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Abstract

The problem of computing both upper and lower bounds
for the steady�state performance of timed and stochastic
Petri nets is studied� In particular� Linear Programming
problems de�ned on the incidence matrix of underlying
Petri net are used to compute bounds for the throughput
of transitions for live and bounded nets with a unique
possibility of steady�state behaviour� These classes of
nets are de�ned and their characteristics are studied� The
bounds proposed here depend on the initial marking and
the mean values of the delays but not on the probabil�
ity distributions �thus including both the deterministic
and the stochastic cases�� moreover they can be com�
puted also for non�ergodic models� Connections between
results and techniques typical of qualitative and quanti�
tative analysis of Petri models are stressed�

� Introduction

In this paper� which is a continuation of the compan�
ion paper 	CCCS
��� we study the possibility of obtain�
ing �upper and lower� bounds on the steady�state perfor�
mance of a Petri net model� and we restrict the analy�
sis to some net classes that are characterized by having
only one possible steady�state behaviour� In particular
we study the throughput of transitions� de�ned as the
average number of �rings per unit time� From this quan�
tity� applying Little
s formula it is possible to derive all
average performance estimates of the model�
In a Petri net there is an obvious relation between the

concepts of steady�state behaviour and that of repeatable
�ring sequences� sequences of transitions that are repeat�
able only a �nite number of times cannot contribute to
the steady�state performance of the model� In the par�
ticular case of safe Marked Graphs� this relation can be
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made evident by looking at the occurrence nets that de�
scribe their behaviours 	WT
���

Here we consider live bounded connected nets �thus
strongly connected� which are either decision�free or such
that the decision policy at e�ective con�icts is not rele�
vant from the performances point of view �i�e� the de�
cisions do not a�ect the steady�state performance�� A
characteristics of these nets is the existence of a unique
�ring count vector ��R associated with all repetitive se�
quences with �ring count vectors of the form �� �such
that C ��� � �� in order to be able to repeat the sequence
for an arbitrary number of times�� i�e� �� � k � ��R with
k � IN � In fact� because bounded nets are considered�
there does not exist any �� such that C � �� �� �� and the
repetitive sequences are such that C ��� � � �i�e� they are
marking repetitive� M 	�iM � or consistent��

The paper is organized as follows� First we discuss
the stochastic interpretation of nets and the possibility
of estimating and bounding their performance �Section
��� Then we give a classi�cation of the classes of nets
characterized by a unique repeatable �ring sequence and
we study some of their qualitative properties that can
be exploited to derive performance bounds �Section ���
Under these restrictions we derive results that depend
only on the mean values and not on the higher moments
of the probability distributions of the random variables
that describe the timing of the system� In some sense
this independence of the probability distribution is a use�
ful generalization of the results� since higher moments of
the delays are usually unknown for real cases� and dif�
�cult to estimate and assess� Another extension that is
possible taking the bounding approach instead of the ex�
act computation� is that we can derive bounds also in
the case of non�ergodic systems� In the case of Marked
Graphs the upper and lower bounds� computed by means
of proper Linear Programming problems� are tight� in the
sense that it is possible to construct examples of Petri net
models with stochastic timings� whose steady�state per�
formances are arbitrarily close to either bound �Section
��� Later we propose a method to construct processes
starting from non�safe�marked�graph models� that is an
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extension of a technique originally used by Ramchandani
for safe persistent nets 	Ram���� Using this extended
method we derive reachable upper bounds for the case
of bounded persistent nets� whose computational com�
plexity is polynomial in the size of the net �Section ���
Section � presents the case of consistent mono�T�semi�ow
nets� Conclusions are summarized in Section �� In the
Appendix of the companion paper 	CCCS
�� the nota�
tion and terminology as well as some results are listed
for Petri nets�

� Stochastic interpretation of

nets

In the original de�nition� Petri nets did not include the
notion of time� Nevertheless the introduction of tim�
ing speci�cation is essential if we want to use this class
of models for an evaluation of the performance of dis�
tributed systems�

��� Timing and �ring process

Historically there have been two ways of introducing the
concept of time in PN models� namely� associating a time
interpretation with either places or transitions� in the lat�
ter case transitions have been de�ned to �re either atom�
ically or in three phases� A more detailed discussion of
the timing and �ring process can be found in 	AMBB�
���
From a modelling point of view� the only e�ect of these
di�erent timing interpretations on the performance eval�
uation of a model is due to the di�erent implications that
the choices have on the resolution of con�icts� Since in
the context of this work we are considering subclasses of
nets in which either there are no con�icts or their resolu�
tion can have no e�ect on the performance estimates� we
would not have to choose one particular interpretation�
we could only say that we consider timed PN subclasses�
On the other hand� since we are trying to use qualita�
tive results derived from untimed net descriptions� we
cannot change the �ring mechanism at the level of the
net interpretation� since that would invalidate some of
the qualitative properties� Hence we must exclude the
three�phase �ring interpretation� In fact� in a few places
we simply speak of marked PNs where we mean timed
nets with either timed places or single�phase timed tran�
sitions�

��� Single versus multiple server seman�

tics� enabling and liveness bounds

Another possible source of confusion in the de�nition of
the timed interpretation of a PN model is the concept
of �degree of enabling� of a transition �or reentrance��
from the discussion presented in the companion paper
	CCCS
�� the in�nite server semantics appears to be the
most general one� and for this reason it will be adopted
in this work� Indeed the performance of a model with
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Figure �� A net with enabling bound greater than the
liveness bound for transition t��

in�nite server semantics does depend on the maximum
degree of enabling of the transitions� and in particular�
the steady�state performance does depend on the max�
imum degree of enabling of transitions in steady�state�
which can be di�erent from the maximum degree of en�
abling of a transition during its evolution starting from
the initial marking� as we shall see in the following� For
this reason we recall here the two concepts of degree of
enabling of a transition� the enabling bound E�t�� and
the liveness bound L�t�� which allow us to generalize the
classical concepts of enabling and liveness of a transition�

DEFINITION ��� Enabling bound� �t � T

E�t� � max k

s�t� �M � R�N �M�� � M � kPRE	t�

DEFINITION ��� Liveness bound� �t � T

L�t� � max k

s�t� �M� � R�N �M��

�M � R�N �M�� � M � kPRE	t�

PROPERTY ��� Let hN �M�i be a marked PN� then
�t � T E�t� � L�t��

Now as for any reversible net the reachability graph is
strongly connected� the following can be stated�

PROPERTY ��� Let hN �M�i be a reversible PN� then
�t � T E�t� � L�t��

As a particular case� live Marked Graphs are reversible�
so that enabling and liveness bounds are equal in this
case� On the other hand� this is not the case for the
more general cases that we consider in this paper� indeed
the net in Figure � with an initial marking of two tokens
in p� and the other two places empty gives an example of
a live and bounded PN in which E�t�� � � � L�t�� � �
�this net is both�structurally�persistent and mono�T�
semi�ow� according to the de�nitions given in Section ���
A case of strict inequality in Property ��� can be inter�

preted as a generalization of the concept of non�liveness�
there exist transitions that �contain potential servers�
that are never used in the steady�state� these additional

�



servers might only be used in a transient phase� so that
they can die during the evolution of the model� On the
other hand it is not di�cult to see that the condition
L�t� � � is equivalent to the usual liveness condition for
transition t� The problem of the possible di�erence be�
tween enabling and liveness bounds is also related to the
ergodicity of the model� as we shall point out later�
The two de�nitions above refer to behavioural proper�

ties that depend on the reachability graph of a PN� Since
we are looking for computational techniques at the struc�
tural level� we can also introduce structural counterparts
of both concepts 	CCCS
���

DEFINITION ��� Structural enabling bound� �t � T

SE�t� � max k

s�t� ��� � ��M �M� � C�� � kPRE	t�

DEFINITION ��� Structural liveness bound� �t � T

SL�t� � max k

s�t� � ��� � ��M� �M� � C ��� � �

��� � ��M �M� � C�� � kPRE	t�

Note that� the de�nition of structural enabling bound
reduces to the formulation of a Linear Programming
problem 	Mur
�� using matrix C �the incidence matrix
of the PN�� while the structural liveness bound does not�
Now let us look for relations among these enabling bound
concepts �the �rst one is obvious from the trivial impli�
cation M � R�N �M�� �� M �M� � C�� � �� � ���

PROPERTY ��� Let hN �M�i be a marked PN�

�i� �t � T SE�t� � E�t�

�ii� �t � T SL�t� � SE�t�

Finally we can point out that� according with De�ni�
tion ���� structural liveness bound is of little practically
use because the di�erent domains of the quanti�ers do
not allow to compare SL�t� and L�t� �i�e� in general we
can assert neither SL�t� � L�t� nor SL�t� � L�t���

��� Ergodicity� measurability� bounds

In order to be able to speak about steady�state per�
formance we have to assume that some kind of �aver�
age behaviour� can be estimated on the long run of the
system we are studying� The usual assumption in this
case is that the system models must be ergodic� mean�
ing that at the limit when the observation period tends
to in�nity� the estimates of average values tend �almost
surely� to the theoretical expected values of the �usually
unknown� probability distributions that characterize the
performance indexes of interest�
This assumption is very strong and di�cult to verify

in general� moreover� it creates problems when we want
to include the deterministic case as a special case of a
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Figure �� A trivial weakly but non�strongly ergodic de�
terministic net�

stochastic model� as we will see later on� Thus we intro�
duce also the concept of weak ergodicity that allows the
estimation of long run performances also in the case of
deterministic models�

DEFINITION ��	 Ergodicity�

i� A �not necessarily stochastic� process X��� is said to
be weakly ergodic �or measurable in long run� i� the
following limit exists�

X
def
� lim

���

�

�

Z �

�

X�s� ds �	

ii� A stochastic process X��� is said to be strongly er�
godic i� the following condition holds�

lim
���

�

�

Z �

�

X�s� ds � lim
���

E	X���� �	� a�s�

For stochastic Petri nets� ergodicity of the marking and
the �ring processes can be de�ned in the following terms�

DEFINITION ��
 The marking process of a stochastic
marked net is ergodic i� the following limit exists�

M
def
� lim

���

�

�

Z �

�

M�s�ds � �	

The 	ring process of a stochastic marked net is ergodic
i� the following limit exists�

���
def
� lim

���

�����

�
� �	

The �strong� ergodicity concepts 	FN
�� are de	ned in the
obvious way taking into consideration De	nition 
���

Figure � shows a trivial example of a PN in which the
marking process is weakly but not strongly ergodic when
transitions t� and t� are associated with deterministic
�ring delays �� and ��� indeed E	M���� �M��� is in this
case a periodic function of time� so that lim���E	M����
does not exist even if M � � ��

�����
� ��
�����

�T in De�nition
����
Ergodicity of the marking and of the �ring processes

are� in general� unrelated properties� For the case of time�
invariant �i�e� with transition �ring delays independent of
time� persistent stochastic Petri nets �that we consider
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Figure �� A net with home states but with a non�ergodic
marking process�

in Section ��� weak ergodicity of the marking process
implies weak ergodicity of the �ring process� but not vice�
versa� The net in Figure � has strongly ergodic �ring
process but non �even weakly� ergodic marking process
if exponentially distributed timing is assumed with rates
� and 	 such that � � 	�
The marking process of a bounded model is weakly

ergodic if� after a possible transient phase� the system
state is always trapped in a unique livelock� In this case
L�t� represents the maximum re�entrance of transition t

that is guaranteed to be always obtainable� if the model
after an initial transient can reach di�erent livelocks� L�t�
represents the minimum among the di�erent livelocks of
the number of non dead servers for transition t in each
one� From this point of view� it makes sense to compute
upper and lower bounds on transition 	ring frequences
also in the case of non weakly ergodic models having more
than one livelock� even if the �true� average value does
not exist �i�e� the limit for � 
	 is not unique��

THEOREM ��� If a marked Petri net has a unique
repetitive 	ring count vector� then its 	ring processes is
weakly ergodic�

PROOF� If the net has a unique repetitive �ring count
vector ��R� then by Theorem ��� in 	Sil
��

����� �
�

 
��R � b���

where b��� is an almost surely bounded vector� and  is
the expected value of the random duration of one exe�
cution of ��R� Then the �ring process is weakly ergodic
since�

lim
���

�����

�
�

��R

 
� ���

Q�E�D�
The subclass of bounded and persistent nets are guar�

anteed to be weakly ergodic� in the sense that they may
have at most one livelock �see Theorem �����

DEFINITION ��� A stochastic Petri net is said to be
semi�Markovian i� the related marking process is a semi�
Markov process�

THEOREM ��� If a semi�Markovian marked Petri net
has a home state and the mean value of the marking re�
mains bounded �sup� E	M���� �	� � � IR�� then either
the marking process is strongly ergodic or the underlying
Markov process is recurrent null�

t1 t2

p1 p2

t3

 

immediate

Figure �� An exponential net with a home space but with
a non strongly ergodic marking process�
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Figure �� Relation among live and bounded net sub�
classes having a unique consistent �ring count vector�
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PROOF� The home space �the set of home states of
the net� is the unique recurrent class of the underlying
Markov process� If this class is positive recurrent� then
the marking process is strongly ergodic�
Q�E�D�
The complete separation of the null recurrent case is

not established� This separation is di�cult from a theo�
retical point of view� and it has little practical interest�
Figure � shows a Markovian net with a home space but
with a non�ergodic marking process�
In Figure � a �unbounded� net is shown with home

state but non ergodic marking process if the mean value
of the random variable associated with transition t� is
less than the one associated with t�� On the other hand�
nets can have bounded marking mean values and be non
ergodic because of the presence of more than one livelock�
The reverse of the previous theorem is not true� If

the marking process of a semi�Markovian net is strongly
ergodic then

lim
���

�

�

Z �

�

M�s�ds � lim
���

E	M���� �	� a�s�

so the mean value of the marking remains bounded� But
the existence of a home state cannot be assured� For
the net in Figure 
� an exponential distribution timing
can be associated with transitions such that the related
marking process is ergodic �e�g� taking the same value
for the rates of all transitions� and the net has no home
state�
An important particular case of semi�Markovian Petri

nets is that of Coxian distribution timing of transitions�
The Coxian family is generated from exponential distri�
butions by convolutions �generalized Erlangs� and mix�
tures �hyperexponential distributions� �see 	Cox���� and
	Har
���� They are characterized by having rational
Laplace transform� Petri nets with Coxian distribution
timing are Markovian nets �i�e� the related marking pro�
cess is Markov�� The interest of this family of distribu�
tions is that any distribution function can be approx�
imated with a Coxian� preserving mean and variance
	GP
���
From Theorem ��� trivially follows that

COROLLARY ��� If a semi�Markovian
bounded marked net has a home state then its marking
process is strongly ergodic�

Intuitively� the previous result can be interpreted in the
following way� The possibly di�erent behaviours of the
marking process between successive arrivals to a home
state are statistically equivalent �a renewal process can
be de�ned in terms of the number of arrivals to that
home state�� The length of time between these arrivals
has �nite mean �because the net is bounded�� Then� for a
given trajectory� time averages lead to the same value as
ensemble averages �each behaviour between two arrivals
can be seen as a new execution of the process� at the
renewal times�

� Live and bounded nets with a

unique repetitive �ring count

vector

Nets with a unique repetitive �ring count vector can be
obtained from two non disjoint subclasses of live and
bounded nets� named persistent and mono�T�semi�ow
nets � Persistent nets are behaviourally de�ned� while
mono�T�semi�ow are structurally characterized� As a
particular case� structurally persistent nets and marked
graphs belong to the intersection of these two classes� thus
possessing the good properties of both� This section is de�
voted to the introduction of these nets subclasses and to
the presentation of some of their basic properties relevant
from the performance point of view� Figure � provides an
overall picture of the relations among the net subclasses
considered in this work�

��� Persistent nets

DEFINITION ��� A marked Petri net hN �M�i is said
to be persistent i� for all reachable marking M and for
all di�erent transitions� t� and t�� enabled in M � the se�
quence t�t� is 	reable from M �

Persistent nets are e�ectively con�ict�free nets� As an
example look at the net in Figure �a� This net has
structural con�icts but for the initial marking M� �
��� �� �� �� �� �� �� �� ��T does not reach any state in which
a decision must be taken�

PROPERTY ��� Let hN �M�i be a persistent net� and
M �

� �M�� Then hN �M �

�i is persistent�

PROOF� Let M � be a reachable marking from M �

�� i�e�
such that there exists a sequence � such that M �

�	�iM
��

Since M �

� � M�� � can be �red also when starting from
M� instead of M

�

�� Moreover� if M�	�iM then M �M ��
Since hN �M�i is persistent there is no e�ective con�ict
in M and therefore there is no con�ict in M ��
Q�E�D�
Let us now introduce some concepts �see the Appendix

of 	CCCS
�� for their formal de�nition� and results that
will lead to the conclusion that the stochastic marking
process associated with a bounded persistent net is weakly
ergodic� The �rst concept we introduce is that of di�
rectedness � this means that any two reachable markings
have at least one common successor marking� A second
concept is that of home states � markings which can be
reached from any other reachable marking� The set of
home states of a marked net forms a unique livelock� Fi�
nally� a marked net is reversible if the initial marking can
always be recovered from any reachable marking �i�e��M�

is a home state��

LEMMA ��� 	Bra
�� All persistent marked nets have
the directedness property�
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Figure �� An unbounded live and persistent net having
the directedness property but no home states�

LEMMA ��� 	BV
�� For bounded marked nets� direct�
edness and the existence of a home state are equivalent
properties�

Figure � illustrates an example that shows that the
above lemma does not hold for unbounded nets� the net
depicted there is unbounded� has the directedness prop�
erty and has no home states�

THEOREM ��� Live bounded persistent connected
nets without implicit places have a unique repetitive 	r�
ing count vector �i�e� ���R such that �M � R�N �M�� if
M 	�iM then �� � k
��R with k � IN��

PROOF� Consider a live� bounded� persistent� connected
net hN �M�i� Bounded persistent nets have an home
space� so that let M be a home state of the net� Since
the net is live� there exist at least one �ring sequence �
such thatM 	�iM and �� � ��� Now assume that there ex�
ist two di�erent repetitive �ring count vectors ��� and ���
such thatM 	��iM andM 	��iM and ���� ��� � ��� Then�
there must exist three transitions ti� tj � and tk such that
ti � jj ���jj and ti � �jj ���jj and tj � jj ���jj and tj � �jj ���jj
and tk � jj ���jj and tk � jj ���jj� Moreover� since the net
is connected and each �ring count vector is a consistent
component� there must be a structural con�ict between
the two transitions ti and tj � i�e�� �p � tk

� such that
p � �ti �

�tj � Since the net is persistent� the structural
con�ict between ti and tj cannot be e�ective� and the two
sequences �� and �� are �rable independently one of the
other� so that the shared place p must be behaviourally
implicit�
Q�E�D�
Since live bounded persistent connected nets have a

unique repetitive �ring count vector we can obtain the
following particularization of Theorem ��� in 	Sil
���

THEOREM ��� For live bounded connected marked
nets without implicit places� persistency implies weak er�
godicity of the 	ring process�

PROOF� By Theorem ���� for live bounded connected
marked nets without implicit places� persistency implies
the existence of a unique repetitive �ring count vector�
Then by Theorem ��� for these nets� persistency implies
weak ergodicity of the �ring process�
Q�E�D�
In order to study the steady�state performances of a

stochastic net� only recurrent markings are relevant �i�e�
transient markings do not a�ect the computation�� Even
if bounded persistent nets are ergodic this does not mean

p1 p2

p3p4

p5

t1

t2

t3

t4

Figure �� A live and bounded mono�T�semi�ow net�

that there exist no transient markings� The net in Figure
� is structurally persistent� live� and �!bounded forM� �
��� �� ��T � butM� is a transient state �i�e� it is not a home
state�� Nets without transient markings are said to be
reversible�

From the de�nition of reversible nets �De�nition A�� in
	CCCS
��� and Corollary ���� the following can be easily
concluded�

COROLLARY ��� Semi�Markovian stochastic
reversible and bounded marked nets have ergodic mark�
ing process�

��� Mono�T�semi	ow nets

Let us introduce another class of nets with a unique
repetitive �ring count vector which are structurally char�
acterized�

DEFINITION ��� A structurally bounded Petri net N
is called mono�T�semi�ow i� there exists a unique mini�
mal T�semi�ow that contains all transitions�

In a mono�T�semi�ow net con�icts may be reached�
and so di�erent behaviours can occur� However� from the
steady�state performances point of view� these decisions
lead us to a unique result� provided that the net is live
and bounded �all di�erent behaviours let the same set
of transitions� characterized by the only T�semi�ow of
the net� �re� perhaps in a di�erent order�� For example�
�a � t�t�t�t� and �b � t�t�t�t� are possible sequences in
the net of Figure �� both �reable from M�� Even if the
performance is equal for any con�ict resolution policy�
from the functional point of view the results can be very
di�erent �imagine t�t� and t�t� be two non commutative
operations��

The following result is the analogous of Theorem ���
for mono�T�semi�ow nets�

PROPERTY ��� Let hN �M�i be a live and bounded
mono�T�semi�ow net� For any 	ring sequence � applica�
ble in hN �M�i we can write� �� � r
X�b� where X � � is
the minimal T�semi�ow� r � IN � and b � � is a bounded
vector such that C � b �� � is impossible�
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Figure 
� A live bounded mono�T�semi�ow net without
home states�

COROLLARY ��� For mono�T�semi�ow
bounded nets� deadlock�freeness and liveness are equiv�
alent properties�

The next property allows a polynomial complexity
characterization of mono�T�semi�ow nets�

PROPERTY ��� Let C be the incidence matrix of a
consistent mono�T�semi�ow net� Then rank�C� �m
��

PROOF� If a net is mono�T�semi�ow then the dimen�
sion of the space of right annihilators of C is great than
or equal to �� thus rank�C� � m
 �� By contradiction�
suppose X and b are two linearly independent right anni�
hilators of C� By consistency X can be chosen positive�
and b � Zn� Then two independent and positive right
annihilators of C can be constructed� X� � �X 
 �b�
X� � 
X��b �with proper values for �� �� �� and 
�� thus
X�� X� are independent T�semi�ows and this is against
the hypothesis of mono�T�semi�ow�

Q�E�D�

We have seen that bounded and persistent nets have an
ergodic marking behaviour� Now� what can be said about
mono�T�semi�ow nets" Unfortunately the net in Figure

 	BV
�� shows a negative result� it is live and struc�
turally bounded �and therefore consistent and conserva�
tive�� mono�T�semi�ow� but has no home states since it
generates two livelocks� and thus it may lead to non er�
godic marking processes� In fact� if there exists a positive
probability of reaching two di�erent livelocks� the ergod�
icity is impossible�

��� Structurally persistent nets and

marked graphs

Persistency is a behavioural property� i�e� the same net
structure with a di�erent initial marking can give non
persistent behaviour� For example� the net in Figure �c
is persistent� On the same structure but with M� �
��� �� �� ��T the net is not persistent �Figure �d�� In both
cases the net is live and bounded� and its unique repet�
itive �ring count vector is given by X � ��� �� ��T � Let
us introduce a subclass of persistent nets such that the
persistency is inherent to the structure�

DEFINITION ��� A Petri net N is said to be struc�
turally persistent i� hN �M�i is persistent for all 	nite
initial marking M��

PROPERTY ��� 	LR�
� A net is structurally persis�
tent i� it does not exist any structural con�ict in it�

The live and bounded structurally persistent net in
Figure �b shows that they may have transient states�
Now it is interesting to point out a very well known sub�
class of these nets for which there exists no transient
markings� provided the liveness for M��

DEFINITION ��� 	CHEP���Marked Graphs are ordi�
nary Petri nets �pre and post incidence functions taking
values in f�� �g� such that j�pj � jp�j � ���p � P �

PROPERTY ��	 Marked graphs are structurally per�
sistent nets� The reverse in not true �for example the
net in Figure �b is not a marked graph��

PROPERTY ��
 Classi	cation

i� Structurally persistent live and bounded nets are
mono�T�semi�ow� The reverse is not true �Figure
�c��

ii� Marked graphs are consistent nets� and the unique
minimal T�semi�ow is ���

By properties ��� and ���� as marked graphs are con�
sistent nets� the rank of their incidence matrix is m
��

THEOREM ��� 	Mur��� Let hN �M�i be a live �possi�
bly unbounded� marked graph� The two following state�
ments are equivalent�

i� M � R�N �M��� i�e� M is reachable from M��

ii� Bf �M � Bf �M�� with Bf the fundamental circuit
matrix of the graph �i�e� its row vectors are a basis
of the left annihilators of C�� and M � ��

According to the above theorem M � R�N �M�� ��
M� � R�N �M�� In other words�

PROPERTY ��� Live marked graphs are reversible�

PROPERTY ��� Let N be a marked graph�
�



i� N is structurally bounded �i�e� hN �M�i is bounded
�M�� i� it is strongly connected�

ii� Let hN �M�i be live� Then hN �M�i is bounded i� N
is structurally bounded�

According to the above properties� strong connectivity
and boundedness have equivalent meaning for live MGs�
From Properties A��� A�� in 	CCCS
��� and Corollary
���� the following is thus obvious�

COROLLARY ���
Semi�Markovian strongly connected live marked graphs
have ergodic marking process�

Finally� an interesting property �that shall be used
later in Section ���� of live MGs� that allows an e�cient
computation of liveness bounds� is the following�

PROPERTY ��
 Let hN �M�i be a live MG� then �t �
T SE�t� � E�t� � SL�t� � L�t��

In other words� for marked graphs the behavioural con�
cepts always collapse into the structural ones� In fact�
according to Theorem A�� in 	CCCS
��� for any MG
M � R�M�� i� M �M� � C�� � �� � ��
In case of non�strongly connected MGs it is possible

to obtain SE�t� � 	 for some transition t� this creates
no harm� because of the assumption of an in�nite server
semantics� it only implies that the timing of that transi�
tion does not a�ect the steady�state performance of the
model�

� Bounds for stochastic strongly

connected marked graphs

In this Section� performance bounds for strongly con�
nected �and thus structurally bounded� MGs are recalled�
Strong connectivity of a graph is a well known problem
of polynomial time complexity�


�� Upper bound for the steady state

throughput

Let us take into account just the �rst moments of the
probability density functions associated with transitions�
In the following� let �i be the mean value of the random
variable associated with the �ring of transition ti� and D
the diagonal matrix with elements �i� i � �� 


�m�
The limit expected �ring count vector per time unit is

��� � lim
���

�����

�
���

and the mean time between two consecutive �rings of a
selected transition� ti�

 i �
�

���i
���

Then the components of Pre � D � ��� �  i �where ��� is
normalized by  i� represent the product of the number
of tokens reserved for �ring the transitions and the mean
length of time that these tokens reside in each place be�
tween two consecutive �rings of ti�
For nets with a unique repetitive �ring count vector�

Pre �D � ��� �  i � Pre �D �X � where Xi � �� If the net
is structurally bounded mono�T�semi�ow then X is its
minimal T�semi�ow� If the net is persistent �Figure �a�
then X is a T�semi�ow �possibly non minimal��
Let M be the limit vector of the average number of

tokens in each place �i�e� M � lim���
�

�

R �
�
M�s�ds��

Then� provided that the previous limit exists� M �  i is
the vector of products of the mean number of tokens and
the length of one cycle and we have�

M �  i � Pre �D �X ���

From this inequality� the minimum cycle time associated
with transition ti�  

min
i � can be derived� We take into

account that  min
i must be such that inequality ��� holds

and for some place pj the equality is reached�

 min
i �

Pre�j� �D �X

M�j�
���

Since the vector M is unknown� ��� cannot be solved�
Making the product with a P�semi�ow Y for any reach�
able marking M �

Y T �M� � Y T �M � Y T �M ���

Now� from ��� and ����

Y T �M� �  i � Y T � Pre �D �X ���

And the minimum cycle time in steady state is�

 min
i � max

Y �fP�semi�owg

Y T � Pre �D �X

Y T �M�

���

Of course� an upper bound for the throughput of ti is
�

�min
i

�

Let us formulate the previous lower bound for the cy�
cle time in terms of a particular class of optimization
problems that we introduce now�

DEFINITION ��� A fractional programming problem
is an optimization problem of the form 	Mur
���

max f�x� �
cT � x� �

dT � x� �

subject to A � x � b� x � �

A � IRv�u� b � IRv

c� d � IRu� �� � � IR

A fractional programming problem is said to be homo�
geneous if coe
cients � and � are equal to zero�






THEOREM ��� For any persistent or mono�T�semi�
�ow net� the minimum cycle time associated with tran�
sition ti can be computed by the following homogeneous
fractional programming problem�

 min
i � max

Y T � Pre �D �X

Y T �M�

s�t� Y T � C � � �FPP��

Y � �� ��T � Y � �

PROOF� Just notice that the optimum can be always
reached with an elementary P�semi�ow� If Y � gives us
the optimal solution� Z�� and it is not an elementary
P�semi�ow� then

Y � �
kX
i��

�aiYi� �
�

with Yi elementary P�semi�ows and ai � ��
Pk

i�� ai � �

�i�e� Z� �
Pk

i���aiY
T
i �Pre �D �X��� Then ai �

�

k �i� all
Y T
i � Pre �D �X must be equal �if not� the maximum of
them would give a larger value than Z�� and all Yi are
optimal solutions of the problem�
Q�E�D�


�� Upper bounds for strongly connected

marked graphs

Because marked graphs have a unique T�semi�ow X � ��
�Property ����� writing � � D � �� the following can be
directly stated�

COROLLARY ��� For strongly connected marked
graphs� the minimum cycle time can be obtained by solv�
ing the following fractional programming problem�

 min � max
Y T � Pre � �

Y T �M�

s�t� Y T � C � � �FPP��

Y � �� ��T � Y � �

THEOREM ��� 	CCCS
�� For live strongly connected
marked graphs� the minimum cycle time can be obtained
by solving the following linear programming problem�

 min � max Y T � Pre � �

s�t� Y T � C � �� Y T �M� � � �LPP��

Y � �

Theorem ��� shows that the problem of �nding an up�
per bound for the steady�state throughput in a strongly
connected stochastic marked graph can be solved look�
ing at the cycle times associated with each P�semi�ow
�cycles for marked graphs� of the net� considered in iso�
lation� These cycle times can be computed making the
summation of the average �ring times of all the tran�
sitions involved in the P�semi�ow� and dividing by the
number of tokens present in it�

The above bound is the same that has been obtained
for strongly connected deterministic marked graphs
by other authors �see for example 	Ram���� 	RH
���
	Mur
���� but here it is considered in a practical LPP
form� For these nets� the reachability of this bound
has been shown �	Ram���� 	RH
���� Since determinis�
tic timing is just a particular case of stochastic timing�
the reachability of the bound is assured for our proposes�
Even more� the next result shows that the previous bound
cannot be improved only on the base of the knowledge of
the coe�cients of variation for the transition �ring times�

THEOREM ��� 	CCCS
�� For strongly connected
marked graphs with arbitrary values of mean and vari�
ance for transition 	ring times� the bound for the cycle
time obtained from �FPP
� cannot be improved�


�� Lower bounds for strongly connected

marked graphs

A trivial lower bound in steady�state performance for a
live PN with a unique repetitive �ring count vector is of
course given by the sum of the �ring times of all the tran�
sitions weighted by the �ring count vector itself� Since
the net is live all transition must be �reable� and the
sum of all �ring times multiplied by the number of oc�
currences of each transition in the �unique� average cycle
of the model corresponds to any complete sequentializa�
tion of all the activities represented in the model� This
lower bound is always reached in an MG consisting of a
single loop of transitions and containing a single token in
one of the places� independently of the higher moments
of the PDFs �this observation can be trivially con�rmed
by the computation of the upper bound� which in this
case gives the same value��
This trivial lower bound has been improved in

	CCCS
��� based on the knowledge of the liveness bound
L�t� for all transitions t of the MG�

THEOREM ��� 	CCCS
�� For any live and bounded
MG with a speci	cation of the mean 	ring times �j for
each tj � T it is not possible to assign PDFs to the
transition 	ring times such that the average cycle time
is greater than

 max �
X
j

�j

L�tj�

independently of the topology of the net �and thus inde�
pendently of the potential maximum degree of parallelism
intrinsic in the MG��

The lower bound in performance given by the compu�
tation of  max as de�ned in Theorem ��� has been shown
to be reachable for any MG topology and for some as�
signement of PDF to the �ring delay of transitions in
	CCCS
��� First of all we recall that in the case of live
MGs the liveness bound equals the structural enabling
bound for each transition �Property ����� thus the prob�
lem of the determination of the structural enabling bound

