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Abstract

The problem of computing both upper and lower bounds
for the steady-state performance of timed and stochastic
Marked Graphs is studied. In particular, Linear Pro-
gramming problems defined on the incidence matrix of
the underlying Petri nets are used to compute tight (i.e.,
reachable) bounds for the throughput of transitions for
live and bounded Marked Graphs with time associated
with transitions. These bounds depend on the initial
marking and the mean values of the delays but not on the
probability distributions (thus including both the deter-
ministic and the stochastic cases). Connections between
results and techniques typical of qualitative and quanti-
tative analysis of Petri models are stressed.

1 Introduction

One of the main problems in the actual use of timed and
stochastic Petri net models for the performance evalu-
ation of large systems is the explosion of the compu-
tational complexity of the analysis algorithms. Exact
performance results are usually obtained from the nu-
merical solution of a Markov chain, whose dimension is
given by the size of the state space of the model. Simpli-
fied methods of computational complexity polynomial on
the size of Petri net description would provide a striking
break-through in this field, but results of this type are
unlikely to be achievable for the computation of exact
performances for general models.

In this paper we study the possibility of obtaining (up-
per and lower) bounds on the steady-state performance
of Marked Graphs (MG), a well known subclass of Petri
nets that allow only concurrency and synchronization but
no choice. In particular we study the throughput of tran-
sitions, defined as the average number of firings per unit
time. From this quantity, applying Little’s formula it is
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possible to derive all average performance estimates of
the model. Under these restrictions we will show results
that can be computed in polynomial time on the size of
the net model, and that depend only on the mean values
and not on the higher moments of the probability distri-
butions of the random variables that describe the timing
of the system. Our approach differs from that of Mol-
loy [Mol85] in that we analyze a net with a given initial
marking instead of computing a limiting behaviour for
increasing number of tokens. In a sense we have taken
a complementary approach with respect to that of Bru-
ell and Ghanta [BG85], that assumed exponentially dis-
tributed random delays and bounded the effect of syn-
chronization. Our independence of the probability dis-
tribution can be viewed as a useful generalization of the
performance results, since higher moments of the delays
are usually unknown for real cases, and difficult to esti-
mate and assess. Moreover we show that both upper and
lower bounds, computed by means of proper Linear Pro-
gramming problems, are tight, in the sense that for any
MG model it is possible to define families of MG models
with stochastic timings, such that the steady-state per-
formances of the timed PN models are arbitrarily close
to either bound.

In a Petri net there is an obvious relation between the
concepts of steady-state behaviour and that of repeatable
firing sequences: sequences of transitions that are repeat-
able only a finite number of times cannot contribute to
the steady-state performance of the model. In the partic-
ular case of safe MGs, this relation can be made evident
by looking at the occurrence nets that describe their be-
haviours [WT85].

Figure 1 depicts an example of a live and safe MG.
It is easily seen that only sum and “max” operators are
needed to compute the performance: indeed the actual
cycle time in this example is the random variable v =
71 + max(7s, 73) + 74 (where 7; denotes the firing delay of
transition t7), therefore the average cycle time is I' =

E[n] + E[max (72, 73)] + E[14] = 61 + E[max(72,73)] + 64

(where 6; denotes the average firing delay of transi-
tion ti). The idea is that of computing fast bounds
based only on the knowledge of the first moments of
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Figure 1: Example of a safe MG.

PDF: the sum is independent of the probability distri-
bution (for linearity); since for non-negative variables
x; < max;(z;) < Y, w5, Elmax;(x;)] can be bounded
by max;(E[z;]) < E[max;(z;)] < ), E[z;]. Therefore
for the net in Figure 1 we can write:

01 +max(92,03)+04 <I'<H,+65+0;+04

The paper is organized as follows. Section 2 contains
a discussion of the implications that the introduction of
a timing semantics has on the behaviour of a Petri net
model. In particular the concepts of enabling bound and
weak ergodicity are defined. Sections 3 and 4 present the
upper and lower bounds, respectively. Section 5 contains
some concluding remarks and considerations on possible
extensions of the work. In the Appendix the notation
and some classical results for Petri nets are collected.

