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Abstract

Steady-state performance evaluation of some repetitive
automated manufacturing systems modelled by means of
stochastic or deterministic timed Petri nets is considered.
Basically, concepts and techniques developed by the au-
thors in other works are applied to repetitive manufactur-
ing systems in this paper. Linear programming problems
defined on the incidence matrix of the underlying Petri nets
are used to compute tight upper and lower bounds for the
performance measures of job-shop systems and decision-
free kanban systems in polynomial time on the net struc-
ture. The results can be extended to other models in which
some decisions are allowed, such as producer-consumer sys-
tems with mutual exclusion. Exact performance measures
for a class of systems containing sequential processes can
be computed in polynomial time.

1 Introduction

Modelling tools for designing complex manufacturing sys-
tems must be selected such that qualitative and quanti-
tative analysis can be achieved in an efficient way. A lot
of work has been devoted to evaluating the performance
measures of such systems. Markov chains and queueing
networks models have been used for the exact quantita-
tive analysis (see, e.g., [1]). Approximate methods for in-
tractable large systems have been developed. Perturbation
analysis methods [2] are useful simulation techniques which
allow sensitivity analysis from the observation of a single
sample path.

Moreover, Petri net models have been introduced for de-
signing, validating and computing performance measures
of complex manufacturing systems [3, 4, 5, 6]. In these
models, a (stochastic or deterministic) timing interpre-
tation is added to the autonomous Petri net scheme as
well as a given decision policy for the resolution of con-
flicts. Petri nets provide synchronization capabilities that
are not allowed with classical queueing networks. In this
sense, stochastic Petri nets can be seen as monoclass queue-
ing networks extended with some synchronization schemes
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(synchronized queueing networks [7, 8, 9, 10]), and the ob-
tained results can be applied to the analysis of such models.
Nevertheless, the introduction of these schemes destroys, in
general, the local-balance property of product-form queue-
ing networks [11], which has been found only for some net
subclasses [12, 13, 14, 15]. Thus, exact computation is
only possible in general with a large computational cost,
originated from the state space explosion of the embedded
Markov chain.

Structural computation (i.e. based on the net structure
and not on the state space) of exact measures is only pos-
sible for some subclasses of nets (e.g., totally open systems
of Markovian sequential processes [10]). For more general
net subclasses, very efficient—of polynomial complexity—
techniques for computing upper and lower bounds for the
throughput of transitions and for the mean marking of
places have been developed [7, 8, 9]. In particular, the
more restricted subclass for which tight bounds can be
computed (marked graphs [16, 17]) allows to generalize
the results of the PERT/CPM method to repetitive sys-
tems with several resources. An alternative approach for
the modelling of those systems can be found in [18, 19].
An extension of these results concerns subclasses of nets in
which some decisions can be made that do not change the
relative firing frequences of transitions (mono-T-semiflow
nets). These models and those that are composed by com-
plex servers communicating with buffers allow to analyse
more complex manufacturing systems.

We assume the reader is familiarized with the structure,
firing rules, and basic properties of net models (see [17]
for a nice recent survey). Just for notational purposes, let
us state the following: N = 〈P, T, Pre, Post〉 is a net with
n = |P | places andm = |T | transitions. PRE, POST , and
C = POST − PRE are n × m matrices representing the
Pre, Post, and global incidence functions. A T-semiflow
is a function (vector) X :T → IN such that X 6= 0 and
C · X = 0. The support of a T-semiflow is defined as
||X || = {t ∈ T |X(t) > 0}. A T-semiflow X is minimal
support iff there exist no other T-semiflow X ′ such that
||X ′|| ⊂ ||X ||. M (M0) is a marking (initial marking).
Finally, σ represents a fireable sequence, while ~σ is the
firing count vector associated to σ. If M is reachable from
M0 (i.e. ∃σ s.t. M0[σ〉M), then M = M0 + C · ~σ ≥ 0 and
~σ ≥ 0.
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The paper is organized as follows. In Section 2, marked
graphs are considered as a modelling and analysing tool
for the performance evaluation of manufacturing systems.
A summary of efficient algorithms for the computation of
bounds for the steady-state cycle time is included. These
results can be applied for the evaluation of job-shop sys-
tems. In the same way, just-in-time—or kanban—systems
performance evaluation can be achieved. Section 3 is de-
voted to the introduction of decisions in some particular
way in the Petri net model. Mono-T-semiflow nets are
defined and some results related with the computation of
bounds for the performance measures are recalled. In par-
ticular, a producer-consumer system with finite store and
mutual exclusion is modelled and evaluated. In Section
4, acyclic manufacturing systems with complex servers are
modelled with a subclass of stochastic Petri nets. For this
subclass, exact computation of the performance indexes of
interest can be carried out. Section 5 contains some con-
cluding remarks and considerations on possible extensions
of the work.

