max operator in (9) represent, for this particular case, the mean interfiring
time of a transition of each of the four subnets (embedded queueing networks) assuming that all the nodes
are delay stations (infinite-server semantics). Therefore, the lower bound for the mean interfiring time
of t; in the original net system given by (9) is computed looking at the “slowest subsystem” generated by
the P-semiflows, considered in isolation (with delay nodes).

We remark that in this case, since 71 = f, the throughput of all transitions is equal and it is not
necessary to weight the mean interfiring time of transitions computed in isolated subnets in order to get
a bound for transition #;.

In the next section, we improve the previous bound by taking into account that the maximum number
of servers that can be available at transitions of the embedded queueing networks can be limited by the
number and distribution of tokens in the other subnets.

9)

3 Improvement derived from embedded product-form queueing networks

As stated earlier, the mean interfiring time of transitions of isolated subnets generated by P-semiflows is
computed in (LPP1) assuming infinite-server semantics for the involved transitions (i.e., as if they were
delay nodes). A more “realistic” computation of the mean interfiring time of transitions of these subnets
than that obtained from the analysis in complete isolation is considered now, with finite-server semantics
for transitions.
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Figure 2: Embedded queueing networks of the net in figure 1 generated by minimal P-semiflows.

The technique we are going to use is based on a decomposition of the original model in subsystems.
If we look for embedded product-form closed monoclass queueing networks consisting of P-components
eventually with self-loop places, we gain the well-known efficient algorithms that exist for the computation
of their throughput. For instance, mean value analysis algorithm [21] has O(A%?B) worst case time
complexity, where A is the number of customers at the subnet (i.e., the number of tokens at the P-
component, A = Y1 - My, where Y is the P-semiflow that generates the P-component) and B is the
number of involved stations (i.e., of transitions, B = Y7 - PRE -1).

We also remark that other techniques for the computation of throughput upper bounds (instead of
exact values) of closed product-form monoclass queueing networks can be used, such as, for instance,
balanced throughput upper bounds [24] or throughput upper bounds hierarchies [12]. Hierarchies of bounds
guarantee different levels of accuracy (including the exact solution), by investing the necessary compu-
tational effort. This fact immediately provides a hierarchy of bounds for the mean interfiring time of
transitions of Petri net systems.

Therefore, let us concentrate in the search of such subsystems. How are they structurally character-
ized? From a topological point of view, they are P-components (i.e., strongly connected state machines
and, in particular, ordinary). Timing of transitions can be done with generally distributed services and
limited-server semantics. Conditional routing is modelled with decisions among immediate transitions,
corresponding to generalized free conflicts in the whole system. In other words, if ¢; and 5 are in
conflict in the considered P-component, they should be in generalized free conflict in the original net:
PRE[t1] = PRE[t2]. The reason for this constraint is that since we are going to consider P-components
as product-form closed monoclass queueing networks with limited number of servers at stations (transi-
tions), the throughput of these systems is sensitive to the conflict resolution policy, even if the relative
firing rates are preserved. Therefore, conflicts in the P-component must be solved with exactly the
same marking independent discrete probability distributions (defined by means of the routing rates) as



Figure 3: A net system with enabling bound greater than liveness bound for transition ;.

in the whole net, in order to obtain an optimistic bound for the throughput of the original net system.
A counterexample showing that this constraint cannot be relaxed will be presented at the end of this
section.

Definition 3.1 Let N be a net and N; a P-component of N'. N is a routing preserving P-component,
RP-component, iff for any pair of transitions, t; and ti, in conflict in N;, they are in generalized free
(equal) conflict in the whole net, N': PRE|t;] = PRE|t;].

We remark that checking if a subnet generated by a P-semiflow is an RP-component has obviously
linear time complexity on the number of transitions of the net. For the example of figure 1, N1, N>, and
Ny are RP-components, while N3 is not (PRE[ts] # PRE][ts]).

The performance of a net with infinite-server semantics of transitions depends on the maximum
number of servers at stations: the maximum degree of enabling of the transitions, the enabling bound.

