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Abstract

Several proposals exist for the introduction of synchronization constraints into Queueing Networks
(QN). We show that many monoclass QN with synchronizations can naturally be modelled with a
subclass of Petri Nets (PN) called Free Choice nets (FC), for which a wide gamut of qualitative
behavioural and structural results have been derived. We use some of these net theoretic results to
characterize the ergodicity, boundedness and liveness of closed Free Choice Synchronized Queueing
Networks (FCSQN). Moreover we define upper and lower throughput bounds based on the mean value
of the service times, without any assumption on the probability distributions (thus including both
the deterministic and the stochastic cases). We show that monotonicity properties exist between the
throughput bounds and the parameters of the model in terms of population and service times. We
propose (theoretically polynomial and practically linear complexity) algorithms for the computation of
these bounds, based on linear programming problems defined on the incidence matrix of the underlying
FC net. Finally, using classical laws from queueing theory, we provide bounds for mean queue lengths
and response time.

1 Introduction

Product Form Queueing Networks (PFQN) [1] have long been used for the performance evaluation of
computer systems. Their success has been due to their capability of naturally expressing sharing of
resources and queueing, that are typical situations of traditional computer systems, as well as to their
efficient solution algorithms, of polynomial complexity on the size of the model. Unfortunately, the
introduction of synchronization constraints usually destroys the product form solution, so that general
concurrent and distributed systems are not easily studied with this class of models.

Timed and stochastic Petri nets constitute an adequate model for the evaluation of performance
measures of concurrent and distributed systems (see, e.g., [2, 3, 4]). Nevertheless, one of the main
problems in the actual use of these models for the evaluation of large systems is the explosion of the
computational complexity of the analysis algorithms. Structural computation (i.e., based on the net
structure and not on its state space) of exact performance measures is only possible for some subclasses
of nets, such as Jackson networks [5] and totally open systems of sequential processes [6]. In the general
case, efficient computation methods for the performance measures are still needed.

From the Petri net perspective, the computation of (upper and lower) bounds for the steady-state
performance of timed and stochastic free choice nets is considered in this paper. In particular, we study
the throughput of transitions, defined as the average number of firings per unit time. For this measure we
compute upper and lower bounds in polynomial time on the size of the net model (number of nodes). The
model is completely specified by the Petri net structure together with its initial marking, the firing rule,
the average transition firing times, and the conflicts resolution policy [7]. In the case of free choice nets,
the conflict resolution policy can be completely defined at the structural level, using a preselection policy.
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Figure 1: Pathological cases of free choice synchronized queueing networks. (a) A deadlock will be
reached sooner or later, even for ¢ = 1/2. (b) Any infinite behaviour will lead to an infinite number of
customers in the QN.

Under this assumption, the computation of bounds is independent of the type of probability distribution
functions associated with transitions; only their mean values are relevant.

The particular case of strongly connected Marked Graphs (MGs) has been studied in [8]. The bounds
obtained for this subclass of Petri nets are computable in polynomial time on the size of the net model.
Moreover, both upper and lower bounds are tight, in the sense that for any MG model it is possible
to define families of stochastic timings such that the steady-state performances of the timed Petri net
models are arbitrarily close to either bound.

An extension of strongly connected MGs is studied in [9], where mono-T-semiflow nets are introduced.
A characteristic of these nets is the existence of a unique consistent firing count vector. They are either
decision-free or such that the decision policy at effective conflicts is not relevant for our computation
of performance bounds (mono-T-semiflow nets allow concurrency and decision, in a particular way).
Both the upper and lower bounds are independent of any assumption on the probability distribution of
the delay associated with transitions, and their values can be computed based on the knowledge of the
averages.

Free Choice nets (FC nets, for short) [10] are a well-known subclass of Petri nets that constitute
an alternative interplay between concurrency and decisions. They are rich enough to be non-trivial but
restricted enough to allow a number of interesting results that do not hold in general and that constitute
a quite elegant theory (see, e.g., [10, 11, 12]).

The results presented in this paper are an extension to Live and Bounded FC nets (LBFC nets) of those
in [8] and [9]. The idea is that several consistent firing count vectors can be reproduced in steady-state,
but the decisions, freely done at certain places, are completely governed by the stochastic interpretation
of the net. Therefore, the steady-state “average firing count vector” can be defined independently of the
marking.

From a different perspective the obtained results can be applied to the analysis of queueing networks
extended with some synchronization schemes [13]. Bounds for the performance measures of a particular
case of such models (essentially fork-join queues) have been studied in [14] using stochastic ordering theory
and recursive equations. We propose an alternative approach based on structural analysis of stochastic
Petri nets and basic queueing laws. Many monoclass queueing networks can be mapped on stochastic FC
Petri nets. On the other hand, FC nets can be interpreted as monoclass queueing networks augmented
with some form of synchronization primitives [15] (preserving the free choice decision scheme). In this
paper we consider strongly connected (i.e., “closed”) FC synchronized QNs (closed FCSQN). The reader
may notice that “unclever” use of synchronizations in the free choice synchronized queueing networks
can lead to pathological cases as unbounded number of customers or complete stop (deadlock) of activity
(see Figure 1), that need to be carefully studied.

The paper is organized as follows. Section 2 presents the connection between (synchronized) queueing
networks and free choice stochastic Petri nets. In Section 3 various behavioural and structural properties



of FC nets are considered. Ergodicity of FCSQN is characterized in Section 4. In Sections 5 and 6 the
upper and lower bounds of transition throughputs are defined for LBFC nets (closed FCSQN) in terms of
Linear Programming Problems (LPPs) set up on the incidence matrix of the net. In Section 7 upper and
lower bounds for other performance indexes are derived using classical laws of queueing theory. Section
8 contains some concluding remarks and considerations on possible extensions of the work.

2 Queueing networks and stochastic Petri nets

2.1 Extended queueing networks

Many extensions have been proposed to introduce synchronization primitives into the QN formalism,
in order to allow the modelling of distributed asynchronous systems: passive resources, fork and join,
customer splitting, etc. Some very restricted forms of synchronization, such as some special use of passive
resources [16, 17], preserve the local balance property [1] that allows efficient algorithms to be used for
the computation of exact product form solution. In general, however, these extensions destroy the local
balance property so that extended queueing models with synchronization are used mainly as system
descriptions for simulation experiments [13]. Even the computation of bounds for these classes of models
is not yet well developed.

In [15] a comparison has been proposed between synchronized QNs and stochastic Petri nets, showing
that the two formalisms are roughly equivalent from a modelling point of view. However, no special
computation based on the Petri net structure has yet been proposed, to motivate the use of a Petri net
formalism. In the following of this paper we show some connections between structural analysis of Petri
net models and some interesting performance-oriented questions on distributed systems.

2.2 Stochastic Petri nets
2.2.1 Some terminology related to PNs

Petri nets are a well-known formalism for describing concurrent discrete event dynamic systems with
synchronizations (see [18] for a nice recent survey; [19] and [20] are textbooks, while [21] is the text of
an advanced course). We assume that the reader is familiar with the structure, firing rules, and basic
properties of net models. The purpose of this section is to make some notations precise since they will
be extensively used in the sequel.

A Petri net is a bipartite directed graph, in which the nodes are called places and transitions.

Net structure. A Petri net is a 4-tuple N' = (P, T, Pre, Post), where P is the set of places (|P| = n),
T is the set of transitions (|T| = m, PNT = 0), Pre (Post) is the pre- (post-) incidence function
representing the input (output) arcs Pre: P x T'— IN = {0,1,2,...} (Post: P x T'— IN).

Ordinary nets are Petri nets whose pre and post incidence functions take values in {0, 1}.