2 Stochastic marked graphs: a

generalization of PERT model

Marked graphs [16, 17] can be seen as a generalization
of the classical PERT tool. With PERT, the relationship
among the tasks of a project can be represented by a net-
work of activities (arrows) and events (nodes). Timing
interpretation can be added to activities for the purpose
of evaluating the completion time of the project. The ob-
tained network is an acyclic graph, i.e. repetitive systems
cannot be modelled.
With marked graphs, cyclic behaviours can be modelled

as well as many different classes of non shared resources for
the realization of activities (tokens at places of the net).
Let us briefly recall what marked graphs are and some

of their basic properties. Marked graphs allow to model
concurrency and synchronization but no decisions: they
are structurally (i.e. for all initial marking) decision-free
nets.

Definition 2.1 Marked graphs are ordinary Petri nets
(pre and post incidence functions taking values in {0, 1})
such that ∀p ∈ P, |•p| = |p•| = 1.

Property 2.1 Let N be a marked graph.

1. N is structurally bounded (i.e. ∀M0, 〈N ,M0〉 is
bounded) iff it is strongly connected.

2. Let 〈N ,M0〉 be live. Then 〈N ,M0〉 is bounded iff N
is structurally bounded.

According to the above properties, strong connectivity
and boundedness have equivalent meaning for live marked
graphs.

The introduction of (stochastic or deterministic) timing
specification is essential if we want to use Petri net models
for the performance evaluation of manufacturing systems.
Since Petri nets are bipartite graphs, historically there have
been two ways of introducing the concept of time in them,
namely, associating a time interpretation with either places
or transitions. Since transitions represent activities that
change the state (marking) of the net, it seems natural to
associate a duration with these activities (transitions).

Another possible source of confusion in the definition of
the timing interpretation of a Petri net model is the con-
cept of “degree of enabling” of a transition (or re-entrance).
In the case of timing associated with places, it seems quite
natural to define an unavailability time of tokens which is
independent of the total number of them already present in
the place, an this can be interpreted as an “infinite server”
policy from the point of view of queueing theory. In the
case of time associated with transitions, it is less obvious
a-priori whether a transition enabled k times in a marking
should work at conditional throughput 1 or k times that
it would work in the case it was enabled only once. In the
case of stochastic Petri nets with exponentially distributed
firing time associated with transitions, the usual implicit
hypothesis is to have “single server” semantics, and the
case of “multiple server” is handled as a case of firing rate
dependent on the marking; unfortunately this trick cannot
work in the case of more general probability distributions,
and in particular cannot be used in the case of determin-
istic timings. This is the reason why people working with
deterministic timed transition Petri nets prefer an infinite
server semantics. Of course an infinite server transition
can always be constrained to a “k–server” behaviour just
adding a simultaneously input and output place with k
tokens to this transition. Therefore the infinite server se-
mantics appears to be the most general one, and for this
reason it will be adopted in this work.

2.1 Bounds for the steady-state perfor-

mance of marked graphs

In order to be able to speak about steady-state perfor-
mance we have to assume that some kind of “average be-
haviour” can be estimated on the long run of the system
that we are studying. The usual assumption in this case
is that the system model must be ergodic, meaning that
at the limit when the observation period tends to infin-
ity, the estimates of average values tend (almost surely) to
the theoretical expected values of the (usually unknown)
probability distributions that characterize the performance
indexes of interest.

This assumption is very strong and difficult to verify in
general; moreover, it creates problems when we want to in-
clude the deterministic case as a special case of a stochastic
model. Thus we introduce the concept of weak ergodicity
that allows the estimation of long run performance also in
the case of deterministic models.
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Definition 2.2 The marking process of a stochastic or de-
terministic marked net is weakly ergodic iff the following
limit exists:

M
def
= lim

τ→∞

1

τ

∫ τ

0

M(s)ds < ~∞ (1)

The firing process of a stochastic or deterministic marked
net is weakly ergodic iff the following limit exists:

~σ∗ def
= lim

τ→∞

~σ(τ)

τ
< ~∞ (2)

With the terminology of Petri nets, a home state is a mark-
ing that may be reached from all other reachable markings.
The existence of home states is closely related with the er-
godicity of the marking and firing processes of the timed
model.

Property 2.2 Live marked graphs are reversible nets, i.e.
the initial state is a home state, and so all the reachable
states are home states.