2 Stochastic
nets

interpretation of

In the original definition, Petri nets did not include the
notion of time, and tried to model only the logical be-
haviour of systems by describing the causal relations ex-
isting between otherwise unrelated events. This approach
showed its power in the specification and analysis of con-
current systems in a non-interleaved way, i.e. in a primi-
tive way independent of the concept of time. Nevertheless
the introduction of timing specification is essential if we
want to use this class of models for an evaluation of the
performance of distributed systems.

2.1 Timing and firing process

Since Petri nets are bipartite graphs, historically there
have been two ways of introducing the concept of time
in them, namely, associating a time interpretation with
either places [Sif78] or transitions [RamT74]. Moreover,
in the case of timed transition models, two different fir-
ing rules have been defined: single phase (atomic) firing,
and three phase (start-firing with deletion of the input
tokens, delay, and end-firing with creation of the output
tokens). In summary, using timed place or timed transi-
tion models with three phase firing we can define a policy

for conflict resolution independent of the time specifica-
tion but we cannot model preemption; on the other hand,
using timed transition models with single phase firing
we can model preemption but we cannot define conflict
resolution policies indepent of the timing specification
(unless introducing the concept of immediate transitions
[AMBC84] that adds one degree of freedom, but is still
part of the timing specification).

In any case, from the analysis of the different choices,
it follows that the only effect of these different timing in-
terpretations on the performance evaluation of a model
is due to the different implications that the choices have
on the resolution of conflicts. Since in the context of this
work we are considering a class of nets in which there are
no conflicts, we do not have to fully choose one partic-
ular interpretation: we only say that we consider timed
transition MGs.

2.2 Single versus multiple server seman-
tics: enabling bound

Another possible source of confusion in the definition of
the timed interpretation of a PN model is the concept of
“degree of enabling” of a transition (or re-entrance). In
the case of timing associated with places, it seems quite
natural to define an unavailability time which is inde-
pendent of the total number of tokens already present
in the place, an this can be interpreted as an “infinite
server” policy from the point of view of queueing theory.
In the case of time associated with transitions, it is less
obvious a-priori whether a transition enabled k times in
a marking should work at conditional throughput 1 or
k times that it would work in the case it was enabled
only once. In the case of Stochastic PNs with exponen-
tially distributed firing times associated with transitions,
the usual implicit hypothesis is to have “single server”
semantics (see, e.g., [FN85a], [Mol82]), and the case of
“multiple server” is handled as a case of firing rate de-
pendent on the marking; unfortunately this trick cannot
work in the case of more general probability distributions,
and in particular cannot be used in the case of determin-
istic timings. This is the reason why people working with
deterministic timed transition PN prefer an infinite server
semantics (see, e.g., [Zub85], [RP84], [HV87]). Of course
an infinite server transition can always be constrained
to a “k—server” behaviour by just reducing its enabling
bound to k, as we will see later.

Therefore the infinite server semantics appears to be
the most general one, and for this reason it will be
adopted in this work. However this generality of the infi-
nite server assumption will be payed in terms of complex-
ity of the algorithms for the computation of performance
bounds. Indeed the performance of a model with infinite
server semantics does depend on the maximum degree of
enabling of the transitions. For this reason we introduce
here a concept of degree of enabling of a transition: the
enabling bound E(t). It allows us to generalize the clas-
sical concept of enabling of a transition (a generalization



of the concept of liveness of a transition is presented in
[CCS89)).

DEFINITION 2.1 Enabling bound. Let (N, M) be a
marked PN, Vt € T

E(t) = max k

st. AM € R(N,My) : M > kPREJ]

From the above definition it appears clear how it is
possible to obtain a k—server transition from an infinite
server one: adding one place that is both input and out-
put (with multiplicity 1) for that transition and marking
it with k tokens.