Definition 3.2 [4] Let (N, M) be a net system. The enabling bound of a given transition t of N is
ef

E(t) ¥ max{k | 3M € R(N, M) : M > kPREJt]}.

In particular, the steady-state performance does depend on the maximum degree of enabling of tran-
sitions in steady-state, which can be different from the maximum degree of enabling of a transition during
all its evolution from the initial marking. Therefore, we also recall the concept of liveness bound, which
allows to generalize the classical concept of liveness of a transition:

Definition 3.3 [4] Let (N, My) be a net system. The liveness bound of a giwen transition t of N is
def

L(t) = max{k | VM' € R(N,M,),3M € R(N,M'") : M > kPRE]Jt]}.

An example of a live and bounded net system with enabling bound of a transition (¢1) greater than
its liveness bound is depicted in figure 3: E(t1) =2 > 1 = L(ty).

The definitions above refer to behavioural properties. Since we are looking for computational tech-
niques at the structural level, we also recall the structural counterpart of the first concept.

Definition 3.4 [4] Let (N, My) be a net system. The structural enabling bound of a given transition t
of N is:

SE(t) C nazimum &
subject to My + C - > kPRE]Jt] (LPP2)
>0

Note that the definition of structural enabling bound reduces to the formulation of a linear program-
ming problem. The following result related to the above concepts has been obtained in [4]:

Property 3.1 [4] Let (N, M) be a net system, then for all transition t of N', SE(t) > E(t) > L(t).



The interest of the above property lies in the fact that for those net systems whose exact liveness
bounds of transitions cannot be efficiently computed, upper bounds (i.e., optimistic values) can be always
obtained by solving the linear programming problems (LPP2), i.e., by computing the structural enabling
bounds.

Going back to the semantics of transitions, the number of servers at each transition ¢ of a given net
system in steady state is limited to its corresponding liveness bound L(t) (or to its structural enabling
bound which can always be computed in an efficient manner), because this bound is the mazimum
reentrance (or maximum self-concurrency) that the net structure and the marking allow for the transition.

The next property states that the mean interfiring time of a transition ¢; of an isolated RP-component
with L(t)-server semantics for each transition ¢ is a lower bound for the mean interfiring time of the same
transition ¢; computed in the whole net system.

Property 3.2 Let Y be a minimal P-semiflow of a Petri net system that generates an RP-component.
Let T be the exact mean interfiring time of t; in the whole net system and Fgﬁz be the exact mean
interfiring time of t; in the isolated RP-component generated by Y, with L(t)-server semantics for each

involved transition t. Then, T(® > I‘gg, provided

(i) the transitions of the RP-component are FIFO in the sense that the nth service completion of each
transition correspond to the nth service start of that transition; or

(ii) only one of the transitions of the RP-component generated by Y, say t, synchronizes with the rest
of the net system in the sense that there exists an input place to t which does not belong to the
RP-component and is not a self-loop place of t.

Proof: Assume that the transitions of the RP-component are FIFO. In [2, Theorem 7.2], it is shown
that for every live FIFO stochastic net system whose conflicts are free (this is true, in particular for
an RP-component), the mean interfiring time of each transition does not decrease if the service times of
transitions increase (or they are preserved for some transitions). Then, let us consider the RP-component
generated by Y, with L(t)-server semantics for each involved transition ¢, embedded in the whole net.
The effect that the rest of the net system has on the behaviour of the RP-component can be seen as
an increases of the service time of the transitions that synchronize the RP-component with the rest of
the system. Therefore, according to [2, Theorem 7.2], the mean interfiring time of a transition if the
RP-component is considered in isolation, with L(t)-server semantics for each involved transition ¢, is less
than or equal to the mean interfiring time of the same transition if the RP-component is synchronized
with the rest of the net system.

Assume now that only one of the transitions of the RP-component generated by Y synchronizes with
the rest of the net system. The isolated RP-component, with L(#)-server semantics for each involved
transition ¢, can be seen as a product-form monoclass queueing network whose service rates are non-
decreasing functions in the load. Then, according to [23, Corollary 3.1], if the service time of one of the
transitions increases (due to the effect of synchronization with the rest of the system), its mean interfiring
time does not decrease. "

We remark that condition (i) holds, in particular, if each transition in the RP-component has a single
server (i.e., liveness bound equal to one).