Then, for live marked graphs, it makes sense to speak
about the unique steady-state behaviour and to compute
bounds for the performance of this steady-state.
In [7], the computation of upper and lower bounds for

the steady-state performance of (stochastic or determin-
istic) timed strongly connected marked graphs is studied.
In particular, the throughput of transitions, defined as the
average number of firings per unit time, is considered.
Let us take into account just the first moments of the

probability distribution functions associated with transi-
tions. Let θ be the vector whose components θi are the
mean values of the random variables associated with the
firing of transitions ti, i = 1, . . . ,m. The limit firing count
vector per time unit is ~σ∗ = limτ→∞(~σ(τ)/τ) and the mean
time between two consecutive firings of a selected transi-
tion ti is Γi = 1/~σ∗

i . For strongly connected marked graphs
Γi = Γ, for all i = 1, . . . ,m, and Γ is called the mean cycle
time.

Theorem 2.1 [7] Let us consider any live strongly con-
nected marked graph with arbitrary values of mean firing
time for transitions, θi, i = 1, . . . ,m.

1. A lower bound for the mean cycle time is:

(LPP1)
Γlb = max Y T · PRE · θ

s.t. Y T · C = 0

Y T ·M0 = 1

Y ≥ 0

2. An upper bound for the mean cycle time is

Γub =

m
∑

j=1

θj
L(tj)

(3)

where L(tj) is the optimum value of the linear pro-
gramming problem

(LPP2)
L(tj) = min Y T ·M0

s.t. Y T · C = 0

Y T · PRE[tj ] = 1

Y ≥ 0

Linear programming problems are of worst case polynomial
complexity [20], thus the previous bounds can be computed
in polynomial time on the size of the net model. More-
over, they depend only on the mean values and not on the
higher moments of the probability distributions of the ran-
dom variables that describe the timing of the system. The
independence of the probability distribution can be viewed
as a useful generalization of the performance results, since
higher moments of the delays are usually unknown for real
cases, and difficult to estimate and assess. Moreover both
upper and lower bounds, computed by means of proper lin-
ear programming problems, are tight, in the sense that for
any marked graph model it is possible to define families of
stochastic timings such that the steady-state performance
of the timed models are arbitrarily close to either bound:

Theorem 2.2 [7] Let us consider any marked graph with
arbitrary values of mean firing time for transitions.

1. For any value of the variances of transition firing time,
the lower bound for the mean cycle time obtained from
the problem (LPP1) cannot be improved.

2. The upper bound for the mean cycle time obtained in
Theorem 2.1.2 cannot be improved.

As particular interesting cases it must be pointed out that:
Γlb is reached under deterministic (i.e. null variance) tim-
ing, while the actual mean cycle time tends to the value
of Γub if random variables with variances tending to in-
finity are conveniently selected (see [7]) for the timing of
transitions.

Under deterministic timing assumption, the resolution of
the problem (LPP1) gives not only the actual cycle time,
but a bottleneck circuit of the net. This is not the case for
general timing, since the bottleneck circuit for which the
lower bound is reached can be different from the actual
bottleneck circuit.

As a by-product, the liveness of a marked graph in terms
of non-null throughput for all its transitions can be char-
acterized. This shows an example of possible interleaving
between qualitative and quantitative analysis for (stochas-
tic or deterministic) timed Petri nets.

Theorem 2.3 [7] A strongly connected marked graph is
live if and only if the optimum value of the problem (LPP1)
is finite.
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Linear programming problems give an easy way to derive
results and interpret them. Just looking at the expressions
of Γlb and Γub in Theorem 2.1, two reasonablemonotonicity
properties are obtained: decreasing θ (i.e. faster processing
elements) or increasing M0 (i.e. more resources) does not
increase the values of Γlb and Γub:

Property 2.3 Let N be a strongly connected marked
graph and θ the mean firing time vector.

1. For a fixed M0, if θ′ ≤ θ, θ′ 6= θ, then the lower
(upper) bound for the mean cycle time of 〈N ,M ′

0, θ
′〉

is smaller than or equal to (smaller than) the one of
〈N ,M0, θ〉 (i.e. Γlb′ ≤ Γlb and Γub′ < Γub).

2. For a fixed θ, if M ′

0 ≥ M0, M
′

0 6= M0, then both the
lower and upper bounds for the mean cycle time of
〈N ,M ′

0, θ〉 are smaller than or equal to the ones of
〈N ,M0, θ〉 (i.e. Γlb′ ≤ Γlb and Γub′ ≤ Γub).