The pre- and post-set of a transition ¢ € T are defined respectively as *t = {p|Pre(p,t) > 0} and
t* = {p|Post(p,t) > 0}. The pre- and post-set of a place p € P are defined respectively as *p =
{t|Post(p,t) > 0} and p* = {t|Pre(p,t) > 0}.

The incidence matriz of the net C = [¢;;] (1 <1 < n, 1 <5 < m) is defined by ¢;; = Post(p;,tj) —
Pre(p;,t;). Similarly the pre- and post-incidence matrices are defined as PRE = [a;;] and POST = [b;],
where a;; = Pre(p;,t;) and b;; = Post(p;, ;).

A transition ¢ such that |*¢| > 1 is called synchronization. If t1,ty € p® we say that ¢; and t2 are in
structural conflict.

Token game. A function M: P — IN (usually represented in vector form) is called marking. Markings
represent (distributed) states. A marked Petri net or net system (N, Mp) is a Petri net N with an initial
marking M.

A transition t € T' is enabled in marking M iff Vp € P M(p) > Pre(p,t). A transition ¢ enabled in M
can fire yielding a new marking M’ (reached marking) defined by M'(p) = M (p) — Pre(p,t) + Post(p,t)
(it is denoted by M[t)M').



A sequence of transitions o = tity...t, is a firing sequence of (N, Mp) iff there exists a sequence of
markings such that My[t1) M [te) My ... [t,)M,. In this case, marking M,, is said to be reachable from M,
by firing o, and this is denoted by My[o)M,,. M[o) denotes a firable sequence o from marking M. The
function :T — IN is the firing count vector of the firable sequence o, i.e., &(t) represents the number
of occurrences of t € T' in 0. If My[o)M, then we can write in vector form M = My + C - &, which is
referred to as the linear state equation of the net. The reachability set R(N, My) is the set of all markings
reachable from the initial marking.

Basic properties. A place p € P is said to be k-bounded iff VM € R(N, My), M (p) < k. A marked
net (N, Mp) is said to be (marking) k—bounded iff each of its places is k—bounded, and it is bounded
iff it is k-bounded for some k € IN. A marked net is said to be safe iff it is 1-bounded. A net N is
structurally bounded iff VM, the marked nets (N, My) are bounded.

Given an initial marking, an implicit place [22] is one which never is the only place that restricts the
firing of its output transitions. Let ' be any net and N, be the net resulting from adding an implicit
place p to N. Therefore, the firing sequences in (N, My) and (N,, My Umg(p)) are identical.

A transition ¢ € T' is live in (N, My) iff VM € R(N, My), IM' € R(N, M) such that M’ enables ¢. The
marked net (N, M) is live iff all its transitions are live (i.e., liveness of the net guarantees the possibility
of an infinite activity of all transitions). A net N is structurally live iff IMj such that the marked net
(N, My) is live. The marked net (N, My) is deadlock-free it VM € R(N, My) 3t € T such that M enables
t. A marked net has a deadlock iff it is not deadlock-free.

A consistent component (or T-semiflow) is a function (vector) X:T — IN such that X # 0 and C-X = 0.
A conservative component (or P-semiflow) is a function (vector) Y:P — IN such that ¥ # 0 and
YT .C = 0. The support of (T- and P-) semiflows is defined by ||X|| = {t € T|X(t) > 0} and
[IY]| = {p € P|Y(p) > 0}. A (T- or P-) semiflow I has minimal support iff there exist no other semi-
flow I' such that ||I'|| C ||I||. A (T- or P-) semiflow is canonical iff the greatest common divisor of its
components is 1. A (T- or P-) semiflow is elementary iff it is canonical and has minimal support.

A net NV is consistent if there exists a T-semiflow X > 1 (where I is a vector with all entries equal to 1).
A net N is conservative if there exists a P-semiflow Y > I.

Net subclasses. The following are classical ordinary net subclasses, characterized by local structural
properties:

- State machines (SM) are ordinary nets such that V¢ € T": |*¢| = |t*| = 1. State machines allow the
modelling of decisions (conflicts) and concurrency (when }°, - Mo(p) > 2) but not synchronization.

- Marked graphs (MG) are ordinary nets such that Vp € P : |*p| = |p®| = 1. Marked graphs allow
the modelling of concurrency and synchronization, but not of conflict.

- Free choice (FC) nets are ordinary nets such that Vp € P : [p*| > 1 = *(p®) = {p}. Free choice nets
(see, e.g., [10, 11, 12]) allow both synchronization and conflict but in a restricted and disciplined
way. In an FC net, if a place has a shared output transition then it is the only output transition of
this place. And, equivalently, if a transition has a shared input place then it is the only input place
of this transition. FC nets do not allow the modelling of mutual exclusion semaphores. Throughout
the paper we consider live and bounded FC nets (LBFC nets).

- Simple nets are ordinary nets such that each transition has at most one shared input place, i.e.,
Vi € T,|{p € *t : [p*| > 1}| < 1. Simple nets allow the modelling of decisions, concurrency,
synchronization, and shared resources (mutual exclusion schemes), but they do not allow coupled
shared resources.

The following is a net subclass characterized by global structural properties:

- Mono-T-semiflow nets [9] are structurally bounded nets with a unique minimal T-semiflow X, that
contains all transitions. Thus, they verify rank(C) = m — 1, with C the incidence matrix of the
net and m = |T|.



2.2.2 On stochastic Petri nets

In the original definition, Petri nets did not include the notion of time, and tried to model only the
logical behaviour of systems by describing the causal relations existing between events. This approach
showed its power in the specification and analysis of concurrent systems in a non-interleaved way, i.e., in
a primitive way independent of the concept of time. Nevertheless the introduction of timing specification
is essential if we want to use this class of models for an evaluation of the performance of distributed
systems.

Timing and firing process. Since Petri nets are bipartite graphs, historically there have been two
ways of introducing the concept of time in them, namely, associating a time interpretation with either
places [23] or transitions [24]. Since transitions represent activities that change the state (marking) of
the net, it seems natural to associate a duration with these activities (transitions). The latter has been
our choice.

In order to solve conflicts among transitions, two alternatives have been proposed: either a “timed
firing” of transitions in three phases (which changes the firing rule of Petri nets introducing a timed phase
in which the transition is “working” after having removed tokens from the input places and before adding
tokens to the output arcs) or a “timed enabling” followed by an atomic firing (which does not affect the
usual Petri net firing rule). A more detailed discussion of the timing and firing process can be found in
[7]. These different timing interpretations have different implications on the resolution of conflicts. Since
in the context of this work we are considering FC nets, any conflict can be resolved in a local way by
specifying the routing rates of tokens at places with several output transitions; thus we are not forced to
choose one particular firing mechanism.

We counsider both timed and immediate transitions. Timed transitions model services while imme-
diate transitions are used to model decisions (routing rates are associated with them). Both timed and
immediate transitions can be used to model synchronizations. Even if the following counstraint can be
relaxed, for simplicity it is assumed that there do not exist circuits containing only immediate transitions.
For each p € P with more than one output transition: p® = {¢1,...,t;}, we assume that these transitions
are immediate (i.e., they fire in zero time); the constants rq,...,7;, € IN' are explicitly defined in the
net interpretation in such a way that when ¢1,...,t; are enabled, transition ¢; (i = 1,...,k) fires with
probability (or with long run rate, in the case of deterministic conflicts resolution policy) r;/ (Z?:l ;).
Note that the routing rates are assumed to be strictly positive, i.e., all possible outcomes of any conflict
have a non-null probability of firing. This fact guarantees a locally fair behaviour for the non-autonomous
Petri nets that we consider (a marked net is said to be locally fair iff all output transitions of a shared
place that are simultaneously enabled infinitely many times will fire infinitely often).