�
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Figure �� Equivalent marked graph for safe persistent
net�

can be characterized in terms of a Linear Programming
problem� which is known to be solvable in polynomial
time�
For any transition t � T � the computation of the struc�

tural enabling bound SE�t� can be formulated in terms
of the following LPP�

SE�t� � min Y TM�

s�t� Y TC � �

Y TPRE	t� � �

Y T � �

Because of the minimization requirement� the optimum of
the objective function is always achieved with elementary
P�semi�ows Y � In case of MGs� these elementary P�semi�
�ows can only be elementary cycles� so that we can give
the following interpretation of the LPP in net terms� the
liveness bound for a transition t of a strongly connected
MG is given by the minimum number of tokens contained
in any cycle of places containing transition t� In a non�
strongly connected MG there can be no such cycle� so
that this number can be in�nite�

� Throughput

bounds for bounded persistent

nets

As we said in Section �� persistent nets are behaviourally
de�ned� This means that a previous behavioural anal�
ysis to assure the persistency of the net must be made
before computing bounds for the performances in steady�
state� Few results are known in the literature related with
bounds for the performances of stochastic bounded per�
sistent nets� A partial result is presented in 	Ram��� for
safe and persistent nets with deterministic timing� For
these nets a behaviourally equivalent safe marked graph
can be built� The method consists in drawing the ini�
tially marked places and enabled transitions� After that�
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p3

p4
t3t2

Figure ��� Bound �LPP�� non reachable�

�ring all transitions and drawing the output places and
repeating the procedure until a marking in the process
is re�found �see Figure ��� Then� the methods explained
in Sections � and � can be applied for computing the
bounds for this marked graph and so for the steady�state
performances of the initial persistent net� Unfortunately�
this analysis is not possible for bounded �non safe� nets
when non deterministic timing is considered�
Let us now introduce some general results useful for

computing bounds for the performance of bounded per�
sistent nets� Later we improve some of these results�

��� General results for bounded persis�

tent nets

For bounded persistent nets� ergodicity of the marking
and the �ring processes is assured for both single and
three phases �ring interpretation �Theorem ����� Then
for these nets it makes sense to speak about the unique
steady�state behaviour and to compute bounds for the
performance of this steady�state�

	���� Upper bound for the throughput

Let us consider live� bounded and persistent nets with�
out implicit places� According to Theorem ��� consistent
�ring count vectors are proportional to ��R�
The next linear programming problem follows from the

general problem �FPP�� in Section �� It can be consid�
ered for computing a lower bound of the steady�state
cycle time of a selected transition ti�

 min
i � max Y T � Pre �D �X

s�t� Y T � C � �� Y T �M� � � �LPP��

Y � �

whereD is the diagonal matrix of mean values of the ran�
dom variables associated with transitions andX � k��R is
a T�semi�ow �non minimal if there exist more than one�
withX�ti� � � �the unique repetitive �ring count vector��
The optimal value of the previous problem is a non reach�
able bound in general �i�e� there exist net models such

��



that no stochastic interpretation allows to reach the com�
puted bound�  min

i �� Let us consider� for example� the
net in Figure ��� Selecting the transition t�� the vector
X for �LPP�� is X � ��� �� ��T and the obtained bound is
 min
� � max��� � ��� ����� Now� considering determinis�
tic timing for all transitions with �� � �� �� � ��� �� � ��
the obtained bound is  min

� � �� while the actual cycle
time for transition t� is bigger because of the sequence
��� �� which takes �� units of time�
For safe persistent nets� the previous bound can be al�

ways reached� In fact the same bound would be obtained
by deriving the equivalent Marked Graph �according to
	Ram���� and computing the bound for it �using the re�
sults in Section ���
Theorem ��� states that for connected bounded per�

sistent nets without implicit places� liveness implies the
existence of a unique consistent repetitive �ring count
vector� Now we prove a reverse result�

THEOREM 	�� Persistent nets with a consistent
repetitive 	ring count vector are live�

PROOF� Because of persistency if a transition is enabled
it will be �red� Then liveness is assured if the unique
repetitive �ring count vector is consistent �all transitions
belong to the repetitive sequence��
Q�E�D�
Now from Theorems ��� and ��� the next result follows�

COROLLARY 	�� For connected bounded persistent
nets without implicit places� liveness and the existence of
a consistent repetitive 	ring count vector are equivalent�

Even if the cycle time bound obtained from �LPP��
can be non reachable� now we can prove that it is �nite
if and only if the actual cycle time is �nite�

THEOREM 	�� For bounded persistent nets with a
unique consistent repetitive 	ring count vector� the lower
bound for the cycle time obtained from �LPP�� is 	nite
i� the actual cycle time is 	nite�

PROOF� ��� Obvious �the value obtained from �LPP��
is a lower bound�
��� From Theorem ��� the nets that we consider are

live so the cycle time in steady�state is �nite�
Q�E�D�
The previous result is not true for the general case�

We see in Section � that for mono�T�semi�ow nets the
actual cycle time can be in�nite �so that the net can be
non live� while the lower bound obtained from �LPP��
can be �nite�

	���� Lower bound for the throughput

The trivial lower bound presented in Section � for the
throughput of Marked Graphs can be applied now in the
following way� just making the sum of the �ring times
of the transitions belonging to the unique repetitive �r�
ing sequence weighted by the �ring count vector itself�
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Figure ��� Non trivial lower bound non reachable�
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Figure ��� Equivalent marked graph for deterministic
timing�

This lower bound is� in general� non reachable� Never�
theless� for safe persistent nets the bound is reachable
as can be seen just deriving the behaviourally equivalent
safe marked graph as in 	Ram���� Unfortunately� the non
trivial lower bound for marked graphs �dividing by the
liveness degree� cannot be applied to persistent nets� For
example� for the net in Figure �� the steady�state cycle
time is less than the value obtained applying this tech�
nique �so that the throughput is higher��

��� Improving the upper bound

Let us now describe a method for computing a reach�
able upper bound for the steady�state throughput for
bounded persistent nets� Deterministic timing will lead
to the maximum possible performance for a given net
and average �ring associated to transitions� If we con�
sider only deterministic timing� a behaviourally equiva�
lent marked graph can be derived in a way analogous to
that proposed in 	Ram���� By splitting the places in such
a way that they represent conditions for the enabling of
transitions �i�e� the obtained marked graph is safe�� De�
veloping the process until cyclicity appears �i�e� a mark�
ing is repeated for the �rst time� and identifying those
instances of places that must be superposed taking into
account that the deterministic assumption restricts the
behaviour of the net �see the example in Figure ���� Con�
sidering general timing distributions� the original net and
the derived marked graph are not behaviourally equiva�

��



lent� In fact� the steady�state throughput for the marked
graph is less than or equal to the one of the original net�
Nevertheless for deterministic timing the equality holds
and this provides the following method for computing a
reachable bound for the throughput�
Consider a bounded persistent net with general distri�

bution timing�

Step �� Develop the cyclic process for the deterministic
case �behaviourally equivalent marked graph for the
deterministic timing�

Step �� Compute the upper bound for the steady�state
throughput of the marked graph �Section ����

Step �� The bound computed in Step � is a reachable
bound for the steady state throughput of the original
net�

The bound is reachable because the maximum
throughput for the net is always obtained in the deter�
ministic case and under this condition the throughput of
the cyclic process and of the original net are equal�

� Throughput bounds for consis	

tent mono	T	semi
ow nets

Let us now consider consistent mono�T�semi�ow nets and
give bounds for their steady�state throughput� Since
mono�T�semi�ow nets are structurally characterized�
they can be recognized without a previous behavioural
analysis� According to the results in Section ���� they can
be recognized by computing the T�semi�ow X in polyno�
mial time� Unfortunately� the existence of a unique con�
sistent minimal T�semi�ow does not assure the ergodicity
of the marking process �see Section �� �in general� con�
sistent mono�T�semi�ow nets may have no home state�
so ergodicity is not assured��

Even in the case in which ergodicity is not assured the
problem of computing bounds for the throughput makes
sense� The values that we compute in this section are
bounds for all possible steady�state behaviours of the net�
The problem �LPP�� for computing an upper bound

for the steady�state throughput of a net with a unique
repetitive �ring count vector �Section �� can be used�
Nevertheless� this bound is� in general non reachable�
Moreover� a mono�T�semi�ow net can be non live and
the obtained lower bound for the cycle time be �nite� In
other words�

PROPERTY 
�� For
consistent mono�T�semi�ow nets� liveness is not char�
acterized by the 	niteness of the lower bound of the cycle
time computed by means of LPP��

This can be easily checked by considering the net in Fig�
ure �� �which is non�live� so that the actual steady�state
cycle time is in�nite� even if the obtained bound is �nite��
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Figure ��� Non live mono�T�semi�ow net�

In conclusion� only the trivial lower bound for the
throughput of consistent mono�T�semi�ow nets �the sum
of all transition �ring times� can be computed� provided
that the net is live�

� Conclusions

In this paper we have addressed the problem of comput�
ing upper and lower bounds for the throughput of tran�
sitions in Petri net models having a unique repetitive
�ring count vector� The results presented here represent
an extension of those described in 	CCCS
�� for the case
of bounded Marked Graphs� The upper bound in case
of Persistent nets is a generalization of that obtained for
Marked Graphs� and has been shown to be reachable�
The technique proposed for the derivation of processes
for non�safe persistent nets is an extension of a method
originally proposed by Ramchandani for safe persistent
nets� and that was not directly applicable�
For what concerns the lower bound on throughput�

only the trivial bound computed as the inverse of the sum
of all transition �ring delays can be generalized from the
Marked Graph case� and this can be too pessimistic in
case of Persistent or mono�T�semi�ow nets�
In any case both the upper and lower bounds are in�

dependent of any assumption on the probability distri�
bution of the delay associated with transitions� and their
value can be computed based on the knowledge of the av�
erages� This represents a generalization with respect to
the usual assumptions needed for the exact performance
evaluation of a Petri net model� A second generalization
coming from the choice of computing bounds instead of
actual values is that the analysis of non��weakly�ergodic
models still makes sense�
Besides the results on the computation of bounds� this

paper contains a characterization of the class of bounded
nets having a unique possible steady�state behaviour� and

��



a discussion of their ergodicity conditions� In particular�
the concept of liveness bound for transitions is a new
behavioural property� that comes directly from consider�
ations related to the timing semantics of a timed Petri
net model� It generalizes the usual concept of liveness for
a transition� and provides an example of possible inter�
leaving between qualitative and quantitative analysis for
timed and stochastic Petri nets�

Extensions of the results presented in this paper are al�
ready being considered� In particular� work is in progress
to study the case of live free choice nets� that can model
queueing networks plus synchronization and concurrency�
In this case� the idea is that several repetitive �ring count
vectors can be reproduced in steady�state� but the deci�
sions are done only in places with more than one output
transition� where the free choice net poses no restriction�
Thus the selection is completely governed by the stochas�
tic interpretation of the net� and an �average �ring speed
vector� can be de�ned independently of the marking of
the net�
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