The next property is strongly related to the reversibility of
live marked graphs (Property 2.2).

Property 2.4 For live strongly connected marked graphs,
the bounds obtained in Theorem 2.1 do not change for any
reachable marking, considered as the initial one.

The problem of minimizing the resources in a given man-
ufacturing system for obtaining the same upper bound on
throughput of productivity can also be studied. Let us
consider the dual problem of (LPP1):

(LPP3)
Γlb = min γ

s.t. C · z + γM0 ≥ PRE · θ

Then, for a given cost function w for the amount of re-
sources (e.g., the marking weighted with a cost vector W ),
the initial cost w(M0) can be minimized without increas-
ing the lower bound Γlb of the mean cycle time by solving
the following problem:

(LPP4)
min w(M ′

0) = WT ·M ′

0

s.t. C · z + ΓlbM ′

0 ≥ PRE · θ

M ′

0 ≤ M0

M ′

0 ≥ 0

The restriction M ′

0 ≤ M0 is introduced because, otherwise,
a reachable marking from M0 (with less number of tokens
that M0) could have been obtained as optimum solution,
when, in fact the amount of resources is the same for all
reachable markings (and the bounds do not change con-
sidering any of them as initial marking, see Property 2.4).
This restriction could be deleted if consistency of W is as-
sumed (i.e. WT · C = 0, then w(M) = w(M0), for all M
reachable from M0). In general, the optimum solution for
this problem is non-integer, therefore classical techniques
for finding the optimum integer solution could be applied

job 1

job 2

job 3

job 4

t10 t11

t12 t13

t20

t23 t22

t30

t31 t33

t43

t41t40

machine 1

machine 2

m
ac

hi
ne

 3

p11 p12

p13

p23 p22

p31 p33

p41 p43

p40

p30

p20

p10

m02

m01 m 03

m04

m 11
m 13

m14

m21

m 22

m 31

m32

m33

m 34

Figure 1: A job-shop system modelled with a marked graph
[22].

[21]. In any case, the optimum value of the objective func-
tion (in the non-integer case) is a lower bound for the cost
of resources for which a given throughput is obtained.
The problem of minimizing initial cost without increas-

ing the upper bound Γub of the mean cycle time, can be
also considered. In this case, due to the non-linear ex-
pression of this bound, only a partial minimization can be
expressed in terms of a single linear programming problem.
Taking into account that the computation of L(tj) can be
formulated in terms of the dual problem of (LPP2):

(LPP5)L(tj) = max k

s.t. M0 + C ·X ≥ kPRE[tj]

We can consider the problem of minimizing the initial cost
without decreasing none of the values of L(tj), as follows:

(LPP6)min w(M ′

0) = WT ·M ′

0

s.t. M ′

0 + C ·X ≥ L(tj)PRE[tj ], ∀tj ∈ T

As for the problem (LPP4), integer programming tech-
niques could be applied for assuring the integrality of the
solutions.

2.2 Analysis of job-shop systems

In a job-shop system, a production route through a se-
quence of machines is carried on for each job. The set
of different products as well as the sequences of visits to
machines must be completely defined.
In [22], performance evaluation of such systems mod-

elled with marked graphs is studied under a determinis-
tic assumption of the time spent by the jobs on the ma-
chines. Using the results presented in the previous section,
the deterministic assumption can be relaxed and reach-
able bounds for the performance of stochastic models can
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be computed in polynomial time, from the knowledge of
the mean values of the duration of jobs.

Let us consider, for instance, the model depicted in
Figure 1. A job-shop system with three machines and
four jobs is considered (see [22]). The routings of
jobs through the machines are modelled with the hor-
izontal circuits, job 1: 〈p10t10p11t11p12t12p13t13p10〉; job
2: 〈p20t20p23t23p22t22p20〉; job 3: 〈p30t30p31t31p33t33p30〉;
job 4: 〈p40t40p41t41p43t43p40〉. Since each machine is
assumed to process only one job at a time, other
circuits are added which determine the sequencing of
the jobs on the corresponding machines; mach. 1:
〈m11t11m13t31m14t41m11〉; mach. 2: 〈m21t12m22t22m21〉;
mach. 3: 〈m31t13m32t23m33t33m34t43m31〉. They are
marked with a token that represents the availability of the
machine to process a job.

Let us suppose that only mean values of the processing
time associated with the machines have been estimated,
as follows: θ11 = 1; θ12 = 3; θ13 = 3; θ23 = 1; θ22 = 2;
θ31 = 2; θ33 = 1; θ41 = 2; θ43 = 1. Transitions t10, t20, t30,
and t40 are immediate (time duration equal to zero), since
they account for the loading of the job into the system.