Conjecture. FEven though we are not able to present a formal proof of the previous property without
the assumptions (i) or (ii), we conjecture that it holds in general.

In the next property, the mean interfiring times of a transition in an RP-component with limited and
with infinite number of servers at transitions are related.

Property 3.3 Let Y be a minimal P-semiflow (feasible solution of the problem (LPP1)) of a Petri net

system that generates an RP-component. Let Fgfz be the exact mean interfiring time of t; in the isolated



RP-component generated by Y, with L(t)-server semantics for each involved transition t, and Fgfzo be the
value of the objective function of (LPP1) corresponding to Y. Then, Fgfz > Fgfzo

Proof: The isolated RP-component generated by Y, with L(t)-server semantics for each involved tran-
sition t, is a product-form monoclass queueing network whose service rates are non-decreasing functions
in the load. If all transitions are now substituted by infinite-server nodes, the RP-component is still a
product-form monoclass queueing network whose service rates are non-decreasing functions in the load.
Moreover, the service rate functions have been increased for some values of the load. Therefore, the result
follows from [23, Corollary 3.1]. .

Properties 3.2 and 3.3 state that the knowledge of the liveness bound of transitions for a given net
can allow to improve the throughput upper bound computed in property 2.1 by investing an additional
computational effort. We summarize now an interpretation of this improvement from a queueing theory
point of view:

Interpretation. Both the bound presented in section 2 and the presented in this section are based on
the computation of the mean interfiring time of transitions of subnets generated by P-semiflows considered
in isolation. In the first case, since infinite-server semantics is considered for the isolated subnet, the
real (unknown) residence time at places is lowerly bounded by the service time of transitions, but waiting
time due to synchronizations is not considered at all. Now, the bound for the residence time at places
is improved taking into account not only the service time but also a part of the queueing time due to
synchronizations: the time in queue when L(t) servers is the mazimum available at each transition t.
Anyhow, only bounds (i.e., not exact results) are computed in general because synchronizations among
components are only partially represented (the number of servers has been reduced, but they are always
available for working: their “setup” times after service are neglected).

As an example, let us consider once more the net system depicted in figure 1. The structural enabling
bounds of all transitions can be computed in polynomial time by solving the corresponding problems
(LPP2). In fact, we only require to compute these bounds for the timed (non-immediate) transitions. In
this case L(t;) = SE(t;),i = 1,...,11. They are L(t¢) = L(ty) = 2 and L(ts5) = L(t10) = L(t11) = 1.
Then, the embedded queueing network generated by the P-semiflow Y3, considered with L(t)-server
semantics for each of the timed transitions ¢, is the one depicted in figure 4 (compare with N in figure 2).
Assume that exponentially distributed service times are associated to timed transitions, with means
s5 = 3,86 =4, s7 =1, s10 =2, and s1; = 1, while transitions t1, t2, t3, t4, tg, and tg are immediate. The
exact mean interfiring time of transitions of the net system in figure 4 can be efficiently computed using,
for instance, mean value analysis algorithm [21]. The exact mean interfiring time of #; in the whole net
system, and the upper bounds obtained from properties 2.1 and 3.2 are the following:

r® =489; ry) =419 1y =3.00 (10)

The reader is noticed that the conjecture I'1) > Fg}L) holds even if conditions (i) and (ii) of property 3.2
are not true. In this example, the relative error of the bound (Fg,li) has been reduced from 38% to 14%

(with the bound I'{})).

As stated before, in order to be applicable, property 3.2 demands the conflicts present in the con-
sidered P-component to be free in the original net. A counterexample showing that this constraint
cannot be relaxed is depicted in figure 5. A minimal P-semiflow of the net in figure 5.a has the support
{p1,Dp3,P4,P5,p7}. The subnet generated by this support is a P-component. In figure 5.b is depicted the
subsystem with the addition of self-loops to transitions #; and t3, modelling the limited-server semantics
imposed by the rest of the net system (obtained by computing the liveness bounds of transitions). In the
original net system, the vector of visit ratios can be efficiently computed. If the routing rates defining
the resolution of free conflict between t, and t5 are equal, the visit ratio for transition to is twice that of

10



Figure 4: Subnet of the net in figure 1 generated by Y3, with L(#)—server semantics for each involved
transition ¢.

