
Ergodicity and Throughput Bounds of Petri Nets with Unique

Consistent Firing Count Vector

Javier Campos� Giovanni Chiolay Manuel Silva�

Abstract

This paper addresses ergodicity and throughput bounds characterizations for a subclass of timed and stochas�
tic Petri nets� interleaving qualitative and quantitative theories� The considered nets represent an extension
of the well known subclass of marked graphs� de�ned as having a unique consistent �ring count vector� in�
dependently of the stochastic interpretation of the net model� In particular� persistent and mono�T�semi�ow
nets subclasses are considered� Upper and lower throughput bounds are computed using linear programming
problems de�ned on the incidence matrix of the underlying net� The bounds proposed here depend on the initial
marking and the mean values of the delays but not on the probability distributions �thus including both the
deterministic and the stochastic cases�� From a di	erent perspective� the considered subclasses of stochastic nets
can be viewed as special classes of synchronized queueing networks� thus the proposed bounds can be applied
to these networks�
Index terms� Ergodicity� linear programming� Petri nets� structural analysis� synchronized queueing networks�
throughput� upper and lower bounds�

� Introduction

In this paper� which is an improved version of ����� we study the possibility of obtaining upper and lower bounds
on the steady�state performance of two Petri net �PN� for short� subclasses that are characterized by having a
unique consistent 	ring count vector
 Although restricted� the two net subclasses represent two di�erent kind of
generalizations of marked graphs �MGs� in what follows�� thus some basic results from ��� are brie
y recalled
 In
particular in this work we study the throughput of transitions� de	ned as the average number of 	rings per time
unit
 We derive results that depend only on the mean values and neither on the higher moments nor on the form
of the probability distributions of the random variables that describe the timing of the system
 Both deterministic
and stochastic timings are covered by our bounds
 In some sense this independence of the probability distribution is
a useful generalization of the results� since higher moments of the delays and forms of the probability distributions
are usually unknown for real cases� and di�cult to estimate and assess
 Another extension that becomes possible
taking the bounding approach instead of the exact computation� is that we can derive bounds also in the case of
marking non�ergodic systems

We assume the reader is familiar with the structure� 	ring rules� and basic properties of net models �see ���

for a nice recent survey�
 Let us recall some notation here� N � hP� T� Pre� Posti is a net with n � jP j places
and m � jT j transitions
 If Pre and Post incidence functions take values in f�� �g� N is said ordinary
 PRE�
POST � and C � POST � PRE are n �m matrices representing the Pre� Post� and global incidence functions

Vectors Y � �� Y T �C � � �X � �� C �X � �� represent P�semi
ows� also called conservative components �T�semi�

ows� also called consistent components�
 M �M�� is a marking �initial marking�
 Finally� � represents a 	reable
sequence� while �� is the 	ring count vector associated to �
 If M is reachable from M� �i
e
 �� s
t
 M���iM�� then
M �M� � C � �� � � and �� � �

In a PN there is an obvious relation between the concepts of steady�state behaviour and that of repeatable

	ring sequences� sequences of transitions that are repeatable only a 	nite number of times cannot contribute
to the steady�state performance of the model
 Here we consider live bounded connected nets �thus strongly
connected� which are either decision�free or such that the decision policy at e�ective con
icts does not change the
relative �ring frequencies of transitions in steady�state
 A characteristic of these bounded nets is the existence of
a unique consistent 	ring count vector ��R associated with all marking repetitive sequences� i
e
 �M s
t
 M ��iM �
�� � k��R� k � IN �thus M �M � C � �� 	 C � �� � �� i
e
 �� � k��R is a T�semi
ow�
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Figure �� A synchronized queueing network and its PN representation �transitions � stations�


The main property of nets with unique consistent 	ring count vector is that their relative 	ring frequency vector
does not depend on the stochastic interpretation �even if there exist con
icts��
 Two overlapping subclasses of nets
with unique consistent 	ring count vector are identi	ed in this paper� persistent �behaviourally de	ned� and mono�
T�semi
ow �structurally de	ned� nets
 Both persistent and mono�T�semi
ow nets allow certain interplay between
choice and concurrency
 Bounded structurally persistent nets are decision�free and belong to the intersection
between bounded persistent and mono�T�semi
ow nets
 MGs are structurally persistent nets

From a di�erent perspective the obtained results can be applied to the analysis of some monoclass queueing

networks extended with some synchronization schemes and batch movements �e
g
� see the synchronized queueing
network in Figure �
a and its PN representation�

The paper is organized as follows
 In Section � we discuss the stochastic interpretation of nets
 The liveness

bound concept is also introduced
 Ergodicity for the 	ring process must be assured� otherwise the throughput
computation problem makes no sense
 Firing and marking ergodicities of nets with unique consistent 	ring count
vector are considered in Section �
 In particular weak and strong ergodicity are di�erentiated
 After that� in
Section � we identify two net subclasses having a unique consistent 	ring count vector� persistent nets �see� e
g
�
���� and the mono�T�semi
ow nets subclass� which is introduced in this work
 Some of their qualitative properties
that can be exploited to characterize di�erent ergodicities and to derive performance bounds are presented
 Upper
bounds for the throughput of nets are derived in Section �
 In the particular case of MGs �discussed in detail in ����
the upper bounds� computed by means of proper linear programming problems� are reachable �Section �
��
 Later
in Section �
� we propose a method to construct cyclic processes �MGs� starting from non�safe ordinary persistent
models� that is an extension of a technique originally used by Ramchandani for safe persistent nets ���
 Using
this extended method we derive reachable upper bounds for the case of bounded persistent nets
 Section �
� is
devoted to upper bounds for mono�T�semi
ow nets
 Lower bounds for the throughput of transitions are considered
in Section �
 In the case of MGs� the obtained bounds are reachable
 Conclusions are summarized in Section �


� Stochastic interpretation of nets

In the original de	nition� PNs did not include the notion of time
 Nevertheless the introduction of timing speci	�
cation is essential if we want to use this class of models for performance evaluation of distributed systems


��� Timing and �ring process

Historically there have been two ways of introducing the concept of time in PN models� namely� associating a
time interpretation with either places or transitions� in the latter case transitions have been de	ned to 	re either
atomically or in three phases
 A more detailed discussion of the timing and 	ring process can be found in ���

Since we are trying to use qualitative results derived from untimed net descriptions� we cannot change the 	ring
mechanism at the level of the net interpretation
 Hence we exclude the three�phase 	ring interpretation� which
does change the 	ring mechanism when the concept of time is introduced
 We simply speak of marked nets where
we mean timed nets with single�phase timed transitions


��� Single versus multiple server semantics� enabling and liveness bounds

Another possible source of confusion in the de	nition of the timed interpretation of a net model is the concept
of �degree of enabling� of a transition �or re�entrance�
 From the queueing theory point of view ���� this can be
interpreted as the number of servers at each station �transition�
 Of course an in	nite server transition can always
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be constrained to a �k�server� behaviour by reducing its enabling bound to k� just introducing a place self�loop
with k tokens around the transition
 Therefore the in	nite server semantics appears to be the most general one�
and for this reason it is adopted in this work

The performance of a model with in	nite server semantics depends on the maximal degree of enabling of the

transitions
 For this reason we introduce here the concept of enabling bound�

De�nition ��� Enabling bound� �t � T � E�t�
def
� maxfk j �M � R�N �M�� such that M � kPRE�t�g� �

In particular� the steady�state performance does depend on the maximal degree of enabling of transitions in steady�
state� which can be di�erent from the maximal degree of enabling of a transition during all its evolution from the
initial marking
 Therefore� we introduce the concept of liveness bound L�t�� which allows us to generalize the
classical concept of liveness of a transition�

De�nition ��� Liveness bound� �t � T �

L�t�
def
� maxfk j �M� � R�N �M��� �M � R�N �M�� such that M � kPRE�t�g� �

Property ��� Let hN �M�i be a marked net� then �t � T � E�t� � L�t�� �

A net is said to be reversible if the initial marking can always be recovered
 In other words� in a reversible net the
reachability graph is strongly connected �i
e
 there exists no transient marking�
 Thus the following can be stated�

Property ��� Let hN �M�i be a reversible net� then �t � T � E�t� � L�t�� �

Live MGs are reversible nets� so that enabling and liveness bounds are equal
 On the other hand� this is not true
for the more general cases that we consider in this paper� indeed the decision�free non ordinary net in Figure �
b
with an initial marking of two tokens in p� and the other two places empty gives an example of a live and bounded
net in which E�t�� � � � L�t�� � �

A case of strict inequality in Property �
� can be interpreted as a generalization of the concept of non�liveness�

there exist transitions that �contain potential servers� that are never used in the steady�state� these additional
servers might only be used in a transient phase �i
e
 they eventually die during the evolution of the model�
 On
the other hand� the condition L�t� � � is equivalent to the usual liveness condition for transition t

The two de	nitions above refer to behavioural properties
 Since we are looking for computational techniques

at the structural level� we can also introduce a structural counterpart of one of these concepts


De�nition ��� Structural enabling bound� �t � T �

SE�t�
def
� maxfk j M �M� � C � �� � kPRE�t�� �� � �g� �LPP�� �

Note that� the de	nition of structural enabling bound reduces to the formulation of a linear programming problem
�LPP� in what follows� ��� using matrix C �the incidence matrix of the net�
 From the classical implication
M � R�N �M�� �	 M �M� � C�� 
 �� � � ���� one can easily show that�

Property ��� Let hN �M�i be a marked net� Then �t � T � SE�t� � E�t�� �

� Ergodicity and measurability

In order to compute the steady�state performance of a system we have to assume that some kind of �average
behaviour� can be estimated on the long run of the system we are studying
 The usual assumption in this case is
that the system model must be ergodic� meaning that at the limit when the observation period tends to in	nity�
the estimates of average values tend �almost surely� to the theoretical expected values of the �usually unknown�
probability distribution functions �PDFs� that characterize the performance indexes of interest