The bounds presented in the previous section can be
computed for this model. The optimum value of the prob-
lem (LPP1) is Γlb = 9, which is the cycle time for the slow-
est elementary circuit: 〈m21t12p13t13m32t23p22t22m21〉.
The upper bound for the mean cycle time which follows
from Theorem 2.1.2 is Γub = 16 (in this case, the sum of
the mean firing time, because L(t) = 1 for all transition t).
The lower bound for the mean cycle time can be reached,
for example, if deterministic timing is assumed (null coef-
ficient of variation for the random variables which define
the timing of transitions). On the other hand, the mean
cycle time tends to the value of the upper bound if ran-
dom variables with variances tending to infinity are con-
veniently selected (see [7]) for the timing of transitions. If
exponentially distributed random variables (coefficients of
variation equal one) are associated with transitions, the
actual value for the mean cycle time is Γ = 9.985, which
is quite close to the lower bound (reached with coefficients
of variation equal zero).

2.3 Analysis of kanban systems

The just-in-time philosophy for the control of manufactur-
ing systems consists of producing just the needed parts at
each production stage and at just the right time. Kanban
control is a way to implement a just-in-time manufacturing
system.

A kanban is a ticket that accompanies a part through the
several stages of the production system (see Figure 2.a).
When a part of a given stage is consumed by the succeeding
stage, the ticket is sent back to trigger the production of a
new part. The inventory of a given stage is controlled by
the number of kanban tickets at this stage.

In [23], Petri nets have been shown to be well adapted

to provide a unified modelling of kanban systems. Most
models encountered in literature can be easily represented
by marked graph models.

The steady-state performance results presented in Sec-
tion 2.1 can be applied for analysing quantitatively these
models. Without any assumption on the probability distri-
butions associated with transitions, just using their mean
values, reachable bounds for the measures of interest can
be computed in polynomial time on the net structure.

Let us consider, as an example, the kanban system mod-
elled with a marked graph of Figure 2.b. We are inter-
ested on the computation of the average processing time
of a whole part in steady-state, provided that both de-
mands and materials exist for the continual production. In
other words we consider the computation of the mean cycle
time of the subsystem in which places m and d have been
deleted. Assume that mean values of random variables
associated with transitions are: θ(tp1) = 2; θ(tp2) = 5;
θ(tp3) = 3. Transitions tw0, tw1, tw2, and tw3 are imme-
diate. Infinite-server semantics is assumed for transitions,
and this means that each one of the machines modelled
with transitions tp1, tp2, and tp3 can process two parts si-
multaneously (if markings of places c1, c2, and c3 equals
2).

For the marking depicted in Figure 2.b, the lower bound
for the cycle time (which is reached for deterministic tim-
ing) is Γlb = 2.5, the inverse of the throughput of transition
tp2. This transition models the bottleneck machine of the
system, and the utilization of this machine is 1 (always
busy).

For the same number of kanban tickets at each stage,
the problem of minimizing resources at places c1, c2, and
c3 (capacity of machines), preserving Γlb, can be considered
using (LPP4). The result is that the number of tokens at
place c1 can be reduced to 1 without modifying the bound
for the mean cycle time.

On the other hand, if the optimization cost criterion
consists of reducing as much tokens as possible (i.e. both
kanban tickets and capacity of machines), the resolution
of problem (LPP4) gives that the capacity of machine 1
(marking of place c1) can be reduced to 1, and the number
of kanbans at stages 1 and 2, can be reduced to 1 and 2,
respectively (instead of 2 and 3, as is depicted in Figure
2.b), without changing the bound for the mean cycle time.
In fact the optimum real solution of the problem (LPP4)
for W = ~1, says that both the capacity of machine 1 and
the number of kanbans at the first stage can be reduced
to 0.8 units. For the capacity of machine 3 and for the
number of kanbans at the third stage, the optimum value
is 1.2. In this case, the optimum integer solution is just
the excess round of the optimum real solution.