(a) (b) ©)

Figure 5: The improvement of the bound cannot be applied.
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t7. Then, the routing rates ro = 2 and r7 = 1 could be used to solve the conflict between t5 and ¢7 in the
subsystem depicted in figure 5.b. Assume that the service times of timed transitions are exponentially
distributed with means s; = s3 = 1 and ss = s9 = 0.1. The exact mean interfiring time of transition
t; in the original system (figure 5.a) is ') = 1.179. The mean interfiring time of the same transition
computed in the subsystem in figure 5.b is " =1.209, and obviously it is not a lower bound for the
mean interfiring time of the original system. In figure 5.c, it is depicted the same subsystem than in
figure 5.b, but now the conflict between t» and t7 is solved with another policy (a deterministic policy
modelled with a regulation circuit formed with po7 and pre) preserving the same relative visit ratios for
both transitions. The mean interfiring time of ¢; in figure 5.c is " = 1.182, which is different from
D" and neither is a lower bound for I}

The problem with the net of figure 5.a is that the P-component that we consider has a conflict
between to and ¢7 that comes from a more extensive non-free conflict in the whole net (involving also
t¢): PRE[t;] # PREIt7]. And the resolution of this global conflict is not precisely reflected in the
subnet (neither in figure 5.b nor in figure 5.c). For the particular case at hand (figure 5.a), places p2
and pg implement a conflict resolution policy that obviously differs from a marking independent discrete
probability distribution, as used in figure 5.b to obtain a queueing network with product-form solution.

4 Computing the throughput upper bound

In this section, we study algorithmic aspects of the application of the improvement presented in previous
paragraphs. First, the general case is considered (Petri net systems without restrictions on their struc-
ture). After that, the interesting particular case of free choice systems is studied. Finally, additional
improvements such as those obtained from the use of implicit places are mentioned.

4.1 General case

Stating properties 3.2 and 3.3 for Y*, an optimum solution of (LPP1), the bound computed in property 2.1
can be eventually improved as follows:

Corollary 4.1 An improvement of the throughput upper bound computed in property 2.1 can be obtained

computing the value Fgf) of property 3.2 for an optimum solution Y* of the problem (LPP1) that generates
L

an RP-component verifying assumptions (i) or (ii) of property 3.2.

As an example of the above improvement, let us consider the net system in figure 6. Assume that
routing rates are equal to one for t1, to, and t3, and that t7, ts, to, ti10, t11, t12 have exponentially
distributed service times with mean values sy = sg = s9 = 10, s;0 = s11 = S12 = 1. The minimal
P-semiflows of the net are:

Y, =(1,1,1,1,1,1,1,0,0,0,0,0,0)”
Y> = (0,0,0,0,1,0,0,1,0,0,1,0,0)
Y3 = (0,0,0,0,0,1,0,0,1,0,0,1,0) (11)
Y, = (0,0,0,0,0,0,1,0,0,1,0,0,1)*

All of them generate RP-components verifying condition (i) of property 3.2 (the liveness bound of
all the timed transitions is one). Then, if the initial marking of p;1, p12, and p;3 is one token, and the
initial marking of p; is N tokens, the lower bound for the mean interfiring time derived from (LPP1) is

I‘E?PPI) = max{30/N,11,11,11}. For N = 1, the previous bound, obtained from Y3, gives the value 30,
while the exact mean interfiring time is 31.06. For N = 2, the bound is 15 and it is derived also from Y;
(mean interfiring time of the RP-component generated by Y7, considered in isolation with infinite-server
semantics for transitions). This bound does not take into account the queueing time at places due to
synchronizations (t4, t5, and tg), and the exact mean interfiring time of #; is 'V = 21.05. For larger

values of N, the bound obtained from (LPP1) is equal to 11 (and is given by P-semiflows Y5, Y3 and Y}).
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Figure 6: A live and bounded free choice system.