This assumption is very strong and di�cult to verify in general� moreover� it creates problems when we want

to include the deterministic case as a special case of a stochastic model� since the existence of the theoretical
limiting expected value can be hampered by the periodicity of the model ���
 Thus we introduce the concept of
weak ergodicity that allows the estimation of long run performance also in the case of deterministic models
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De�nition ��� Ergodicity�

�� A 	not necessarily stochastic� process X�t� is said to be weakly ergodic 	or measurable in long run� i
 the

following limit exists� X
def
� limt��

�
t

R t
� X��� d� ���

�� A stochastic process X�t� is said to be strongly ergodic i
 the following condition holds� limt��
�
t

R t
� X��� d� �

limt��E�X�t�� �� 	a�s��� �

For stochastic PNs� weak ergodicity of the marking and the 	ring processes can be de	ned in the following terms�

De�nition ��� The marking process of a stochastic marked net is weakly ergodic i
 the following limit exists�

M
def
� limt��

�
t

R t
�
M���d� � ���

The �ring process of a stochastic marked net is weakly ergodic i
 the following limit exists� ���
def
� limt��

���t�
t

� ���
The usual 	i�e� strong� ergodicity concepts 	see� e�g�� ���� are de�ned in the obvious way taking into consideration
De�nition ������ �

Since in this paper we are interested on the computation of bounds for the steady�state throughput of transitions�
only weak ergodicity of the 	ring process must be assured
 This is stated in the next result� for PNs with a unique
consistent 	ring count vector


Theorem ��� If a marked PN has a unique consistent �ring count vector� then its �ring process is weakly ergodic�
�

Ergodicity of the marking and of the 	ring processes are� in general� unrelated properties
 Let us consider anM jM j�
queue modelled by means of a place with one input and another output single server exponentially distributed timed
transitions
 If time�dependent rates �t and 	t� with � � 	 are considered for arrival and service distributions� the
marking process is strongly ergodic while the 	ring process is non �even weakly� ergodic
 In what follows� we do
not consider any more time�dependent distributions
 On the other hand� if the arrival and the service rates are �
and 	� respectively� with � � 	� then the 	ring process is strongly ergodic but the marking process is non �even
weakly� ergodic� because the marking of the place tends to in	nity� almost surely
 For bounded nets� ergodicity of
the 	ring process does not imply marking ergodicity
 This can be the case if after an initial transient phase� the
model can reach di�erent closed subsets of the state space
 Even in those cases in which there does not exist a
�true� mean marking �i
e
 the limit marking for t�� is not unique�� it makes sense to compute upper and lower
bounds on transition throughputs

Related to marking ergodicity� a su�cient condition for the weak ergodicity of the marking process of bounded

nets is the existence of a home state
 Home states are markings which can be reached from any other reachable
marking
 If a bounded PN has a home state� its associated state space has a unique closed subset of markings� and
marking weak ergodicity is assured
 This result provides an interesting example of possible interleaving between
qualitative �home state concept� and quantitative �ergodicity concept� analysis for stochastic PNs


Theorem ��� If a bounded marked net has a home state then its marking process is weakly ergodic� �

Semi�Markovian nets ��� are stochastic PNs such that their related marking process is a semi�Markov process

An important particular case of semi�Markovian PNs is that using Coxian distributions �i
e
 characterized by
having rational Laplace transform� for transition 	ring times
 The interest of this family of distributions is that
any distribution function can be approximated with a Coxian� preserving mean and higher moments ���
 For
semi�Markovian bounded nets with home state� even strong marking ergodicity is assured�

Theorem ��� If a semi�Markovian bounded marked net has a home state then its marking process is strongly
ergodic� �

The conditions of this theorem cannot be relaxed
 An unbounded net can have home states but non ergodic marking
process if the mean marking of a place tends to in	nity
 On the other hand� nets can have bounded marking mean
values and be non ergodic because of the presence of more than one closed subset in the state space
 However�
marking ergodicity does not imply the existence of a home state� for the net in Figure �� which is live structurally
bounded mono�T�semi
ow and it has not home state� an exponential distribution timing can be associated with
transitions �for instance� all rates equal to �� such that the related marking process is ergodic anyway

In the next section� some interesting qualitative and quantitative properties for subclasses of nets with a unique

consistent 	ring count vector are grouped
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� Live and bounded nets with a unique consistent �ring count vector