Concerning the transitions that are neither synchronizations nor in conflict (i.e., ¢ € T such that
*t = {p},p* = {t}), an (almost surely) finite non-null time is associated with each one of them (enabling
time). The absence of conflict for these transitions assures a persistent service, i.e., no customer can leave
an initiated service (preemption is not considered).

Single versus multiple server semantics. Another possible source of confusion in the definition of
the timing interpretation of a Petri net model is the concept of “degree of enabling” of a transition (or re-
entrance). In the case of timing associated with places, it seems quite natural to define an unavailability
time which is independent of the total number of tokens already present in the place, and this can be
interpreted as an “infinite server” policy from the point of view of queueing theory. In the case of time
associated with transitions, it is less obvious a-priori whether a transition enabled k times in a marking
should work at conditional throughput 1 or k£ times the one it would work in the case it was enabled
only once. In the case of stochastic Petri nets with exponentially distributed firing times associated with
transitions, the usual implicit hypothesis is to have “single server” semantics (see, e.g., [25, 26]), and
the case of “multiple server” is handled as a case of firing rate dependent on the marking; this trick
cannot work in the case of other probability distributions. This is the reason why people working with
deterministic timed transition Petri nets prefer an infinite server semantics (see, e.g., [27, 28]). Of course
an infinite server transition can always be constrained to a “k—server” behaviour by just reducing its
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Figure 2: (a) An example of state machine representing a network of delay stations. (b) A PN represen-
tation of a monoclass single-server queue. (¢) An FC net representation of a queueing network.

enabling bound to k, as we will see later.
Therefore the infinite server semantics appears to be the most general one, and for this reason it is
adopted in this work.

2.3 Mapping between monoclass QN with synchronizations and SPN

Here we show how the FC net models defined in the previous section can be represented with a Queueing
network formalism. In particular we define the class of Free Choice Synchronized Queueing Networks
(FCSQN) as the queueing representation counterpart of LBFC nets.

An “infinite-server” queue [29] (i.e., with a pure delay node) can be represented by a Petri net
containing one place to model the number of customers in the system and a timed transition connected
with the place through an input arc to model departures. A queueing network containing only pure delay
nodes can be modelled, as depicted in the example in Figure 2.a, by a state machine. Persistent timed
transitions represent service times of the nodes, while (free choice) conflicting immediate transitions
model the routing of customers moving from one node to the other.

A monoclass “single-server” station [29] can be modelled by a subnet of the type depicted in Figure 2.b.
Monoclass queueing networks containing both delay and finite-server nodes are thus naturally modelled
by FC nets of the type depicted in the example of Figure 2.c (¢; is a delay, while ¢, and ¢35 are single
server stations). Also in this more general context conflicting immediate transitions model the routing
of customers among the stations, while persistent timed transitions model the service times.

On the other hand, FC nets can assume forms much more complex than the one illustrated in the
example of Figure 2.¢c in which transitions have at most two input and output arcs, connected to three
places as shown in the pattern in Figure 2.b. Figure 3 illustrates a more general strongly connected
FC net that cannot be mapped onto a product-form queueing network. In fact this net can be mapped
on an extended queueing network, a closed FCSQN, in which such counstructs as “fork and join” and
“passive resources” are used to map the effect of the pairs of transitions to—t7 and t9—t1g, respectively.
These examples show how, using a PN formalism, extensions of product-form queueing networks are
represented with an analogous level of structural complexity of (single-server) Jackson networks.

From the point of view of the computation of performance bounds, much work has been devoted to
the analysis of product-form queueing networks, but little is known for the case of extended queueing
networks with fork and join, passive resources, or customer duplications. Borrowing results from PN
theory, and applying them to the proposed stochastic interpretation of FC nets, we contribute to the
knowledge of extended queueing networks.

3 Relationships between qualitative behaviour and structure

There exists a large body of theory concerning the relationships between the qualitative behaviour and
structure for PNs (see, e.g., [11, 12, 18, 19, 20, 21, 30, 31]). This section briefly recalls some well-
established results concerning these relationships. A few very strong statements for the subclass of FC
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Figure 3: A more general FC net and the corresponding FCSQN.

nets are grouped in Section 3.2. Section 3.1 recalls two general results on PNs plus one devoted to the
subclass of mono-T-semiflow.

3.1 Three relationships

Structural boundedness has a nice algebraic characterization (of polynomial time complexity):
Theorem 3.1 [21, 30, 18] N is structurally bounded iff 3Y € (INT)" such that YT - C < 0.

Obviously, if AV is conservative (i.e., 3Y € (INT)", YT . C = 0) then it is structurally bounded. The
following is a sufficient condition for consistency, conservativity, and strong connectivity.

Theorem 3.2 [18, 20] Let N be a structurally live and structurally bounded Petri net, then N is consis-
tent and conservative. Moreover, if N is connected, it is strongly connected.

The last statement of this section concerns mono-T-semiflow nets (that are bounded by definition):
Theorem 3.3 [9] Let N be a mono-T-semiflow net.

1. Deadlock-freeness and liveness are equivalent properties (i.e., either all transitions are live or none
of them is live).

2. N is strongly connected.

3.2 A brief review of structural theory for LBFC nets

This section introduces a minimum of qualitative results from the large body of FC net theory [10, 11,
12, 32, 33, 34, 35]. Additional qualitative results are derived from the quantitative/performance based
approach introduced in this paper. This fact clearly points out the interest of interleaving the qualitative
and quantitative theories.

Let N' = (P, T, Pre, Post) be a Petri net and P C P. N' = (P', T, Pre', Post') is called a P-
component of N iff N' is the subnet of N generated by P’ (i.e., T' C T and Pre’, Post’ are the restrictions
of Pre,Post to P' and T') and YVt € T' : |*t N P'| < 1 A |t* N P'| < 1. The next result follows from the
well-known Hack’s Theorem [10].



Figure 4: A live and bounded simple net: the addition of a token to ps kills the net (sequence o = t4
leads to a deadlock).

Theorem 3.4 (A first liveness characterization) [32] Let (N, My) be a marked FC net. (N, My) is
live and bounded iff: (a) N is structurally live and structurally bounded, and (b) every P-component of
N is marked at My.

Structure theory of FC nets assures [35] that each minimal P-semiflow of a structurally live and struc-
turally bounded FC net generates a P-component. Therefore, the next result can be derived.

Theorem 3.5 (An algebraic characterization of liveness) Let N be a structurally live and struc-
turally bounded FC net. (N, My) is a live marked net iff all its P-semiflows are marked (i.e., VY > 0
such that Y- C =0,Y1 - My >0).

Proof. If (M, M) is live, since it is also bounded then all its P-components are marked (by Theorem
3.4). If Y is a P-semiflow of N, its support includes (or is equal to) the support of a minimal P-semiflow,
thus it includes the places of a P-component, hence Y is marked. Conversely, if all (and, in particular,
the minimal) the P-semiflows are marked, then all the P-components are marked and the net is live
(Theorem 3.4). &

Corollary 3.1 (Liveness monotonicity) If (N, M) is an LBFC net and M{ > My then (N, M) is
live.

The above corollary is a direct consequence of Theorem 3.5. Nevertheless, it must be pointed out that
it holds also without assuming boundedness [12] (as a consequence of Commoner’s Theorem). Liveness
monotonicity does not hold for more general classes of nets (e.g., simple nets, Figure 4).