It can be pointed out that for the deterministic tim-
ing case the previous minimization of resources preserves
the actual mean cycle time. This is not the case for gen-
eral distribution timing (with non null coefficient of vari-
ation). For example, for exponentially distributed timing

5



(a)

(b)

k.i-1

k.i-1

k.i

k.i+1

k.i
k.iStage iStage i-1 Stage i+1

k.i kanban ticket stage i part

f 1 f 2 f 3

w 1 w 2 w 3
p 1 p

2
p 3

c 1 c 2 c 3

d

t w0 tw 1 tw 2 tw 3

tm

td

m

tp 1 tp 2 tp 3

Figure 2: A kanban system and its marked graph representation [23].

of transitions, the actual mean cycle time for the initial
marking depicted in Figure 2.b) is Γ = 2.674. However,
considering as initial marking the one which minimizes the
resources (both capacities and kanbans) the actual mean
cycle time is Γ′ = 3.290 (i.e. greater than Γ). The result,
Γ = 2.674 < Γ′ = 3.290, is easily explained by the uncer-
tainty introduced by the stochastic assumption (non-null
coefficients of variation).

3 Introducing decisions

Structurally speaking, a strongly connected marked graph
has only one possible infinite behaviour defined by its T-
semiflow. But marked graphs are structurally decision-free
systems. In this section, a net subclass more general than
marked graphs, with only one T-semiflow but introducing
decisions, is considered in the context of repetitive auto-
mated manufacturing systems.

In [8], mono-T-semiflow nets are introduced as a struc-
turally defined subclass of nets with a unique repetitive
firing count vector:

Definition 3.1 A structurally bounded Petri net N is
called mono-T-semiflow iff there exists a unique minimal
T-semiflow that contains all transitions.

In a mono-T-semiflow net, conflicts may be reached, and
so different behaviours can occur. However, the same set
of transitions is fired in all different behaviours, perhaps in
a different order. Therefore, from the steady-state perfor-
mance point of view, the decisions lead to a unique result
(provided that the net is live).

3.1 Computing bounds for performance

measures

Unfortunately, the existence of a unique minimal T-
semiflow containing all transitions does not assure the
ergodicity of the marking process (in general, mono-T-
semiflow nets may have no home state [8], so ergodicity
is not assured).
Even in the case in which ergodicity is not assured the

problem of computing bounds for the throughput makes
sense. The computed values are bounds for all possible
steady-state behaviours of the net.

Theorem 3.1 [8] A lower bound for the mean cycle time
of a given transition ti (taken as the reference station) of
a mono-T-semiflow net can be obtained by solving the fol-
lowing linear programming problem:

(LPP7)Γlb
i = max Y T · PRE ·D ·X

s.t. Y T · C = 0

Y T ·M0 = 1

Y ≥ 0

where D is the diagonal matrix of mean values of the ran-
dom variables associated with transitions and X is the min-
imal T-semiflow with X(ti) = 1 (which can be computed in
polynomial time).

The optimum value of the previous problem is a non reach-
able bound in general (i.e. there exist net models such that
neither stochastic nor deterministic interpretation allows
to reach the computed bound, Γlb

i ). Moreover, a mono-T-
semiflow net can be non live and the obtained lower bound
for the cycle time be finite. In other words:
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Figure 3: A producer-consumer system and its mono-T-semiflow net representation [24].

Theorem 3.2 [8] For mono-T-semiflow nets, liveness is
not characterized by the finiteness of the lower bound for
the mean cycle time computed by means of the problem
(LPP7).

Concerning the upper bound for the mean cycle time, at
the moment only the trivial one can be computed (the sum
of all transitions firing time weighted by the T-semiflow
vector), provided that the net is live.

3.2 A producer-consumer system

Let us consider the problem of modelling and evaluating
a producer-consumer system composed by two machines
and a buffer storage (Figure 3.a) [24]. The machine M1

produces parts that are placed at the buffer. The maxi-
mum capacity of the buffer is four parts. The machine M2

picks parts from the buffer for processing them. The con-
trol system for the production and consumption of parts is
depicted in Figure 3.b by means of a Petri net. Machines
M1 and M2 cannot operate simultaneously with the buffer,
i.e. the pick and place operations are in mutual exclusion
(modelled with place sr).
Obviously, the net in Figure 3.b is not a marked graph.

Transitions Bplace and Bpick can be in an effective con-
flict. The net is mono-T-semiflow (the unique minimal
T-semiflow is the vector with all components equal 1), and
the results presented in the previous section can be applied.
They allow to compute in polynomial time on the net size,
performance bounds for the throughput of transitions in
steady-state.
Let us suppose that transitions th, tp, Bplace, and Bpick

are immediate and that the mean values of random

variables associated with the rest of transitions are:
θ(Eplace) = 2; θ(Epick) = 3; θ(Eprod) = 4; and θ(Econs) =
2.