Persistent and mono�T�semi
ow are two non disjoint subclasses of nets with a unique consistent 	ring count
vector
 Persistent nets are behaviourally de	ned� while mono�T�semi
ow are structurally characterized
 As a
particular case� structurally persistent nets belong to the intersection of these two classes� thus possessing the good
properties of both
 Marked graphs are structurally persistent nets
 This section is devoted to the introduction
of these nets subclasses and to the presentation of some of their basic properties relevant from the performance
point of view
 Figure � provides an overall picture of the relations among the net subclasses considered in this
section
 These subclasses do not cover all PNs with unique consistent 	ring count vector
 A neither persistent nor
mono�T�semi
ow net having a unique consistent 	ring count vector can be constructed from several persistent and
mono�T�semi
ow components
 Nevertheless� for simplicity we restrict the discussion in this section to persistent
and mono�T�semi
ow subclasses


��� Persistent nets

De�nition ��� A marked net hN �M�i is said to be persistent i
 for all reachable marking M and for all di
erent
transitions� t� and t�� enabled in M � the sequence t�t� is �reable from M � �

Persistent nets are e�ectively con
ict�free �structural con
icts could exist among transitions� but persistency implies
that no actual decision is ever made�
 As an example look at the net in Figure �
a
 This net has structural con
icts
�e
g
 p� has two output transitions� t� and t�� but for the initial markingM� � ��� �� �� �� �� �� �� �� ��

T no state can
be reached in which a decision must be taken
 Persistency is a behavioural property� i
e
 the same net structure
with a di�erent initial marking can give non persistent behaviour
 For example� the net in Figure �
c is persistent�
but that in Figure �
d �which has the same structure� is not
 In both cases the marked nets are live and bounded�
and both their unique consistent 	ring count vector are X � ��� �� ��T 

Let us recall a property and two results that will lead to the conclusion that the �ring process associated with a

bounded persistent net is weakly ergodic
 The property is that of directedness � this means that any two reachable
markings have at least one common successor marking


Lemma ��� ��� All persistent marked nets have the directedness property� �

Lemma ��� ���� For bounded marked nets� directedness and the existence of a home state are equivalent properties�
�

Examples can be found ��� showing that Lemma �
� does not hold for unbounded persistent nets

A place is said to be implicit ���� if its marking never is the only one that prevents the 	ring of any output

transition
 Using the previous lemmas� the following statement can be derived�

Theorem ��� Live bounded persistent connected nets without implicit places have a unique consistent �ring count
vector 	i�e� ���R such that �M � R�N �M�� if M ��iM then �� � k��R with k � IN�� �

Now� from Theorems �
�� �
�� �
�� and �
�� the next result can be stated�

Corollary ��� Let hN �M�i be a live bounded connected marked net without implicit places� If hN �M�i is
persistent then�

�� Both the marking and the �ring processes are weakly ergodic�

�� If hN �M�i is semi�Markovian� its marking process is strongly ergodic� �

In order to study the steady�state performance of a stochastic net� only recurrent markings are relevant �i
e

transient markings do not a�ect the computation�
 Even if bounded persistent nets are ergodic this does not mean
that there exist no transient markings
 The net in Figure �
b is structurally persistent� live� and ��bounded for
M� � ��� �� ��

T � but M� is a transient state �i
e
 it is not a home state�� so that the net is not reversible


��� Mono�T�semi�ow nets

Let us introduce now a structurally characterized class of nets with a unique consistent 	ring count vector


De�nition ��� A structurally bounded net N is called mono�T�semi
ow i
 there exists a unique minimal T�
semi
ow that contains all transitions� �

�
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In a mono�T�semi
ow net con
icts may be reached� so that di�erent behaviours can occur
 However� from the
steady�state performance point of view� these decisions yield a unique consistent 	ring count vector� provided that
the net is live �all di�erent behaviours let the same set of transitions� characterized by the only T�semi
ow of the
net� 	re� perhaps in a di�erent order�
 For example� �a � t�t�t� and �b � t�t�t� are possible sequences in the net
of Figure �
d� both 	reable from M�
 Even if the performance can be equal for any con
ict resolution policy� from
the functional point of view the results can be di�erent �imagine t� and t� be two non commutative operations�

As an example� let us consider the problem of modelling a producer�consumer system composed by two processes�

and a bu�er storage with limited capacity
 The process P� produces data that are placed at the bu�er
 The process
P� takes data from the bu�er for processing them
 Processes P� and P� cannot operate simultaneously with the
bu�er� which is a shared resource
 Thus the system cannot be modelled by means of MGs
 The control system for
the production and consumption of data is depicted in Figure � by means of a PN
 Mutual exclusion is modelled
with place sr

Obviously� the net in Figure � is not persistent
 Transitions Bput and Btake can be in an e�ective con
ict
 The

net is mono�T�semi
ow and the unique minimal T�semi
ow is the vector with all components equal �

Structural boundedness �i
e
 �Y � � s
t
 Y T � C 
 �� ��� can be decided in polynomial time
 Thus mono�T�

semi
ow nets can be polynomially characterized


Property ��� Let C be the incidence matrix of a mono�T�semi
ow net� Then rank�C� �m��� �

The following result is a particularization of theorem �
� in ���� that takes into account the existence of a single
T�semi
ow