1 1
N rt FEY)I)L FEL)PPU
1 31.06 | 30 30
2 21.05 | 20 15
3 17.71 | 16.67 11
4 16.03 | 15 11
5} 15.03 | 14 11
10 || 13.02 | 12 11
15 || 12.35 | 11.34 11

Table 1: Exact mean interfiring time of ¢; (for exponential distributions), bounds obtained using (LPP1),
and the improvements derived from property 3.2, for different initial markings of p; in the net of figure 6.

This bound can be improved if the RP-component generated by Y7 is considered with liveness bounds
of transitions t7, ts, and t9 reduced to one (which is the liveness bound of these transitions in the whole
system). The results obtained for different values of N are collected in table 1. Bounds derived from the
exact values of mean interfiring time of ¢; in the RP-component generated by Y; with limited number
of servers were computed using the mean value analysis algorithm [21]. Exact computation takes several
minutes of the CPU of a SPARC Workstation (using GreatSPN [9]) while the computation of bounds
takes only a few seconds.

Taking into account that the number of optimum solutions of (LPP1) (giving the same value of the
objective function) that generate RP-components can be theoretically exponential on the net size (in
practice this is very unlikely even for well balanced systems!), a first question to be answered is: Which
RP-components should be considered in order to obtain a greater improvement with the application of
corollary 4.17

We now present an algorithm for the computation of an improvement of bounds given by problem
(LPP1), based on a possible heuristic for the selection of some optimum solutions of (LPP1). The
heuristic gives the possibility of selecting up to an arbitrary number K of optimum solutions of (LPP1)
that generate RP-components. The way of selecting only optimum solutions among all feasible solutions
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of that linear programming problem consists of considering the following constraints:

YT .PRE.D® =1\,

12
YT.C=0; YT - My=1,Y >0 (12)

where 1"529 is the optimum value of (LPP1), and must be computed before.

Now, it is easy to understand that, among the above optimum solutions, those with lower liveness
bounds for involved timed transitions should probably give slower embedded queueing networks. This is
because, if only a few servers exist at a given transition, the waiting time of tokens in the input places
will be larger. A “natural” way to select those RP-components with expected smaller number of servers
at involved transitions is to solve a linear programming problem with expression (12) as constraints,
and with the same objective function than in problem (LPP1) but modifying the vector ﬁ(i), dividing
the mean service time s; of each transition ¢; by its corresponding liveness bound L(t;). Intermediate
situations can be considered dividing each s; by a quantity ranging from 1+ ¢ (with 6 > 0) to L(t;).

P-components define minimal P-semiflows. Thus, it is very important that optimal solutions of (LPP1)
are minimal P-semiflows. This is particularly true if (LPP1) is solved using any (revised) simplez method
[20].

An algorithm for the previously argued heuristic can be as follows:

Step 0. Compute L(t) for each timed ¢ (or, in general, an upper bound for it, SE(t)), solving the problem
(LPP2).

Step 1. Solve the problem (LPP1). Let Fg)s be its optimum value. Let Y := (§; T := I‘E%.
Step 2. For k:=1to K do

(2.1) Solve the linear programming problem (LPP4)):

) = maximum Y7 .PRE.G\

subject to YT .PRE-D® = Fg?s (13)
YTC:O, YT.M0:1
Y >0

where é,(;) is a vector with dimension equal to the number of transitions and components

@y siv()
@) = TR - /K (14)

Let Yy be one optimum solution of (LPP ).
(2.2) If (Y € V) and (Ny, is an RP-component verifying (i) or (ii) of property 3.2)
then compute the mean interfiring time 1"5:) of Ny, assuming L(t)-server semantics for each
timed transition ¢, using (for instance) the mean value analysis algorithm. Y := YU {Y };

0 := max{T'®, F,(:)}.
Output. I'¥ is a lower bound for the mean interfiring time of ¢;.