The problem (LPP7) gives a lower bound for the mean
cycle time of the net: Γlb = max{θ(Eplace) + θ(Epick),
(θ(Eplace) + θ(Epick))/4, θ(Eplace) + θ(Eprod), θ(Epick) +
θ(Econs)} = 6. As it is remarked in the previous sec-
tion, this bound is non-reachable, in general. However,
in this case, the lower bound is equal to the actual cy-
cle time for deterministic timing. In fact, if determinis-
tic timing is considered, the buffer storage capacity (ini-
tial number of tokens at place parts) can be reduced to
1, without modifying the actual mean cycle time. This
is because, in this particular case, there exist two differ-
ent P-semiflows Y1 and Y2 (with ||Y1|| = {sr, place, pick}
and ||Y2|| = {holes, parts, w1, w2, sr, place, pick}) involv-
ing the same set of timed transitions (Eplace and Epick).
Since Y T

1 · M0 = 1, then the number of tokens at place
parts can be reduced to 1, and the same optimum value in
problem (LPP7) is preserved.

As for the marked graph case, the minimization of to-
kens preserving the lower bound for the mean cycle time
does not preserves the actual mean cycle time for general
(non deterministic) timing. For example, considering ex-
ponentially distributed timing for the net in Figure 3.b,
the actual mean cycle time decreases if the initial number
of tokens at place parts (capacity of the storage) increases.
In fact, the increase of the cycle time is stopped when the
capacity of storage makes insignificant the portion of time
during which the machines are waiting for a hole at the
buffer or for a part (see Figure 4).
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under exponentially distributed timing.

4 A class of buffer acyclic manu-

facturing systems with complex

servers

In this section, let us consider a particular class of man-
ufacturing systems that can be modelled and evaluated
by means of totally open systems of Markovian sequen-
tial processes [10]. This subclass of stochastic Petri nets
can be viewed as a generalization of a subclass of queue-
ing networks in which complex sequential servers can be
synchronized according to some particular schemes. On
the one hand, totally open systems of Markovian sequen-
tial processes cannot model buffer cyclic systems, and in
this sense they are more restrictive than marked graphs.
Nevertheless, the complex sequential servers admit the in-
troduction of decisions. In this sense, this subclass of nets
allows the modelling of systems which cannot be described
with marked graphs.
Some interesting qualitative properties of totally open

systems have been studied in [10] making special emphasis
in those that assure the possibility of ergodic behaviour of
the system:

Theorem 4.1 [10] Necessary and sufficient conditions for
the ergodicity of totally open systems of Markovian sequen-
tial processes can be computed in polynomial time on the
net size.

Let us remark that the complexity of the computation of
conditions is polynomial on the net structure size and not
on the state space size (which is infinite, in fact).
The most important result for this subclass of stochastic

Petri nets is that, under ergodicity assumption, the exact
steady-state performance measures can also be computed
in polynomial time:

Theorem 4.2 [10] If a totally open system of Marko-
vian sequential processes is ergodic then the steady-state

p1
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2

1t
1

1t 2

b1
b2

b3
3t
1

3t2
3p1

3p2
2t
3

2t
2

2t
1

2p1
2p2

(b)

b3

b2
b1

M 1 M 2

M3

(a)         are complex servers.

Figure 5: A manufacturing open system and its Petri net
representation.

throughput of transitions can be computed in polynomial
time on the net size.

Let us consider a manufacturing system composed by three
sequential machines M1, M2, M3 such that M3 needs two
classes of parts that are produced by M1 and M2; and M2

consumes other kind of parts produced by M1 according
to a given synchronization scheme (see Figure 5.a). The
Petri net representation is depicted in Figure 5.b. The ma-
chines are modelled with one token marked state graphs
(i.e. Petri nets that can model decisions but neither syn-
chronizations nor concurrency) while the shaded places are
“unbounded” stores between them. The timed model is
obtained by adding independent exponentially distributed
(constant rate) firing time to transitions. From a queue-
ing network perspective, state graphs represent “complex
servers” while stores represent queues.
For this model, the following ergodicity condition can be

computed in polynomial time on the net structure (λk
i is

the constant rate of the random variable associated with
tki ):

λ1
1λ

2
1

λ1
1
+ λ2

1

< min

{

(λ1
2 + λ2

2)λ
3
2

λ1
2
+ λ2

2
+ λ3

2

,
λ1
3λ

2
3

λ1
3
+ λ2

3

}

(4)

This condition assures that for each store the input flow
of parts is less than the consuming rate of the output ma-
chine.
Under the ergodicity assumption (i.e. if equation (4)
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holds), the exact steady-state performance measures for
machine M1 can be computed in polynomial time on the
net structure (Theorem 4.2). This can be done by solving
the following system, in which M(pki ) represents the limit
mean marking of place pki and ~σ∗(tki ) is the limit firing
count vector per time unit of transition tki :

