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Abstract

In this paper we overview some recent results obtained by the authors and
collaborators on the performance bounds analysis of some stochastic Petri net
systems� The mathematical model can be seen either as a result of the addition
of a particular random timing interpretation to an �autonomous� Petri net
or as a generalization of classical queueing networks with the addendum of a
general synchronization primitive� It constitutes an adequate tool for both the
validation of logical properties and the evaluation of performance measures of
concurrent and distributed systems�

Qualitative and quantitative understandings of Petri net models are stressed
here making special emphasis on structural techniques for the analysis of log�
ical and performance properties� Important aspects from the performance
point of view� such as relative throughput of stations �transitions�� and num�
ber of servers present at them� are related to Petri net concepts like P� or
T�semi	ows or liveness bounds of transitions� For the particularly interest�
ing case of Markovian Petri net systems� some improvements of the bounds
can be achieved� Marked graphs and free choice are net subclasses for which
the obtained results have special quality� therefore an additional attention is
focussed on them�

Keywords� graph theory� linear algebra and linear programming techniques�
Markovian systems� performance evaluation� P� and T�semi	ows� qualita�
tive and quantitative analysis� stochastic Petri net systems� structural tech�
niques� synchronized queueing networks� throughput bounds� transforma�
tion
reduction techniques�
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� Introduction

The increasing complexity of parallel and distributed systems is forcing the researchers to
deeply improve the techniques for the analysis of correctness and e�ciency using mathe�
matical models� These two faces� the qualitative validation and the quantitative analysis of
models� have been usually developed quasi�independently� �Stochastic Petri Nets �SPN�
were initially proposed by researchers active in the applied stochastic modelling �eld as
a convenient graphical notation for the abstract de�nition of Markovian models� As a
consequence� the basic de�nitions of SPN �and of their variations as well� were originally
more concerned with the characteristics of the underlying stochastic process� rather than
with the structure of the underlying Petri net model� �quoted from �AM����� Nevertheless
it is easy to accept that SPN represent a meeting point for people working in Petri nets
and Performance Evaluation�

Petri nets are a well known mathematical tool extensively used for the modelling and
validation of parallel and distributed systems �Pet��� Sil��� Mur���� Their success has



been due not only to the graphical representation� useful in design phases� but mainly to
the well�founded theory that allows to investigate a great number of logical properties of
the behaviour of the system�

In the framework of Performance Evaluation� queueing networks �QN� are the most
commonly used models for the analysis of computer systems �Kle��� LZGS��� Lav����
Such models have the capability of naturally express sharing of resources and queueing�
that are typical situations of traditional computer systems� E�cient solution algorithms�
of polynomial complexity on the size of the model� have been developed for important
classes of these models� contributing to their increasing success� Many proposals exist
to extend the modelling power of queueing networks by adding various synchronization
constraints to the basic model �SMK��� VZL��� CCS��b�� Unfortunately� the introduction
of synchronization primitives usually destroys the product form solution� so that general
parallel and distributed systems are not easily studied with this class of models�

More recently� many SPN models have been introduced as formalisms re	ecting both
the logical aspects� and capable of naturally represent synchronization and concurrency
�TPN��� PNPM��� PNPM��� PNPM���� One of the main problems in the actual use of
SPN models for the quantitative evaluation of large systems is the explosion of the com�
putational complexity of the analysis algorithms� In general� exact performance results
are impossible to compute� Under important restrictions� enumerative techniques can
be employed� For instance� assuming boundedness and exponentially distributed random
variables for the transition �ring times� performance indices can be computed through the
numerical solution of a continuous time Markov chain� whose dimension is given by the
size of the marking space of the model �Mol��� FN���� Structural computation of exact
performance measures has been only possible for some subclasses of nets� such as those
with state machine topology� These nets� under certain assumptions on the stochastic in�
terpretation are isomorphic to Gordon and Newell�s networks �GN���� in queueing theory
terminology� In the general case� e�cient methods for the derivation of exact performance
measures are still needed�

The �nal objective of analytical modelling is to obtain information about some per�
formance measures of interest in the system� such as productivity indices �e�g�� throughput
of transitions�� responsiveness indices �e�g�� response time at places�� and other derived
utilization measures� Several possibilities can be explored depending upon accuracy of
results and complexity of algorithms� In this paper we select performance bounds compu�
tation based on Petri net structure techniques� that usually lead to very e�cient solution
algorithms� We try to contribute to bridge the �historical� separation between qualitative
and quantitative techniques in the analysis of SPN models� �It should however be stressed
that the structural properties of SPN models are today used to either ease the model de��
nition� or to compute very partial results� �AM���� �AMBCC��� is an example for the �rst
case� �Mol��� and �ZZ��� are examples of the second case� in �Mol��� throughput bounds
are obtained under saturation conditions for the most basic SPN model �Mol���� while in
�ZZ��� some transformation rules preserving throughput are suggested in a very informal
way for a deterministic timing interpretation of net models� We centre our e�ort in the
use of both structure theory of nets and transformation
reduction techniques for deriving
e�cient methods for performance evaluation� As in the case of qualitative analysis of
�autonomous� Petri nets� more powerful results are expected for particular net subclasses
�marked graphs� free choice nets� � � ��



Several problems� preliminary to the exact analysis of stochastic Petri nets� can be
considered that were trivially or easily solved for classical queueing networks in the past�
The �rst of them is the meaning of an average behaviour of the model in the limit of
time� i�e�� the existence of a steady�state behaviour� The concept of ergodicity� classical
in the framework of Markov processes� was introduced in the �eld of SPN by G� Florin
and S� Natkin �FN���� It allows to speak about the average behaviour estimated on the
long run of the system� but it is valid only for very strong assumptions on the probability
distribution functions �PDF� de�ning the timing of the model� For instance� determin�
istic duration of activities do not lead frequently to this kind of ergodic systems� Weak
ergodicity� introduced in �CCCS���� allows the estimation of long run performances also in
the case of deterministic models� Given that we will concentrate on performance bounds
instead of exact performance indices� the discussion on ergodicity will not be addressed
here� The reader is referred to �FN��� CCS��a� CCS��c��

The �rst step in the analysis of classical closed queueing networks is the computation
of the relative throughput of stations or visit ratios� It is achieved by solving a system
of �ow equations� which� for each station� equates the rate of 	ow of customers into to
the rate of 	ow out of the station �Kle���� Only routing rates among stations are needed
in order to do that� thus the visit ratios are the same for arbitrary service times of sta�
tions and distribution of customers in the network� The analogous problem is a bit more
complicated for SPN� The computation of the relative throughput of transitions indepen�
dently of the token distribution and of the service times of transitions is only possible
for some net subclasses� like FRT�nets� a mild generalization of free choice nets �Cam����
This computation needs the knowledge of the routing of tokens through the net system�
based on the deterministic routing ��xed by the net structure� and the conditional routing
�de�ning the resolution of free con	icts��

A complementary aspect to the de�nition of routing of tokens through the net system
is the speci�cation of the semantics of enabling and �ring of transitions �AMBB�����
Related concepts in the framework of queueing networks� such as the the number of
servers at each station� can be rede�ned for stochastic Petri nets� If we consider marking
bounded systems� it does not make sense to strictly speak about �in�nite� number of
servers at transitions� Therefore� a �rst goal must be to determine the real maximum
enabling degree of transitions �or enabling bound�� that will correspond to the number
of servers used at them� The maximum number of servers available in steady state will
be characterized by the liveness bound� a quantitative generalization of the concept of
liveness of a transition�

The paper is organized as follows� In section �� several aspects about the introduction
of time in Petri net systems are considered� Relationships between stochastic Petri net
systems and queueing networks with synchronizations are indicated� The computation
of relative throughput of transitions is presented in section 
� while several concepts of
degree of enabling of transitions are introduced and related in section �� Sections 

and � introduce concepts and results needed in the rest of the paper� the content of
section 
 �section �� is of primary importance for sections �� �� and ��� ��� ���� and �����
The computation of insensitive throughput bounds �bounds valid for any probability
distribution of service times� is considered in sections � and �� For the case of Markovian
Petri nets some improvements of the insensitive bounds are achieved in section �� The
idea of deriving bounds for other performance indices from throughput bounds is brie	y



introduced in section �� Finally� some conclusions are summarized in section ��

� Stochastic Petri nets and synchronized queueing

networks

In the original de�nition� Petri nets did not include the notion of time� and tried to model
only the logical behaviour of systems by describing the causal relations existing among
events� Nevertheless the introduction of a timing speci�cation is essential if we want
to use this class of models for performance evaluation of distributed systems� In this
section� some considerations are made about the di�erent implications that the addition
of a timing interpretation has in Petri net models� The close relations between queueing
networks with synchronization primitives and stochastic Petri nets are remarked�

We assume the reader is familiar with the structure� �ring rule� and basic properties
of net models �Pet��� Sil��� Mur��� Let us just introduce some notations and terminology
to be extensively used in the sequel� N � hP� T� Pre� Posti is a net with n � jP j places
and m � jT j transitions� We assume N to be strongly connected� If the Pre and
Post incidence functions take values in f�� �g� N is said ordinary� PRE� POST � and
C � POST � PRE are n�m matrices representing the Pre� Post� and global incidence
functions� Vectors Y � �� Y T �C � � �X � �� C �X � �� represent P�semi	ows� also called
conservative components �T�semi	ows� also called consistent components�� The support
of a vector is the set of indices corresponding to non�null components� then the support
jjY jj �jjXjj� of Y �X� is a subset of places �transitions�� A semi	ow is elementary if it
has minimal support �in the sense of set inclusion� and the greatest common divisor of
non�null elements is �� M �M�� is a marking �initial marking�� hN�M�i is a net system
�or marked net�� The symbol � represents a �rable sequence� while �� is the �ring count
vector associated to �� ���ti� is equal to the number of times ti appears in �� If M is
reachable from M� �i�e�� �� such that M���iM�� then M � M� � C � �� � � and �� � ��

Among the net subclasses considered in the sequel� state machines� marked graphs� free
choice nets� and simple nets are well�studied in the literature �see� for instance� �Mur����
Finally� we call mono�T�semi�ow nets �CCS��a� to those having a unique minimal T�
semi	ow�

Stochastic Petri nets are de�ned through a stochastic interpretation of the net model�
i�e�� �SPN � PN � stochastic interpretation	� Looking at the topological and untimed
behavioural analogy of strongly connected State Machines and the networks of queues�
for certain stochastic interpretations� it can be informally stated that �SPN � QN �
synchronizations	� The modelling paradigm of SPN in our context is �xed in section ����
while section ��� consider synchronized queueing networks �SQN� and SPN�

��� On Stochastic Petri Nets

Time has been introduced in Petri net models in many di�erent ways �see� for instance�
references in surveys like �AM��� FFN��� Zub����� Since Petri nets are bipartite graphs�
historically there have been two ways of introducing the concept of time in them� namely�
associating a time interpretation with either transitions �Ram��� or with places �Sif����
Since transitions represent activities that change the state �marking� of the net system�
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it seems natural to associate a duration with these activities �transitions�� The latter
has been our choice� i�e�� we adopt a so called �t�timed interpretation�� In the case of
timed transition models� two di�erent kinds of �ring rules have been de�ned� atomic
and three�phases� To be fully consistent with qualitative PN theory we adopt the �rst
one� in which a �timed enabling� is eventually followed by an atomic �ring �see� for
instance� �AM����� The three phases �ring� �timed �ring�� changes the classical �ring
rule making some tokens disappear for a while �see� for instance� �Zub����� Thus classical
token conservation laws on places are weakened�

The stochastic timed interpretation of net models requires the speci�cation of the PDF
of the random �ring delays and the execution policy� By execution policy it is undertood
�the way in which the next transition to �re is chosen� and how the model keeps track of
its past history� �AMBB�����

Historically the �rst stochastic interpretations associated exponential PDF to the ran�
dom �ring delays� while the usual execution policy was very simple� race �that indicates
that transitions compete for �ring� the competition is won by the transition that samples
the shortest delay�� This basic model was completed in Generalized Stochastic Petri Nets
�GSPN� see �AMBC��� AMBCC����� adding immediate transitions �which �re in zero
time with priority over timed transitions� and inhibitor arcs� Weights are associated with
immediate transitions for the computation of �ring probabilities in case of con	ict� Im�
mediate transitions allow to de�ne con	ict resolution policies independent of the timing
speci�cation�

A step further has been trying to increase the modelling power of GSPN and alterna�
tive models� allowing arbitrary PDF �deterministic in particular� for the random variables
representing the �ring delays� Under this circumstance the precise de�nition of the ex�
ecution policy becomes crucial because the memoryless property of exponential PDF is
lost� In �AMBB���� the topic is considered in detail� de�ning some possible execution
policies and their modelling and analysis consequences�

Our choice for the stochastic interpretation of net models is guided by the following
principles�

�� Transitions to �re should be selected at the net level� independently of the �ring
delays� Therefore we are in the so called preselection execution policy paradigm
�AMBB����� the activities with transitions that are enabled� but are not prese�
lected� are not executed� The preselection policy is made explicit using immediate
transitions� In other words� we are looking for something that is typical in QNs�
the routing of customers is independent of service times�

This choice will lead to easy to understand and manipulate models� allowing to state
certain performance monotonicity results like in QN �SY����

�� Inhibitor arcs are not allowed� This is a real constraint only for unbounded sys�
tems� where PN with inhibitor arcs have been shown to have a modelling power
equivalent to Turing machines� But in this case many properties are undecidable�
For bounded systems� an inhibitor arc is just a modelling convenience and can be
removed� expressing the constraint with normal arcs and eventually new places �see�
for instance� �Sil�����




� Priorities in the �ring of transitions are forbidden� except for the two levels derived
from the use of immediate and timed transitions�

�� Synchronizations may be immediate� and we discard the �pathological� situation
consisting of a circuit in the net including only immediate transitions�

Under the above choices our stochastic interpretation grounds in a very general framework�

�� Firing delays are random variables with arbitrary PDF� They are assumed to be
time and marking independent�

�� If a transition is enabled several times� let us say q times� then q �rings progress
in parallel at the same time� In other words� we assume the idea that the natural
interpretation of parallelism in a PN model leads to an in�nite�server semantics� in
QN terminology� If this is not appropiated for the system because the number of
servers should be constrained to k� then a place self�loop around the transition with
k tokens will guarantee the k�server semantics�


� Any policy for con	ict resolution among immediate transitions is allowed �e�g�� de�
�ned through a deterministic scheduler� through a probabilistic choice� � � ��

In practice� for computing performance bounds� only the mean �ring 
service� time of
transitions and long run routing rates will be needed by us� More precisely� si� the
mean �ring time for transition ti�i � �� � � � � m� is given� and each subset of transitions
ft�� � � � � tkg � T that are in con	ict in one or several reachable markings are considered
immediate� and the constants r�� � � � � rk � IN� are explicitly de�ned in the net interpreta�
tion in such a way that when t�� � � � � tk are enabled� transition ti� i � �� � � � � k� �res with
relative frecuency� ri��

Pk
j�� rj�� Note that the routing rates are assumed to be strictly

positive� i�e�� all possible outcomes of any con	ict may �re�
In summary� we model services by means of timed transitions� routing by means of

immediate transitions in con	ict� and both kinds of transitions� timed and immediate�
can be used as fork �split� nodes and join �synchronization� nodes�

The main price we pay for the adopted modelling paradigm is the unability to �di�
rectly� model situations like preempting scheduling disciplines� time�out mechanisms or
unreliable processors which can �fail� during the processing stage� What we basically gain
is the possibility of using many results from structure theory of Petri nets and queueing
network theory�

A more restricted but easier to analyse stochastic interpretation� associating time and
marking independent exponential PDF to the �ring of transitions and time and marking
independent discrete probability distributions to immediate transitions� will be called in
the present framework Markovian Petri net systems �section ���

��� Queueing networks with synchronizations

Many extensions have been proposed to introduce synchronization primitives into the
queueing network formalism� in order to allow the modelling of distributed synchronous
systems� passive resources� fork and join� customer splitting� etc� Some very restricted
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Figure �� A Petri net representation of �a� a monoclass single server queue and �b� a
monoclass queueing network�

forms of synchronization� such as some special use of passive resources �AMBCD���� pre�
serve the local balance property �BCMP��� that allows the use of e�cient algorithms for
the computation of exact product form solutions� In general� however� these extensions
destroy the local balance property� so the extended queueing models with synchronizations
are used mainly as system descriptions for simulation experiments� Even the computation
of bounds for these classes of models is not yet well developed�

In �VZL���� a comparison has been proposed between synchronized queueing networks
and stochastic Petri nets� showing that the two formalisms are roughly equivalent from a
modelling point of view� Here we show how the di�erent queueing network models with
synchronizations can be uniformly represented within a Petri net formalism�

A monoclass single server station �Kle��� can be modelled by a subnet of the type
depicted in �gure ��a� An in�nite server queue �Kle��� �i�e�� a pure delay node� can be
represented by a place to model the number of customers in the system and a timed
transition connected with the place through an input arc to model departures� Persis�
tent timed transitions represent service times of the nodes� while con�icting immediate
transitions model the routing of customers moving from one node to the other� Queueing
networks containing both delay and �nite server nodes are thus naturally modelled by
stochastic Petri nets of the type depicted in the example of �gure ��b �t� is a delay� while
t� and t� are single server stations�� Also in this more general context con	icting immedi�
ate transitions model the routing of customers among the stations� while persistent timed
transitions model the service times�

On the other hand� stochastic nets can assume forms much more complex than the
one illustrated in the example of �gure ��b� Figure ��a� taken from �CCS��b�� illustrates
a more general stochastic Petri net that cannot be mapped onto a product form queueing
network� In fact� this net can be mapped onto a queueing network extended with syn�
chronization primitives ��gure ��b� �SMK���� in which such constructs as fork� join� and
passive resources are used to map the e�ect of the pairs of transitions t��t� and t��t��� re�
spectively� These examples show how� using a Petri net formalism� extensions of product
form queueing networks are represented with an analogous level of structural complexity
of Jackson networks�



As a very particular case in which the interest of making a deep bridge between PN and
QN theories appears� in �DLT��� it has be pointed out the isomorphism between Fork
Join
Queueing Networks with Blocking �FJQN
B� and stochastic strongly connected Marked
Graphs�

Finally� let us remark that stochastic Petri nets with weighted arcs �i�e�� non�ordinary
nets� can be used for the modelling of bulk arrivals and bulk services �Kle���� with deter�
ministic size of batches �given by the weights of arcs��

� Relative throughput of transitions� Visit ratios

One of the most usual indices of productivity in performance evaluation of computer
systems is the throughput of the di�erent components� i�e�� the number of jobs or tasks
processed by each component in the unit time� In classical queueing network models�
components are represented by stations� and throughput of each component is the average
number of service completions of the correspondent station per unit time� For stochastic
Petri nets� since actions are represented with transitions� the throughput of a component
is the number of �rings per unit time of the corresponding transition�

��� Classical queueing networks� �ow of customers

In a classical monoclass queueing network� the following system can be derived by equating
the rate of �ow of customers into each station to the rate of 	ow out of the station �Kle����

X�j� � X�j �
mX
i��

X�i� rij� j � �� � � � � m ���

where X�i� is the limit throughput of station i� i�e�� the average number of service comple�
tions per unit time at station i� i � �� � � � � m rij� is the probability that a customer exiting
center i goes to j �i� j � �� � � � � m� and X�j is the external arrival rate of customers to
station j �j � �� � � � � m��

If the network is open �i�e�� if there exists a station j with positive external arrival
rate� X�j � � and also customers can leave the system�� then the above m equations are
linearly independent� and the exact throughputs of stations can be derived �independently
of the service times� si� i � �� � � � � m�� This is not the case for closed networks� If X�j � ��
j � �� � � � � m� then only m� � equations are linearly independent� and thus only ratios of
throughputs can be determined� These relative throughputs which are often called visit
ratios� denoted as vi for each station i� summarize all the information given by the routing
that we use for the computation of the throughput bounds� The visit ratios normalized�
for instance� for station j are de�ned as�

v
	j

i

def
�

X�i�

X�j�
� i � �� � � � � m ���

For a restricted class of queueing networks� called product form networks� the exact steady�
state solution can be shown to be a product of terms� one for each station� where the
form of term i is derived from the visit ratio vi and the service time si� The steady�state
probability ���n� of state �n � �n�� � � � � nm�T �where ni is the number of customers at



center i� including those being served and those waiting� in a closed monoclass product
form queueing network with m stations and N customers has the form�

��n�� � � � � nm� �
�

G�N�

mY
i��

�D
	j

i �ni �
�

where D
	j

i is the average service demand of customers from station i� de�ned as�

D	j

i

def
� v	j
i si� i � �� � � � � m ���

and G�N� is a normalization constant de�ned so that the ���n� sum to ��
We remark that the knowledge of average service demands is crucial for the computa�

tion of exact measures of product form queueing networks�

��� Stochastic Petri nets� �ow of tokens

Concerning stochastic Petri nets� we assume also that the average service times of tran�
sitions are known� Then� in order to compute the average service demand of tokens from
transitions� it is necessary to compute just the visit ratios or relative throughputs of
transitions�

Unfortunately� the introduction of synchronization schemes can lead to the �patho�
logical� behaviour of models reaching a total deadlock� thus with null visit ratios for all
transitions� in the limit� In other words� for these models it makes no sense to speak about
steady�state behaviour� Therefore� in the rest of this paper we consider only deadlock�free
Petri nets� Even more� in most subclasses in which we are interested� deadlock�freeness
implies liveness of the net� in other words� the existence of an in�nite activity of all the
transitions is assured�

The counterpart of routing of customers in queueing networks consists both on the net
structure N and the relative routing rates at con�icts �denoted R� in stochastic Petri nets�
Unfortunately� in the general Petri net case it is not possible to derive the visit ratios only
from N and R� Net systems can be constructed such that the visit ratios for transitions
do depend on the net structure� on the routing rates at con	icts� but also on the initial
marking �distribution of customers�� and on the average service time of transitions�

�v	j
 � �v	j
�N �R�M�� �s� ���

where �v	j
 and �s denote the vectors with components v
	j

i and si� i � �� � � � � m� respectively�

As an example� let us consider the simple net depicted in �gure 
� Transitions t� and
t� are immediate �i�e�� they �re in zero time�� The constants r�� r� � IN� de�ne the con	ict
resolution policy� i�e�� when t� and t� are simultaneously enabled� t� �res with relative rate
r���r� � r�� and t� with r���r� � r��� Let s� and s� be the average service times of t� and
t�� respectively� If m� � � �initial marking of p�� then p� and p� are implicit �CS���� hence
they can be deleted without a�ecting the behaviour� Thus a closed queueing network
topology is derived� A product form queueing network can be obtained and the visit
ratios� normalized for transition t� can be computed� �v	�
 � ��� �� r��r�� r��r��

T � If m� � �
�di�erent initial marking for p�� then p� is now implicit� hence it can be deleted two
isolated closed tandem queueing networks are obtained and �v	�


�

� ��� �� s��s�� s��s��
T �

Obviously �v	�
 	� �v	�

�

� in general�
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Figure 
� A simple net whose visit ratios depend on the structure� on the routing at
con	icts� on the initial marking� and on the service times�

strongly connected marked graphs �v	j
 � �� fconstantg
mono�T�semi	ow nets �v	j
 � �v	j
�N �
live and bounded free choice nets �v	j
 � �v	j
�N �R�
simple nets �v	j
 � �v	j
�N �R�M�� �s�

Table �� Computability of the vector of visit ratios and net subclasses�

The computability of the vector of visit ratios on di�erent system parameters induces
a hierarchy of nets where some well�known subclasses are re�encountered �see table ���
The computation of that vector is based on the two following facts�

�� The vector of visit ratios �v	j
 �normalized� for instance� for transition tj� must be a
non�negative right annuller of the incidence matrix�

C � �v	j
 � � ���

�� The components of �v	j
 must verify the following relations with respect to the routing
rates for each subset of transitions Ti � ft�� � � � � tkg � T in generalized free 
or equal�
con�ict �i�e�� having equal pre�incidence function� PRE�t�� � � � � � PRE�tk���

r��v
	j
�t��� r��v

	j
�t�� � �

r��v
	j
�t��� r��v

	j
�t�� � � ���

� � �

rk�v
	j
�tk���� rk���v

	j
�tk� � �

Expressing the former homogeneous system of equations in matrix form� RTi ��v
	j
 �

�� where RTi is a �k����m matrix� Now� by considering all generalized free con	icts
T�� � � � � Tr� R � �v	j
 � �� where R is a matrix�



R �

�
BB�
RT�

���
RTr

�
CCA ���

R is a matrix with � rows and m � jT j columns� where � is the di�erence between the
number of transitions in generalized free con	ict and the number of subsets of transitions
in generalized free con	ict �� 	 m� or� in other words� the number of independent relations
�xed by the routing rates at con	icts� Given that ri 	� � for all i� it can be observed
that� by construction� rank�R� � �� The above remarked conditions together with the

normalization constraint for transition tj� v
	j

j � �� characterize a unique vector if and

only if the number of independent rows of the matrix

�
C
R

�
���

is m � �� Particularly interesting subclasses verifying this condition are structurally
live and structurally bounded mono�T�semi�ow nets �CCS��a� and structurally live and
structurally bounded free choice nets �CCS��b�� We introduce now a more general class
of structurally live and structurally bounded nets verifying the previous condition� In
order to do that� we de�ne an equivalence relation on the set of T�semi	ows of the net�
After that� the class of FRT�nets will be de�ned as nets having only one equivalence class
for this relation�

De
nition ��� Let N be a Petri net and Xa� Xb two di
erent T�semi�ows of N � Xa

and Xb are said to be freely connected by places P � � P � denoted as Xa
P
�

� Xb� i
 �ta �
jjXajj� tb � jjXbjj such that� PRE�ta� � PRE�tb� and

�ta � �tb � P ��

De
nition ��� Let N be a Petri net and Xa� Xb two T�semi�ows of N � Xa and Xb are
said to be freely related� denoted as �Xa� Xb� � FR� i
 one of the following conditions
holds�

�� Xa � Xb�

�� �P � � P such that Xa
P
�

� Xb� or

�� �X�� � � � � Xk T�semi�ows of N and P�� � � � � Pk�� � P � k � �� such that Xa
P�
� X�

P�
�

� � �
Pk
� Xk

Pk��
� Xb�

From the above de�nition the next property trivially follows�

Property ��� FR is an equivalence relation on the set of T�semi�ows of a net�

The introduction of this equivalence relation on the set of T�semi	ows induces a partition
into equivalence classes� FRT�nets are de�ned as follows�

De
nition ��� �Cam��� N is a net with freely related T�semi�ows 
FRT�net� for short�
i
 the introduction of the freely relation on the set of its T�semi�ows induces only one
equivalence class�



The next result gives a polynomial time method for the computation of the vector of visit
ratios for transitions of a live and structurally bounded FRT�net� from the knowledge of
the net structure and the routing rates at con	icts�

Theorem ��� �Cam��� Let hN �M�i be a live and structurally bounded FRT�net system�
Let C be the incidence matrix of N and R the previously introduced matrix� Then� the
vector of visit ratios �v	j
 normalized for transition tj can be computed from C and R by
solving the following linear system of equations�

�
C
R

�
� �v	j
 � �� v

	j

j � � ����

The reader can notice that a rank condition over the incidence matrix C exists under�
lying theorem 
��� the system of equations ���� has a unique solution �v	j
 if and only if
rank�C� � m����� where � is the rank of R� For the particular case of free choice nets�
a stronger result about the rank of the incidence matrix �that �rst appeared in �CCS��b��
can be formulated as�

Theorem ��� �ES��� Let N be a free choice net� N is structurally live and structurally
bounded i
 it is conservative� consistent� and rank�C� � m � � � �a � n�� with a �P

p�P�t�T PRE�p� t� 
i�e�� the number of input arcs to transitions��

An important fact about this qualitative property suggested by the performance eval�
uation analysis is that many of Hack�s classical results �Hac��� can be derived from it
or the proof process �see �CCS��b� or �ES����� On the other hand� theorem 
�� gives a
polynomial �on the net size� time method to decide if a given free choice net is structurally
live and structurally bounded�

� Number of servers at transitions� Enabling and

liveness bounds

In a classical product�form QN� the number of servers at each station is explicitly given
as a modelling choice �e�g�� it can be said that a certain station has two servers�� Stations
may vary between single server and delay node �in�nite server�� In the second case� the
maximum number of servers that can be working at such delay node is exactly the number
of customers in the whole net system�

In section ��� we explicitly adopted the convention that several instances of a same
transition can work in parallel at a given marking� How many of them! The answer is
given by the degree of enabling of a transition� t� at a given marking� M �

E�t�M�
def
� maxf k j M � k PRE�t�g

Therefore it can be said that at M � in transition t� E�t�M� servers work in parallel� This
value can be eventually reduced by a design choice adding a self�loop place around t with
q tokens� it is obvious that in this case E�t�M� 
 q�

The maximum number of servers working in parallel clearly in	uences the performance
of the system� This value� in net systems terms� has been called the enabling bound of a
transition�
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Figure �� E�t�� � �� while L�t�� � � �i�e�� L�t�� 	 E�t����

De
nition ��� �CCCS��� Let hN �M�i be a net system� The enabling bound of a given
transition t of N is

E�t�
def
� max f k j ���M���iM � M � k PRE�t� g ����

The enabling bound is a quantitative generalization of the basic concept of enabling� and
is closely related to the concept of marking bound of a place�

De
nition ��� Let hN �M�i be a net system� The marking bound of a given place p of
N is

B�p�
def
� max f M�p� j M���iM g ����

Since we are interested in the steady�state performance of a model� one can ask the
following question� how many servers can be available in transitions in any possible steady�
state condition! The answer is given by the de�nition of the liveness bound concept�

De
nition ��� �CCS��a� Let hN �M�i be a net system� The liveness bound of a given
transition t of N is

L�t�
def
� max f k j �M � � M���iM

�� �M � M ����iM �M � k PRE�t� g ��
�

The above de�nition generalizes the classical concept of liveness of a transition� In par�
ticular� a transition t is live if and only if L�t� � �� i�e�� if there is at least one working
server associated with it in any steady�state condition� The following is also obvious from
the de�nitions�

Property ��� �CCS��a� Let hN �M�i be a net system� For any transition t in N � E�t� �
L�t� 
see �gure ���

Since for any reversible net system �i�e�� such that M� can be recovered from any reachable
marking� M� is a home state� the reachability graph is strongly connected� the following
can be stated�

Property ��� �CCS��a� Let hN �M�i be a reversible net system� For any transition t in
N � E�t� � L�t��



The de�nition of enabling bound refers to a behavioural property� Since we are looking for
computational techniques at the structural level� we de�ne also the structural counterpart
of the enabling bound concept� Structural net theory has been developed from two com�
plementary points of view� graph theory �Bes��� and mathematical programming �or more
speci�cally linear programming and linear algebra� �SC���� Let us recall our structural
de�nition from the mathematical programming point of view essentially in this case the
reachability condition is substituted by the �in general� weaker �linear� constraint that
markings satisfy the net state equation� M � M� � C � ��� with M��� � ��

De
nition ��� �CCCS��� Let hN �M�i be a net system� The structural enabling bound
of a given transition t of N is

SE�t�
def
� max fk j M � M� � C � �� � �� �� � � � M � kPRE�t� g �LPP��

Note that the de�nition of structural enabling bound reduces to the formulation of a
linear programming problem� that can be solved in polynomial time �NRKT����

Now let us remark the relation between behavioural and structural enabling bound
concepts that follows from the implication �M���iM 
 M � M� � C � �� � �� � ���

Property ��� �CCS��a� Let hN �M�i be a net system� For any transition t in N �
SE�t� � E�t��

As we remarked before� the concept of enabling bound of transitions is closely related
to the marking bound of places� In an analogous way� the structural enabling bound is
closely related to the structural marking bound of places�

De
nition ��� �SC��� Let hN �M�i be a net system� The structural marking bound of a
given place p of N is

SB�p�
def
� max f M�p� j M � M� � C � �� � � � �� � � g �LPP��

It is well�known that the structural marking bound of a place is� in general� greater than
or equal to the marking bound of the same place �for instance� for the net in �gure ��
the marking bound of p� is � while its structural marking bound is ��� For the particular
case of live and bounded free choice systems� both the marking bound and the structural
marking bound of a place are always the same �Esp���� A similar result can be shown for
the enabling bound� the structural enabling bound� and the liveness bound of transitions
of such net subclass�

Theorem ��� �CCS��b� Let hN �M�i be a live and bounded free choice system� For any
transition t in N � SE�t� � E�t� � L�t��



Now� from the previous theorem and taking into account that for any transition t the
computation of the structural enabling bound SE�t� can be formulated in terms of the
problem �LPP��� the following monotonicity property of the liveness bound of a transition
with respect to the initial marking is obtained�

Corollary ��� �CCS��b� If hN �M�i is a live and bounded free choice system and M �

� �
M� then the liveness bound of t in hN �M �

�i is greater than or equal to the liveness bound
of t in hN �M�i�

The previous result appears to be a generalization �stated for the particular case of
bounded nets� of the classical liveness monotonicity property for free choice systems �see�
e�g�� �Bes�����

Once the computability of visit ratios and enabling
liveness bounds have been ad�
dressed using concepts and techniques from linear �algebra
programming� structure the�
ory� bounds on throughput are presented in the following sections�

� Insensitive upper bounds on throughput

In this section we present the computation of upper bounds for the throughput of tran�
sitions for stochastic Petri nets with general distribution of service times� The obtained
bounds are called insensitive because they are valid for arbitrary forms of the probability
distribution functions of service �including deterministic timing�� since only mean values
of random variables are used�

Let us just precise for stochastic Petri net systems the weak ergodicity notions for the
marking and �ring processes�

De
nition ��� �CCS��b� The marking process M� � where 
 � � represents the time� of
a stochastic marked net is weakly ergodic i
 the following limit exists�

lim
���

�




Z �

�
Mu du � M 	 ��� a�s� ����

and the constant vector M is called the limit average marking�
The �ring process ��� � where 
 � � represents the time� of a stochastic marked net is

weakly ergodic i
 the following limit exists�

lim
���

���



� �" 	 ��� a�s� ����

and the constant vector �" is the limit of transition throughputs 
or limit �ring �ow vector��

For bounded net systems� the existence of a home state �i�e�� a marking reachable from
any other� is a su�cient condition for weak marking ergodicity �Cam����



��� Little�s law and P	semi�ows

Three of the most signi�cant performance measures for a closed region of a network in
the analysis of queueing systems are related by Little�s formula �Lit���� which holds under
very general �i�e�� weak� conditions� This result can be applied to each place of a weakly

ergodic net system� Denoting M�pi� the limit average number of tokens at place pi� �"
the limit vector of transition throughputs� and R�pi� the average time spent by a token
within the place pi �average residence time at place pi�� the above mentioned relationship
is stated as follows �see �FN�����

M�pi� � �PRE�pi� � �"� R�pi� ����

where PRE�pi� is the ith row of the pre�incidence matrix of the underlying Petri net� thus

PRE�pi� � �" is the output rate of place pi�
In the study of computer systems� Little�s law is frequently used when two of the

related quantities are known and the third one is needed� This is not exactly the case
here� In the equation ����� �" can be computed except for a scaling factor for important
net system subclasses �see section 
��

�" �
�

#	j

�v	j
 ����

where �v	j
 is the vector of visit ratios normalized for tj and #	j
 is the inverse of the limit
throughput of transition tj� that we call the mean inter�ring time of that transition� i�e��
the mean time between two consecutive �rings of tj�

The average residence time R�pi� at places with more than one output transition is null
because such transitions are considered immediate� For the places pi with only one output
transition� the average response time can be expressed as sum of the average waiting time
due to a possible synchronization in the output transition and the mean service time
associated with that transition� Thus the average residence times can be lowerly bounded
from the knowledge of the mean service times of transitions� si� i � �� � � � � m� and the
following system of inequalities can be derived from ���� and �����

#	j
 M � PRE � �D	j
 ����

where �D	j
 is the vector of average service demands� introduced in section 
��� D
	j

k �

v
	j

k sk�

The limit average marking M is unknown� However� taking the product with a P�
semi	ow Y �i�e�� Y � �� Y T � C � �� thus Y T �M� � Y T �M � Y T �M for all reachable
marking M�� the following inequality can be derived�

#	j
 � max

��
	Y

T � PRE � �D	j


Y T �M�
j Y T � C � � � Y � �


�
� ����

The previous lower bound for the mean inter�ring time �or its inverse� an upper bound
for the throughput� can be formulated in terms of a fractional programming problem
�NRKT��� and later� after some considerations� transformed into a linear programming
problem�



p3
p16

p 7

p 10

p12

p 9

p 8

p11

t1

t2

t 3

t4 t 5

p 1

p2

p4

p5

t6

p 6
p13

p14

p15

t 13

t 7

t 8 t 9

t 10 t 11

t 12

N 1

N 2N 2

Figure �� A live and bounded stochastic Petri net�

Theorem ��� �CCS��b� For any net system� a lower bound for the mean inter�ring time
#	j
 of transition tj can be computed by solving the following linear programming problem�

#	j
 � max fY T � PRE � �D	j
jY T � C � � � Y T �M� � � � Y � �g �LPP
�

The basic advantage of the previous theorem lies in the fact that the simplex method for
the solution of a linear programming problem has almost linear complexity in practice�
even if it has exponential worst case complexity� In any case� algorithms of polynomial
worst case complexity can be found in �NRKT���� Since for live and bounded free choice

systems the computation of vector �v	j
 �hence of �D	j
� can be done by solving a linear
system of equations �cf� theorem 
���� the computation of a lower bound for the mean
inter�ring time �thus� of the upper bound on throughput� of a transition has worst case
polynomial complexity on the net size�

In order to interpret theorem ���� let us consider the mono�T�semi�ow net �CCS��a�
depicted in �gure �� The unique minimal T�semi	ow of the net is�

X � ��� �� �� �� �� �� �� �� �� �� �� �� ��T ����

Therefore� according to ���� the vector of average service demands for transitions �if the
visit ratios are normalized� for instance� for t�� is

�D	�
 � ��s�� �� �s�� s�� s�� �� �� s
� s�� s��� s��� s��� s���
T ����

because the vector of visit ratios is �v	�
 � X �see section 
� and transitions t�� t�� and t�
are assumed to be immediate �s� � s� � s� � ���
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Figure �� Subsystems of the net system in �gure � generated by minimal P�semi	ows�

The minimal P�semi	ows �minimal support solutions of Y T �C � �� Y � �� of this net
are�

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��T

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��T

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��T

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��T

����

Then� the application of �LPP
� gives�

#	�
 � max f ��s� � �s� � �s� � s� � �s
 � �s����N��
s� � s��
�s
 � s�� � s����N��
�s� � s�� � s����N� g

��
�

where N� � � is the initial marking of place p�� and N� � � is the initial marking of
p�� and p��� Now� let us consider the P�semi�ow decomposed view of the net� the four
subnets generated by Y�� Y�� Y�� and Y� are depicted in isolation in �gure ��

The exact mean inter�ring times of �all the transitions of� the second� third� and forth
subnets are s� � s�� �s
 � s�� � s����N�� and �s� � s�� � s����N�� respectively �remember
that in�nite�server semantics is assumed�� The exact mean inter�ring time of t� in the
�rst subnet �generated by Y�� cannot be computed in a compact way �like the others��
because it includes synchronizations �it has not queueing network topology�� In any case�
its mean inter�ring time is greater than ��s���s���s��s���s
��s����N�� because this
would be the cycle time of a queueing network �without delays due to synchronizations� of
in�nite�server stations with the same average service demands and number of customers�
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Figure �� �a� A live and safe free choice system and �b� the addition of the implicit place
p��

Therefore� the lower bound for the mean inter�ring time of t� in the original net given by
��
� is computed looking at the �slowest subnet	 �net with minimum throughput for t��
generated by the elementary P�semi�ows� considered in isolation�

In the particular case of strongly connected marked graphs� the problem of �nding an
upper bound for the steady�state throughput �lower bound for the mean inter�ring time�
can be solved looking at the mean inter�ring time associated with each elementary circuit
�minimal P�semi	ows for marked graphs� of the net� considered in isolation� These times
can be computed making the summation of the mean service times of all the transitions
involved in the P�semi	ow �service time of the whole circuit�� and dividing by the number
of tokens present in it �customers in the circuit��

��� About the reachability of the bound

The above bound� that holds for any probability distribution function of service
times of transitions� happens to be the same that has been obtained for strongly
connected deterministically timed marked graphs by other authors �see for example
�Ram��� Sif��� RH����� but here it is considered in a practical linear programming form�
For deterministically timed marked graphs� the reachability of this bound has been shown
�Ram��� RH���� Even more� it has been shown �CCCS��� CCCS��� that the previous
bound cannot be improved� for the case of strongly connected marked graphs� only on the
base of the knowledge of the coe�cients of variation for the transition service times�

We remark that the importance of a tightness result for performance bounds lies in
the fact that the bounds cannot be improved without increasing the information about
the model �in particular� the moments of order greater than two of the associated random
variables��

For the more general case of live and bounded free choice systems� the bound given by
theorem ��� cannot be reached for some models� for any probability distribution function
of service times� Let us consider� for instance� the live and safe free choice system in
�gure ��a�

Let s� and s� be the mean service times associated with t� and t�� respectively� Let



t�� t�� and t� be immediate transitions �i�e�� they �re in zero time�� Let q� �� q � ��� �� be
the probabilities de�ning the resolution of con	ict at place p�� The vector of visit ratios
�normalized for t�� is

�v	�
 � �q� �� q� q� �� q� ��T ����

The elementary P�semi	ows are

Y� � ��� �� �� �� ��T

Y� � ��� �� �� �� ��T
����

Applying �LPP
� the following lower bound for the mean inter�ring time of transition t�
is obtained�

#	�
 � max f qs�� ��� q�s� g ����

while the actual mean inter�ring time for this transition is

#	�
 � qs� � ��� q�s� ����

independently of the higher moments of the probability distribution functions associated
with transitions t� and t�� Therefore the bound given by theorem ��� is non�reachable for
the net system in �gure ��a�

Methods for the improvement of this bound have been presented in �CCS��c� and
�CC���� We just summarize here some ideas about them� The �rst one concerns the
addition of implicit places to the net system� From a pure qualitative point of view� in
�CS��� it is shown that the addition of �judicious� implicit places eliminates some of the
spurious solutions of the linear relaxation of a net system �i�e�� those integer solutions of
M � M� �C � �� � �� �� � � that are non reachable�� In �CCS��b�� an analogous improve�
ment is shown to hold at the performance level� Let us explain here this improvement by
using again the example depicted in �gure ��a� consider the net in �gure ��b� where the
implicit place p� has been added to the original net� The addition of implicit places can
generate more elementary P�semi	ows� In this case�

Y� � ��� �� �� �� �� ��T ����

Then� the application of �LPP
� can eventually lead to an improvement of the previous
bound� For this net system�

#	�
 � max f qs�� ��� q�s�� qs� � ��� q�s� g � qs� � ��� q�s� ����

which is exactly the actual mean inter�ring time of t��
Details on this technique can be found in �CCS��c�� Moreover� it should be pointed

out that the addition of implicit places does not guarantee the bound to be reachable�
As an example� look at the net in �gure ��a� The exact mean inter�ring time of t� for
deterministic timing is�

#	�
 � max f qs��s�� ���q�s��s�� qs�����q�s�����q�s��qs�� qs�����q�s� g�s� �
��
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Figure �� �a� A live and safe free choice system and �b� the addition of the implicit place
p
�

and its clearly greater than the bound obtained after the addition of the implicit place p

��gure ��b��

#	�
 � max f qs� � s�� ��� q�s� � s�� qs� � ��� q�s� g� s� �
��

The reader can check that addition of any set of implicit places to the system in �gure ��a
does not allow to reach the value in �
���

Another approach for improving the throughput upper bound of theorem ��� is pre�
sented in �CC���� for the case of live and safe free choice systems� It is based on the
consideration of some speci�c multisets of circuits of the net in which elementary circuits
appear a number of times according to the visit ratios of the involved transitions� Basi�
cally� it is a generalization �in the graph theory sense� of the application of theorem ���
for the case of marked graphs� because circuits �P�semi	ows� of the marked graph are
substituted now by multisets of circuits� The improvement is based on the application
of a linear programming problem to a net obtained from the original one after a trans�
formation of linear size increasing� The transformation� that is a modi�cation of the
Lautenbach transformation for the computation of minimal traps in a net �Lau���� will
not be presented here �interested readers are referred to �CC����� The application of this
method to the net in �gure ��a gives exactly the mean inter�ring time of t�� given by �
���
for deterministic service times of transitions�

��� Some derived results

Linear programming problems give an easy way to derive results and interpret them�
Looking at �LPP
�� the following monotonicity property can be obtained� the lower bound
for the mean inter�ring time of a transition does not increase if �s �the mean service times
vector� decreases or if M� increases�
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Figure �� �Apparent improvements� lead to worse results� �a� The addition of a token
to p� kills the net system �the sequence � � t� leads to a deadlock� �b� Decreasing s�
�mean service time of t��� the mean inter�ring time of t� increases if s� � si� i � �� 
� and
if exponential services and race policy are assumed�

Property ��� �CCCS��� Let hN �M�i be a net system and �s the vector of mean service
times of transitions�

�� For a �xed �s� if M �

� �M� 
i�e�� more resources� then the lower bound for the mean
inter�ring time of any transition of hN �M �

�� �si computed through 
LPP�� is less
than or equal to the one of hN �M�� �si�

�� For a �xed M�� if �s� 
 �s 
i�e�� faster resources� then the lower bound for the mean
inter�ring time of any transition of hN �M�� �s�i computed through 
LPP�� is less
than or equal to the one of hN �M�� �si�

For the case of live and bounded free choice systems� the above monotonicity properties
for the bound hold also for the exact throughput� We recall that live and bounded free
choice net systems can be decomposed into several strongly connected state machines
�P�components� connected by means of synchronization transitions �Bes���� Moreover�
from the de�nition of free choice nets� if pa and pb are input places to a synchronization
transition t� then t is the unique output transition of pa and pb� In other words� once
a synchronization transition has been enabled in a free choice system� its �ring is un�
avoidable� Then� because we assume �section ���� that all choices are among immediate
transitions� if the service time of a transition decreases or the number of tokens at some
place increases� the mean inter�ring time of transitions can never increase� it is possible
to increase for certain tokens the pure waiting time at some synchronizations �i�e�� the
time elapsed from the time instant in which the tokens arrive until the transition becomes
enabled��

Property ��� Let hN �M�i be a live and bounded free choice system and �s the vector of
mean service times of transitions�

�� For a �xed �s� if M �

� � M� 
i�e�� more resources� then the mean inter�ring time
of any transition of hN �M �

�� �si is less than or equal to the one of hN �M�� �si 
i�e��
#	j
� 
 #	j
��
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Figure ��� Increasing the mean service time s� of t� on the Markovian net system leads to
better overall throughput �i�e�� the mean inter�ring time # of every transition decreases��

�� For a �xed M�� if �s� 
 �s 
i�e�� faster resources� then the mean inter�ring time of
any transition of hN �M�� �s�i is less than or equal to the one of hN �M�� �si 
i�e��
#	j
� 
 #	j
��

The result stated in the above property does not hold for other net subclasses� For
instance� increasing the number of initial resources �by adding one token to p�� in the net
system of �gure ��a� the obtained system reaches a total deadlock� therefore the throughput
of the derived system is null�

On the other hand� the intuitive idea that decreasing the service time of a transition
leads to a slower system is paradoxically wrong in general� Figure �� shows a Markovian
Petri net system �exponentially distributed service times of transitions� where increasing
the mean service time s� of t�� while s� � ��� ��� the throughput increases� Moreover�
the statement � in the property ��� does not hold even for state machine topology using
the basic stochastic interpretation in �Mol��� or �FN���� all transitions are timed with
exponential PDF and con	icts are solved with race policy� This �anomaly�� illustrated
in the extremely simple case of �gure ��b� appears because the routing and timing are
coupled in this class of models�

Finally� an interesting interpretation of the problem �LPP
�� that provides another ex�
ample of possible interleaving between qualitative and quantitative analysis for stochastic
net systems� is the following characterization of liveness for structurally live and struc�
turally bounded free choice nets�

Corollary ��� Assuming that �v	j
 � � and that there do not exist circuits containing only
immediate transitions� liveness of structurally live and structurally bounded free choice nets
can be decided in polynomial time� checking the boundedness of the problem 
LPP���

This result is nothing more than deciding liveness by checking if all P�semi	ows are
marked �the linear programming problem is bounded if and only if for all Y � � such
that Y T � C � �� then Y T �M� � ���

For more general net subclasses� if the solution of �LPP
� is unbounded �i�e�� there
exists an unmarked P�semi	ow�� since #	j
 it is a lower bound for the mean inter�ring time



of transition tj� the non�liveness can be assured �in�nite inter�ring time�� Nevertheless�
a net system can be non�live and the obtained lower bound for the mean inter�ring time
be �nite �e�g�� the mono�T�semi	ow net in �gure ��a with the addition of a token in place
p���

� Insensitive lower bounds on throughput

In this section� lower bounds on throughput are presented� independent of the higher
moments of the service time probability distribution functions� based on the computation
of the vector of visit ratios for transitions as introduced in section 
 and on the transition
liveness bounds� de�ned in section ��

A �trivial� lower bound in steady�state performance for a live net system with a given
vector of visit ratios for transitions is of course given by the inverse of the sum of the
services times of all the transitions weighted by the vector of visit ratios� Since the net
system is live� all transitions must be �rable� and the sum of all service times multiplied by
the number of occurrences of each transition in the average cycle of the model corresponds
to any complete sequentialization of all the transition �rings� This pessimistic behaviour is
always reached in a marked graph consisting on a single loop of transitions and containing
a single token in one of the places� independently of the higher moments of the probability
distribution functions �this observation can be trivially con�rmed by the computation of
the upper bound� which in this case gives the same value��

This trivial lower bound has been improved in �CCS��b� for the case of live and
bounded free choice systems based on the knowledge of the liveness bound L�t� for all
transitions t of the net system�

Theorem 	�� �CCS��b� For any live and bounded free choice system� an upper bound
for the mean inter�ring time #	j
 of transition tj can be computed as follows�

#	j
 

mX
i��

D
	j

i

L�ti�
�

mX
i��

v
	j

i si
L�ti�

�
��

We recall �cf� theorem ���� that in the case of live and bounded free choice systems�

�� The liveness bound equals the structural enabling bound for each transition �The�
orem ���� and this one can be computed by solving �LPP���

�� The vector of visit ratios for transitions is obtained by solving the linear system of
equations �����

Therefore� the lower bound for the throughput of live and bounded free choice systems
can be computed e�ciently� Its worst case complexity is polynomial time on the net size�

The lower bound in performance given by the computation of theorem ��� can be
shown �CCCS��� to be reachable for any marked graph topology and for some assignment
of PDF to the service time of transitions� Therefore� if nothing but the average value is
known about the PDF of the service time of transitions� the bound provided by Theorem
��� is tight�
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Figure ��� �Non�trivial� upper bound for the mean inter�ring time cannot be applied�

Concerning non�free choice net systems� only the trivial bound� given by the sum of
the mean service times of all transitions weighted by the vector of visit ratios� can be
computed�

An example showing that the bound presented in theorem ��� is not valid for non�free
choice net systems is depicted in �gure ��� where s�� s�� s� are the mean service times of
transitions t�� t�� t�� respectively� For this net� the vector of visit ratios normalized for
transition t� is

�v	�
 � ��� �� ��T �

�

and the liveness bounds of transitions are given by L�t�� � �� L�t�� � �� and L�t�� � ��
Thus� the theorem ��� would give the bound�

#	�
 
 s� � s� � s� �
��

If exponentially distributed random variables �with means s�� s�� s� s� 	� s�� are associ�
ated with transitions� the steady�state mean inter�ring time for transition t� is

#	�
 � s� � s� � s� �
s��

��s� � s��
�
��

which is greater than the value obtained from the theorem ���� thus the �non�trivial�
bound does not hold in general�

	 Throughput bounds for Markovian Petri net sys


tems

In sections � and �� insensitive bounds �valid for any probability distribution function of
service times and for any con	ict resolution policy� on throughput have been presented�
The quality of the bounds is poor in some cases due to the fact that only mean values of
the involved random variables have been used for the computation� In order to improve
the bounds� it will be necessary to take into account more information from the form of
the probability distribution functions�



Exponential distribution of service times is one of the most usual in performance mod�
elling of systems� The main reason is that the memoryless property greatly simpli�es the
analysis of models� Therefore� in this section we assume that timed transitions repre�
sent exponentially distributed services� the maximum number of servers being de�ned by
the liveness of the transitions� Marking independent discrete probability distributions
are used for de�ning the solution of con	icts among immediate transitions� The general
techniques in the literature for the analysis of this particular case of stochastic Petri net
models are� in general� enumerative since they are based on the solution of an embedded
continuous time Markov chain whose state space is the set of reachable markings of the
net system �AMBC����

In summary� in this section we present better bounds for stochastic Petri net systems
with exponentially distributed timed transitions� L�t��server semantics� and marking in�
dependent discrete probability distributions for the resolution of con	icts� that we already
call �section ���� Markovian Petri net systems� for short�


�� Embedded queueing networks

Insensitive lower bounds for the mean inter�ring time of transitions were introduced in
section � looking for the maximum of the mean inter�ring time of transitions of isolated
subnets generated by elementary P�semi	ows� A more realistic computation of the mean
inter�ring time of transitions of these subsystems than that obtained from the analysis in
complete isolation is considered now using� once more� the concept of liveness bound of
transitions �section ��� The number of servers at each transition t of a given net in steady
state is limited by its corresponding liveness bound L�t� �or by its structural enabling
bound which can always be computed in an e�cient manner�� because this bound is
the maximum reentrance �or maximum self�concurrency� that the net structure and the
marking allow for the transition�

The technique we are going to brie	y present �a more detailed discussion can be
found in �CS���� is based on a decomposition of the original model in subsystems� In
particular� we look for embedded product�form closed monoclass queueing networks� Well�
known e�cient algorithms exist for the computation of exact values or bounds for the
throughput of such models �RL��� ZSEG��� ES�
��

Therefore� let us concentrate in the search of such subsystems� How are they struc�
turally characterized! From a topological point of view� they are P�components� strongly
connected state machines� Timing of transitions must be done with exponentially dis�
tributed services� Moreover� conditional routing is modelled with decisions among im�
mediate transitions� corresponding to generalized free con	icts in the whole system� In
other words� if t� and t� are in con	ict in the considered P�component� they should be
in generalized free con	ict in the original net� PRE�t�� � PRE�t��� The reason for this
constraint is that since we are going to consider P�components as product�form closed
monoclass queueing networks with limited number of servers at stations �transitions�� the
throughput of these systems is sensitive to the con�ict resolution policy� even if the relative
�ring rates are preserved� Therefore� con	icts in the P�component must be solved with
exactly the same marking independent discrete probability distributions as in the whole
net system� in order to obtain an optimistic bound for the throughput of the original net
system� We call RP�components the subnets verifying the previous constraints�
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Figure ��� A live and bounded free choice system�

De
nition 
�� Let N be a net and Ni a P�component of N 
strongly connected state
machine subnet�� Ni is a routing preserving P�component� RP�component� i
 for any
pair of transitions� tj and tk� in con�ict in Ni� they are in generalized free 
equal� con�ict
in the whole net N � PRE�tj� � PRE�tk��

An improvement of the insensitive lower bound for the mean inter�ring time of a transition
tj computed in theorem ��� can be eventually obtained computing the exact mean inter�
�ring time of that transition in the RP�component generated by a minimal P�semi	ow
Y � with L�t��server semantics for each involved transition t �in fact� it is not necessary
that tj belongs to the P�component the bound for other transition can be computed and
then weighted according to the visit ratios in order to compute a bound for tj�� The
P�semi	ow Y can be selected among the optimal solutions of �LPP
� or it can be just a
feasible near�optimal solution�

As an example� let us consider the net system depicted in �gure ��� Assume that
routing probabilities are equal to ��
 for t�� t�� and t�� and that t�� t
� t�� t��� t��� t�� have
exponentially distributed service times with mean values s� � s
 � s� � ��� s�� � s�� �
s�� � �� The elementary P�semi	ows of the net are�

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��T

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��T

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��T

Y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��T

�
��

Then� if the initial marking of p��� p��� and p�� is � token� and the initial marking of p� is
N tokens� the lower bound for the mean inter�ring time derived from �LPP
� is

#
	�

	LPP�
 � maxf
��N� ��� ��� ��g �
��

For N � �� the previous bound� obtained from Y�� gives the value 
�� while the exact mean
inter�ring time is 
����� For N � �� the bound is �� and it is derived also from Y� �mean



N #	�
 #
	�

	Y�
L

#
	�

	LPP�


� 
���� 
� 
�
� ����� �� ��

 ����� ����� ��
� ����
 �� ��
� ����
 �� ��
�� �
��� �� ��
�� ���
� ���
� ��

Table �� Exact mean inter�ring time of t�� bounds obtained using �LPP
�� and the
improvements presented in this section� for di�erent initial markings of p� in the net
system of �gure ���

inter�ring time of the P�component generated by Y�� considered in isolation with in�nite
server semantics for transitions�� This bound does not take into account the queueing
time at places due to synchronizations �t�� t�� and t��� and the exact mean inter�ring time
of t� is #	�
 � ������ For larger values of N � the bound obtained from �LPP
� is equal
to �� �and is given by P�semi	ows Y�� Y� and Y��� This bound can be improved if the
P�component generated by Y� is considered with liveness bounds of transitions t�� t
� and
t� reduced to � �which is the liveness bound of these transitions in the whole net��

The results obtained for di�erent values of N are collected in table �� Exact values of
mean inter�ring times for the P�component generated by Y� were computed using the mean
value analysis algorithm �RL���� This algorithm has O�A�B� worst case time complexity�
where A � Y T �M� is the number of tokens at the P�component and B � Y T � PRE � ��
is the number of involved transitions ��� is a vector with all entries equal to ��� Exact
computation on the original system takes several minutes in a Sun SPARC Workstation
while bounds computation takes only a few seconds�

We also remark that other techniques for the computation of throughput upper bounds
�instead of exact values� of closed product�form monoclass queueing networks could be
used� such as� for instance� balanced throughput upper bounds �ZSEG��� or throughput up�
per bounds hierarchies �ES�
�� Hierarchies of bounds guarantee di�erent levels of accuracy
�including the exact solution�� by investing the necessary computational e�ort� This pro�
vides also a hierarchy of bounds for the mean inter�ring time of transitions of Markovian
Petri net systems�

Finally� the technique sketched in this section can be applied to the more general case
of Coxian distributions �instead of exponential� for the service time of those transitions
having either liveness bound equal to one �i�e�� single�server stations� or liveness bound
equal to the number of tokens in the RP�component �i�e�� delay stations�� The reason
is that in these cases the embedded queueing network has also product�form solution�
according to a classical theorem of queueing theory� the BCMP theorem �BCMP����
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Figure �
� �a� Elementary fork�join and �b� its reduction�


�� Transformation techniques

The lower bounds for the throughput of transitions presented in section � are valid for
any probability distribution function of service times but can be very pessimistic in some
cases� In this section� an improvement of such results is brie	y explained for the case
of those net systems in which the following performance monotonicity property holds�
a local pessimistic transformation leads to a slower transformed net system �i�e�� a pes�
simistic local transformation guarantees a pessimistic global behaviour�� This property is
not always true as already mentionned �see� for instance� �gure ���� Using the concept
of stochastic ordering �Ros�
�� a pessimistic transformation is� for example� to substitute
the PDF of a service �or token�subnet traversing� time by a stochastically greater PDF�
Live and bounded free choice is a class of systems for which the above performance mono�
tonicity property holds �property ��� is a particular case�� Details about the techniques
presented here can be found in �CSS���� The basic ideas are�

�� To use local pessimistic transformation rules to obtain a net system �simpler� than
the original �e�g�� with smaller state space� and with equal or less performance�

�� To evaluate the performance for the derived net system� using insensitive bounds
presented in section �� exact analysis� or any other applicable technique�

In order to obtain better bounds �after these two steps� than the values computed in
section �� at least one of the transformation rules of item � must be less pessimistic
than a total sequentialization of the involved transitions� We present �rst a rule whose
application allows such strict improvement� the fork�join rule� Secondly� a rule that does
not change at all the performance �deletion of multistep preserving places� is presented�
Finally� a rule that does not follow the above ideas is also presented� the goal of this rule
�split of a transition� is to make reapplicable the other transformation rules�

The most simple case of fork�join subnet that can be considered is depicted in �g�
ure �
�a� In this case� if transitions t� and t� have exponential services X� and X� with
means s� and s�� they are reduced to a single transition ��gure �
�b� with exponential
service time and mean�



s�� � E�maxfX�� X�g� � s� � s� �



�

s�
�

�

s�

���
�
��

Therefore� even if the mean traversing time of the reduced subnet by a single token has
been preserved� it has been substituted by a stochastically greater variable� A trivial
extension can be applied if the fork�join subnet includes more than two transitions in
parallel�

Other transformation rules that have been presented in �CSS��� are�

Deletion of a multistep preserving place� allows to remove some places without changing
the exact performance indices of the stochastic net system� In fact the places that
can be deleted are those whose elimination preserves the multisets of transitions
simultaneously �rable in all reachable markings �e�g�� place p�� in �gure ���a�� The
size of the state space of the model is preserved and also the exact throughput of
transitions of the system�

Reduction of transitions in sequence� reduces a series of exponential services to a single
exponential service with the same mean� Intuitively� this transformation makes in�
divisible the service time of two or more transitions representing elementary actions
which always occur one after the other and lead to no side condition �e�g�� transi�
tions t� and t� in �gure ���a�� Therefore� the state space of the model is reduced�
The throughput of transitions is� in general� reduced�

Split of a transition� this is not a state space reduction rule since it increases the state
space of the transformed net system� The advantage of the rule is that it allows
to proceed further in the reduction process using again the previous rules �e�g��
transition t� in �gure ���c��

An example of application of all above transformation rules is depicted in �gure �� for
a strongly connected marked graph with exponential timing� Let us assume that mean
service times of transitions are� si � �� i � �� �� 
� �� �� ��� �
� �� and si � �� otherwise�

In order to compute �rstly the insensitive lower bounds on throughput introduced in
section �� it is necessary to derive the liveness bounds of transitions �section ��� In this
case it is easy to see that L�tj� � � for every transition tj�

The vector of visit ratios of a marked graph is the unique minimal T�semi	ow of the
net� �v	j
 � ��� for all transitions tj� Therefore� the insensitive upper bound �valid for
any probability distribution function of service times� of the mean inter�ring time of any
transition of the net system is # 
 
�� This value can be reached for some distributions
of service times �see comment on tightness on section ��� Nevertheless� if services are
exponential the exact mean inter�ring time of transitions is # � ������

The quantitative results of the transformation process illustrated in �gure �� are shown
in table 
� We remark that the bound has been improved in polynomial time from 
� to
�����

� Bounds for other performance indices

Up to this point we just concentrated on throughput bounds� The purpose of this section
is to bring the idea that given some throughput bounds� bounds for other performance
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Figure ��� A complete reduction process� The relative error between insensitive bound
and exact value diminishes from ���$ to 
�$�



System #ub Relative error
Fig� ���a 
� ��� $
Fig� ���b �� ��� $
Fig� ���c �� ��� $
Fig� ���d ���� ��� $
Fig� ���e ���� ��� $
Fig� ���f ���� �� $
Fig� ���g ���� �� $
Fig� ���h ���� 
� $
Fig� ���i ���� 
� $

Table 
� Successive improvements of the upper bound for the mean inter�ring time of
transitions of the net in �gure �� and relative errors with respect to the exact value
# � ������

indices can be computed using classical formulas in QN theory such as Little�s formula�
The number of tokens in a place de�nes the lenght of the represented queue �including

the customers in service��� Thus it may be important to known bounds on average marking
of places�

As an example� in �CCS��b� it has been shown that the following are lower and upper
bounds for the average marking� M �

M
lb

� PRE � S � �"lb �
��

M
ub

�p� � max f M�p� j BT �M � BT �M� � M �M
lb
g �LPP��

where S � diag �si� and the rows of BT are the basis of left annullers of C �the incidence
matrix of the net��

As an interesting remark� the reader can check that a structural absolute bound for
the marking of a place is given for conservative nets �i�e�� �Y � �� Y T � C � �� by the
following expression�

SB�p� � max f M�p� j BT �M � BT �M� � M � � g �LPP��

The constraint in �LPP�� being weaker than that in �LPP�� �M � M
�b

is transformed

into M � ��� it is obvious that M
ub

 SB�p��

� Conclusions

The main motivation to write this paper has been to show how the qualitative theory �and
in particular the structural analysis techniques� of net systems can be useful in perfor�
mance bounds computation for stochastic Petri net models� Several interesting questions
that were easily answered in the past for classical queueing networks turn into non�trivial



problems �ergodicity� visit ratios� number of servers at stations� performance bounds� in
the case of stochastic Petri net systems� However� structural techniques can be used in
order to solve those problems in an e�cient way� at least for important subclasses of net
systems� Moreover� the bene�ts of this approach have been not only for the quantitative
understanding of the models but also for the qualitative point of view� some fundamental
new results have appeared as by�products of the performance perspective� We remark the
following points among those presented in this survey�

�� The �quoted� equation �SPNs � PNs � time � QNs � synchronization� must
be always in mind in performance evaluation of stochastic Petri nets� since both
qualitative theory of Petri nets and results from queueing theory are needed in
order to solve the stated problems�

�� The computability of the vector of visit ratios from the di�erent system parameters
�structure� routing policy� initial marking� and service times� induces a new hierar�
chy of nets� being re�encountered well�known subclasses �e�g�� marked graphs� free
choice nets�� Specially important appear those nets as FRT and subclasses �free
choice� marked graphs� � � �� whose vector of visit ratios does not depend neither on
the initial marking nor in the service times �i�e�� the vector of visit ratios can be
computed using only structural and routing information��


� The rank theorem �CCS��b� ES���� suggested by the performance approach� has
important consequences in the qualitative theory of nets� Some extensions of that
theorem appear in �CCS��b� for the characterization of structural liveness in general
nets�

�� The enabling bound is a quantitative generalization of the basic concept of enabling�
and is closely related to the concept of marking bound of a place�

�� The liveness bound is also a quantitative generalization of the classical concept of
liveness�

�� Performance bounds can be derived from structural components and properties�
P�semi	ows� T�semi	ows� multisets of circuits� structural enabling bounds� � �

�� An step to extend the classical theory of qualitative transformation
reduction of nets
has been achieved� including quantitative aspects� for deriving throughput bounds
of Markovian Petri net system�

�� As in the case of �qualitative� structural theory of net systems� the derived
performance�oriented results are specially powerful for some well�known subclasses
�e�g�� live and bounded free choice net systems��

Additional results to those presented here can be found in �CS���� related with exact
performance analysis of a net subclass� In particular� for totally open deterministic systems
of Markovian sequential processes� exact computation of limit throughput can be done in
polynomial time� assuming consistency of the net and some synchronic distance relations
among transitions�



In sections �� �� and �� we focused on the computation of throughput bounds� From
these results and using classical laws from queueing theory� bounds can be derived for
other interesting performance indices �section ��� such as the mean queue lengths �or
mean marking of places�� or mean response times �or mean residence times of tokens at
places��

In this paper� we have tried to clearly state concepts and results� illustrating them by
means of examples and omitting the proofs �for more technical presentations the readers
should consult the references�� The net based examples have been choosed to illustrate
the theory� Applications of some of the presented results in the manufacturing domain
are considered in �CCS��a��

We are far from solving many of the problems related with performance analysis of
Petri net systems� However� what is clear now is that such problems must be attacked
by deeply bridging qualitative and quantitative aspects of the model and making use of
several active �elds like Petri net theory� graph theory� linear algebra� convex geometry�
queueing networks� and applied stochastic processes�
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