Given a place p of a marked net, the maximum number of tokens at this place over all reachable
markings is called the marking bound of p (denoted B(p)). The structural counterpart of this concept
can be defined in terms of a linear programming problem (LPP) as follows:

Definition 3.1 (Structural marking bound, SB) Let (N, My) be a marked Petri net, Vp € P

SB(p) C mazimize M(p)

subject to M =My +C -7 (LPP1)
M>0,G>0

It is clear that My[o) M implies M = Mo+ C -G > 0 with & > 0. Since the reverse is not true in general,

SB(p) is greater than or equal to B(p). The structural marking bound can always be reached in an
LBFC net:

Theorem 3.6 [32] Let (N, My) be an LBFC net, then Vp € P, B(p) = SB(p).
Corollary 3.2 A live FC net is bounded iff it is structurally bounded.

The importance of the above result lies in the fact that structural boundedness can be algebraically
characterized (Theorem 3.1).

A home state is a marking that may be reached from all other reachable markings. Vogler proved
that an LBFC net has at least one home state:



Theorem 3.7 (Home state existence)[33] Let (N, My) be an LBFC net. Then (N, My) has a home
state.

The importance of this result from the performance evaluation point of view is stressed in the next
section.

4 Ergodicity of closed free choice synchronized QNs

In order to speak of steady-state performance we have to assume that some kind of “average behaviour”
can be estimated on the long run of the system we are studying. The usual assumption in this case is
that the system models must be ergodic, meaning that at the limit when the observation period tends
to infinity, the estimates of average values tend (almost surely) to the theoretical expected values of the
(usually unknown) probability distributions that characterize the performance indexes of interest.

This assumption is very strong and difficult to verify in general; moreover, it creates problems when
we want to include the deterministic case as a special case of a stochastic model [9]. Thus we also use
the concept of weak ergodicity that allows the estimation of long run performance even in the case of
deterministic models.

Definition 4.1 (Ergodicity) Let X, be a stochastic process (or deterministic as a special case), where
T represents the time.

i) X; is said to be weakly ergodic (or measurable in long run) iff the following limit exists:

_ 1 T
X 4im = [ X,ds < o0
T—0Q0 T 0

ii) X, is said to be strongly ergodic iff the following condition holds:

1 T
lim — [ X;ds= lim E[X;] < oo, a.s.
T30 T Jo T—00

For stochastic Petri nets, weak ergodicity of the marking and the firing processes can be defined in the
following terms:

Definition 4.2 The marking process of a stochastic marked net is weakly ergodic iff the following limit

exists:
= def

1 T
M= lim — [ Mds <
T—00 T 0
and M is called the limit average marking.
The firing process of a stochastic marked net is weakly ergodic iff the following limit exists:

—

Sy def . Or -
= lim — <
T—>00 T

and &* is the limit firing flow vector (in both cases, the initial marking My is a given deterministic vector
and T represents the time).

The usual (strong) ergodicity concepts [26] are defined in the obvious way taking into consideration
Definition 4.1.1i.

Theorem 4.1 Let (N, M) be a stochastic LBFC net.

1. Both the marking and the firing processes of (N, My) are weakly ergodic.

2. If (N, My) is semi-Markovian, then the marking and the firing processes are strongly ergodic.



Proof. For LBFC nets, the existence of home state is assured (Theorem 3.7). Then, after a possible
transient phase, the system state is always trapped in a unique strongly connected finite subset of the
state space (terminal class). Thus, the marking and firing processes are weakly ergodic.

If semi-Markovian LBFC nets are considered (stochastic LBFC nets whose marking process is semi-
Markov) strong ergodicity of the marking and firing processes is assured. This is because the existence of
home state implies that only one proper closed subset of the state space exists and it has finite cardinality.
Therefore, the Markov chain restricted to that subset is irreducible and positive recurrent, hence strongly
ergodic. &

In other words, for LBFC nets it makes sense to speak of a unique steady-state behaviour and to
compute bounds for the performance of this steady-state.

5 Upper bounds for the throughput of LBFC nets

In this Section, upper bounds for the throughput of LBFC nets are presented. First we derive some
general results from the structural theory of nets, and then we specialize the problem to MGs and FC
nets.

5.1 General approach and MGs case

Let us take into account just the first moments of the Probability Distribution Functions (PDFs, for
short) associated with transitions. In the following, let 6; be the mean value of the random variable
associated with the firing of transition ¢;. The limit firing flow vector per time unit (under weak ergodicity
assumption) is ¢* = lim;_, 67/7 and the mean time between two consecutive firings of a selected
transition t; (mean cycle time of t;), I'; = 1/07.

In what follows, the relative firing frequency vector or vector of wvisit ratios to transitions (i.e., the
limit firing flow vector ¢* normalized for having the i component equal 1) is denoted by

def
F, <

|
Obviously, the above definition makes no sense if a deadlock is reachable. In this case * = 0 or, in other
words, the cycle time ['; is infinite for all transitions.

The following Little’s formula [29] for stochastic Petri nets [26] holds under weak ergodicity assump-
tion:

M(pi) = PRE(p;) - R(pi)5”

where M (p;) is the limit mean marking of place p;, PRE(p;) is the i'® row of the pre-incidence matrix,
and R(p;) is the mean response time at place p; (i.e., the mean sojourn time of tokens: sum of the waiting
time and the service time). The response times at places are unknown but can be lower-bounded from
the knowledge of the mean firing time associated with transitions:

M > PRE-D - (1)

where D is the diagonal matrix with elements 6;,7 = 1,...,m. From this inequality, a lower bound I‘gb
for the mean cycle time associated with transition ¢; can be derived. We take into account that ' must
be such that inequality (1) holds for every place p;:

PRE(p;) - D - F;

Ib
Iy > M) (2)

Since the vector M is unknown, (2) cannot be solved. However, taking the product with a P-semiflow Y

for any reachable marking M:
YU . My=y" - m=v"l- M (3)

Now, from (1) and (3):
Y- mMy>Y!'.PRE-D-F,

10



4 Ly
" 3
p5
(@) (b)

Figure 5: (a) Structurally live and structurally bounded mono-T-semiflow net which has all its P-semi-
flows marked but is not live. (b) Structurally bounded FC net with all its P-semiflows marked which is
not live (it is not structurally live).

And a lower bound for the mean cycle time in steady state is:

i Y. PRE-D-F,
Iy = max T
Ye{P—semiflow} Y+ M
Of course, an upper bound for the throughput of ¢; is 1/ Féb.
The previous lower bound for the mean cycle time can be formulated in terms of a fractional pro-
gramming problem and later, after some considerations, transformed into a linear programming problem:

Theorem 5.1 (Throughput upper bound) [9] For any net, a lower bound for the mean cycle time
of transition t; can be computed by the following LPP:

' = mazimize YT -PRE-D-F,
subject to YI'-C =0 (LPP2)
YT - My=1; Y >0

The basic advantage of the above statement lies in the fact that the simplex method for the solution of
LPPs has almost linear complexity in practice, even if it has exponential worst case complexity. In any
case a discussion on algorithms of polynomial worst case complexity can be found in [36].

Corollary 5.1 Assuming that F; > 0 and that there do not exist circuits containing only immediate
transitions, the problem (LPP2) has unbounded solution iff 3Y > 0,Y # 0 such that YT - My = 0 and
yr.c=o.

If the solution of problem (LPP2) is unbounded, since it is a lower bound for the mean cycle time
of a transition, the non-liveness can be assured (infinite cycle time). This result has the following
interpretation: if the problem (LPP2) is unbounded then there exists an unmarked P-semiflow, and the
net is non-live. The converse is not true in general. The mono-T-semiflow net depicted in Figure 5.a is
structurally live and structurally bounded, all its P-semiflows are marked, but it is not live. On the other
hand, the FC net of Figure 5.b is structurally bounded and all its P-semiflows are marked but is is not
live (even more, it is not structurally live).