We remark that if our conjecture about the generalization of property 3.2 holds, the test of conditions
(i) and (ii) in Step 2.2 can be avoided. In the sequel, we consider also RP-components that verify the
statement I'(¥) > I‘gfz of property 3.2 even if conditions (i) and (ii) of that property do not hold. As an
example, let us consider the net system depicted in figure 7.a. In fact, we have selected a marked graph
for simplicity: in this case the subnets generated by minimal P-semiflows are elementary circuits. From
a queueing theory perspective, the example does not lose generality because even though the embedded
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(a) (b)

Figure 7: An example of application of the heuristic algorithm: condition (i) of property 3.2 holds for
the subsystem (b).
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queueing networks have visit ratios equal to one for all transitions, arbitrary average service demands
can be obtained changing the associated mean service times. Assume that service times of transitions
are exponential with means s; = so = s3 = 54 = S5 = S¢ = St = sg = 2 and S9 = S19 = S11 = S12 =
s13 = $14 = s15 = s16 = 1. Then, the application of (LPP1) gives rw > % = 4. This optimum value is
obtained for two different feasible solutions (circuits), generated by the P-semiflows:

Yi = (1,1,1,1,0,0,0,0,0,...,0)7

Ys = (0,0,0,0,1,1,1,1,0,....,0)" (15)

The application of the above algorithm for K = 1 selects the first one, because the liveness bounds
of the involved transitions in Y; are equal to one (less than those in Y3): (LPP(y)) gives the optimum
value equal to 4 for Y7, while the other feasible solution Y5 gives only 2 (the service times of the involved
transitions in Y are divided by their corresponding liveness bounds, which are all equal to 2). Then,
the queueing network generated by Y7, with liveness bounds of transitions equal to one, must be solved
(figure 7.b). Mean value analysis applied to this network gives the following bound for the mean interfiring
time of t;: T > 5. While the exact mean interfiring time in the whole net (obtained solving the
embedded continuous time Markov chain, with 10515 states) is ') = 5.87. The same analysis applied
for the network generated by Y gives ') > 4; in this case no improvement is obtained because the
number of servers at each transition allowed by the rest of the net is equal to the number of customers
within the subnetwork.

Let us remark that, in the particular case in which the liveness bounds of all timed transitions
were equal (L(t) = L, for all timed transition ¢), the problems (LPP(;)) would not select any “better”
solution. All the feasible solutions would give the same value for the objective function of each (LPP ,):

Fg?g/(l +k(L—1)/K). Fortunately, this case is easy to detect (at Step 0), and there exists an alternative
heuristic for the selection of an optimum solution of (LPP1). Step 2 in previous algorithm must be
substituted by the following:

Step 2bis. If L(t) = L, for all timed transition ¢
then Let Y7 be an optimum solution of

maximize YT . M,
subject to YT - (PRE - D — T\ M) = 0 (LPP3)
YT.C=0;Y >0

If Ny, is an RP-component

then compute the mean interfiring time ng) of Ny, assuming L(t)—server semantics for each
timed transition ¢, using (for instance) the mean value analysis algorithm. I'(9) := Fg’) .

else Execute Step 2 of the previous algorithm.

That is, since all RP-components include transitions with the same maximum number of servers, we
can expect that likely the slowest RP-component is the one with the maximum number of tokens, and
thus with maximum residence time at places, waiting for an available server. As in Step 2.2 of the first
algorithm, it is necessary to check if the obtained solution generates an RP-component.

As an example, look at the net system depicted in figure 8.a. Assume exponential service time
distributions with means s; = so = s3 = s4 = 2 and s5 = s¢ = s7 = ss = 4. The application of (LPP1)

8 16 6

gives T() > max { 15551 = 8. The optimum value is reached with two different feasible solutions, the

circuits generated by:

)T (16)



(a) (b)

Figure 8: Application of the heuristic when the liveness bounds of all transitions are equal.

The liveness bound of all transitions is equal to one (thus any minimal P-semiflow generates an RP-
component verifying condition (i) of property 3.2). Therefore the problem (LPP(;)) does not help to
improve the bound derived from (LPP1). However, the application of problem (LPP3) selects the circuit
generated by Y3, because it contains a greater number of tokens than the circuit generated by Y;. Then,
the application of the mean value analysis algorithm to the network generated by Y>, with liveness bound
of transitions equal to one (figure 8.b) gives the bound I'™ > 10. And the exact mean interfiring time of
transition ¢, in the original net is T(Y) = 13.14.

