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Abstract

Several proposals exist for the introduction of synchronization constraints into Queueing Networks
�QN�� We show that many monoclass QN with synchronizations can naturally be modelled with a
subclass of Petri Nets �PN� called Free Choice nets �FC�� for which a wide gamut of qualitative
behavioural and structural results have been derived� We use some of these net theoretic results to
characterize the ergodicity� boundedness and liveness of closed Free Choice Synchronized Queueing
Networks �FCSQN�� Moreover we de�ne upper and lower throughput bounds based on the mean value
of the service times� without any assumption on the probability distributions �thus including both
the deterministic and the stochastic cases�� We show that monotonicity properties exist between the
throughput bounds and the parameters of the model in terms of population and service times� We
propose �theoretically polynomial and practically linear complexity� algorithms for the computation of
these bounds� based on linear programming problems de�ned on the incidence matrix of the underlying
FC net� Finally� using classical laws from queueing theory� we provide bounds for mean queue lengths
and response time�

� Introduction

Product Form Queueing Networks �PFQN� ��� have long been used for the performance evaluation of
computer systems� Their success has been due to their capability of naturally expressing sharing of
resources and queueing� that are typical situations of traditional computer systems� as well as to their
e	cient solution algorithms� of polynomial complexity on the size of the model� Unfortunately� the
introduction of synchronization constraints usually destroys the product form solution� so that general
concurrent and distributed systems are not easily studied with this class of models�

Timed and stochastic Petri nets constitute an adequate model for the evaluation of performance
measures of concurrent and distributed systems �see� e�g�� �
� �� ���� Nevertheless� one of the main
problems in the actual use of these models for the evaluation of large systems is the explosion of the
computational complexity of the analysis algorithms� Structural computation �i�e�� based on the net
structure and not on its state space� of exact performance measures is only possible for some subclasses
of nets� such as Jackson networks �
� and totally open systems of sequential processes ���� In the general
case� e	cient computation methods for the performance measures are still needed�

From the Petri net perspective� the computation of �upper and lower� bounds for the steady�state
performance of timed and stochastic free choice nets is considered in this paper� In particular� we study
the throughput of transitions� de�ned as the average number of �rings per unit time� For this measure we
compute upper and lower bounds in polynomial time on the size of the net model �number of nodes�� The
model is completely speci�ed by the Petri net structure together with its initial marking� the �ring rule�
the average transition �ring times� and the con�icts resolution policy ���� In the case of free choice nets�
the con�ict resolution policy can be completely de�ned at the structural level� using a preselection policy�
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Figure �� Pathological cases of free choice synchronized queueing networks� �a� A deadlock will be
reached sooner or later� even for q � ��
� �b� Any in�nite behaviour will lead to an in�nite number of
customers in the QN�

Under this assumption� the computation of bounds is independent of the type of probability distribution
functions associated with transitions� only their mean values are relevant�

The particular case of strongly connected Marked Graphs �MGs� has been studied in ���� The bounds
obtained for this subclass of Petri nets are computable in polynomial time on the size of the net model�
Moreover� both upper and lower bounds are tight� in the sense that for any MG model it is possible
to de�ne families of stochastic timings such that the steady�state performances of the timed Petri net
models are arbitrarily close to either bound�

An extension of strongly connected MGs is studied in ���� wheremono�T�semi�ow nets are introduced�
A characteristic of these nets is the existence of a unique consistent �ring count vector� They are either
decision�free or such that the decision policy at e�ective con�icts is not relevant for our computation
of performance bounds �mono�T�semi�ow nets allow concurrency and decision� in a particular way��
Both the upper and lower bounds are independent of any assumption on the probability distribution of
the delay associated with transitions� and their values can be computed based on the knowledge of the
averages�

Free Choice nets �FC nets� for short� ���� are a well�known subclass of Petri nets that constitute
an alternative interplay between concurrency and decisions� They are rich enough to be non�trivial but
restricted enough to allow a number of interesting results that do not hold in general and that constitute
a quite elegant theory �see� e�g�� ���� ��� �
���

The results presented in this paper are an extension to Live and Bounded FC nets �LBFC nets� of those
in ��� and ���� The idea is that several consistent �ring count vectors can be reproduced in steady�state�
but the decisions� freely done at certain places� are completely governed by the stochastic interpretation
of the net� Therefore� the steady�state �average �ring count vector� can be de�ned independently of the
marking�

From a di�erent perspective the obtained results can be applied to the analysis of queueing networks
extended with some synchronization schemes ����� Bounds for the performance measures of a particular
case of such models �essentially fork�join queues� have been studied in ���� using stochastic ordering theory
and recursive equations� We propose an alternative approach based on structural analysis of stochastic
Petri nets and basic queueing laws� Many monoclass queueing networks can be mapped on stochastic FC
Petri nets� On the other hand� FC nets can be interpreted as monoclass queueing networks augmented
with some form of synchronization primitives ��
� �preserving the free choice decision scheme�� In this
paper we consider strongly connected �i�e�� �closed�� FC synchronized QNs �closed FCSQN�� The reader
may notice that �unclever� use of synchronizations in the free choice synchronized queueing networks
can lead to pathological cases as unbounded number of customers or complete stop �deadlock� of activity
�see Figure ��� that need to be carefully studied�

The paper is organized as follows� Section 
 presents the connection between �synchronized� queueing
networks and free choice stochastic Petri nets� In Section � various behavioural and structural properties






of FC nets are considered� Ergodicity of FCSQN is characterized in Section �� In Sections 
 and � the
upper and lower bounds of transition throughputs are de�ned for LBFC nets �closed FCSQN� in terms of
Linear Programming Problems �LPPs� set up on the incidence matrix of the net� In Section � upper and
lower bounds for other performance indexes are derived using classical laws of queueing theory� Section
� contains some concluding remarks and considerations on possible extensions of the work�

� Queueing networks and stochastic Petri nets

��� Extended queueing networks

Many extensions have been proposed to introduce synchronization primitives into the QN formalism�
in order to allow the modelling of distributed asynchronous systems� passive resources� fork and join�
customer splitting� etc� Some very restricted forms of synchronization� such as some special use of passive
resources ���� ���� preserve the local balance property ��� that allows e	cient algorithms to be used for
the computation of exact product form solution� In general� however� these extensions destroy the local
balance property so that extended queueing models with synchronization are used mainly as system
descriptions for simulation experiments ����� Even the computation of bounds for these classes of models
is not yet well developed�

In ��
� a comparison has been proposed between synchronized QNs and stochastic Petri nets� showing
that the two formalisms are roughly equivalent from a modelling point of view� However� no special
computation based on the Petri net structure has yet been proposed� to motivate the use of a Petri net
formalism� In the following of this paper we show some connections between structural analysis of Petri
net models and some interesting performance�oriented questions on distributed systems�

��� Stochastic Petri nets

����� Some terminology related to PNs

Petri nets are a well�known formalism for describing concurrent discrete event dynamic systems with
synchronizations �see ���� for a nice recent survey� ���� and �
�� are textbooks� while �
�� is the text of
an advanced course�� We assume that the reader is familiar with the structure� �ring rules� and basic
properties of net models� The purpose of this section is to make some notations precise since they will
be extensively used in the sequel�
A Petri net is a bipartite directed graph� in which the nodes are called places and transitions�

Net structure� A Petri net is a ��tuple N � hP� T� Pre� Posti� where P is the set of places �jP j � n��
T is the set of transitions �jT j � m� P � T � ��� Pre �Post� is the pre� �post�� incidence function
representing the input �output� arcs Pre�P � T � IN � f�� �� 
� � � �g �Post�P � T � IN��
Ordinary nets are Petri nets whose pre and post incidence functions take values in f�� �g�
The pre� and post�set of a transition t � T are de�ned respectively as �t � fpjPre�p� t� � �g and
t� � fpjPost�p� t� � �g� The pre� and post�set of a place p � P are de�ned respectively as �p �
ftjPost�p� t� � �g and p� � ftjPre�p� t� � �g�
The incidence matrix of the net C � �cij � �� � i � n� � � j � m� is de�ned by cij � Post�pi� tj� �
Pre�pi� tj�� Similarly the pre� and post�incidence matrices are de�ned as PRE � �aij � and POST � �bij��
where aij � Pre�pi� tj� and bij � Post�pi� tj��
A transition t such that j�tj � � is called synchronization� If t�� t� � p� we say that t� and t� are in
structural con�ict�

Token game� A function M �P � IN �usually represented in vector form� is called marking� Markings
represent �distributed� states� A marked Petri net or net system hN �M�i is a Petri net N with an initial
marking M��
A transition t � T is enabled in marking M i� 	p � P M�p� 
 Pre�p� t�� A transition t enabled in M
can �re yielding a new marking M � �reached marking� de�ned by M ��p� �M�p�� Pre�p� t� �Post�p� t�
�it is denoted by M �tiM ���

�



A sequence of transitions � � t�t� � � � tn is a �ring sequence of hN �M�i i� there exists a sequence of
markings such that M��t�iM��t�iM� � � � �tniMn� In this case� markingMn is said to be reachable fromM�

by �ring �� and this is denoted by M���iMn� M ��i denotes a �rable sequence � from marking M � The
function ���T � IN is the �ring count vector of the �rable sequence �� i�e�� ���t� represents the number
of occurrences of t � T in �� If M���iM � then we can write in vector form M � M� � C � ��� which is
referred to as the linear state equation of the net� The reachability set R�N �M�� is the set of all markings
reachable from the initial marking�

Basic properties� A place p � P is said to be k�bounded i� 	M � R�N �M��� M�p� � k� A marked
net hN �M�i is said to be �marking� k�bounded i� each of its places is k�bounded� and it is bounded
i� it is k�bounded for some k � IN� A marked net is said to be safe i� it is ��bounded� A net N is
structurally bounded i� 	M� the marked nets hN �M�i are bounded�
Given an initial marking� an implicit place �

� is one which never is the only place that restricts the
�ring of its output transitions� Let N be any net and Np be the net resulting from adding an implicit
place p to N � Therefore� the �ring sequences in hN �M�i and hNp�M� �m��p�i are identical�
A transition t � T is live in hN �M�i i� 	M � R�N �M��� 
M � � R�N �M� such that M � enables t� The
marked net hN �M�i is live i� all its transitions are live �i�e�� liveness of the net guarantees the possibility
of an in�nite activity of all transitions�� A net N is structurally live i� 
M� such that the marked net
hN �M�i is live� The marked net hN �M�i is deadlock�free i� 	M � R�N �M�� 
t � T such thatM enables
t� A marked net has a deadlock i� it is not deadlock�free�
A consistent component �or T�semi�ow� is a function �vector� X�T � IN such that X �� � and C �X � ��
A conservative component �or P�semi�ow� is a function �vector� Y �P � IN such that Y �� � and
Y T � C � �� The support of �T� and P�� semi�ows is de�ned by jjXjj � ft � T jX�t� � �g and
jjY jj � fp � P jY �p� � �g� A �T� or P�� semi�ow I has minimal support i� there exist no other semi�
�ow I � such that jjI �jj � jjIjj� A �T� or P�� semi�ow is canonical i� the greatest common divisor of its
components is �� A �T� or P�� semi�ow is elementary i� it is canonical and has minimal support�
A net N is consistent if there exists a T�semi�ow X 
 �� �where �� is a vector with all entries equal to ���
A net N is conservative if there exists a P�semi�ow Y 
 ���

Net subclasses� The following are classical ordinary net subclasses� characterized by local structural
properties�

� State machines �SM� are ordinary nets such that 	t � T � j�tj � jt�j � �� State machines allow the
modelling of decisions �con�icts� and concurrency �when

P
p�P M��p� 
 
� but not synchronization�

� Marked graphs �MG� are ordinary nets such that 	p � P � j�pj � jp�j � �� Marked graphs allow
the modelling of concurrency and synchronization� but not of con�ict�

� Free choice �FC� nets are ordinary nets such that 	p � P � jp�j � �� ��p�� � fpg� Free choice nets
�see� e�g�� ���� ��� �
�� allow both synchronization and con�ict but in a restricted and disciplined
way� In an FC net� if a place has a shared output transition then it is the only output transition of
this place� And� equivalently� if a transition has a shared input place then it is the only input place
of this transition� FC nets do not allow the modelling of mutual exclusion semaphores� Throughout
the paper we consider live and bounded FC nets �LBFC nets��

� Simple nets are ordinary nets such that each transition has at most one shared input place� i�e��
	t � T� jfp � �t � jp�j � �gj � �� Simple nets allow the modelling of decisions� concurrency�
synchronization� and shared resources �mutual exclusion schemes�� but they do not allow coupled
shared resources�

The following is a net subclass characterized by global structural properties�

� Mono�T�semi�ow nets ��� are structurally bounded nets with a unique minimal T�semi�ow X� that
contains all transitions� Thus� they verify rank�C� � m � �� with C the incidence matrix of the
net and m � jT j�
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����� On stochastic Petri nets

In the original de�nition� Petri nets did not include the notion of time� and tried to model only the
logical behaviour of systems by describing the causal relations existing between events� This approach
showed its power in the speci�cation and analysis of concurrent systems in a non�interleaved way� i�e�� in
a primitive way independent of the concept of time� Nevertheless the introduction of timing speci�cation
is essential if we want to use this class of models for an evaluation of the performance of distributed
systems�

Timing and �ring process� Since Petri nets are bipartite graphs� historically there have been two
ways of introducing the concept of time in them� namely� associating a time interpretation with either
places �
�� or transitions �
��� Since transitions represent activities that change the state �marking� of
the net� it seems natural to associate a duration with these activities �transitions�� The latter has been
our choice�

In order to solve con�icts among transitions� two alternatives have been proposed� either a �timed
�ring� of transitions in three phases �which changes the �ring rule of Petri nets introducing a timed phase
in which the transition is �working� after having removed tokens from the input places and before adding
tokens to the output arcs� or a �timed enabling� followed by an atomic �ring �which does not a�ect the
usual Petri net �ring rule�� A more detailed discussion of the timing and �ring process can be found in
���� These di�erent timing interpretations have di�erent implications on the resolution of con�icts� Since
in the context of this work we are considering FC nets� any con�ict can be resolved in a local way by
specifying the routing rates of tokens at places with several output transitions� thus we are not forced to
choose one particular �ring mechanism�

We consider both timed and immediate transitions� Timed transitions model services while imme�
diate transitions are used to model decisions �routing rates are associated with them�� Both timed and
immediate transitions can be used to model synchronizations� Even if the following constraint can be
relaxed� for simplicity it is assumed that there do not exist circuits containing only immediate transitions�
For each p � P with more than one output transition� p� � ft�� ���� tkg� we assume that these transitions
are immediate �i�e�� they �re in zero time�� the constants r�� ���� rk � IN� are explicitly de�ned in the
net interpretation in such a way that when t�� ���� tk are enabled� transition ti �i � �� � � � � k� �res with
probability �or with long run rate� in the case of deterministic con�icts resolution policy� ri��

Pk
j�� rj��

Note that the routing rates are assumed to be strictly positive� i�e�� all possible outcomes of any con�ict
have a non�null probability of �ring� This fact guarantees a locally fair behaviour for the non�autonomous
Petri nets that we consider �a marked net is said to be locally fair i� all output transitions of a shared
place that are simultaneously enabled in�nitely many times will �re in�nitely often��

Concerning the transitions that are neither synchronizations nor in con�ict �i�e�� t � T such that
�t � fpg� p� � ftg�� an �almost surely� �nite non�null time is associated with each one of them �enabling
time�� The absence of con�ict for these transitions assures a persistent service� i�e�� no customer can leave
an initiated service �preemption is not considered��

Single versus multiple server semantics� Another possible source of confusion in the de�nition of
the timing interpretation of a Petri net model is the concept of �degree of enabling� of a transition �or re�
entrance�� In the case of timing associated with places� it seems quite natural to de�ne an unavailability
time which is independent of the total number of tokens already present in the place� and this can be
interpreted as an �in�nite server� policy from the point of view of queueing theory� In the case of time
associated with transitions� it is less obvious a�priori whether a transition enabled k times in a marking
should work at conditional throughput � or k times the one it would work in the case it was enabled
only once� In the case of stochastic Petri nets with exponentially distributed �ring times associated with
transitions� the usual implicit hypothesis is to have �single server� semantics �see� e�g�� �

� 
���� and
the case of �multiple server� is handled as a case of �ring rate dependent on the marking� this trick
cannot work in the case of other probability distributions� This is the reason why people working with
deterministic timed transition Petri nets prefer an in�nite server semantics �see� e�g�� �
�� 
���� Of course
an in�nite server transition can always be constrained to a �k�server� behaviour by just reducing its
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Figure 
� �a� An example of state machine representing a network of delay stations� �b� A PN represen�
tation of a monoclass single�server queue� �c� An FC net representation of a queueing network�

enabling bound to k� as we will see later�
Therefore the in�nite server semantics appears to be the most general one� and for this reason it is
adopted in this work�

��� Mapping between monoclass QN with synchronizations and SPN

Here we show how the FC net models de�ned in the previous section can be represented with a Queueing
network formalism� In particular we de�ne the class of Free Choice Synchronized Queueing Networks
�FCSQN� as the queueing representation counterpart of LBFC nets�

An �in�nite�server� queue �
�� �i�e�� with a pure delay node� can be represented by a Petri net
containing one place to model the number of customers in the system and a timed transition connected
with the place through an input arc to model departures� A queueing network containing only pure delay
nodes can be modelled� as depicted in the example in Figure 
�a� by a state machine� Persistent timed
transitions represent service times of the nodes� while �free choice� con�icting immediate transitions
model the routing of customers moving from one node to the other�

A monoclass �single�server� station �
�� can be modelled by a subnet of the type depicted in Figure 
�b�
Monoclass queueing networks containing both delay and �nite�server nodes are thus naturally modelled
by FC nets of the type depicted in the example of Figure 
�c �t� is a delay� while t� and t� are single
server stations�� Also in this more general context con�icting immediate transitions model the routing
of customers among the stations� while persistent timed transitions model the service times�

On the other hand� FC nets can assume forms much more complex than the one illustrated in the
example of Figure 
�c in which transitions have at most two input and output arcs� connected to three
places as shown in the pattern in Figure 
�b� Figure � illustrates a more general strongly connected
FC net that cannot be mapped onto a product�form queueing network� In fact this net can be mapped
on an extended queueing network� a closed FCSQN� in which such constructs as �fork and join� and
�passive resources� are used to map the e�ect of the pairs of transitions t��t� and t��t��� respectively�
These examples show how� using a PN formalism� extensions of product�form queueing networks are
represented with an analogous level of structural complexity of �single�server� Jackson networks�

From the point of view of the computation of performance bounds� much work has been devoted to
the analysis of product�form queueing networks� but little is known for the case of extended queueing
networks with fork and join� passive resources� or customer duplications� Borrowing results from PN
theory� and applying them to the proposed stochastic interpretation of FC nets� we contribute to the
knowledge of extended queueing networks�

� Relationships between qualitative behaviour and structure

There exists a large body of theory concerning the relationships between the qualitative behaviour and
structure for PNs �see� e�g�� ���� �
� ��� ��� 
�� 
�� ��� ����� This section brie�y recalls some well�
established results concerning these relationships� A few very strong statements for the subclass of FC
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Figure �� A more general FC net and the corresponding FCSQN�

nets are grouped in Section ��
� Section ��� recalls two general results on PNs plus one devoted to the
subclass of mono�T�semi�ow�

��� Three relationships

Structural boundedness has a nice algebraic characterization �of polynomial time complexity��

Theorem ��� �
�� ��� ��� N is structurally bounded i� 
Y � �IN��n such that Y T � C � ��

Obviously� if N is conservative �i�e�� 
Y � �IN��n� Y T � C � �� then it is structurally bounded� The
following is a su	cient condition for consistency� conservativity� and strong connectivity�

Theorem ��� ���� 
�� Let N be a structurally live and structurally bounded Petri net� then N is consis�
tent and conservative� Moreover� if N is connected� it is strongly connected�

The last statement of this section concerns mono�T�semi�ow nets �that are bounded by de�nition��

Theorem ��� ��� Let N be a mono�T�semi�ow net�

�� Deadlock�freeness and liveness are equivalent properties 	i�e�� either all transitions are live or none
of them is live
�

�� N is strongly connected�

��� A brief review of structural theory for LBFC nets

This section introduces a minimum of qualitative results from the large body of FC net theory ���� ���
�
� �
� ��� ��� �
�� Additional qualitative results are derived from the quantitative�performance based
approach introduced in this paper� This fact clearly points out the interest of interleaving the qualitative
and quantitative theories�

Let N � hP� T� Pre� Posti be a Petri net and P � � P � N � � hP �� T �� P re�� P ost�i is called a P�
component of N i� N � is the subnet of N generated by P � �i�e�� T � � T and Pre�� P ost� are the restrictions
of Pre� Post to P � and T �� and 	t � T � � j�t � P �j � � � jt� � P �j � �� The next result follows from the
well�known Hack�s Theorem �����
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Figure �� A live and bounded simple net� the addition of a token to p	 kills the net �sequence � � t

leads to a deadlock��

Theorem ��� �A �rst liveness characterization� ��
� Let hN �M�i be a marked FC net� hN �M�i is
live and bounded i�� 	a
 N is structurally live and structurally bounded� and 	b
 every P�component of
N is marked at M��

Structure theory of FC nets assures ��
� that each minimal P�semi�ow of a structurally live and struc�
turally bounded FC net generates a P�component� Therefore� the next result can be derived�

Theorem ��	 �An algebraic characterization of liveness� Let N be a structurally live and struc�
turally bounded FC net� hN �M�i is a live marked net i� all its P�semi�ows are marked 	i�e�� 	Y 
 �
such that Y T � C � �� Y T �M� � �
�

Proof� If hN �M�i is live� since it is also bounded then all its P�components are marked �by Theorem
����� If Y is a P�semi�ow of N � its support includes �or is equal to� the support of a minimal P�semi�ow�
thus it includes the places of a P�component� hence Y is marked� Conversely� if all �and� in particular�
the minimal� the P�semi�ows are marked� then all the P�components are marked and the net is live
�Theorem ����� �

Corollary ��� �Liveness monotonicity� If hN �M�i is an LBFC net and M �
� 
 M� then hN �M �

�i is
live�

The above corollary is a direct consequence of Theorem ��
� Nevertheless� it must be pointed out that
it holds also without assuming boundedness ��
� �as a consequence of Commoner�s Theorem�� Liveness
monotonicity does not hold for more general classes of nets �e�g�� simple nets� Figure ���

Given a place p of a marked net� the maximum number of tokens at this place over all reachable
markings is called the marking bound of p �denoted B�p��� The structural counterpart of this concept
can be de�ned in terms of a linear programming problem �LPP� as follows�

De�nition ��� �Structural marking bound
 SB� Let hN �M�i be a marked Petri net� 	p � P

SB�p�
def
� maximize M�p�

subject to M �M� � C � ��
M 
 �� �� 
 �

�LPP��

It is clear that M���iM impliesM �M��C � �� 
 � with �� 
 �� Since the reverse is not true in general�
SB�p� is greater than or equal to B�p�� The structural marking bound can always be reached in an
LBFC net�

Theorem ��� ��
� Let hN �M�i be an LBFC net� then 	p � P�B�p� � SB�p��

Corollary ��� A live FC net is bounded i� it is structurally bounded�

The importance of the above result lies in the fact that structural boundedness can be algebraically
characterized �Theorem �����

A home state is a marking that may be reached from all other reachable markings� Vogler proved
that an LBFC net has at least one home state�

�



Theorem ��� �Home state existence����� Let hN �M�i be an LBFC net� Then hN �M�i has a home
state�

The importance of this result from the performance evaluation point of view is stressed in the next
section�

� Ergodicity of closed free choice synchronized QNs

In order to speak of steady�state performance we have to assume that some kind of �average behaviour�
can be estimated on the long run of the system we are studying� The usual assumption in this case is
that the system models must be ergodic� meaning that at the limit when the observation period tends
to in�nity� the estimates of average values tend �almost surely� to the theoretical expected values of the
�usually unknown� probability distributions that characterize the performance indexes of interest�

This assumption is very strong and di	cult to verify in general� moreover� it creates problems when
we want to include the deterministic case as a special case of a stochastic model ���� Thus we also use
the concept of weak ergodicity that allows the estimation of long run performance even in the case of
deterministic models�

De�nition ��� �Ergodicity� Let X� be a stochastic process 	or deterministic as a special case
� where
� represents the time�

i
 X� is said to be weakly ergodic 	or measurable in long run
 i� the following limit exists�

X
def
� lim

���

�

�

Z �

�
Xs ds 	�

ii
 X� is said to be strongly ergodic i� the following condition holds�

lim
���

�

�

Z �

�
Xs ds � lim

���
E�X� � 	�� a�s�

For stochastic Petri nets� weak ergodicity of the marking and the �ring processes can be de�ned in the
following terms�

De�nition ��� The marking process of a stochastic marked net is weakly ergodic i� the following limit
exists�

M
def
� lim

���

�

�

Z �

�
Ms ds 	 ��

and M is called the limit average marking�
The �ring process of a stochastic marked net is weakly ergodic i� the following limit exists�

���
def
� lim

���

���
�

	 ��

and ��� is the limit �ring �ow vector 	in both cases� the initial marking M� is a given deterministic vector
and � represents the time
�

The usual 	strong
 ergodicity concepts 
��� are de�ned in the obvious way taking into consideration
De�nition ����ii�

Theorem ��� Let hN �M�i be a stochastic LBFC net�

�� Both the marking and the �ring processes of hN �M�i are weakly ergodic�

�� If hN �M�i is semi�Markovian� then the marking and the �ring processes are strongly ergodic�

�



Proof� For LBFC nets� the existence of home state is assured �Theorem ����� Then� after a possible
transient phase� the system state is always trapped in a unique strongly connected �nite subset of the
state space �terminal class�� Thus� the marking and �ring processes are weakly ergodic�

If semi�Markovian LBFC nets are considered �stochastic LBFC nets whose marking process is semi�
Markov� strong ergodicity of the marking and �ring processes is assured� This is because the existence of
home state implies that only one proper closed subset of the state space exists and it has �nite cardinality�
Therefore� the Markov chain restricted to that subset is irreducible and positive recurrent� hence strongly
ergodic� �

In other words� for LBFC nets it makes sense to speak of a unique steady�state behaviour and to
compute bounds for the performance of this steady�state�

� Upper bounds for the throughput of LBFC nets

In this Section� upper bounds for the throughput of LBFC nets are presented� First we derive some
general results from the structural theory of nets� and then we specialize the problem to MGs and FC
nets�

��� General approach and MGs case

Let us take into account just the �rst moments of the Probability Distribution Functions �PDFs� for
short� associated with transitions� In the following� let 
i be the mean value of the random variable
associated with the �ring of transition ti� The limit �ring �ow vector per time unit �under weak ergodicity
assumption� is ��� � lim��� ����� and the mean time between two consecutive �rings of a selected
transition ti �mean cycle time of ti��  i � �����i �

In what follows� the relative �ring frequency vector or vector of visit ratios to transitions �i�e�� the
limit �ring �ow vector ��� normalized for having the ith component equal �� is denoted by

Fi
def
�  i��

�

Obviously� the above de�nition makes no sense if a deadlock is reachable� In this case ��� � � or� in other
words� the cycle time  i is in�nite for all transitions�

The following Little�s formula �
�� for stochastic Petri nets �
�� holds under weak ergodicity assump�
tion�

M�pi� � PRE�pi� �R�pi���
�

where M�pi� is the limit mean marking of place pi� PRE�pi� is the i
th row of the pre�incidence matrix�

and R�pi� is the mean response time at place pi �i�e�� the mean sojourn time of tokens� sum of the waiting
time and the service time�� The response times at places are unknown but can be lower�bounded from
the knowledge of the mean �ring time associated with transitions�

M 
 PRE �D � ��� ���

where D is the diagonal matrix with elements 
i� i � �� � � � �m� From this inequality� a lower bound  lbi
for the mean cycle time associated with transition ti can be derived� We take into account that  

lb
i must

be such that inequality ��� holds for every place pj �

 lbi 

PRE�pj� �D � Fi

M�pj�
�
�

Since the vector M is unknown� �
� cannot be solved� However� taking the product with a P�semi�ow Y
for any reachable marking M �

Y T �M� � Y T �M � Y T �M ���

Now� from ��� and ����
 iY

T �M� 
 Y T � PRE �D � Fi

��
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Figure 
� �a� Structurally live and structurally bounded mono�T�semi�ow net which has all its P�semi�
�ows marked but is not live� �b� Structurally bounded FC net with all its P�semi�ows marked which is
not live �it is not structurally live��

And a lower bound for the mean cycle time in steady state is�

 lbi � max
Y �fP�semiflowg

Y T � PRE �D � Fi
Y T �M�

Of course� an upper bound for the throughput of ti is �� 
lb
i �

The previous lower bound for the mean cycle time can be formulated in terms of a fractional pro�
gramming problem and later� after some considerations� transformed into a linear programming problem�

Theorem 	�� �Throughput upper bound� ��� For any net� a lower bound for the mean cycle time
of transition ti can be computed by the following LPP�

 lbi � maximize Y T � PRE �D � Fi
subject to Y T � C � �

Y T �M� � �� Y 
 �
�LPP
�

The basic advantage of the above statement lies in the fact that the simplex method for the solution of
LPPs has almost linear complexity in practice� even if it has exponential worst case complexity� In any
case a discussion on algorithms of polynomial worst case complexity can be found in �����

Corollary 	�� Assuming that Fi � � and that there do not exist circuits containing only immediate
transitions� the problem 	LPP�
 has unbounded solution i� 
Y 
 �� Y �� � such that Y T �M� � � and
Y T � C � ��

If the solution of problem �LPP
� is unbounded� since it is a lower bound for the mean cycle time
of a transition� the non�liveness can be assured �in�nite cycle time�� This result has the following
interpretation� if the problem 	LPP�
 is unbounded then there exists an unmarked P�semi�ow� and the
net is non�live� The converse is not true in general� The mono�T�semi�ow net depicted in Figure 
�a is
structurally live and structurally bounded� all its P�semi�ows are marked� but it is not live� On the other
hand� the FC net of Figure 
�b is structurally bounded and all its P�semi�ows are marked but is is not
live �even more� it is not structurally live��

The upper bound for the steady�state throughput of a transition obtained from �LPP
� in Theorem

�� is valid for any net� But in the general case� Fi may depend on the net structure� on the timing inter�
pretation� and on the initial marking� i�e�� Fi � Fi�N �!�M��� where ! denotes the timing interpretation
�including �ring times of transitions and routing rates at con�icts�� However� the marking independence
of Fi has been shown �if liveness is assumed� for important subclasses of nets such as strongly connected
MGs and mono�T�semi�ow nets ���� These net subclasses can be recognized in polynomial time� thus the
computation of Fi for them has polynomial complexity� For LBFC nets� the marking independence of Fi
is proved in Section 
�
� The relative �ring frequency vector for an LBFC net is completely determined
by the net structure and the stochastic interpretation� and can be computed in polynomial time� The
previous considerations are summarized in the next table�
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Figure �� A simple net� The relative �ring frequency vector depends on the initial marking�

strongly connected MGs Fi � �� �constant�
mono�T�semi�ow nets Fi � Fi�N �
LBFC nets Fi � Fi�N �!�
simple nets Fi � Fi�N �!�M��

The above conclusions are not valid for simple nets� For these nets� the relative �ring frequency vector
depends also on the initial marking� As an example� let us consider the net in Figure �� Transitions t� and
t� are immediate �i�e�� enabling time equal ��� The constants r�� r� � IN� de�ne the con�ict resolution
policy� i�e�� when t� and t� are simultaneously enabled� t� �res with relative frequency r���r� � r�� and
t� with r���r� � r��� Let 
� and 

 be the mean enabling delays associated with t� and t
� If m	 � �
�initial marking of p	� then p� and p� are implicit ����� hence they can be deleted �without a�ecting
the behaviour"�� a state machine is obtained and the relative �ring frequency vector for transition t�

can be computed� F
�m����
� � ��� �� r��r�� r��r��

T � If m	 � 
 �di�erent initial marking for p	� then p	

is implicit� hence it can be deleted� two isolated state machines �cycles� are obtained and F
�m����
� �

��� �� 
��

� 
��

�
T � Obviously F

�m����
� �� F

�m����
� �

For strongly connected MGs� the bound derived from Theorem 
�� is the same as that obtained for
the deterministic case by other authors �see� e�g�� �
�� ��� ����� but here it is considered in a practical
LPP form� For deterministic timed nets� the reachability of this bound has been shown �
�� ���� Since
deterministic timing is just a particular case of stochastic timing� the reachability of the bound is assured
for our purposes� Even more� the next result shows that the previous bound cannot be improved only on
the base of the knowledge of the coe	cients of variation for the transition �ring times�

Theorem 	�� �Reachability of the bound for strongly connected MGs� ��� For strongly con�
nected MGs with arbitrary values of mean and variance for transition �ring times� the lower bound for
the mean cycle time obtained from 	LPP�
 cannot be improved�

As a byproduct� we obtain the classical characterization of liveness for a strongly connected MG �see�
for example� ������ It will be live i� the optimal value of �LPP
� is �nite �see Corollary 
���� Then� it is
possible to decide in polynomial time on the net structure about liveness of a given strongly connected
MG�

Corollary 	�� ��� A strongly connected MG is non live i� there exists an unmarked circuit� and this can
be decided in polynomial time looking for the �niteness of the problem 	LPP�
�

The above statement holds in general for any MG ����� It is equivalent to decide if the graph obtained
removing the marked places for M� is acyclic�

��� Upper bounds for LBFC nets

In this section� an e	cient method for computing the relative �ring frequency vector for LBFC nets is
presented� and bounds for the throughput of transitions are derived from �LPP
� for this subclass of
marked Petri nets� Some important qualitative properties are derived from the approach�

Without loss of generality� let us consider LBFC nets with binary decisions �i�e�� jp�j � 
�� Given a
stochastic interpretation ! and considering only the relative �ring frequencies at con�icts �i�e�� indepen�
dently of the service times�� let us construct a related Petri net NR with the same relative �ring frequency

�




vector as the original net� For each pair of transitions in con�ict in N � t� and t�� let r�� r� � IN� be the
constants de�ning the resolution policy� in such a way that when t� and t� are enabled� the transition
ti �res with probability �or long run rate� ri��r� � r��� i � �� 
� In NR� this resolution policy is summa�
rized by the following regulation circuit� ��� �� � PR such that ��� � ��� � ft�g� ��� �

��� � ft�g� and
Pre���� t�� � Post���� t�� � r�� Post���� t�� � Pre���� t�� � r�� Even if the structural con�ict between
t� and t� remains in NR� the added regulation circuit assures the same relative �ring frequency of both
transitions in the limiting behaviour� therefore it reduces the non�determinism of the original net�

Lemma 	�� Let hN �M�i be a live and structurally bounded FC net and ! a stochastic interpretation of
N �

�� The net NR� de�ned above from N � is mono�T�semi�ow�

�� With a su�ciently large number of tokens in the places of the regulation circuits 	i�e�� enough
number of tokens for making the regulation circuits live in isolation
 and the initial marking in the
rest of places equal M�� the marked net hNR�M

R
� i is live�

Proof� �� N is structurally live and structurally bounded� thus it is strongly connected� consistent� and
conservative �Theorem ��
�� By construction� NR is strongly connected� consistent and conservative�

NR has at most one consistent component because all the output transitions of a con�ict in N must
belong to a unique consistent component in NR� Since NR is consistent� it has at least a consistent
T�semi�ow� thus� NR is mono�T�semi�ow�


� For a given live marked net� any local scheduling at con�icts preserves deadlock�freeness� Then the
net hNR�M

R
� i is deadlock�free� Finally� for mono�T�semi�ow nets� liveness and deadlock�freeness coincide

�Theorem ����� �

Theorem 	�� �Marking independence of Fi for structurally bounded and structurally live

FC nets� Let N be a structurally bounded and structurally live FC net and ! a stochastic interpretation
of N � For all M� making the net live� Fi � Fi�N �!� and Fi�t� � ��	t � T �

Proof� Let us consider the related net hNR�M
R
� i� It has the same relative �ring frequency vector as

the original net �since the net is live� transitions t� and t� can be �red in�nitely often� and their relative
frequency is de�ned by the rates r� and r��� It is mono�T�semi�ow �Lemma 
��� and its limiting behaviour
for the �ring count process is de�ned by the unique T�semi�ow XR � � �see �����

Finally� Fi � XR�XR�ti�� and since XR � � and it depends only on NR� i�e�� on N and ! �in fact� on
the con�ict resolution rates�� then Fi � Fi�N �!� � �� �

The relative �ring frequency vector Fi for a given transition ti of the structurally bounded net
hNR�M

R
� i must be a consistent component �����

CR � Fi � �� Fi � �� Fi�ti� � � ���

But CR � �CT jRT j�RT �T � where R is a matrix with a�n rows �a �
P

p�P�t�T Pre�p� t�� i�e�� the number
of arcs in Pre� derived from the con�icts resolution policy� each row of R gives an independent relation
between the throughput of two transitions in free con�ict� And equation ��� is equivalent to�

i� C � Fi � � �i�e�� Fi is a consistent component of C� n equations�

ii� R � Fi � � �i�e�� the routing rates are respected� a� n equations�

iii� Fi � � �i�e�� the relative �ring frequency between any pair of transitions Fi�tj��Fi�tk� is �nite�

iv� Fi�ti� � � �i�e�� the vector is normalized for having the ith component equal ��

The above system can be rewritten in a more compact way��
C
R

�
Fi � �� Fi � �� Fi�ti� � � �
�

The following observations about the previous system can be done�

��



�� The system �
� has at most one solution �Lemma 
����


� If �
� has no solution then the net is structurally non�live and sooner or later it will reach a deadlock�
This follows from the fact that if system ��� has no solution� then NR has no consistent component
and the net cannot have any in�nite behaviour ����� See� for example� the net in Figure 
�b� For
r� � �� r� � 
� the system �
� has no solution� and the net is structurally non�live�

�� The existence of solution for system �
� is a necessary but non�su	cient condition for the structural
liveness of N � This can be easily checked using once again the net in Figure 
�b� For r� � r� � ��
there exists a solution of system �
�� Fi � ��� �� �� ��T � but the FC net is structurally non�live"

The open question from the previous considerations is� When a strongly connected and structurally
bounded FC net is structurally live# The answer is given by the next theorem�

Theorem 	�� �Algebraic characterization of structural liveness for strongly connected struc


turally bounded FC nets� Let N be a strongly connected and structurally bounded FC net and C its
incidence matrix�

�� N is structurally live i� rank�C� � m� �� �a� n��

�� N is structurally non�live i� rank�C� 
 m� �a� n��

where n � jP j�m � jT j� and a �
P

p�P�t�T Pre�p� t��

Proof� �� If N is strongly connected� structurally live� and structurally bounded then NR is strongly
connected� structurally live� and structurally bounded and has one T�semi�ow� i�e�� it is mono�T�semi�
�ow� Thus rank�CR� � m � �� And this is true for all �locally fair� con�ict resolution rates� Then
m� � � rank�CR� � rank�C�� rank�R� � rank�C�� a�n� i�e�� rank�C� � m� �� �a�n�� Note that
rank�CR� � rank�C� � rank�R� because none of the places of the regulation circuits can be implicit� if
one of them was implicit� the choice in the original net would not be free� against the hypothesis�

If rank�C� � m����a�n�� the system �
� has solution for all con�ict resolution policies �the number
of independent equations is rank�C� plus rank�R� � a� n plus one� for the normalization equation� the
number of variables is m�� This leads to claim that under any locally fair con�ict resolution policy�
in�nite behaviours in which all transitions �re �Fi � �� can always be obtained for a large enough initial
marking and no deadlock can be reached� In other words� the net is structurally live�


� If N is a strongly connected and structurally bounded FC net and C its incidence matrix� then
rank�C� 
 m����a�n�� This result follows considering once more the derived netNR� It is equivalent to
see that rank�CR� 
 m��� i�e�� the net NR has not more than one consistent component� And this is true
because each pair of output transitions of a given place that could generate two consistent components
are related with a regulation circuit� thus they should belong to the same consistent component�

Now� statement 
 of this theorem follows from statement � and from the fact that rank�C� 
 m �
�� �a� n�� �

The classical duality result for free choice nets ���� can be derived from the previous theorem� The
reverse dual of a net is obtained by changing places by transitions �dual� and reversing the arc orientation
�reverse�� The reader can check that the reverse dual of an FC net is also an FC net� If C �Crd� is the
incidence matrix of N �Nrd�� it is easy to verify that Crd � �CT � Therefore rank�C� � rank�Crd��

Corollary 	�� �Duality theorem� Let N � hP� T� Pre� Posti be an FC net� N is structurally live and
structurally bounded i� the reverse�dual of N �Nrd � hT� P� Post� P rei� is structurally live and structurally
bounded�

Proof� If N is structurally live and structurally bounded then it is strongly connected� consistent�
and conservative �Theorem ��
�� Then Nrd is strongly connected� consistent� and conservative� thus
structurally bounded�

Finally rank�C� � rank�Crd� and mrd � �� �ard � nrd� � n� �� �a�m� � m� �� �a� n�� i�e�� if
N is structurally live then Nrd is also structurally live� �

Two well�known results of structural theory of nets� can also be deduced from the previous results�

��



Corollary 	�� �Structural liveness in FC net subclasses�

�� Strongly connected MGs are structurally live nets�

�� Strongly connected state machines are structurally live nets�

In fact� for the MG case� strong connection is not needed �an MG is live i� all circuits are marked� i�e��
there always exists an initial marking making the MG live ������

Now� from Theorem 
�� and from the fact that the relative �ring frequency vector can be computed
in polynomial time for LBFC nets �Theorem 
���� the next result follows�

Corollary 	�	 �Polynomial complexity� For strongly connected and structurally bounded FC nets�
the computation of the lower bound for the mean cycle time of a transition given by Theorem ��� has
worst case polynomial complexity on the net size�

Proof� Step �� Both the strong connectivity and the structural boundedness of a net can be characterized
in polynomial time� FC nets are also characterized in polynomial time� Thus the subclass of nets which
are referred to in the statement are characterized in polynomial time�

Step 
� For this subclass of nets� the computation of the relative �ring frequency vector Fi is polyno�
mial� solving the system �
��

Step �� Finally� from the knowledge of Fi� the lower bound for the mean cycle time of transition ti
can be computed� solving the problem �LPP
�� thus in polynomial time� �

As in the case of strongly connected MGs� a characterization of liveness for structurally live and
structurally bounded FC nets can be derived�

Corollary 	�� �Liveness characterization� Assuming that Fi � � and that there do not exist circuits
containing only immediate transitions� liveness of structurally live and structurally bounded FC nets can
be decided in polynomial time� checking the boundedness of the problem 	LPP�
�

Proof� For FC nets� both structural boundedness �Theorem ���� and structural liveness in structurally
bounded nets �Theorem 
��� are polynomial problems� The optimal value of �LPP
� is a lower bound
for the mean cycle time� If this optimal value is in�nite the mean cycle time is unbounded so the net is
non live� If the optimal value of �LPP
� is �nite� this means that for all Y 
 � such that Y T � C � ��
then Y T �M� � �� In other words� all P�semi�ows are marked� thus the net is live �Theorem ��
�� �

This result is nothing more but the �natural� generalization of the existence of an unmarked circuit
for strongly connected MGs �Corollary 
�
�� It does not hold for non�FC nets and for non live FC nets�

The throughput upper bound derived from �LPP
� is not reachable in general for LBFC nets� Several
improvements and a reachable bound for the case of live and safe FC nets can be found in �����

Linear programming problems give an easy way to derive results and interpret them� Just looking at
the problem �LPP
� the following monotonicity property is obtained�

Corollary 	�� �Performance bound monotonicity� Let hN �M�i be an LBFC net and 
 the mean
�ring times vector�

�� For a �xed 
� if M �
� 
 M� 	i�e�� increasing the number of initial resources
 then the throughput

upper bound of hN �M �
�� 
i is greater than or equal to the one of hN �M�� 
i 	i�e��  lb

�
�  lb
�

�� For a �xed M�� if 

� � 
 	i�e�� for faster resources
 then the throughput upper bound of hN �M�� 


�i
is greater than or equal to the one of hN �M�� 
i 	i�e��  lb

�
�  lb
�

We conjecture that the above monotonicity properties hold� in fact� for the exact throughput of LBFC
nets� Nevertheless� the �rst is not true for live and bounded simple nets� remember that the addition of
tokens �i�e�� resources� to a live and bounded simple net can make it non�live �see Figure ���
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Figure �� A net with enabling bound greater than liveness bound for transition t��

� Lower bounds for the throughput of LBFC nets

In this section� lower bounds on throughput are proposed� independent of the higher moments of the
�ring delay PDFs� based on the computation of the transition liveness bounds� First we introduce the
liveness bound concept as a generalization of the concept of liveness of a transition� and some related
results�

Liveness bound is a measure of the maximum degree of enabling of a transition� The degree of enabling
of transition t in a marking M is the minimum among all the input places p � �t of the integer part of
M�p��Pre�p� t�� It identi�es the number of activities associated to the transition that could potentially
progress concurrently� disregarding con�icts� at a given marking�

��� Additional liveness concepts and results

The performance of a model with in�nite server semantics depends on the maximum degree of enabling
of the transitions� and in particular� the steady�state performance depends on the maximum degree
of enabling of transitions in steady�state� which in general can be di�erent from the maximum degree
of enabling of a transition during its evolution starting from the initial marking� For this reason we
introduce here two concepts of degree of enabling of a transition t� the enabling bound E�t�� and the
liveness bound L�t�� The last is obviously constrained to the steady�state� They allow to generalize the
classical concepts of enabling and liveness of a transition�

De�nition ��� �Enabling bound
 E� Let hN �M�i be a marked Petri net and t � T � E�t�
def
�

maxfkj
M � R�N �M�� �M 
 kPRE�t�g�

De�nition ��� �Liveness bound
 L� Let hN �M�i be a marked PN and t � T � L�t�
def
� maxfkj	M� �

R�N �M���
M � R�N �M�� �M 
 kPRE�t�g�

From the above de�nitions it appears clear how it is possible to obtain a k�server transition from an
in�nite server one� adding one place that is both input and output for that transition and marking it
with k tokens� The following is also obvious from the de�nition�

Property ��� Let hN �M�i be a marked PN� then 	t � T � E�t� 
 L�t��

A case of strict inequality in this Property can be interpreted as a generalization of the concept of non�
liveness� there exist transitions containing �potential servers� that are never used in the steady�state�
these additional servers might only be used in a transient phase� so they �die� during the evolution of
the model� See� as an example� the net in Figure �� It is decision�free but not free choice �it is not an
ordinary net�� and E�t�� � L�t�� �E�t�� � 
 and L�t�� � ��� On the other hand it is not di	cult to see
that the condition L�t� � � is equivalent to the usual liveness condition for transition t�

Since for any reversible net �i�e�� such that M� is a home state� the reachability graph �which is a
directed labelled graph� is strongly connected� the following can be stated�

Property ��� Let hN �M�i be a reversible PN� then 	t � T � E�t� � L�t��

As a particular case� live MGs are reversible� so that enabling and liveness bounds are equal for them�

��



The de�nition of enabling bound refers to a behavioural property that depends on the reachability
graph of a PN� Since we are looking for computational techniques at the structural level� we can also
introduce the structural counterpart of the enabling bound concept� To do this� the reachability condition
is substituted by the weaker �linear� constraint that markings satisfy the net state equation� M �
M� � C � ��� with M��� 
 ��

De�nition ��� �Structural enabling bound
 SE� Let hN �M�i be a marked Petri net and t � T �

SE�t�
def
� maximize k

subject to M �M� � C � �� 
 kPRE�t�
�� 
 �

�LPP��

Note that the de�nition of structural enabling bound is in fact an LPP� Its dual problem can be easily
stated�

SE�t� � minimize Y T �M�

subject to Y T � C � �� Y T � PRE�t� � �
Y 
 �

�LPP��

Now let us remark the relation between behavioural and structural enabling bound concepts that follows
from the implication M � R�N �M�� � M �M� � C � �� � �� 
 ��

Property ��� Let hN �M�i be a marked PN� then 	t � T � SE�t� 
 E�t��

An interesting property of LBFC nets� that allows an e	cient computation of liveness bounds� is the
following�

Theorem ��� Let hN �M�i be an LBFC net� then 	t � T� SE�t� � E�t� � L�t��

Proof� Let ti be a given transition of N � A new LBFC net hcN � cM�i is obtained by splitting transition
ti into a transition ti� � an unmarked place pi� and another transition ti� � Then� for ti and pi� SE�ti� �dSB�pi� and E�ti� � bB�pi� �hat refers to the bounds in the derived net�� Since for LBFC nets bB�pi� �dSB�pi� �Theorem ���� then E�ti� � SE�ti��

LBFC nets are structurally bounded �Corollary ��
�� Since live and structurally bounded nets are
conservative �Theorem ��
�� the structural marking bound coincides with the bound obtained from a
basis of P�semi�ows �

�� dSB�pi� � maxfcM �pi�j bBT � cM � bBT � cM�� cM 
 �g�

Let cMh be a home state of hcN � cM�i �its existency is guaranteed by Theorem ����� Because cMh is
reachable from cM�� bBT � cMh � bBT � cM�� Considering as a new starting time that in which cMh is reached
for the �rst time� dSB�pi� � maxfcM�pi�j bBT � cM � bBT � cMh� cM 
 �g� Thus dSB�pi� is reached from a
home state� and E�ti� � L�ti�� �

Now� from the previous theorem and taking into account that for any transition t the computation
of the structural enabling bound SE�t� can be formulated in terms of the problem �LPP��� the following
monotonicity property of the liveness bound of a transition with respect to the initial marking is obtained�

Corollary ��� �Liveness bound monotonicity� If hN �M�i is an LBFC net and M �
� 
 M� then the

liveness bound of t in hN �M �
�i is greater than or equal to the liveness bound of t in hN �M�i�

The previous result appears to be a generalization �stated for the particular case of bounded nets� of the
classical liveness monotonicity property for FC nets stated in Corollary ����

��� Lower bounds on throughput for strongly connected MGs

A trivial lower bound in steady�state performance for a live PN with a unique repetitive �ring count
vector ��� is of course given by the inverse of the sum of the �ring times of all the transitions weighted
by the �ring count vector itself� Since the net is live all transitions must be �reable� and the sum of all
�ring times multiplied by the number of occurrences of each transition in the �unique� average cycle of
the model corresponds to any complete sequentialization of all the activities represented in the model�
This lower bound is always reached in an MG consisting of a single loop of transitions and containing a

��



single token in one of the places� independently of the higher moments of the PDFs �this observation can
be trivially con�rmed by the computation of the upper bound� which in this case gives the same value��

This trivial lower bound has been improved in ���� based on the knowledge of the liveness bound L�t�
for all transitions t of the MG�

Theorem ��� �Throughput lower bound for strongly connected MGs and its reachability�

��� For any live and bounded MG with a speci�cation of the mean �ring times 
j for each tj � T it is not
possible to assign PDFs to the transition �ring times such that the average cycle time is greater than

 ub �
mX
j��


j
L�tj�

�
mX
j��


j
SE�tj�

independently of the topology of the net�
Moreover� this upper bound for the mean cycle time is reachable for any MG topology and for some

assignement of PDFs to the �ring delay of transitions 	i�e�� the bound cannot be improved
�

MGs are a subclass of FC nets� According to Theorem ���� the liveness bound equals the structural
enabling bound for each transition �see also ����� thus the problem of the determination of the structural
enabling bound can be characterized in terms of the problem �LPP��� which is known to be solvable in
polynomial time� The optimum of the objective function is always achieved with elementary P�semi�ows
Y � In case of MGs� these elementary P�semi�ows can only be elementary cycles� so that we can give
the following interpretation of the LPP in net terms� the liveness bound for a transition t of a strongly
connected MG is given by the minimum number of tokens contained in any cycle containing transition t�

��� Lower bounds on throughput for LBFC nets

The non�trivial lower bound for the throughput of MGs �dividing by the liveness bound� presented in
Section ��
 can be applied now in the following way� weighting the mean �ring time of tj � 
j� with the
component of the relative �ring �ow vector Fi�tj�� for each transition�

Theorem ��� �Throughput lower bound for LBFC nets� For any LBFC net with a speci�cation
of the mean �ring times 
j for each tj � T it is not possible to assign PDFs to the transition �ring times
such that the average cycle time of transition ti is greater than

 ubi �
mX
j��

Fi�tj�

L�tj�

j �

mX
j��

Fi�tj�

SE�tj�

j

independently of the topology of the net� where Fi is the relative �ring frequency vector with Fi�ti� � ��

Proof� Let us consider a deterministic con�icts resolution policy� A strongly connected MG with the
same relative �ring frequency vector can be constructed as follows �in fact� since for the MG Fi � ���
what can appear are several instances of transitions to get the Fi of the original net��

�� Steady�state markings must be home states� Let Mh be one of the home states �there always exist
some for LBFC nets� according to Theorem ����� and substitute it to the initial marking �i�e��
hN �Mhi is reversible��


� From the LBFC net� a safe marking can be derived preserving liveness� removing tokens from Mh�

�� Develop the process� resolving the con�icts with the deterministic given policy� until cyclicity ap�
pears �see �
��� and the relative �ring frequency holds� A safe MG is obtained in which transitions
appear according to their relative �ring frequencies�

�� The rest of tokens at each place in Mh in the original LBFC net� can be added now in the corre�
sponding place of the MG�

��



The actual cycle time of the original FC net �with deterministic con�icts resolution policy� is less than
or equal to the one of the derived MG because the behaviour of the net has been constrained� Now�
apply the bound obtained in Theorem ��
� Di�erent instances of a given transition are considered in the
relative rate of the corresponding component in the relative �ring frequency vector� Thus� the bound
obtained for the derived MG applying Theorem ��
 coincides with the bound obtained for the original
net using the formula stated in this theorem� The theorem follows because L�tj� � SE�tj� for LBFC
nets �Theorem ����� �

Note that the structural enabling bound of a transition can be computed by means of an LPP� which
is known to be solvable in polynomial time� thus the above lower bound for the throughput of LBFC nets
can be computed in polynomial time on the net structure�

� Bounds for other performance indexes

From the knowledge of upper and lower bounds for the steady�state throughput of transitions and from
well�known queueing theory laws �such as Little�s formula� �
�� fast bounds for other performance indexes
of interest can be derived�

��� Bounds for the mean length of queues

In this section� a fast computation of upper and lower bounds for the limit mean marking of places �i�e��
length of queues including the customers in service� is proposed�

In Section 
�� the following inequality was derived from Little�s formula for stochastic PNs�

M 
 PRE �D � ���

where D is the diagonal matrix with elements 
i �mean �ring time associated with transition ti� i �
�� � � � �m�� Then� a lower bound for the mean marking of places in steady�state can be computed� from
the knowledge of a lower bound for the throughput of transitions�

Theorem ��� For any LBFC net with a speci�cation of the mean �ring times associated with transitions
and of the con�ict resolution policy� it is not possible to assign PDFs to the transition �ring times such
that the mean marking of places in steady�state is less than

M
lb
� PRE �D � ��lb

where ��lb is a lower bound for the throughput vector 	i�e�� ��lb�ti� � �� ubi � i � �� � � � �m� with  ubi the
upper bound for the mean cycle time of ti computed in Theorem ���
�

For the computation of an upper bound for the mean marking of a given place p� in steady�state� let us
consider a P�semi�ow Y � �Y�� � � � � Yn�

T whose support includes this place �i�e�� Y� �� ��� We have

Y T �M� � Y T �M

Therefore
Y T �M� 
 Y�M�p�� � �Y�� � � � � Yn� � �M

lb
�p��� � � � �M

lb
�pn��

T

M�p�� �M
lb
�p�� �

�

Y�
Y T � �M� �M

lb
�

and the same condition holds for each P�semi�ow including place p�� Then� the computation of an upper
bound for the mean marking of places can be formulated in terms of an LPP as follows�

M
ub
�p� � minimize M

lb
�p� � Y T � �M� �M

lb
�

subject to Y T � C � ��Y T � ep � ��Y 
 �

where ep � ��� � � � � ��

p
�
� � �� � � � � ��T � and the restriction Y T � ep � � allows us to omit the denominator Yp

which is assumed to be non null�
The bound can also be computed from a dual version of the previous problem� Because LBFC nets are

conservative� the dual problem is equivalent to the following one� that admits a nice direct interpretation�

��



Theorem ��� For any live and bounded free choice net with a speci�cation of the mean �ring times
associated with transitions and of the con�ict resolution policy� it is not possible to assign PDFs to the
transition �ring times such that the mean marking of place p in steady�state is greater than

M
ub
�p� � maximize M�p�

subject to BT �M � BT �M�� M 
M
lb

where the rows of BT are a basis of the left annullers of C�

In this problem� the maximum mean marking of place p is computed� subject to the following restrictions�
the mean marking must satisfy the place invariant equations� and it must be greater than or equal to the
lower bound computed in Theorem ����

��� Maximum capacity of queues

An interesting information for the designer is the maximum capacity of queues that is needed for the
execution of the processes from the �xed initial state� This information can be used for giving a correct
dimension of the model implementation� For live and bounded free choice nets� it is possible to compute
in polynomial time on the net size� the exact maximum marking that can be reached from the initial
state in each place� solving an LPP� This is based on the fact that the behavioural bound of p� B�p�� is
equal to the structural bound� SB�p� �Theorem �����

Because LBFC nets are conservative� the problem �LPP�� that de�nes SB�p� can be easily rewritten
leading to the following statement�

Theorem ��� For LBFC nets� the reachable marking bound of places coincides with the structural mark�
ing bound obtained solving the following LPP�

SB�p� � maximize M�p�

subject to BT �M � BT �M�� M 
 �

with BT a basis of the left annullers of C�

The reader is invited to compare the LPPs in Theorems ��
 and ���� The �rst is more constrained

�M 
M
lb

 ��� therefore as expected� M

ub
�p� � SB�p� � B�p��

��� Other computable bounds

Using fundamental laws of queueing theory �
��� bounds for other performance �gures can be computed�
As an example� let us consider the computation of bounds for the mean response time at places�

The mean response time R�pi� at a place pi is the mean value of the sojourn time of a token in this
place �i�e�� sum of waiting plus service time�� From the knowledge of upper and lower bounds for the
throughput of transitions and for the mean marking of places� and applying Little�s law� upper and lower
bounds for the response time at places can be deduced as follows�

R
ub
�pi� �

M
ub
�pi�

PRE�pi� � ��lb

R
lb
�pi� �

PRE�pi� �D � Fk
PRE�pi� � Fk

where ��lb and M
ub
are the bounds computed in previous sections�


�



� Conclusions

Among the main achievements of this work the following can be stressed� ��� it is a starting point for
a performance evaluation �i�e�� quantitative� theory for free choice synchronized queueing networks� a
model class that generalizes many proposals of QN extensions� �
� the theory is developed in a uni�ed
framework considering qualitative and quantitative properties� and ��� from the quantitative approach�
classical and new qualitative fundamental properties of FC nets appear in a simple and straightforward
way�

The extensive bibliography of this work may be surprising at a �rst glance� but it can be justi�ed
because one of our primary goals was to try to deeply bridge two active �elds� Petri nets �in particular�
free choice nets� qualitative theory and stochastic models �stochastic nets and extensions of queueing
networks� theory� The bene�ts have been for both the qualitative and quantitative understanding of such
models� From the qualitative point of view� some unexpected fundamental new results allow the linear
algebra�based characterization of liveness in FC nets� These results strongly in�uenced the introduction
of a new linear algebra based perspective of qualitative theory of LBFC nets ����� An extension of the
necessary condition in the rank theorem for general nets has been presented in ����� From the quantitative
�performance analysis� point of view� fast algorithms �polynomial complexity� allow to compute bounds
for throughput for a class of synchronized QNs for which ergodicity is assured� From the above bounds
and classical fundamental queueing theory laws� some derived performances �as queue bounds� can also
be computed in polynomial time�

Among the �natural� extensions of this work� we can point out two� presently under consideration�
relaxing the topology of nets �synchronized QNs� and considering open free choice synchronized monoclass
queueing networks�
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