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Abstract

The problem of computing both upper and lower bounds
for the steady�state performance of timed and stochastic
Marked Graphs is studied� In particular� Linear Pro�
gramming problems de�ned on the incidence matrix of
the underlying Petri nets are used to compute tight �i�e��
reachable� bounds for the throughput of transitions for
live and bounded Marked Graphs with time associated
with transitions� These bounds depend on the initial
marking and the mean values of the delays but not on the
probability distributions �thus including both the deter�
ministic and the stochastic cases�� Connections between
results and techniques typical of qualitative and quanti�
tative analysis of Petri models are stressed�

� Introduction

One of the main problems in the actual use of timed and
stochastic Petri net models for the performance evalu�
ation of large systems is the explosion of the compu�
tational complexity of the analysis algorithms� Exact
performance results are usually obtained from the nu�
merical solution of a Markov chain� whose dimension is
given by the size of the state space of the model� Simpli�
�ed methods of computational complexity polynomial on
the size of Petri net description would provide a striking
break�through in this �eld� but results of this type are
unlikely to be achievable for the computation of exact
performances for general models�

In this paper we study the possibility of obtaining �up�
per and lower� bounds on the steady�state performance
of Marked Graphs �MG�� a well known subclass of Petri
nets that allow only concurrency and synchronization but
no choice� In particular we study the throughput of tran�
sitions� de�ned as the average number of �rings per unit
time� From this quantity� applying Little�s formula it is
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possible to derive all average performance estimates of
the model� Under these restrictions we will show results
that can be computed in polynomial time on the size of
the net model� and that depend only on the mean values
and not on the higher moments of the probability distri�
butions of the random variables that describe the timing
of the system� Our approach di	ers from that of Mol�
loy 
Mol��
 in that we analyze a net with a given initial
marking instead of computing a limiting behaviour for
increasing number of tokens� In a sense we have taken
a complementary approach with respect to that of Bru�
ell and Ghanta 
BG��
� that assumed exponentially dis�
tributed random delays and bounded the e	ect of syn�
chronization� Our independence of the probability dis�
tribution can be viewed as a useful generalization of the
performance results� since higher moments of the delays
are usually unknown for real cases� and di�cult to esti�
mate and assess� Moreover we show that both upper and
lower bounds� computed by means of proper Linear Pro�
gramming problems� are tight� in the sense that for any
MG model it is possible to de�ne families of MG models
with stochastic timings� such that the steady�state per�
formances of the timed PN models are arbitrarily close
to either bound�
In a Petri net there is an obvious relation between the

concepts of steady�state behaviour and that of repeatable
�ring sequences� sequences of transitions that are repeat�
able only a �nite number of times cannot contribute to
the steady�state performance of the model� In the partic�
ular case of safe MGs� this relation can be made evident
by looking at the occurrence nets that describe their be�
haviours 
WT��
�
Figure � depicts an example of a live and safe MG�

It is easily seen that only sum and �max� operators are
needed to compute the performance� indeed the actual
cycle time in this example is the random variable � �
���max���� ���� �� �where �i denotes the �ring delay of
transition ti�� therefore the average cycle time is � �

E
��
 �E
max���� ���
 �E
��
 � �� �E
max���� ���
 � ��

�where �i denotes the average �ring delay of transi�
tion ti�� The idea is that of computing fast bounds
based only on the knowledge of the �rst moments of
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Figure �� Example of a safe MG�

PDF� the sum is independent of the probability distri�
bution �for linearity�� since for non�negative variables
xi � maxi�xi� �

P
i xi� E
maxi�xi�
 can be bounded

by maxi�E
xi
� � E
maxi�xi�
 �
P

iE
xi
� Therefore
for the net in Figure � we can write�

�� �max���� ��� � �� � � � �� � �� � �� � ��

The paper is organized as follows� Section � contains
a discussion of the implications that the introduction of
a timing semantics has on the behaviour of a Petri net
model� In particular the concepts of enabling bound and
weak ergodicity are de�ned� Sections � and � present the
upper and lower bounds� respectively� Section � contains
some concluding remarks and considerations on possible
extensions of the work� In the Appendix the notation
and some classical results for Petri nets are collected�

� Stochastic interpretation of

nets

In the original de�nition� Petri nets did not include the
notion of time� and tried to model only the logical be�
haviour of systems by describing the causal relations ex�
isting between otherwise unrelated events� This approach
showed its power in the speci�cation and analysis of con�
current systems in a non�interleaved way� i�e� in a primi�
tive way independent of the concept of time� Nevertheless
the introduction of timing speci�cation is essential if we
want to use this class of models for an evaluation of the
performance of distributed systems�

��� Timing and �ring process

Since Petri nets are bipartite graphs� historically there
have been two ways of introducing the concept of time
in them� namely� associating a time interpretation with
either places 
Sif��
 or transitions 
Ram��
� Moreover�
in the case of timed transition models� two di	erent �r�
ing rules have been de�ned� single phase �atomic� �ring�
and three phase �start��ring with deletion of the input
tokens� delay� and end��ring with creation of the output
tokens�� In summary� using timed place or timed transi�
tion models with three phase �ring we can de�ne a policy

for con�ict resolution independent of the time speci�ca�
tion but we cannot model preemption� on the other hand�
using timed transition models with single phase �ring
we can model preemption but we cannot de�ne con�ict
resolution policies indepent of the timing speci�cation
�unless introducing the concept of immediate transitions

AMBC��
 that adds one degree of freedom� but is still
part of the timing speci�cation��
In any case� from the analysis of the di	erent choices�

it follows that the only e	ect of these di	erent timing in�
terpretations on the performance evaluation of a model
is due to the di	erent implications that the choices have
on the resolution of con�icts� Since in the context of this
work we are considering a class of nets in which there are
no con�icts� we do not have to fully choose one partic�
ular interpretation� we only say that we consider timed
transition MGs�

��� Single versus multiple server seman�

tics� enabling bound

Another possible source of confusion in the de�nition of
the timed interpretation of a PN model is the concept of
�degree of enabling� of a transition �or re�entrance�� In
the case of timing associated with places� it seems quite
natural to de�ne an unavailability time which is inde�
pendent of the total number of tokens already present
in the place� an this can be interpreted as an �in�nite
server� policy from the point of view of queueing theory�
In the case of time associated with transitions� it is less
obvious a�priori whether a transition enabled k times in
a marking should work at conditional throughput � or
k times that it would work in the case it was enabled
only once� In the case of Stochastic PNs with exponen�
tially distributed �ring times associated with transitions�
the usual implicit hypothesis is to have �single server�
semantics �see� e�g�� 
FN��a
� 
Mol��
�� and the case of
�multiple server� is handled as a case of �ring rate de�
pendent on the marking� unfortunately this trick cannot
work in the case of more general probability distributions�
and in particular cannot be used in the case of determin�
istic timings� This is the reason why people working with
deterministic timed transition PN prefer an in�nite server
semantics �see� e�g�� 
Zub��
� 
RP��
� 
HV��
�� Of course
an in�nite server transition can always be constrained
to a �k�server� behaviour by just reducing its enabling
bound to k� as we will see later�
Therefore the in�nite server semantics appears to be

the most general one� and for this reason it will be
adopted in this work� However this generality of the in��
nite server assumption will be payed in terms of complex�
ity of the algorithms for the computation of performance
bounds� Indeed the performance of a model with in�nite
server semantics does depend on the maximum degree of
enabling of the transitions� For this reason we introduce
here a concept of degree of enabling of a transition� the
enabling bound E�t�� It allows us to generalize the clas�
sical concept of enabling of a transition �a generalization
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of the concept of liveness of a transition is presented in

CCS��
��

DEFINITION ��� Enabling bound� Let hN �M�i be a
marked PN� �t � T

E�t� � max k

s�t� �M � R�N �M�� � M � kPRE
t


From the above de�nition it appears clear how it is
possible to obtain a k�server transition from an in�nite
server one� adding one place that is both input and out�
put �with multiplicity �� for that transition and marking
it with k tokens�
The de�nition above refers to a behavioural prop�

erty that depends on the reachability graph of a PN�
Since we are looking for computational techniques at
the structural level� we can also introduce the structural
counterpart of the concept� Structural net theory has
been developed from two complementary points of view�
graph theory 
Bes��
 and mathematical programming �or
more speci�cally linear programming and linear algebra�

SC��
� Let us introduce our structural de�nition from
the mathematical programming point of view� essentially
in this case the reachability condition is substituted by
the weaker �linear� constraint that markings satisfy the
net state equation� M � M� � C��� with M��� � ��

DEFINITION ��� Structural enabling bound� �t � T

SE�t� � max k

s�t� ��� � ��M � M� � C�� � kPRE
t


Note that� the de�nition of structural enabling bound
reduces to the formulation of a Linear Programming
problem 
Mur��
 using matrix C �the incidence matrix of
the PN�� For MGs the behavioural concepts always col�
lapse into the structural ones� In fact� according to Theo�
rem A��� for any MG M � R�M�� i	 M � M��C����� �
�� This allows an e�cient computation of enabling bound
based on the Linear Programming problem that charac�
terizes the structural enabling bound�
In case of non�strongly connected MGs it is possible

to obtain SE�t� � � for some transition t� this creates
no harm� because of the assumption of an in�nite server
semantics� it only implies that the timing of that transi�
tion does not a	ect the steady�state performance of the
model�

��� Ergodicity� measurability� bounds

In order to be able to speak about steady�state perfor�
mance we have to assume that some kind of �average
behaviour� can be estimated on the long run of the sys�
tem we are studying� The usual assumption in this case
is that the system models must be �strongly� ergodic �see
de�nitions of ergodicity in 
FN��b
�� This assumption is
very strong and di�cult to verify in general� moreover�
it creates problems when we want to include the deter�
ministic case as a special case of a stochastic model �see


CCS��
�� Thus we introduce the concept of weak ergod�
icity that allows the estimation of long run performances
also in the case of deterministic models�

DEFINITION ��� The marking process of a stochastic
marked net is weakly ergodic �or measurable in long run�
i� the following limit exists�

M
def
� lim

���

�

�

Z �

�

M�s�ds � ��

The 	ring process of a stochastic marked net is weakly
ergodic �or measurable in long run� i� the following limit
exists�

���
def
� lim

���

�����

�
� ��

According to the above de�nitions and the properties
listed in the Appendix� strong connectivity and bounded�
ness have equivalent meaning for live MGs� From Prop�
erties A��� A��� the following result follows�

COROLLARY ��� Strongly connected live MGs have
weakly ergodic marking process�

� Upper bounds for stochastic

strongly connected MGs

In this and the next Sections� performance bounds for
strongly connected �and thus structurally bounded� MGs
are presented� Strong connectivity of a graph is a well
known problem of polynomial time complexity�

��� Upper bound for the steady state

throughput

Let us take into account just the �rst moments of the
probability density functions associated with transitions�
In the following� let �i be the mean value of the random
variable associated with the �ring of transition ti� and D
the diagonal matrix with elements �i� i � �� ����m�
The limit expected �ring count vector per time unit is

��� � lim
���

�����

�
���

and the mean time between two consecutive �rings of a
selected transition� ti�

�i �
�

���i
���

Then the components of Pre �D � ��� � �i �where ��� has
been normalized for having the ith component equal ��
represent the product of the number of tokens reserved
for �ring the transitions and the mean length of time that
these tokens reside in each place between two consecutive
�rings of ti�
Let M be the limit vector of the average number of to�

kens in all places �i�e� M � lim���
�
�

R �
�
M�s�ds�� Then�
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provided that the previous limit exists� M ��i is the vec�
tor of products of the mean number of tokens and the
length of one cycle and we have�

M � �i � Pre �D � ��� � �i ���

From this inequality� the minimum cycle time associated
with transition ti� �

min
i � can be derived� We take into

account that �min
i must be such that inequality ��� holds

and for some place pj the equality is reached�

�min
i �

Pre�j� �D � ��� � �i

M�j�
���

Since the vector M is unknown� ��� cannot be solved�
Making the product with a P�semi�ow Y for any reach�
able marking M �

Y T �M� � Y T �M � Y T �M ���

Now� from ��� and ����

Y T �M� � �i � Y T � Pre �D � ��� � �i ���

And the minimum cycle time in steady state is�

�min
i � max

Y �fP�semi�owg

Y T � Pre �D � ��� � �i
Y T �M�

���

Of course� an upper bound for the throughput of ti is
�

�min
i

�

Let us formulate the previous lower bound for the cy�
cle time in terms of a particular class of optimization
problems that we introduce now�

DEFINITION ��� A fractional programming problem
is an optimization problem of the form 
Mur��
�

max f�x� �
cT � x� 	

dT � x� 


subject to A � x � b� x � �

A � Rv�u� b � Rv

c� d � Ru� 	� 
 � R

A fractional programming problem is said to be homo�
geneous if coe
cients 	 and 
 are equal to zero�

THEOREM ��� For any net� the minimum cycle time
associated with transition ti can be computed by the fol�
lowing homogeneous fractional programming problem�

�min
i � max

Y T � Pre �D � ��� � �i
Y T �M�

s�t� Y T � C � � �FPP��

Y � �� ��T � Y � �

PROOF� Just notice that the optimum can be always
reached with an elementary P�semi�ow� If Y � gives us

the optimal solution� Z�� and it is not an elementary
P�semi�ow� then

Y � �

kX
i��

�aiYi� ���

with Yi elementary P�semi�ows and ai � ��
Pk

i�� ai � �

�i�e� Z� �
Pk

i���aiY
T
i �Pre �D ���� ��i��� Then ai �

�
k
�i�

all Y T
i �Pre�D ���

� ��i must be equal �if not� the maximum
of them would give a larger value than Z�� and all Yi are
optimal solutions of the problem�
Q�E�D�
Because for MGs ��� � �i � ��� writing � � D � �� the

following can be directly stated�

COROLLARY ��� The minimum cycle time for
strongly connected MGs can be obtained by solving the
following fractional programming problem�

�min � max
Y T � Pre � �

Y T �M�

s�t� Y T � C � � �FPP��

Y � �� ��T � Y � �

THEOREM ��� The minimum cycle time for live
strongly connected MGs can be obtained by solving the
following linear programming problem�

�min � max Y T � Pre � �

s�t� Y T � C � �� Y T �M� � � �LPP��

Y � �

PROOF� The problem �FPP�� can be rewritten into a
linear problem just taking into account that if we write�

�min � max
Y T � Pre � �

q

s�t� Y T � C � �� q � Y T �M�

Y � �� ��T � Y � �

Then� because Y T �M� � � �guaranteed for live MGs��
we can change Y

q
by Y and obtain the problem �LPP�� in

which��T �Y � � is redundant �Y T �M� � � �	 ��T �Y � ��
and can be removed�
Q�E�D�
It is well known that the simplex method for the solu�

tion of linear programming problems gives good results
in practice� even if it has exponential theoretical worst
case complexity� In any case an algorithm of polyno�
mial theoretical worst case complexity can be found in

Kar��
�
Theorem ��� shows that the problem of �nding an up�

per bound for the steady�state throughput in a strongly
connected stochastic MG can be solved looking at the
cycle times associated with each P�semi�ow �cycles for
MGs� of the net� considered in isolation� These cycle
times can be computed making the summation of the

�



average �ring times of all the transitions involved in the
P�semi�ow� and dividing by the number of tokens present
in it�
The above bound is the same that has been obtained

for strongly connected deterministic MGs by other au�
thors �see for example 
Ram��
� 
RH��
� 
Mur��
�� but
here it is considered in a practical LPP form� For these
nets� the reachability of this bound has been shown
�
Ram��
� 
RH��
�� Since deterministic timing is just
a particular case of stochastic timing� the reachability
of the bound is assured for our purposes� Even more�
the next result shows that the previous bound cannot
be improved only on the base of the knowledge of the
coe�cients of variation for the transition �ring times�

THEOREM ��� For strongly connected MGs with ar�
bitrary values of mean and variance for transition 	ring
times� the bound for the cycle time obtained from �FPP��
cannot be improved�

PROOF� Let ��i the arbitrary variance associated with
transition ti� We know from 
Ram��
 that for determin�
istic timing the bound is reached� Let �i be the average
�ring time associated with transition ti� Then there ex�
ists a sequence of families of m distributions with means
�i and variances ��i � i � �� ����m� for which the cycle time
tends to the one obtained from �FPP���
Consider the family �for varying values of the param�

eter � � 	 � ���

X�i��i�	� �

�
�i	 with probability �
 �i
�i�	� ���

�i
� with probability �i

where

�i �
��i ��
 	��

��i ��
 	�� � ��i

Now� taking 	 closer to � for the previous family of ran�
dom variables� the cycle time tends to the bound given by
�FPP��� This is because only �max� and sum operators
are needed to compute the cycle time and the previous
family of random variables behaves closer to determinis�
tic variables when 	 tends to �� i�e�

lim
���

E
max�X�i��i�	�� X�j ��j �	��
 � max��i� �j�

and� of course� � � � 	 � �

E
X�i��i�	� �X�j ��j �	�
 � �i � �j

Q�E�D�
A polynomial computation of the minimal cycle time

for deterministic timed strongly connected MGs was pro�
posed in 
Mag��
� solving the following linear program�
ming problem�

�min � min �

s�t� 
C � z � �M� � Post � � �LPP��

� � �� z � �

To investigate the relationship between �LPP�� and
�LPP�� let us consider the dual problem of �LPP���

�min � max Y T � Post � �

s�t� Y T � C � �� Y T �M� � � �DPP��

Y � �

Since MGs are consistent nets� the restriction Y T �C �
� of �DPP�� can be substituted by Y T � C � � �i�e� the
restriction of �LPP���� For all Y such that Y T � C � ��
Y T � Post � Y T � Pre� Now� for live nets� �Y � Nn�
Y �� � such that Y T �C � � then Y T �M� � �� Thus the
restriction Y T �M� � � of �DPP�� can be substituted by
Y T �M� � � for live nets �i�e� the restriction of �LPP����
Then for live strongly connected MGs� the general

problem �FPP�� takes the linear form �LPP�� which is
equivalent to �LPP�� formulated in 
Mag��
 for deter�
ministic systems� For non�live nets the problem �FPP��
has unbounded optimal solution �see Theorem ����� This
can be easily understood since non live nets have a null
throughput �in�nite minimal cycle time��

��� Interpretation and derived results

Linear programming problems give an easy way to derive
results and interpret them� Just looking at the objec�
tive function of the problem �FPP�� the following mono�
tonicity property is obtained� the optimum value for the
minimum cycle time decreases if � decreases or if M� in�
creases�

PROPERTY ��� Let N be a strongly connected MG
and � the mean times vector�

i� For a 	xed �� if M �

� �M� �i�e� increasing the number
of initial resources� then the throughput upper bound
of hN �M �

�� �i is larger than or equal to the one of
hN �M�� �i �i�e� �min� � �min��

ii� For a 	xed M�� if �
� � � �i�e� for faster resources�

then the throughput upper bound of hN �M �

�� �
�i is

larger than or equal to the one of hN �M�� �i �i�e�
�min� � �min��

The next property is strongly related to the reversibil�
ity of live MGs�

LEMMA ��� For live strongly connected MGs� the
bound obtained with the problem �LPP�� does not change
for any reachable marking�

PROOF� Let us consider the minimum cycle time for a
markingM � M��C ��� in terms of a linear programming
problem�

�min � max Y T � Pre � �

s�t� Y T � C � �� Y � �

M � M� � C � ��

Y T �M � �

M � �� �� � �
�



Since Y T �M � Y T �M� this problem is equivalent to�

�min � max Y T � Pre � �

s�t� Y T � C � �� Y � �

M � M� � C � ��

Y T �M� � �

M � �� �� � �

Since the restrictionsM � M��C ���� M � � and �� � �
do not a	ect the solution� they can be removed without
changing the optimum of this problem with respect to
the one of �LPP���
Q�E�D�
The next is a result on the complexity of the veri��

cation of liveness for MGs� It has been recently pointed
out in 
ES��
 by using quite di	erent arguments and tech�
niques� Here liveness is characterized by the �niteness of
the cycle time�

THEOREM ��� Liveness of a strongly connected MG
can be decided in polynomial time�

PROOF� We know that for strongly connected MGs� live�
ness and deadlock�freeness coincide� Then for deciding
liveness of a strongly connected MG it is enough to study
the �niteness of the optimal value of �LPP���
For strongly connected MGs� the optimal value of

�LPP�� is a lower bound for the cycle time� If this opti�
mal value is in�nite the cycle time is unbounded so the
net is non live� If the optimal value of �LPP�� is �nite�
since it is reachable for some �deterministic 
Ram��
 as
well as stochastic� timing �cfr� Theorem ����� the net
must be live�
Q�E�D�

COROLLARY ��� The problem �LPP�� has un�
bounded solution i� �Y � �� Y �� � such that Y T �M� � �
and Y T � C � �

This result has the following topological interpretation�
the problem �LPP�� has unbounded solution i	 there ex�
ists an unmarked circuit in the strongly connected MG�

� Lower bounds for strongly con�

nected MGs

	�� Basic result for �
live MG

A trivial lower bound in steady�state performance for
a live PN with a unique repetitive �ring count vector

CCS��
 is of course given by the sum of the �ring times
of all the transitions weighted by the �ring count vector
itself� Since the net is live all transition must be �reable�
and the sum of all �ring times multiplied by the number
of occurrences of each transition in the �unique� average
cycle of the model corresponds to any complete sequen�
tialization of all the activities represented in the model�

This lower bound is always reached in an MG consist�
ing of a single loop of transitions and containing a single
token in one of the places� independently of the higher
moments of the PDFs �this observation can be trivially
con�rmed by the computation of the upper bound� which
in this case gives the same value��
To improve this trivial lower bound let us �rst consider

the case of ��enabled MGs �i�e� strongly connected MG
in which E�t� � � for all transitions t�� Of course live
and safe MGs are guaranteed to be ��enabled� but the
result that we are going to present apply to more general
cases� If we specify only the mean values of the transition
�ring times and not the higher moments� we may always
�nd stochastic models whose steady�state throughput is
arbitrarily close to the trivial lower bound� independently
of the topology of the MG �only provided that it is ��
enabled�� Let us give a formal proof of this �somewhat
counter�intuitive� result�

LEMMA ��� �
 � � there exists a family of random
variables xi���� with expected value E
xi����
 � 
 �� �
� � �� �i � � and with coe
cient of variation ranging
from � to � for decreasing values of � � � � �� and 	xed
values of i � �� This family is de	ned as�

xi���� �

�
� with probability �
 �i
�
�i

with probability �i

PROOF� E
xi����
 � 
 is straightforward to compute�

E
�xi�����
�

 � ��

�i
implies that the coe�cient of variation

is � for � � �� and that it tends to � as � � � provided
that i � ��

THEOREM ��� For any live and safe MG with a spec�
i	cation of the mean 	ring times �j for each tj � T it
is possible to assign PDFs to the transition 	ring times
such that the average cycle time is � �

P
j �j 
 O���

�� � � � �� independently of the topology of the net �and
thus independently of the potential maximum degree of
parallelism intrinsic in the MG�� �We use here the no�
tation O�f�x�� to indicate any function g�x� such that

limx��
g�x	
f�x	 � k � IR��

PROOF� by construction� we will show that the asso�
ciation of the family of random variables xj���j

��� with
each transition tj � T yields exactly the cycle time
� claimed by the theorem� To give the proof we will
consider a sequence of models ordered by the index of
transitions� in which the q�th model of the sequence has
transitions t�� t�� � � � tq timed with the random variables

xj���j
���� and all other transitions immediate ��ring in

zero time�� the jT j�th model in the sequence represents
an example of reachability of the lower bound� indepen�
dent of the net topology� Now we will prove by induction
that the q�th model in the sequence has a cycle time
�q �

Pq

j�� �j 
O���
Base� q � � � trivial since the repetitive cycle that

constitute the steady�state behaviour of the MG contains
�



only one �single�server� deterministic transition with av�
erage �ring time �� � ���
Induction step� q � � � taking the limit � � �� the

newly timed transition tq will �re most of the times with
time zero� thus normally not disturbing the behaviour
of the other timed transition� and not contributing to
the computation of the cycle time� that will be just
�q�� �

Pq��
j�� �j 
 O��� �as in the case of model q 
 ��

with probability �
 �q��� On the other hand� the newly
timed transition has a �very small� probability �q�� of

delaying its �ring of a time
�q
�q�� � which is at least order

of �
�
bigger than any other �ring time in the cycle� so

that in this case all other transitions will wait for the
�ring of tq after having completed their possible current
�rings in a time which is O��� lower than the �ring time

of tq itself �i�e��
�q
�q�� �

�q��

O��	 �� Therefore we obtain that

�q � ��
�q����q����q���
�q
�q��
O���� �

Pq

j�� �j
O����
Q�E�D�
Until now we have shown that the trivial sum of the

average �ring times of all transitions in the net consti�
tutes a tight �reachable� lower bound for the performance
of a live and safe MG �or more generally of a ��enabled
strongly connected MG� but otherwise independently of
the topology� in which only the mean values and nei�
ther the PDFs nor the higher moments are speci�ed for
the transition �ring times� Let us now extend this result
to the more general case of k�enabled strongly connected
MGs� and see whether we can derive some reachable lower
bound�
An intuitive idea could be to try to derive a lower

bound for MG containing transitions with enabling
bound k � � �remember that for MGs E�t� � SE�t��
by taking the algorithm used for the computation of the
upper bound in the case of non�safe MG� and substitute
in it the �max� operator with the sum of the �ring times
of all transitions involved� After some manipulation to
avoid counting more than once the contribution of the
same transition� one can arrive at the formulation of the
following value for the maximum cycle time�

THEOREM ��� For any live and bounded MG with a
speci	cation of the mean 	ring times �j for each tj � T
it is not possible to assign PDFs to the transition 	ring
times such that the average cycle time is greater than

�max �
X
j

�j
E�tj�

independently of the topology of the net �and thus inde�
pendently of the potential maximum degree of parallelism
intrinsic in the MG��

PROOF� we give in the following a proof of this results
by constructing some auxiliary MG models� These auxil�
iary models are obtained by adding structural constraints
on the �ring of the transitions with respect to the orig�
inal one� in such a way that the performance may only
remain the same or decrease� and than verify that their
maximum cycle time is � � �max�

����� Construction to demonstrate the Theorem

LEMMA ��� Any strongly connected MG can be con�
straint to contain a main cycle including all transitions�
without changing their enabling bound� This main cycle
contains a number of tokens equal to the maximum of the
enabling bounds among all transitions� In addition there
are other minor cycles that preserve the enabling bounds
for transitions with bound lower than the maximum� The
idea behind this constrain is to introduce a structural se�
quentialization between all transitions� thus potentially
reducing the degree of parallelism between the activities
modelled by the transitions� In other words from the par�
tial order given by the initial MG structure we try to de�
rive a total order without changing the enabling bound�

PROOF� To construct an MG of the desired form we can
apply the following iterative procedure that interleaves
two non�disjoint cycles into a single one� Since the MG
is strongly connected each node belongs to at least one
cycle� moreover� since the original MG is �nite and each
cycle cannot contain the same node more than once� this
cycle interleaving procedure must terminate after a �nite
number of iterations� To reduce the number of cycles� im�
plicit places created after each iteration can be removed�
The iteration step is the following�

�� take two arbitrary non�disjoint cycles �unless the
MG already contains a main cycle including all
nodes� there always exists such a pair of cycles be�
cause the MG is strongly connected��

�� combine them in a single cycle in such a way that
the partial order among transitions given by the two
original cycles is substituted by a compatible but
otherwise arbitrary total order� This combination
can be obtained by adding new places that are con�
nected as input for a transition of one cycle and out�
put for a transition of the other cycle that we decide
must follow in the sequence determined by the new
cycle we are creating�

�� mark the new places added in such a way that the
new cycle contains the same number of tokens as the
maximum of the number of tokens in the two original
cycles�

Consider as an example of the application of this iterative
step the net depicted in Figure �a� This net contains
only two cycles� namely t��t��t�� and t��t��t�� we can
then add either the cycle t��t��t��t� or t��t��t��t�� Figure
�b depicts the resulting net in case we choose to add
the second cycle� In this case only place p� �from t� to
t�� needs to be added to obtain the longer cycle� and
it should be marked with one token� so that the new
cycle comprising places p��p��p��p� contains two tokens�
as the original cycle p��p��p� �while the other original
cycle p��p��p� contained only one��
The above procedure is applied iteratively until all

transitions are constrained into a single main cycle� In
�
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Figure �� Example of structural sequentialization�

our example� we need not iterate the procedure since we
already have obtained a cycle containing all transitions of
the MG� At this point we can identify and eliminate the
implicit places that have been created during the cycles
interleaving procedure� We obtain then an MG composed
by one main cycle containing NM � maxt�T E�t� tokens
that connects all transitions� and a certain number of mi�
nor cycles containing less tokens than NM that maintain
the enabling bound of the other transitions� In our ex�
ample we can easily see that place p� become implicit in
Figure �b� so that it can be eliminated� �nally leading
ourselves to the MG depicted in Figure �c�

Q�E�D�

It is evident that the MG transformed by applying the
above Lemma has a cycle time which is greater than or
equal to the cycle time of the original one� since some
additional constraints have been added to the enabling
of transitions� thus the cycle time of the transformed MG
is a lower bound for the performance of the original one�
Now if NM � � in the above lemma� we re��nd the lower
bound of Theorem ���� In the case of NM � � we can
show that the cycle time of the transformed net cannot
exceed �max as follows�

PROOF for Theorem ���� without loss of generality�
assume that transitions in the net resulting from the ap�
plication of Lemma ��� are partitioned in two classes
S� and S�� with enabling bounds K� � NM � � and
K� � NM � respectively �the proof is easily extended to
the case of more than two classes�� Construct a new
model containing only K� tokens in the main cycle� at
this point all transitions behave as K��servers� so that
the cycle time is given by the sum of the �ring times
of all transitions� divided by the total number of cus�
tomers in the main loop K�� moreover the delay time
for the transitions belonging to class S� is simply given

by D� �
P

tj�S�
�j � Now if we increase the number of

tokens in the main loop from K� to K� the delay time
of S� cannot increase� so that the contribution of S� to
the cycle time cannot exceed D� for each of the �rst K�

tokens� Under the hypothesis that the throughput of
the system is given by the inverse of �max �i�e�� assum�
ing X � �

�max
�� the average number of tokens of the

main loop computed using Little�s formula cannot ex�
ceed N� � XD�� therefore the average number of tokens
available to �re transitions in S� cannot be lower than

N� � K� 
N� � K�

K��K�

K�

P
tj�S�

�j �
P

tj�S�
�jP

tj�S�
�j �

K�

K�

P
tj�S�

�j

On the other hand� we need only

N� � XD� � K�
D�P

tj�S�
�j �

K�

K�

P
tj�S�

�j

tokens to sustain throughput X in subnet S�� so that we
are assuming a delay in S�

D� �
K� 
K�

K�

X
tj�S�

�j �
X
tj�S�

�j

Now we claim that this is the actual maximum delay
because the �rst K� tokens can proceed at the maxi�
mum speed in the whole net� thus experiencing only de�
lay
P

tj�S�
�j in subnet S�� while the remaining K�
K�

tokens can also queue up for travelling through S�� thus
experiencing an additional delay of �

K�

P
tj�S�

�j each�
Q�E�D�

	�� Reachability of the lower bound

The lower bound in performance given by the computa�
tion of �max as de�ned in Theorem ��� can be shown to

�



be reachable for any MG topology and for some assigne�
ment of PDF to the �ring delay of transitions� exploiting
the reachability of the trivial bound shown in Theorem
��� for ��enabled MGs�

THEOREM ��� For any strongly connected MG with
a speci	cation of the mean 	ring times �j for each tj � T �
and for all � � � � �� it is possible to assign PDFs to the
transition 	ring times such that the average cycle time
is�

�max �
X
j

�j
E�tj�


O���

independently of the topology of the net �and thus inde�
pendently of the potential maximum degree of parallelism
intrinsic in the MG��

PROOF� by construction� in a very similar way than in
the case of Theorem ���� The only technical di	erence is
that now� without any loss of generality� we assume �rst
of all to enumerate transitions in non�increasing order
of enabling bound� i�e�� rename the transitions in such
a way that �ti� tj � T � i � j �	 E�ti� � E�tj��
Then� as in the case of Theorem ���� we will show that
the association of the family of random variables xj���j

���
with each transition tj � T yields exactly the cycle time
�max claimed by the theorem� To give the proof we will
consider a sequence of models ordered by the index of
transitions� in which the q�th model of the sequence has
transitions t�� t�� � � � tq timed with the random variables

xj���j
���� and all other transitions immediate ��ring in

zero time�� the jT j�th model in the sequence represents
the resulting model that is expected to provide the ex�
ample of reachability of the lower bound� Now we will
prove by induction that the q�th model in the sequence
has a cycle time

�q �

qX
j��

�j
E�tj�


O���

Base� q � � � trivial since the repetitive cycle that consti�
tute the steady�state behaviour of the MG contains only
one �E�t���server� deterministic transition with average
�ring time �� � ���E�t���
Induction step� q � � � taking the limit � � �� each

server of the newly timed transition tq will �re most of
the times with time zero� thus normally not disturbing
the behaviour of the other timed transition� and not con�
tributing to the computation of the cycle time� that will
be just �q �

Pq��
j��

�j
E�tj	


 O��� �as in the case of model

q 
 �� with probability � 
 �q��� On the other hand�
each of the servers of the newly timed transition has a
�very small� probability �q�� of delaying its �ring of a

time
�q
�q�� � which is at least order of �

�
bigger than any

other �ring time in the cycle� Now if E�tq� � �� then
the proof is completed� since also �j � q E�tj� � � by
hypothesis� and we reduce to the induction step of the
proof of Theorem ���� Instead if E�tq� � � then we can
consider E�tq� consecutive �rings of tq � and compute the

average �ring time as the total time to �re E�tq� times
the transition� divided by E�tq�� Now if we consider m
consecutive �rings of instances of transition tq we obtain
an average delay�

�X
j�m��

��
 �q���
j
��q��	�m�j	

�m
 j��q
��q��	

� �q�� �O����

Therefore the average cycle time of the q�th model will
be

�q � ��
O��q�����q���
�q

E�tq�
���O���� �

qX
j��

�j
E�tj�


O��

Q�E�D�

	�� A polynomial algorithm to compute

the lower bound

First of all we recall that in the case of live MGs the
enabling bound equals the structural enabling bound for
each transition� thus we present a characterization of the
problem of the determination of the structural enabling
bound in terms of a Linear Programming problem� which
is known to be solvable in polynomial time�
For any transition t � T � the computation of the struc�

tural enabling bound SE�t� can be formulated in terms
of the following LPP�

SE�t� � max 	

s�t� M � M� � C��

M � 	PRE
t


M � �� �� � �

by de�nition� Then we can observe that the vector M is
redundant in the system of linear inequalities� so that we
can remove it� obtaining�

SE�t� � max 	

s�t� M� � C�� � 	PRE
t


M� � C�� � �� � � �

Alternatively� we can switch to the dual LPP�

SE�t� � min Y TM�

s�t� Y TC � �

Y TPRE
t
 � �

Y T � �

Now we can recall that strongly connected MGs are
consistent nets with a single minimal T�semi�ow which
is the vector��� so that the constraint �� � � can be relaxed
in the primal problem� The e	ect on the dual problem of
this relaxation is the transformation of the �rst constraint
into Y TC � �� In other words� the dual problem for the
computation of SE�t� can be rewritten as follows�

SE�t� � min Y TM�

s�t� Y TC � �

Y TPRE
t
 � �

Y T � �
�



This LPP is less complex to solve with the simplex algo�
rithm than the original dual problem because it involves
the introduction of fewer slack variables�
Because of the minimization requirement� the optimum

of the objective function is always achieved with elemen�
tary P�semi�ows Y � In case of MGs� these elementary
P�semi�ows can only be elementary cycles� so that we
can give the following interpretation of the dual LPP in
net terms� the enabling bound for a transition t of a
strongly connected MG is given by the minimum num�
ber of tokens contained in any cycle of places containing
transition t� In a non�strongly connected MG there can
be no such cycle� so that this number can be in�nite�
As �nal remarks we can state the following�

a� Liveness for a strongly connected MG can be a
byproduct of a more general �polynomial complex�
ity� computation�

hN �M�i is a live MG 
	 �t � T SE�t� � ��

b� If the MG is known to be live for M�� and �t � T
such that SE�t� � �� then �t� � T belonging to the
same cycle denoted by Y in the corresponding LPP�
SE�t�� � ��

� Conclusions

In this paper we have addressed the problem of comput�
ing upper and lower bounds for the throughput of sys�
tems modelled by means of strongly connected stochastic
MGs� Both bounds can be computed by means of proper
Linear Programming problems on the incidence matrix
of the net� whose solution is known to be of worst case
theoretical polynomial complexity� As a by�product� we
can characterize the liveness of a MG in terms of non�null
throughput for all its transitions� so that we obtained an
alternative proof of a recently obtained result on the poly�
nomiality of the liveness problem for MGs 
ES��
� This
shows an example of possible interleaving between quali�
tative and quantitative analysis for timed and stochastic
Petri nets�
The upper bound on throughput for MGs was �rst pro�

posed by Ramchandani in ����� and then re�discovered
and or re�interpreted by many others� in the framework
of the study of the exact performance of timed Petri nets
with deterministic timing� The contributions given by
this paper in this sense are three� an alternative refor�
mulation in terms of Linear Programming problems� the
proof that this case represents an upper bound in perfor�
mance independently of the probability distribution also
in the framework of stochastic Petri nets� the proof that
the upper bound is reachable not only by deterministic
but also by stochastic models� with arbitrary values of
coe�cient of variations�
The lower bounds on throughput presented in this pa�

per as well as the concept of enabling bound for tran�
sitions are new results� The lower bound in through�
put consisting in the inverse of the sum of the �ring

times of all transitions divided by their respective en�
abling bounds reduces to the trivial sequentialization of
all transitions in the case of safe nets� but has been shown
to be reachable with some probability distribution when
the coe�cient of variation increases� The concept of en�
abling bound generalizes the usual one of enabling for a
transition� and provides another example of possible in�
terleaving between qualitative and quantitative analysis
for timed and stochastic Petri nets�

This work can be extended in two directions� by con�
sidering classes of Petri nets behaviourally �similar� to
MGs� as done in the companion paper 
CCS��
� or by
removing some behavioural restriction� Work is still in
progress for the case of unbounded MGs� for which the
extension of the results presented in this paper is not
trivial� In particular� some �trivial� extensions suggested
by many authors that studied the case of deterministic
bounded MGs �like� e�g�� 
Mag��
� appear not to work in
the case of unbounded MGs�
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A Petri net de�nitions and nota�

tion

A�� Net structure

A place�transition net N is a ��tuple N �
hP� T� Pre� Posti� where

� P is the set of places �jP j �n��

� T is the set of transitions �P � T � �� �jT j �m��

� Pre �Post� is the pre� �post�� incidence function repre�
senting the input �output� arcs Pre � P � T � IN
�Post � P � T � IN�

The pre� and post�set of a transition t � T are de�
�ned respectively as �t � fpjPre�p� t� � �g and t� �
fpjPost�p� t� � �g� The pre� and post�set of a place p � P
are de�ned respectively as �p � ftjPost�p� t� � �g and
p� � ftjPre�p� t� � �g�
The incidence matrix of the net C � 
cij 
 �� � i �n�

� � j �m� is de�ned by cij � Post�pi� tj� 
 Pre�pi� tj��
Similarly the pre� and post�incidence matrices are de�
�ned as PRE � 
aij 
 and POST � 
bij 
� where aij �
Pre�pi� tj� and bij � Post�pi� tj��

A�� Token game

A function M � P � IN is called a marking� A marking
M can be represented in vector form� with the ith com�
ponent associated with the ith element of P � A marked
P�T net hN �M�i is a P T net N with an initial marking
M��
A transition t � T is enabled in marking M i	 �p � P

M�p� � Pre�p� t�� A transition tj enabled in M can 	re
yielding a new marking M � de�ned by M ��p� � M�p�

Pre�p� tj��Post�p� tj� �or in vector form�M �
i
 �M 
i
�
C
i� j
�� The notation M 
tiM � denotes that transition t

��



is enabled in M and that M � is reached from M by �ring
t in it�
A �nite sequence of transitions � � t�t� � � � tn is a 	nite

	ring sequence of hN �M�i i	 there exist a sequence of
markings such that M�
t�iM�
t�iM� � � � 
tniMn� In this
case� marking Mn is said to be reachable from M� by
�ring �� and this is denoted by M�
�iMn� Similarly� an
in	nite 	ring sequence � � t�t� � � � is de�ned for hN �M�i
i	 there exist an in�nite sequence of markings such that
�i � IN Mi��
tiiMi�
The notation M 
�i denotes a �rable sequence � from

marking M � The function �� � T � IN is the 	ring
count vector of the �rable sequence �� i�e� ��
t
 represents
the number of occurrences of t � T in �� If M�
�iM �
then we can write in vector form M � M� � C��� which
is referred to as the linear state equation of the net� A
marking M � is said to be potentially reachable i	 ��� � �
such that M � � M� � C���

A�� Basic properties

The reachability set R�N �M�� is the set of all mark�
ings reachable from the initial marking� Denoting by
PR�N �M�� the set of all potentially reachable markings
we have the following relation� R�N �M�� � PR�N �M���
L�N �M�� is the set of all �ring sequences and their
su�xes in hN �M�i� L�N �M�� � f�jM 
�i and M �
R�N �M��g�
A place p � P is said to be k�bounded i	 �M �

R�N �M�� M�p� � k� A marked net hN �M�i is said
to be �marking� K�bounded i	 each of its places is K�
bounded� A net N is structurally bounded i	 �M� the
marked nets hN �M�i are K�bounded for some K � IN �
A transition t � T is live in hN �M�i i	 �M �

R�N �M�� �M � � R�N �M� such that M � enables t� The
marked net hN �M�i is live i	 all its transitions are live
�i�e� liveness of the net guarantees the possibility of an in�
�nite activity of all transitions�� A net N is structurally
live i	 �M� such that the marked net hN �M�i is live� The
marked net hN �M�i is deadlock�free i	 �M � R�N �M��
�t � T such that M enables t�
A repetitive component is a function �vector� X � T �

IN such that X �� � and C �X � �� A consistent repetitive
component �or T�semi�ow � is a repetitive component X
such that C � X � �� A conservative component �or P�
semi�ow � is a function �vector� Y � P � IN such that
Y �� � and Y T � C � �� The support of �T� and P��
semi�ows are de�ned by jjX jj � ft � T jX�t� � �g and
jjY jj � fp � P jY �p� � �g� A �T� or P�� semi�ow I is
minimal support i	 there exist no other semi�ow I � such
that jjI �jj � jjI jj� A �T� or P�� semi�ow is canonical i	
the greatest common divisor of its components is �� A
�T� or P�� semi�ow is elementary i	 it is canonical and
minimal support�
A net N is repetitive if there exist a repetitive com�

ponent X � ��� A net N is consistent if there exist a
T�semi�ow X � ��� A net N is conservative if there exist
a P�semi�ow X � ���

A�	 Additional properties

An implicit place is one which never restricts the �ring
of its output transitions� Let N be any net and Np be
the net resulting from adding a place p to N � If M� is
an initial marking of N � M� �m��p� denotes the initial
marking of Np� The place p is implicit in the marked net
hNp�M� �m��p�i i	 L�Np�M� �m��p�� � L�N �M���
A livelock is a maximal subset of strongly connected

states that have no connections outside the subset itself�

DEFINITION A�� 
BV��
� 
Bra��
 A marked Petri
net has the directedness �or con�uence� property i� for
all pair of reachable markings� M�
��iM� andM�
��iM��
there exist two sequences ��� and ��� such that M�
�

�

�iM
and M�
�

�

�iM �

DEFINITION A�� M � R�N �M�� is a home state i�
�Mi � R�N �M�� � M � R�N �Mi��

DEFINITION A�� A marked net is reversible i� its
initial marking is a home state�

A�� Marked Graphs

DEFINITION A�� 
CHEP��
 MGs are ordinary Petri
nets �pre and post incidence functions taking values in
f�� �g� such that j�pj � jp�j � ���p � P �

PROPERTY A�� MGs are structurally persistent
nets�

THEOREM A�� 
Mur��
 Let hN �M�i be a live �pos�
sibly unbounded� MG� The two following statements are
equivalent�

i� M � R�N �M��� i�e� M is reachable from M��

ii� Bf �M � Bf �M�� with Bf the fundamental circuit
matrix of the graph� and M � ��

According to the above theorem M � R�N �M�� �
M� � R�N �M�� In other words�

PROPERTY A�� Live MGs are reversible�

PROPERTY A�� Let N be a MG�

i� N is structurally bounded �i�e� hN �M�i is bounded
�M�� i� it is strongly connected�

ii� Let hN �M�i be live� Then hN �M�i is bounded i� N
is structurally bounded�

��



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