4.2 Free choice case

In Step 2.2 of the algorithm presented in previous section, it is necessary to check: 1) if a given minimal
P-semiflow generates a P-component, and 2) if all conflicts in this P-component are free in the whole
system (as we remarked before, both tests can be done in linear time on the number of transitions). If
we consider a net subclass where minimal P-semiflows always generate P-components, then the first part
of the test can be avoided. Additionally, if the structure of the whole system assures that all conflicts in
the P-components are free in the original system, then the other part of the test can be also avoided.

For example, for the net system depicted in figure 1 (a live and bounded free choice system provided
with a mutual exclusion semaphore, p11) all minimal P-semiflows generate P-components. However, it is
not true that all conflicts in the P-components are free in the whole system: the P-component labelled
N3 in figure 2 does not verify this condition. Therefore, the test for the condition of being RP-component
cannot be omitted for this net system.

Let us consider once more the system in figure 6. In this case the test for being RP-component in
Step 2.2 of the algorithm can be completely omitted because all minimal P-semiflows of the net generate
RP-components. In fact, this system belongs to an interesting subclass of systems that always verify that
property: live and bounded free choice systems. Moreover, this subclass of systems can be characterized
in polynomial time, as stated in the next property.

Property 4.2 [5, 13] A net system is live and bounded free choice iff the following statements, that can
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be checked in polynomial time, are verified:
1. It is free choice: Vp € P,|p*| > 1= *(p*) = {p}.
It is conservative: 3Y > 0,YT -C =0.

It is consistent: 3X > 0,C - X = 0.

™ e e

It wverifies the following rank equation: rank(C) = m — 1 — a — n, where m is the number of
transitions, n = the number of places, and a the number of arcs of the Pre incidence function.

5. All the P-semiflows are marked: AY > 0,Y1-C =0 such that Y' - My = 0.

We remark that the fifth statement in the previous property is implicitly checked when solving the
problem (LPP1) for the computation of a throughput upper bound.

Now, the interesting property of live and bounded free choice systems is that their minimal P-semi-
flows always generate P-components (see, for example, [13]). Because in a free choice net all choices
are free, the P-components are RP-components. The reverse is always true, i.e., RP-components define
minimal P-semiflows. Therefore:

Property 4.3 Let (N, My) be a live and bounded free choice system. Y is a minimal P-semiflow of N
iff Ny, the subnet generated by Y, is an RP-component.

As a conclusion of the above property, the algorithm presented in the previous section can be applied
for live and bounded free choice systems without executing the RP-component test in Step 2.2.

Now we just recall a result which provides an efficient method for the computation of liveness bounds
of transitions (Step 0 in the algorithm) for the case of live and bounded free choice systems: the liveness
bounds of transitions (actual number of servers needed at transitions in steady-state) of live and bounded
free choice systems can be obtained by solving the problem (LPP2).

Property 4.4 [5] Let (N, M) be a live and bounded free choice system. Then, for all transition t of N,
SE(t) = E(t) = L(t).

In the next section some additional improvements and refinements are summarized.

4.3 Additional improvements

In [6], an improvement of the insensitive throughput upper bounds for general stochastic net systems is
presented by considering implicit places. Place p is implicit in a net system iff its elimination preserves
the firing sequences of the net system; in other words, p is never the unique place that prevents the firing
of a transition [10].

The addition of implicit places generates new minimal P-semiflows. Therefore, the space of feasible
solutions of the problem (LPP1) is increased and the insensitive bound can be eventually improved.

As an example consider the net system in figure 9.a. The mean service times associated with transitions
ts and ty are s3 = s4 = 5. Transitions ty, ty, and t5 are immediate. Assuming that the conflict at p;
is solved with equal probability for ¢; and ¢», the vectors of visit ratios and average service demands
to tramsitions are 7% = (1,1,1,1,2)7 and D® = (0,0,5,5,0)7. The minimal P-semiflows are ¥; =
(1,1,0,0,1)% and Y> = (1,0,1,1,0)?. The problem (LPP1) gives ') > max {5,3} = 2.5.