The upper bound for the steady-state throughput of a transition obtained from (LPP2) in Theorem
5.1 is valid for any net. But in the general case, F; may depend on the net structure, on the timing inter-
pretation, and on the initial marking, i.e., F; = F;(N, A, My), where A denotes the timing interpretation
(including firing times of transitions and routing rates at conflicts). However, the marking independence
of F; has been shown (if liveness is assumed) for important subclasses of nets such as strongly connected
MGs and mono-T-semiflow nets [9]. These net subclasses can be recognized in polynomial time, thus the
computation of F; for them has polynomial complexity. For LBFC nets, the marking independence of F;
is proved in Section 5.2. The relative firing frequency vector for an LBFC net is completely determined
by the net structure and the stochastic interpretation, and can be computed in polynomial time. The
previous considerations are summarized in the next table:
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Figure 6: A simple net. The relative firing frequency vector depends on the initial marking.

strongly connected MGs F; = 1 (constant)
mono-T-semiflow nets F; = F;(N)
LBFC nets F;, = F;(N,A)
simple nets F;, = F;(N, A, My)

The above conclusions are not valid for simple nets. For these nets, the relative firing frequency vector
depends also on the initial marking. As an example, let us consider the net in Figure 6. Transitions ¢; and
t3 are immediate (i.e., enabling time equal 0). The constants r1,73 € INT define the conflict resolution
policy, i.e., when ¢; and ¢3 are simultaneously enabled, ¢; fires with relative frequency r1/(r1 + r3) and
t3 with r3/(r1 + r3). Let 03 and 64 be the mean enabling delays associated with ¢ and ¢4. If mz; =1
(initial marking of ps) then p; and ps are implicit [30], hence they can be deleted (without affecting
the behaviour!); a state machine is obtained and the relative firing frequency vector for transition ¢;
F1(m5:1) = (1,1,r3/r1,r3/r1)?. If ms = 2 (different initial marking for ps) then ps
F1(m5:2) _

can be computed:
is implicit, hence it can be deleted; two isolated state machines (cycles) are obtained and
(1,1,02/64,02/0,)". Obviously F"5=Y » plms=2),

For strongly connected MGs, the bound derived from Theorem 5.1 is the same as that obtained for
the deterministic case by other authors (see, e.g., [24, 37, 38]), but here it is considered in a practical
LPP form. For deterministic timed nets, the reachability of this bound has been shown [24, 37]. Since
deterministic timing is just a particular case of stochastic timing, the reachability of the bound is assured
for our purposes. Even more, the next result shows that the previous bound cannot be improved only on
the base of the knowledge of the coefficients of variation for the transition firing times.

Theorem 5.2 (Reachability of the bound for strongly connected MGs) [8] For strongly con-
nected MGs with arbitrary values of mean and variance for transition firing times, the lower bound for
the mean cycle time obtained from (LPP2) cannot be improved.

As a byproduct, we obtain the classical characterization of liveness for a strongly connected MG (see,
for example, [18]). It will be live iff the optimal value of (LPP2) is finite (see Corollary 5.1). Then, it is
possible to decide in polynomial time on the net structure about liveness of a given strongly connected
MG.

Corollary 5.2 [8] A strongly connected MG is non live iff there exists an unmarked circuit, and this can
be decided in polynomial time looking for the finiteness of the problem (LPP2).

The above statement holds in general for any MG [18]. It is equivalent to decide if the graph obtained
removing the marked places for My is acyclic.

5.2 Upper bounds for LBFC nets

In this section, an efficient method for computing the relative firing frequency vector for LBFC nets is
presented, and bounds for the throughput of transitions are derived from (LPP2) for this subclass of
marked Petri nets. Some important qualitative properties are derived from the approach.

Without loss of generality, let us consider LBFC nets with binary decisions (i.e., |p®| < 2). Given a
stochastic interpretation A and considering only the relative firing frequencies at conflicts (i.e., indepen-
dently of the service times), let us construct a related Petri net Ng with the same relative firing frequency
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vector as the original net. For each pair of transitions in conflict in A, ¢; and to, let 71,79 € INT be the
constants defining the resolution policy, in such a way that when ¢; and ¢, are enabled, the transition
t; fires with probability (or long run rate) r;/(r1 + r2),% = 1,2. In N, this resolution policy is summa-
rized by the following regulation circuit: p;,pe € Pr such that *p; = p§ = {t2}, p} = *p2 = {t1}, and
Pre(p1,t1) = Post(pa,t1) = 1o, Post(p1,ta) = Pre(ps,to) = r1. Even if the structural conflict between
t; and ty remains in Ng, the added regulation circuit assures the same relative firing frequency of both
transitions in the limiting behaviour, therefore it reduces the non-determinism of the original net.

Lemma 5.1 Let (N, My) be a live and structurally bounded FC net and A a stochastic interpretation of
N.

1. The net N, defined above from N, is mono-T-semiflow.

2. With a sufficiently large number of tokens in the places of the regulation circuits (i.e., enough
number of tokens for making the requlation circuits live in isolation) and the initial marking in the
rest of places equal My, the marked net (Ng, Mf) 18 live.

Proof. 1) N is structurally live and structurally bounded, thus it is strongly connected, consistent, and
conservative (Theorem 3.2). By construction, Ny is strongly connected, consistent and conservative.

Ng has at most one consistent component because all the output transitions of a conflict in A/ must
belong to a unique consistent component in Nz. Since Ny is consistent, it has at least a consistent
T-semiflow, thus, Nz is mono-T-semiflow.

2) For a given live marked net, any local scheduling at conflicts preserves deadlock-freeness. Then the
net (Mg, M{) is deadlock-free. Finally, for mono-T-semiflow nets, liveness and deadlock-freeness coincide
(Theorem 3.3). &

Theorem 5.3 (Marking independence of F; for structurally bounded and structurally live
FC nets) Let N be a structurally bounded and structurally live FC net and A a stochastic interpretation
of N'. For all My making the net live, F; = F;(N,A) and F;(t) >0,Vt € T.

Proof. Let us consider the related net (Ng, M{?). It has the same relative firing frequency vector as
the original net (since the net is live, transitions ¢; and t2 can be fired infinitely often, and their relative
frequency is defined by the rates r; and r3). It is mono-T-semiflow (Lemma 5.1) and its limiting behaviour
for the firing count process is defined by the unique T-semiflow X > 0 (see [9]).

Finally, F; = Xr/Xg(t;), and since X > 0 and it depends only on N, i.e., on N and A (in fact, on
the conflict resolution rates), then F; = F;(N,A) > 0. $

The relative firing frequency vector F; for a given transition ¢; of the structurally bounded net
(NR, M%) must be a consistent component [31]:

Cr-F;=0, F; >0, Fi(ti)=1 (4)

But Cr = (CT|RY|— RT)T, where R is a matrix with a —n rows (a = > pepier Pre(p,t); i.e., the number
of arcs in Pre) derived from the conflicts resolution policy: each row of R gives an independent relation
between the throughput of two transitions in free conflict. And equation (4) is equivalent to:

i) C - F; =0 (i.e., Fj is a consistent component of C; n equations)
ii) R- F; =0 (i.e., the routing rates are respected; ¢ — n equations)
iii) F; > 0 (i.e., the relative firing frequency between any pair of transitions Fj(t;)/F;(ty) is finite)
)

iv) F;(t;) =1 (i.e., the vector is normalized for having the i"* component equal 1)

The above system can be rewritten in a more compact way:

C
<R>E=0, F>0, Fit) 1 )

The following observations about the previous system can be done:
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1. The system (5) has at most one solution (Lemma 5.1).