Property ��� Let hN �M�i be a live mono�T�semi
ow net� For any �ring sequence � applicable in hN �M�i we
can write� �� � rX � b� where X � � is the minimal T�semi
ow� r � IN � and b � � is a bounded vector such that
C � b �n � is impossible� �

Now� from our Theorem �
� and the above property� the next result follows�

Corollary ��� Mono�T�semi
ow nets have weakly ergodic �ring process� �

Related to marking ergodicity� the following negative result for mono�T�semi
ow nets it is shown in ��� by means
of an example�

Property ��� There exist live mono�T�semi
ow nets without home states� so that weak ergodicity of their marking
processes is not guaranteed� �

��	 Structurally persistent nets and marked graphs

As it was pointed out in Section �
�� persistency is a behavioural property
 Let us introduce a subclass of persistent
nets such that the persistency is inherent to the structure


De�nition ��� A net N is said to be structurally persistent i
 hN �M�i is persistent for all �nite initial marking
M�� �

Property ��� A net is structurally persistent i
 it does not exist any structural con
ict in it 	i�e� �p � P� jp�j 
 ���
�

�



Structurally persistent nets are structurally decision�free
 Moreover the live and bounded net in Figure �
b shows
that they may have transient states
 Now it is interesting to point out a very well known subclass of these nets for
which there exists no transient marking� provided the liveness for M�


Property ��� Marked graphs 	MGs� are structurally persistent nets� The reverse is not true 	for example the net
in Figure ��b is not an MG�� �

Property ��	 Let N be a structurally persistent net�

�� If hN �M�i is live and bounded for some M�� then N is mono�T�semi
ow� The reverse is not true 	Figure
��c��

�� If N is an MG� then it is consistent� and its unique minimal T�semi
ow is ��� �

By Properties �
� and �
�� since MGs are consistent nets� the rank of their incidence matrix is m� �


Theorem ��� ��� Let hN �M�i be a live 	possibly unbounded� MG� The two following statements are equivalent�

i� M � R�N �M��� i�e� M is reachable from M��

ii� Bf �M � Bf �M�� with Bf the fundamental circuit matrix of the graph 	i�e� its row vectors are a basis of the
left annullers of C�� and M � �� �

According to the above theorem M � R�N �M���	M� � R�N �M�
 In other words�

Property ��
 Live MGs are reversible� �

Property ��� Let N be an MG�

�� N is structurally bounded 	i�e� hN �M�i is bounded �M�� i
 it is strongly connected�

�� Let hN �M�i be live� Then hN �M�i is bounded i
 N is structurally bounded� �

According to the above properties� strong connectivity and boundedness are equivalent properties for live MGs

Taking now into account Theorems �
� and �
�� the following can be stated�

Corollary ��� If hN �M�i is a strongly connected live MG then�

�� hN �M�i has weakly ergodic marking process�

�� If hN �M�i is semi�Markovian� its marking process is strongly ergodic� �

Finally� an interesting property of live MGs� that allows an e�cient computation of liveness bounds� is the following�

Property ��� Let hN �M�i be a live MG� then �t � T � L�t� � E�t� � SE�t� 	i�e� L�t� can be computed in
polynomial time by solving �LPP��� see De�nition ����� �

� Upper bounds for the steady�state throughput

In this section� upper bounds are presented for the steady�state transition throughputs of nets with a unique
consistent 	ring count vector
 First we derive some general structural results� and then we particularize them to
bounded persistent nets and mono�T�semi
ow nets



�� General approach

Let us account only for the 	rst moment of the PDFs associated with transitions
 In the following� let 
i be the
mean value of the random variable associated with the 	ring of transition ti �service time of ti� with queueing
networks terminology�� and D the diagonal matrix with elements 
i� i � �� � � � �m

The limit 	ring count vector per time unit �under weak ergodicity assumption� is ��� � limt�� ���t��t� and

the mean time between two consecutive 	rings of a selected transition ti �mean cycle time of ti�� �i � ����
�
i 
 The

relative �ring frequency vector �or vector of visiting ratios� from the queueing networks point of view�� denoted
by Fi � �i��

�� is the limit 	ring 
ow vector ��� normalized for having the ith component equal � �note that this
makes sense only if ���i �� ��
 Then the components of PRE �D � Fi represent the product of the number of tokens
needed for 	ring the transitions and the mean length of time that these tokens reside in each place between two
consecutive 	rings of ti


�



For live mono�T�semi
ow nets Fi � Fi�N � � X is the minimal T�semi
ow� thus independent of the initial
marking �provided that liveness is guaranteed� and of the timing interpretation
 For persistent nets Fi � Fi�N �M��
�Figure �
a� is a T�semi
ow �possibly non minimal�� and it is independent of the timing interpretation


LetM be the limit vector of the average number of tokens in each place �i
e
 M � limt��
�
t

R t
�
M�s�ds�
 Then�

provided that this limit exists� �iM is the vector of products of the mean number of tokens and the length of one
cycle and we have�

�iM � PRE �D � Fi ���

From this inequality� a lower bound for the mean cycle time associated with transition ti� �
lb
i � can be derived


�lbi � max
pj�P

PRE�pj � �D � Fi

M�pj�
���

Since the vector M is unknown� ��� cannot be solved
 However� the following marking invariant can be written
using P�semi
ow Y �

Y T �M� � Y T �M � Y T �M ���

Now� from ��� and ���� Y T ��iM� � Y T � PRE �D � Fi� and a lower bound for the mean cycle time in steady�state
is�

�lbi � max
Y �fP�semiflowg�

Y T � PRE �D � Fi
Y T �M�

���

Of course� an upper bound for the throughput of ti is ���
lb
i 


The previous lower bound for the mean cycle time can be formulated in terms of a particular class of optimization
problems called fractional programming problems ���� and later transformed into a linear programming problem


Theorem ��� For any marked net with unique consistent �ring count vector� a lower bound for the mean cycle
time of transition ti can be computed by the following linear programming problem�
�lbi � maxfY

T � PRE �D � Fi j Y T � C � �� Y T �M� � �� Y � �g �LPP�� �

The previous theorem shows that the problem of 	nding an upper bound for the steady�state throughput in a
persistent or mono�T�semi
ow net can be solved looking at the cycle times associated with P�semi
ows� considered
in isolation
 These cycle times can be computed making the summation of the average 	ring times of all the
transitions involved in the P�semi
ow� and dividing by the number of tokens present in it
 From a di�erent
perspective� from �LPP�� it can be stated that �lbi is 	nite i� all P�semi
ows are marked �a necessary condition
for liveness�

For the particular case of strongly connected MGs� Fi � �� �unique T�semi
ow�� and the above bound is the

same that has been obtained for the deterministic case by other authors �see� e
g
� ��� ����
 For deterministic
timed MGs� the reachability of this bound has been shown
 Since deterministic timing is just a particular case
of stochastic timing� the reachability of the bound is assured for our proposes
 Even more� this bound cannot be
improved only on the base of the knowledge of the coe�cients of variation for the transition 	ring times ���



�� Upper bounds for bounded persistent nets

For bounded persistent nets� weak ergodicity of the 	ring process is assured �Corollary �
�
��
 Thus for these nets
a unique limit 	ring behaviour exists� and bounds can be computed for the steady�state throughput

As remarked in Section �
�� persistent nets are behaviourally de	ned
 This means that a behavioural analysis

must be made before computing performance bounds in order to check for the persistency of the net
 Few results
are known in the literature related to bounds for the performance of bounded persistent nets
 A partial result was
presented in ��� for safe and persistent nets with deterministic timing
 For these nets a behaviourally equivalent
safe MG �behaviour graph� can be built
 The method consists in drawing the initially marked places and enabled
transitions
 After that� 	ring all transitions and drawing the output places and repeating the procedure until
a marking in the process is re�found �see Figure ��
 Then� the method explained in Section �
� can be applied
for computing the bounds for this MG and so for the steady�state performances of the initial persistent net

Unfortunately� this analysis is not possible for bounded �non safe� nets when non deterministic timing is considered

Let us now introduce some general results useful for computing bounds for the performance of bounded persistent

nets
 Later we shall improve some of these results

Let us consider live bounded persistent nets without implicit places
 According to Theorem �
� consistent 	ring

count vectors are proportional to ��R
 Thus the problem �LPP�� can be applied for computing a lower bound of the
steady�state cycle time of a selected transition ti taking into account that Fi � k��R is a T�semi
ow �non minimal
if there exist more than one� see Figure �
a� with Fi�ti� � �

The optimal value of the previous problem is a non reachable bound in general �i
e
 there exist net models

such that no stochastic interpretation allows to reach the computed bound� �lbi �
 To see it� let us consider for

�
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Figure �� Equivalent MG for safe persistent net


p2 p3

p1

p4

p2'
t3

t2

t1
p1'

t1'

p1

p 3

p4

p2

t 1

t 2 t 3

Figure �� Equivalent MG for deterministic timing


example the net in Figure �
c
 Selecting transition t�� the vector Fi for �LPP�� is Fi � ��� �� ��
T and the obtained

bound is �lb� � maxf
� � 
�� ��
� � 
� � 
����g
 Now� considering deterministic timing for all transitions with

� � �� 
� � ��� 
� � �� the obtained bound is �lb� � �� while the actual cycle time for transition t� is bigger
because of the sequence t�t� which takes �� units of time
 Nevertheless� for safe �and ordinary� in order to be live�
persistent nets� the bound given by �LPP�� can be always reached� it would be obtained by deriving the equivalent
MG �according to ���� and computing the bound� using �LPP��

Even though the cycle time bound obtained from �LPP�� can be non reachable for non�safe persistent nets� it

can be pointed out that the bound is 	nite if and only if the actual cycle time is 	nite� and this trivially characterizes
the liveness of the model