Now, if the place pg is added to the net with initial marking equal to one in order to be implicit
(see figure 9.b), the following P-semiflow is generated: Y3 = (1,1,1,0,0,1)”. The application of (LPP1)
yields: I'M) > max {3,2,30} =3.3.

The same technique can be used for the improvement of the throughput upper bounds presented in
this paper. The new P-semiflows generated after the addition of implicit places can lead to new “slower”
RP-components. For example, for the net system of figure 9, the addition of the implicit place pg
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(a) (b) (©

Figure 9: The addition of implicit places improves the bound.

(figure 9.b) leads to a new RP-component (subnet generated by Y3). The exact solution of this embedded
queueing network (the RP-component with liveness bounds of ¢3 and ¢4 equal to 2, see figure 9.c) gives
the bound: T > 3.75. The exact mean interfiring time for exponentially distributed service times is
') = 4. Therefore, the relative error has been reduced from 37.5% in the first bound (") > 2.5) to
6.25% in the last one (I'") > 3.75).

Another additional improvement of the throughput upper bounds can be obtained with a small gener-
alization of the algorithm of the previous section. The idea is the following: in Step 2 of that algorithm,
some optimal solutions of the problem (LPP1) are selected, in order to consider those that generate
RP-components. But, it may happen that the slowest queueing network embedded in a given stochastic
Petri net system is generated by a P-semiflow which is not optimurm for the problem (LPP1).

The selection of RP-components generated by non-optimal P-semiflows of (LPP1) is possible if Step 2.1
of the algorithm is modified in order to allow the consideration of near-optimal solutions: this can be done
by substituting the constraint Y7 -PRE-D\ = Fg?g with the weaker constraint Y- PRE-D® > al"g)s,
with a parameter « selected in (0, 1]. In this way, additional improvements can be obtained, of course
at the expense of an additional computational cost (considering more embedded queueing networks). A
classical (computational) cost-quality (of the bound) tradeoff appears.

For example, for the net system in figure 6, if the initial marking of place p; is N > 3, the optimum
solution of (LPP1) for transition ¢; is F&)Ppl) = 11 (see table 1), and it is obtained for the P-semiflows
Y5, Y3, and Yy of those enumerated in (11). However, the improvement of this bound, presented in the
second column of table 1, has been obtained from the RP-component generated by the P-semiflow Y7,
which was not optimum for (LPP1). This RP-component is considered by our generalized algorithm, for

instance in the case of N = 3, using the constraint Y7 - PRE - DO > al"g?g at Step 2, with a = 0.9.

5 Conclusions

We have addressed the problem of computing upper bounds for the throughput of transitions in stochastic
Petri net models (or the corresponding synchronized queueing networks). Our approach is based on a
decomposed view of these models.

Until now, the net structure, the initial marking, the long run routing rates, and the mean service
time of transitions had been used for the solution of a linear programming problem in order to compute
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throughput upper bounds. An improvement has been presented in this paper. It is achieved by considering
the throughput of some “slower” embedded queueing networks generated by P-semiflows, assumed in
“partial isolation”, i.e., taking into account the maximum reentrance in steady state (or liveness bound)
of their timed transitions, allowed by the rest of the net. These embedded networks can be seen as closed
product-form monoclass queueing networks, and efficient algorithms can be applied for the computation of
their exact (or upper bound on) throughput. A particularly interesting case is that of live and bounded
free choice systems, since all minimal P-semiflows generate RP-components (i.e., strongly connected
“state machine-topology” subnets, the choices being free in the global net by definition). The above
improvement has been derived under some technical conditions, (i) or (ii) in property 3.2, over the
considered RP-components. It is an open problem to derive a formal proof of the non-necessity of any of
these conditions.

The addition of implicit places to the original net system can generate new embedded queueing
networks, allowing additional improvements in the bounds. A cost-quality tradeoff appears if the search
for the “slowest” embedded queueing network considers also non-optimal solutions of (LPP1).
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