2. If (5) has no solution then the net is structurally non-live and sooner or later it will reach a deadlock.
This follows from the fact that if system (4) has no solution, then Nz has no consistent component
and the net cannot have any infinite behaviour [31]. See, for example, the net in Figure 5.b. For
r1 = 1,79 = 2, the system (5) has no solution, and the net is structurally non-live.

3. The existence of solution for system (5) is a necessary but non-sufficient condition for the structural
liveness of A/. This can be easily checked using once again the net in Figure 5.b. For r| =ry =1,
there exists a solution of system (5): F; = (1,1,1,1)%, but the FC net is structurally non-live!

The open question from the previous considerations is: When a strongly connected and structurally
bounded FC net is structurally live? The answer is given by the next theorem.

Theorem 5.4 (Algebraic characterization of structural liveness for strongly connected struc-
turally bounded FC nets) Let N be a strongly connected and structurally bounded FC net and C its
incidence matriz.

1. N is structurally live iff rank(C) =m —1 — (a — n).
2. N is structurally non-live iff rank(C) > m — (a —n).
where n = |P|,m = |T|, and a = 3>, cp e Pre(p,t).

Proof. 1) If NV is strongly connected, structurally live, and structurally bounded then Np is strongly
connected, structurally live, and structurally bounded and has one T-semiflow, i.e., it is mono-T-semi-
flow. Thus rank(Cr) = m — 1. And this is true for all (locally fair) conflict resolution rates. Then
m—1 =rank(Cgr) = rank(C) + rank(R) = rank(C) +a—mn, i.e., rank(C) = m —1— (a —n). Note that
rank(Cgr) = rank(C) + rank(R) because none of the places of the regulation circuits can be implicit: if
one of them was implicit, the choice in the original net would not be free, against the hypothesis.

If rank(C) = m—1—(a—n), the system (5) has solution for all conflict resolution policies (the number
of independent equations is rank(C) plus rank(R) = a — n plus one, for the normalization equation; the
number of variables is m). This leads to claim that under any locally fair conflict resolution policy,
infinite behaviours in which all transitions fire (F; > 0) can always be obtained for a large enough initial
marking and no deadlock can be reached. In other words, the net is structurally live.

2) If NV is a strongly connected and structurally bounded FC net and C' its incidence matrix, then
rank(C) > m—1—(a—n). This result follows considering once more the derived net N'r. It is equivalent to
see that rank(Cgr) > m—1, i.e., the net Nz has not more than one consistent component. And this is true
because each pair of output transitions of a given place that could generate two consistent components
are related with a regulation circuit, thus they should belong to the same consistent component.

Now, statement 2 of this theorem follows from statement 1 and from the fact that rank(C) > m —
1 —(a—n). &

The classical duality result for free choice nets [10] can be derived from the previous theorem. The
reverse dual of a net is obtained by changing places by transitions (dual) and reversing the arc orientation
(reverse). The reader can check that the reverse dual of an FC net is also an FC net. If C (C,4) is the
incidence matrix of N (N,q), it is easy to verify that C,y = —C?". Therefore rank(C) = rank(C,).

Corollary 5.3 (Duality theorem) Let N = (P, T, Pre, Post) be an FC net. N is structurally live and
structurally bounded iff the reverse-dual of Ny, Nyq = (T, P, Post, Pre), is structurally live and structurally
bounded.

Proof. If N is structurally live and structurally bounded then it is strongly connected, consistent,
and conservative (Theorem 3.2). Then N4 is strongly connected, consistent, and conservative, thus
structurally bounded.
Finally rank(C) = rank(Crq) and myq —1 — (arg —npg) =n—1—(a—m) =m —1—(a —n), ie., if
N is structurally live then N,.q4 is also structurally live. O
Two well-known results of structural theory of nets, can also be deduced from the previous results:
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Corollary 5.4 (Structural liveness in FC net subclasses)
1. Strongly connected MGs are structurally live nets.
2. Strongly connected state machines are structurally live nets.

In fact, for the MG case, strong connection is not needed (an MG is live iff all circuits are marked, i.e.,
there always exists an initial marking making the MG live [18]).

Now, from Theorem 5.1 and from the fact that the relative firing frequency vector can be computed
in polynomial time for LBFC nets (Theorem 5.3), the next result follows:

Corollary 5.5 (Polynomial complexity) For strongly connected and structurally bounded FC nets,
the computation of the lower bound for the mean cycle time of o transition given by Theorem 5.1 has
worst case polynomial complexity on the net size.

Proof. Step 1) Both the strong connectivity and the structural boundedness of a net can be characterized
in polynomial time. FC nets are also characterized in polynomial time. Thus the subclass of nets which
are referred to in the statement are characterized in polynomial time.

Step 2) For this subclass of nets, the computation of the relative firing frequency vector F; is polyno-
mial, solving the system (5).

Step 3) Finally, from the knowledge of Fj, the lower bound for the mean cycle time of transition ¢;
can be computed, solving the problem (LPP2), thus in polynomial time. &

As in the case of strongly connected MGs, a characterization of liveness for structurally live and
structurally bounded FC nets can be derived.

Corollary 5.6 (Liveness characterization) Assuming that F; > 0 and that there do not exist circuits
containing only immediate transitions, liveness of structurally live and structurally bounded FC nets can
be decided in polynomial time, checking the boundedness of the problem (LPP2).

Proof. For FC nets, both structural boundedness (Theorem 3.1) and structural liveness in structurally
bounded nets (Theorem 5.4) are polynomial problems. The optimal value of (LPP2) is a lower bound
for the mean cycle time. If this optimal value is infinite the mean cycle time is unbounded so the net is
non live. If the optimal value of (LPP2) is finite, this means that for all Y > 0 such that Y7 - C = 0,
then Y7 - My > 0. In other words, all P-semiflows are marked, thus the net is live (Theorem 3.5). &

This result is nothing more but the “natural” generalization of the existence of an unmarked circuit
for strongly connected MGs (Corollary 5.2). It does not hold for non-FC nets and for non live FC nets.

The throughput upper bound derived from (LPP2) is not reachable in general for LBFC nets. Several
improvements and a reachable bound for the case of live and safe FC nets can be found in [34].

Linear programming problems give an easy way to derive results and interpret them. Just looking at
the problem (LPP2) the following monotonicity property is obtained.

Corollary 5.7 (Performance bound monotonicity) Let (N, My) be an LBFC net and 6 the mean
firing times vector.

1. For a fized 0, if My > My (i.e., increasing the number of initial resources) then the throughput
upper bound of (N, M}),0) is greater than or equal to the one of (N, My, 0) (i.e., T < T).

2. For a fized My, if ' <0 (i.e., for faster resources) then the throughput upper bound of (N, My, ')
is greater than or equal to the one of (N, My,0) (i.e., T < T).

We conjecture that the above monotonicity properties hold, in fact, for the exact throughput of LBFC
nets. Nevertheless, the first is not true for live and bounded simple nets: remember that the addition of
tokens (i.e., resources) to a live and bounded simple net can make it non-live (see Figure 4).
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Figure 7: A net with enabling bound greater than liveness bound for transition ¢;.

6 Lower bounds for the throughput of LBFC nets

In this section, lower bounds on throughput are proposed, independent of the higher moments of the
firing delay PDFs, based on the computation of the transition liveness bounds. First we introduce the
liveness bound concept as a generalization of the concept of liveness of a transition, and some related
results.