Theorem ��� Let hN �M�i be a bounded persistent net� The following three statements are equivalent�

i� The optimal value �lbi of �LPP�� for hN �M�i is �nite�

ii� The actual cycle time of hN �M�i is �nite�

iii� hN �M�i is live� �

The above result is not true for other net classes
 In Section �
� it is proven that for mono�T�semi
ow nets the
actual cycle time can be in	nite �so that the net is non live� while the lower bound obtained from �LPP�� is 	nite


Improving the upper bound for ordinary nets� Let us now describe a method to compute a reachable upper
bound for the steady�state throughput of bounded ordinary persistent nets
 Deterministic timing yields the best
performance for a given persistent �and con
ict�free� see Section �
�� net and average 	ring delay associated to
transitions
 If we consider only deterministic timing� a behaviourally equivalent MG can be derived in an analogous
way to that proposed in ��� �see the example in Figure ��� ��� Split the places into instances in such a way that
their safe markings represent conditions for the enabling of transitions
 ��� Develop the behaviour graph of the
net �under deterministic timing assumption� from the initial marking
 Since the original net is live� the behaviour
graph can be inde	nitely extended
 ��� Identify those instances of places that must be superposed� in such a way
that the relative 	ring frequency of transitions is preserved� an MG has been derived


��



p1

t 1 t 2

p2

p3

p6

p7

t 4t 3

p4

p5

Figure �� Non�live mono�T�semi
ow net� even if all P�semi
ows are marked and thus �lbi in �LPP�� is 	nite


Considering general timing distributions� the original net and the derived MG are not behaviourally equivalent

In fact� the steady�state throughput for the MG is greater than or equal to the one of the original net
 Nevertheless
for deterministic timing the equality holds and this provides the following method for computing a reachable bound
for the throughput� ��� consider a bounded ordinary persistent net with general distribution timing� ��� develop
the cyclic process for the deterministic case �i
e
 the behaviourally equivalent MG for the deterministic timing��
and ��� compute the upper bound for the steady�state throughput of the MG using �LPP��

The above computed value is a reachable bound for the steady�state throughput of the original net� because

in the deterministic case the maximal throughput for the net is always obtained and under this condition the
throughputs of the cyclic process and of the original net are equal



�	 Upper bounds for mono�T�semi�ow nets

Let us now consider mono�T�semi
ow nets �a polynomial time characterizable net subclass� Section �
�� and give
upper bounds for their steady�state throughput

Unfortunately� the existence of a unique consistent minimal T�semi
ow� X � does not guarantee the ergodicity

of the marking process �Property �
��
 However� even in the case in which a net is marking non�ergodic� the
computation of the throughput bounds makes sense
 The values that we compute in this section are bounds for all
possible steady�state marking behaviours of the net

The problem �LPP�� de	ning an upper bound for the steady�state throughput of a net with a unique consistent

	ring count vector �Section �
�� can be used taking Fi � kX where kX�ti� � �
 Nevertheless� in general this bound
is not reachable
 Moreover� a mono�T�semi
ow net can be non live and the obtained lower bound for the cycle
time be 	nite �see Figure ��
 In other words�

Property ��� For mono�T�semi
ow nets� liveness is not characterized by the �niteness of the lower bound of the
cycle time computed by means of �LPP��� �

Comming back to the producer�consumer system of Figure �� let us suppose that transitions th� td� Bput� and Btake

are immediate �i
e
 they 	re in zero time� and that the mean values of random variables associated with the rest
of transitions are� 
�Eput� � �� 
�Etake� � �� 
�Eprod� � �� and 
�Econs� � �

The problem �LPP�� gives a lower bound for the mean cycle time of the net� �lb � maxf
�Eput� � 
�Etake��

�
�Eput��
�Etake����� 
�Eput��
�Eprod�� 
�Etake��
�Econs�g � �
 As it is remarked in Property �
�� this bound is
non�reachable� in general
 However� in this case� the lower bound is equal to the actual cycle time for deterministic
timing
 In fact� if deterministic timing is considered� the bu�er capacity �initial number of tokens at place data�
can be reduced to �� without modifying the actual cycle time
 This is because� in this particular case� there exist
two di�erent P�semi
ows Y� and Y� �with jjY�jj � fsr� put� takeg and jjY�jj � fholes� data� w�� w�� sr� put� takeg�
involving the same set of timed transitions �Eput and Etake�
 Since Y

T
� �M� � �� then the number of tokens at

place data can be reduced to �� and the same optimum value in problem �LPP�� is preserved


� Lower bounds for the steady�state throughput

A trivial lower bound in steady�state performance for a live net with a unique consistent 	ring count vector is of
course given by the sum of the 	ring times of all the transitions weighted by the 	ring 
ow vector itself
 Since the
net is live all transition must be 	reable� and the sum of all 	ring times multiplied by the number of occurrences
of each transition in the �unique� average cycle of the model corresponds to any complete sequentialization of all
the activities represented in the model
 This pesimistic behaviour can be reached in some particular cases �e
g
�

��



for live and safe MGs� if random variables with arbitrarily large coe�cient of variation are conveniently selected
for transitions 	ring times


Property 	�� For any live net with unique consistent �ring count vector� an upper bound for the mean cycle time
of transition ti is�

�ubi �

mX

j	�

Fi�tj�
j

where 
j is the mean �ring time of transition tj and Fi is the relative �ring frequency vector of the net for transition
ti 	i�e� the unique consistent �ring count vector� normalized for having Fi�ti� � ��� �

In order to improve the previous bound� an intuitive idea could be to take into account that some work can be
done in parallel at each transition� since in	nite server semantics is assumed
 From a queueing theory perspective
and considering the steady�state behaviour� the number of servers at each station �transition� is equal to the
corresponding enabling bound in steady�state �i
e
 liveness bound�� and the contribution of each transition to the
duration of the complete sequentialization of all activities can be divided by its liveness bound
 Thus we could
conjecture the following upper bound for the mean cycle time�

�i





mX

j	�

Fi�tj�
j
L�tj�

���

The same value would be obtained taking the algorithm used for the computation of the lower bound �Section �
���
substituting in it the �max� operator with the sum of the 	ring times of all transitions involved� and making some
manipulation to avoid counting more than once the contribution of the same transition

The conjecture ��� has been shown to be true for strongly connected MGs in ���
 In fact� for this subclass of

nets the upper bound for the mean cycle time given by ��� has been shown to be reachable for any net topology�
for any speci	cation of the mean 	ring delays� and for some assignement of PDFs to the 	ring delays of transitions

Moreover� taking into account Property �
�� the liveness bound can be e�ciently computed for strongly connected
MGs by means of the problem �LPP�� Section �
��

Concerning structurally persistent nets the conjecture ��� is false �thus it is false for persistent and for mono�T�

semi
ow nets�
 This can be shown considering� for example� the structurally persistent net in Figure �
b with mean
	ring times 
�� 
�� 
� for transitions
 For this net� the relative 	ring frequency vector is F� � ��� �� ��

T � and the
liveness bounds of transitions are given by L � ��� �� ��T 
 Thus� the conjecture ��� would give the value 
��
��
�
as upper bound for ��
 If exponentially distributed random variables �with means 
�� 
�� 
�� 
� �� 
�� are associated
with transitions� the steady�state cycle time for transition t� is �� � 
� � 
� � 
� � 
�����
� � 
��� which is greater
than the value obtained applying ���� thus the conjecture is false

Unfortunately� the trivial bound given by Property �
� is non�reachable in general� and in some cases its value

can be too pesimistic
 An improving of this bound would probably require more information about the PDFs of
	ring times than their mean values� and this approach is not within the scope of this work


	 Conclusions

We have addressed the problem of computing upper and lower bounds for the throughput of transitions in Petri
net models �or the corresponding synchronized queueing networks� having a unique consistent 	ring count vector

The results presented here represent� in some sense� an extension of those described in ��� for the case of bounded
marked graphs
 The upper bound in case of persistent nets is a generalization of that obtained for marked graphs�
and has been shown to be reachable for ordinary nets
 The technique proposed for the derivation of behaviour
graphs for non�safe ordinary persistent nets is an extension of a method originally proposed by Ramchandani for
safe persistent nets� that was not directly applicable

For what concerns the lower bound on throughput� only the trivial bound computed as the inverse of the sum

of all transition 	ring delays weighted by the 	ring count vector can be easily borrowed from the marked graph
case
 However this can be too pessimistic in case of persistent or live mono�T�semi
ow nets

In any case both the upper and lower bounds are independent of any assumption on the probability distribution

of the delays associated with transitions� and their value can be computed based on the knowledge of the averages

This represents a generalization with respect to the usual assumptions needed for the exact performance evaluation
of a Petri net model
 A second generalization� implicit in the choice of computing throughput bounds instead of
actual values� is that the analysis of marking non�ergodic models still makes sense

Besides the results on the computation of bounds� this paper identi	es two subclasses of bounded nets having

a unique consistent 	ring count vector� and contains a discussion of their ergodicity conditions
 In particular� the
concept of liveness bound for transitions is a new behavioural property� that comes directly from considerations

��



related to the timing semantics of a timed Petri net model
 It generalizes the usual concept of liveness for a
transition� and provides an example of possible interleaving between qualitative and quantitative analysis for timed
and stochastic Petri nets
 Another example has been provided by stablishing the strong connection between
marking ergodicity and home state concepts

Alternative extensions of the results concerning marked graphs are already being considered
 In particular� live

and bounded free choice nets are studied in ����
 In this case� the idea is that several consistent 	ring count vectors
can be reproduced in steady�state
 However the free choice property leads to the fact that selections are completely
governed by the structure and the stochastic �routing� interpretation of the net
 Thus the �relative 	ring frequency
vector� can be computed independently of the marking of the net� provided that liveness is guaranteed
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