M(p11) +M(p21) = 1 (5)

~σ∗(t11) = λ1

1M(p21); ~σ∗(t21) = λ2

1M(p11)

~σ∗(t11) = ~σ∗(t21)

The solution of the system is:

M(p11) =
λ1
1

λ1
1
+ λ2

1

; M(p21) =
λ2
1

λ1
1
+ λ2

1

(6)

~σ∗(t11) = ~σ∗(t21) =
λ1
1λ

2
1

λ1
1
+ λ2

1

Now, for computing the steady-state measures of the other
state machines under the assumption of ergodicity (equa-
tion (4)), it is necessary to take into account that ~σ∗(t21) =
~σ∗(t12) + ~σ∗(t22) and ~σ∗(t13) = ~σ∗(t11), i.e. the input flow of
tokens to each store in steady-state must be equal to the
output flow:

M(p12) = 1−M(p22); M(p22) =
λ1
1λ

2
1

(λ1
1
+ λ2

1
)λ3

2

(7)

~σ∗(t12) =
λ1
1λ

2
1λ

1
2

(λ1
1
+ λ2

1
)(λ1

2
+ λ2

2
)

~σ∗(t22) =
λ1
1λ

2
1λ

2
2

(λ1
1
+ λ2

1
)(λ1

2
+ λ2

2
)

~σ∗(t32) = ~σ∗(t13) = ~σ∗(t23) =
λ1
1λ

2
1

λ1
1
+ λ2

1

5 Conclusions

The problem of computing the steady-state performance
measures of some classes of automated manufacturing sys-
tems modelled with stochastic or deterministic timed Petri
nets has been addressed in this paper.
For those systems that can be modelled with marked

gaphs, upper and lower bounds for the mean cycle time are
obtained. The lower bound is thight in the sense that it
is reachable not only by deterministic but also by stochas-
tic models, with arbitrary values of coefficients of varia-
tion. The upper bound cannot be improved only with the
knowledge of the mean firing time values. This is the case
for job-shop systems and most models of kanban systems
encountered in literature.
All bounds are computed by means of proper linear pro-

gramming problems on the incidence matrix of the net,
whose solution is known to be of worst case polynomial

complexity. The problem of minimizing resources preserv-
ing the productivity of the system can be achieved by
means of linear integer programming problems.
An extension of the results to other subclasses of nets

allows to evaluate models in which some decision schemes
are introduced that are not relevant from the performance
point of view.
Finally, for a subclass of buffer acyclic manufacturing

systems with Markovian timing interpretation, ergodicity
conditions and exact steady-state performance measures
can be computed in polynomial time on the net structure.
Extensions of the results presented in this paper are al-

ready being considered. In particular, reachable upper and
lower bounds for the case of stochastic or deterministic
timed live and bounded free choice Petri nets have been
obtained [9]. Related with the computation of exact mea-
sures, work is in progress to generalize the results obtained
for open systems of state graphs synchronized with buffers
to open systems of bounded nets synchronized in the same
way. Partially open systems must be studied. Ergodicity
conditions can be computed for the open components of
these systems. The computation of the exact performance
of closed subsystems seems not to be possible in polyno-
mial time. In any case, efficient techniques for computing
tight bounds or approximate values could be applied.
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References

[1] J. A. Buzacott and D. D. Yao. Flexible manufacturing systems:
a review of analytical models. Management Science, 32(7):890–
905, July 1986.

[2] Y. C. Ho. Performance evaluation and perturbation analysis of
discret event dynamic systems. IEEE Trans. on Automatic Con-
trol, 32(7):563–572, July 1987.

[3] J. Mart́ınez, H. Alla, and M. Silva. Petri nets for the specification
of FMSs. In Modelling and Design of Flexible Manufacturing
Systems (A. Kusiak, ed.), pp. 389–406, Elsevier Science Pub.,
New York, 1986.

[4] T. Murata and M. Silva (organizers). Invited sessions: Petri
nets and flexible manufacturing. In Proc. of the 1987 IEEE In-
tern. Conference on Robotics and Automation, pp. 999–1018
and 1160–1185, Raleigh, North Carolina, March 1987.

[5] A. Desrochers.Modeling and Control of Automated Manufactur-
ing Systems. IEEE Computer Society Press, Washington, 1990.

[6] M. Silva and R. Valette. Petri nets and flexible manufacturing.
Research Report GISI-RR-90-3. Dpto. de Ingenieŕıa Eléctrica
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