Liveness bound is a measure of the maximum degree of enabling of a transition. The degree of enabling
of transition ¢ in a marking M is the minimum among all the input places p € °t of the integer part of
M (p)/Pre(p,t). It identifies the number of activities associated to the transition that could potentially
progress concurrently, disregarding conflicts, at a given marking.

6.1 Additional liveness concepts and results

The performance of a model with infinite server semantics depends on the maximum degree of enabling
of the transitions; and in particular, the steady-state performance depends on the maximum degree
of enabling of transitions in steady-state, which in general can be different from the maximum degree
of enabling of a transition during its evolution starting from the initial marking. For this reason we
introduce here two concepts of degree of enabling of a transition ¢: the enabling bound E(t), and the
liveness bound L(t). The last is obviously constrained to the steady-state. They allow to generalize the
classical concepts of enabling and liveness of a transition.

Definition 6.1 (Enabling bound, E) Let (N, My) be a marked Petri net and t € T, E(t) def

max{k|3IM € RN, M) : M > kPRE(t)}.
Definition 6.2 (Liveness bound, L) Let (N, My) be a marked PN and t € T, L(t) def max{k|VM, €
R(N,Mp),3M € RN, M;) : M > kPRE(t)}.

From the above definitions it appears clear how it is possible to obtain a k—server transition from an
infinite server one: adding one place that is both input and output for that transition and marking it
with k£ tokens. The following is also obvious from the definition.

Property 6.1 Let (N, My) be a marked PN, then ¥t € T, E(t) > L(t).

A case of strict inequality in this Property can be interpreted as a generalization of the concept of non-
liveness: there exist transitions containing “potential servers” that are never used in the steady-state;
these additional servers might only be used in a transient phase, so they “die” during the evolution of
the model. See, as an example, the net in Figure 7. It is decision-free but not free choice (it is not an
ordinary net), and E(t1) > L(t1) (E(t1) = 2 and L(t;) = 1). On the other hand it is not difficult to see
that the condition L(t) > 0 is equivalent to the usual liveness condition for transition .

Since for any reversible net (i.e., such that M is a home state) the reachability graph (which is a
directed labelled graph) is strongly connected, the following can be stated.

Property 6.2 Let (N, M) be a reversible PN, then ¥t € T, E(t) = L(t).

As a particular case, live MGs are reversible, so that enabling and liveness bounds are equal for them.
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The definition of enabling bound refers to a behavioural property that depends on the reachability
graph of a PN. Since we are looking for computational techniques at the structural level, we can also
introduce the structural counterpart of the enabling bound concept. To do this, the reachability condition
is substituted by the weaker (linear) constraint that markings satisfy the net state equation: M =
My +C - &, with M,5 > 0.

Definition 6.3 (Structural enabling bound, SE) Let (N, M) be a marked Petri net and t € T,

SE(t) C mazimize k
subject to M = Mo+ C -3 > kPRE(t) (LPP3)
od>0
Note that the definition of structural enabling bound is in fact an LPP. Its dual problem can be easily
stated:
SE(t) = minimize Y71 .M,
subject to Y1 .C=0; Y. .PRE(t)=1 (LPP4)
Y >0

Now let us remark the relation between behavioural and structural enabling bound concepts that follows
from the implication M € R(N,My) = M =My+C-3ANd > 0.

Property 6.3 Let (N, My) be a marked PN, then ¥Vt € T, SE(t) > E(t).

An interesting property of LBFC nets, that allows an efficient computation of liveness bounds, is the
following;:

Theorem 6.1 Let (N, My) be an LBFC net, then Vt € T,SE(t) = E(t) = L(t).

Proof. Let ¢; be a given transition of N'. A new LBFC net (.//\/'\ ) ]\70> is obtained by splitting transition
t; into a transition ¢;,, an unmarked place p;, and another transition ¢;,. Then, for ¢; and p;: SE(t;) =
SB(p;) and E(t;) = B(p;) (hat refers to the bounds in the derived net). Since for LBFC nets B(p;) =
SB(p;) (Theorem 3.6) then E(t;) = SE(t;).

LBFC nets are structurally bounded (Corollary 3.2). Since live and structurally bounded nets are
conservative (Theorem 3.2), the structural marking bound coincides with the bound obtained from a
basis of P-semiflows [22]: SB(p;) = max{M(pZ)|BT M = BT . My, M > 0}. .

Let M), be a home state of (N M0> (its existency is guaranteed by Theorem 3.7). Because M), is
reachable from MO, BT Mh BT. Mo Con51der1ng as a new starting time that in which Mh is reached
for the first time: SB(pZ) = maX{M(pZ)|BT M = BT M,,M > 0}. Thus SB(pZ) is reached from a
home state, and E(t;) = L(t;). O

Now, from the previous theorem and taking into account that for any transition ¢ the computation
of the structural enabling bound SE(t) can be formulated in terms of the problem (LPP4), the following
monotonicity property of the liveness bound of a transition with respect to the initial marking is obtained:

Corollary 6.1 (Liveness bound monotonicity) If (N, My) is an LBFC net and M} > My then the
liveness bound of t in (N, M) is greater than or equal to the liveness bound of t in (N, Mp).

The previous result appears to be a generalization (stated for the particular case of bounded nets) of the
classical liveness monotonicity property for FC nets stated in Corollary 3.1.

6.2 Lower bounds on throughput for strongly connected MGs

A trivial lower bound in steady-state performance for a live PN with a unique repetitive firing count
vector [9] is of course given by the inverse of the sum of the firing times of all the transitions weighted
by the firing count vector itself. Since the net is live all transitions must be fireable, and the sum of all
firing times multiplied by the number of occurrences of each transition in the (unique) average cycle of
the model corresponds to any complete sequentialization of all the activities represented in the model.
This lower bound is always reached in an MG consisting of a single loop of transitions and containing a
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single token in one of the places, independently of the higher moments of the PDFs (this observation can
be trivially confirmed by the computation of the upper bound, which in this case gives the same value).

This trivial lower bound has been improved in [8], based on the knowledge of the liveness bound L(t)
for all transitions ¢ of the MG.

Theorem 6.2 (Throughput lower bound for strongly connected MGs and its reachability)
[8] For any live and bounded MG with a specification of the mean firing times 0; for each t; € T it is not
possible to assign PDF's to the transition firing times such that the average cycle time is greater than

independently of the topology of the net.
Moreover, this upper bound for the mean cycle time is reachable for any MG topology and for some
assignement of PDF's to the firing delay of transitions (i.e., the bound cannot be improved).

MGs are a subclass of FC nets. According to Theorem 6.1, the liveness bound equals the structural
enabling bound for each transition (see also [8]); thus the problem of the determination of the structural
enabling bound can be characterized in terms of the problem (LPP4), which is known to be solvable in
polynomial time. The optimum of the objective function is always achieved with elementary P-semiflows
Y. In case of MGs, these elementary P-semiflows can only be elementary cycles, so that we can give
the following interpretation of the LPP in net terms: the liveness bound for a transition ¢ of a strongly
connected MG is given by the minimum number of tokens contained in any cycle containing transition ¢.

6.3 Lower bounds on throughput for LBFC nets

The non-trivial lower bound for the throughput of MGs (dividing by the liveness bound) presented in
Section 6.2 can be applied now in the following way: weighting the mean firing time of ¢;, 6;, with the
component of the relative firing flow vector Fj(t;), for each transition.

Theorem 6.3 (Throughput lower bound for LBFC nets) For any LBFC net with a specification
of the mean firing times 0; for each t; € T it is not possible to assign PDFs to the transition firing times
such that the average cycle time of transition t; is greater than
m F(t) m F(t)

' Jz::l L(t5) ; SE(t))

independently of the topology of the net, where F; is the relative firing frequency vector with F;(t;) = 1.

Proof. Let us consider a deterministic conflicts resolution policy. A strongly connected MG with the
same relative firing frequency vector can be constructed as follows (in fact, since for the MG F; = 1,
what can appear are several instances of transitions to get the F; of the original net):

1. Steady-state markings must be home states. Let M} be one of the home states (there always exist
some for LBFC nets, according to Theorem 3.7), and substitute it to the initial marking (i.e.,
(N, My) is reversible).

2. From the LBFC net, a safe marking can be derived preserving liveness, removing tokens from Mj,.

3. Develop the process, resolving the conflicts with the deterministic given policy, until cyclicity ap-
pears (see [24]) and the relative firing frequency holds. A safe MG is obtained in which transitions
appear according to their relative firing frequencies.

4. The rest of tokens at each place in M}, in the original LBFC net, can be added now in the corre-
sponding place of the MG.
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The actual cycle time of the original FC net (with deterministic conflicts resolution policy) is less than
or equal to the one of the derived MG because the behaviour of the net has been constrained. Now,
apply the bound obtained in Theorem 6.2. Different instances of a given transition are considered in the
relative rate of the corresponding component in the relative firing frequency vector. Thus, the bound
obtained for the derived MG applying Theorem 6.2 coincides with the bound obtained for the original
net using the formula stated in this theorem. The theorem follows because L(t;) = SE(t;) for LBFC
nets (Theorem 6.1). &

Note that the structural enabling bound of a transition can be computed by means of an LPP, which
is known to be solvable in polynomial time, thus the above lower bound for the throughput of LBFC nets
can be computed in polynomial time on the net structure.

7 Bounds for other performance indexes

From the knowledge of upper and lower bounds for the steady-state throughput of transitions and from
well-known queueing theory laws (such as Little’s formula) [29] fast bounds for other performance indexes
of interest can be derived.

7.1 Bounds for the mean length of queues

In this section, a fast computation of upper and lower bounds for the limit mean marking of places (i.e.,
length of queues including the customers in service) is proposed.
In Section 5.1 the following inequality was derived from Little’s formula for stochastic PNs:

M >PRE-D-&*

where D is the diagonal matrix with elements 6; (mean firing time associated with transition t;,i =
1,...,m). Then, a lower bound for the mean marking of places in steady-state can be computed, from
the knowledge of a lower bound for the throughput of transitions.

Theorem 7.1 For any LBFC net with a specification of the mean firing times associated with transitions
and of the conflict resolution policy, it is not possible to assign PDF's to the transition firing times such
that the mean marking of places in steady-state is less than

MY = PRE-D-G"

where 7° is a lower bound for the throughput vector (i.e., #°(t;) = 1/T¥,i = 1,...,m, with T* the
upper bound for the mean cycle time of t; computed in Theorem 6.3).

For the computation of an upper bound for the mean marking of a given place p; in steady-state, let us
consider a P-semiflow Y = (Y1,...,Y,)T whose support includes this place (i.e., Y1 # 0). We have

YU . My=Y"T M

Therefore b b
YT My >YiM(p) + (Yo,...,Ys) - (M (p2),..., M " (pn))"
_ —1b

—1b 1
M(p1) <M (101)+?1YT'(M0—M )

and the same condition holds for each P-semiflow including place p;. Then, the computation of an upper
bound for the mean marking of places can be formulated in terms of an LPP as follows:

MUb(p) = minimize Mlb(p) +YT. (My— Mlb)

subject to YT-C:0;YT-ep:1;Y20

P
where e, = (0,...,0, T, 0,...,0)T, and the restriction Y7 - ep = 1 allows us to omit the denominator Y),
which is assumed to be non null.

The bound can also be computed from a dual version of the previous problem. Because LBFC nets are
conservative, the dual problem is equivalent to the following one, that admits a nice direct interpretation.

19



Theorem 7.2 For any live and bounded free choice net with a specification of the mean firing times
associated with transitions and of the conflict resolution policy, it is not possible to assign PDFs to the
transition firing times such that the mean marking of place p in steady-state is greater than

Mw(p) = mazximize M(p)
subject to BT -M = BT - My; M > "

where the rows of B are a basis of the left annullers of C.

In this problem, the maximum mean marking of place p is computed, subject to the following restrictions:
the mean marking must satisfy the place invariant equations, and it must be greater than or equal to the
lower bound computed in Theorem 7.1.

7.2 Maximum capacity of queues

An interesting information for the designer is the maximum capacity of queues that is needed for the
execution of the processes from the fixed initial state. This information can be used for giving a correct
dimension of the model implementation. For live and bounded free choice nets, it is possible to compute
in polynomial time on the net size, the exact maximum marking that can be reached from the initial
state in each place, solving an LPP. This is based on the fact that the behavioural bound of p, B(p), is
equal to the structural bound, SB(p) (Theorem 3.6).

Because LBFC nets are conservative, the problem (LPP1) that defines SB(p) can be easily rewritten
leading to the following statement:

Theorem 7.3 For LBFC nets, the reachable marking bound of places coincides with the structural mark-
ing bound obtained solving the following LPP:

SB(p) = maximize M/(p)
subject to BT -M =BT -My; M >0

with BT a basis of the left annullers of C.

The reader is invited to compare the LPPs in Theorems 7.2 and 7.3. The first is more constrained
(M > M > 0), therefore as expected, Wb(p) < SB(p) = B(p).

7.3 Other computable bounds

Using fundamental laws of queueing theory [29], bounds for other performance figures can be computed.
As an example, let us consider the computation of bounds for the mean response time at places.

The mean response time R(p;) at a place p; is the mean value of the sojourn time of a token in this
place (i.e., sum of waiting plus service time). From the knowledge of upper and lower bounds for the
throughput of transitions and for the mean marking of places, and applying Little’s law, upper and lower
bounds for the response time at places can be deduced as follows:

——ub
—ub M)
0D = PREG,) -0
o PRE(p;) - D - Fy,
PRE(p;) - Fy,

R (pi) =

= ——ub . . .
where & and M" are the bounds computed in previous sections.
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8 Conclusions

Among the main achievements of this work the following can be stressed: (1) it is a starting point for
a performance evaluation (i.e., quantitative) theory for free choice synchronized queueing networks, a
model class that generalizes many proposals of QN extensions; (2) the theory is developed in a unified
framework considering qualitative and quantitative properties; and (3) from the quantitative approach,
classical and new qualitative fundamental properties of FC nets appear in a simple and straightforward
way.

The extensive bibliography of this work may be surprising at a first glance, but it can be justified
because one of our primary goals was to try to deeply bridge two active fields: Petri nets (in particular,
free choice nets) qualitative theory and stochastic models (stochastic nets and extensions of queueing
networks) theory. The benefits have been for both the qualitative and quantitative understanding of such
models. From the qualitative point of view, some unexpected fundamental new results allow the linear
algebra-based characterization of liveness in FC nets. These results strongly influenced the introduction
of a new linear algebra based perspective of qualitative theory of LBFC nets [39]. An extension of the
necessary condition in the rank theorem for general nets has been presented in [40]. From the quantitative
(performance analysis) point of view, fast algorithms (polynomial complexity) allow to compute bounds
for throughput for a class of synchronized QNs for which ergodicity is assured. From the above bounds
and classical fundamental queueing theory laws, some derived performances (as queue bounds) can also
be computed in polynomial time.

Among the “natural” extensions of this work, we can point out two, presently under consideration:
relaxing the topology of nets (synchronized QNs) and considering open free choice synchronized monoclass
queueing networks.
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