The definition above refers to a behavioural prop-
erty that depends on the reachability graph of a PN.
Since we are looking for computational techniques at
the structural level, we can also introduce the structural
counterpart of the concept. Structural net theory has
been developed from two complementary points of view:
graph theory [Bes86] and mathematical programming (or
more specifically linear programming and linear algebra)
[SC8T7]. Let us introduce our structural definition from
the mathematical programming point of view; essentially
in this case the reachability condition is substituted by
the weaker (linear) constraint that markings satisfy the
net state equation: M = My + C&, with M, > 0.

DEFINITION 2.2 Structural enabling bound: ¥Vt € T

SE(t) = max k
st. 33> 0,M = My + C& > kPREJt]

Note that, the definition of structural enabling bound
reduces to the formulation of a Linear Programming
problem [Mur83] using matrix C (the incidence matrix of
the PN). For MGs the behavioural concepts always col-
lapse into the structural ones. In fact, according to Theo-
rem A.1, for any MG M € R(My) iff M = My+C&AG >
0. This allows an efficient computation of enabling bound
based on the Linear Programming problem that charac-
terizes the structural enabling bound.

In case of non-strongly connected MGs it is possible
to obtain SE(t) = oo for some transition ¢; this creates
no harm: because of the assumption of an infinite server
semantics, it only implies that the timing of that transi-
tion does not affect the steady-state performance of the
model.

2.3 Ergodicity, measurability, bounds

In order to be able to speak about steady-state perfor-
mance we have to assume that some kind of “average
behaviour” can be estimated on the long run of the sys-
tem we are studying. The usual assumption in this case
is that the system models must be (strongly) ergodic (see
definitions of ergodicity in [FN85b]). This assumption is
very strong and difficult to verify in general; moreover,
it creates problems when we want to include the deter-
ministic case as a special case of a stochastic model (see

[CCS89]). Thus we introduce the concept of weak ergod-
icity that allows the estimation of long run performances
also in the case of deterministic models.

DEFINITION 2.3 The marking process of a stochastic
marked net is weakly ergodic (or measurable in long run)
iff the following limit exists:

- 1 T

MY lim —/ M(s)ds < &

T—00 T 0

The firing process of a stochastic marked net is weakly
ergodic (or measurable in long run) iff the following limit
eTists:

According to the above definitions and the properties
listed in the Appendix, strong connectivity and bounded-
ness have equivalent meaning for live MGs. From Prop-
erties A.2, A.3, the following result follows:

COROLLARY 2.1 Strongly connected live MGs have
weakly ergodic marking process.

3 Upper bounds for stochastic
strongly connected MGs

In this and the next Sections, performance bounds for
strongly connected (and thus structurally bounded) MGs
are presented. Strong connectivity of a graph is a well
known problem of polynomial time complexity.

3.1 Upper bound for the steady state
throughput

Let us take into account just the first moments of the
probability density functions associated with transitions.
In the following, let §; be the mean value of the random
variable associated with the firing of transition ¢;, and D
the diagonal matrix with elements 6;, i = 1,...,m.

The limit expected firing count vector per time unit is

Q
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and the mean time between two consecutive firings of a

selected transition, t;,

1
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Then the components of Pre - D - &* - I'; (where &* has
been normalized for having the i** component equal 1)
represent the product of the number of tokens reserved
for firing the transitions and the mean length of time that
these tokens reside in each place between two consecutive
firings of ¢;.

Let M be the limit vector of the average number of to-
kens in all places (i.e. M = lim, o £ [ M(s)ds). Then,



provided that the previous limit exists, M - I'; is the vec-
tor of products of the mean number of tokens and the
length of one cycle and we have:

From this inequality, the minimum cycle time associated
with transition t;, [ can be derived. We take into
account that ™™ must be such that inequality (3) holds
and for some place p; the equality is reached:

anm _ Pre(])-_D-- o*-T; )
M(j)

Since the vector M is unknown, (4) cannot be solved.
Making the product with a P-semiflow Y for any reach-
able marking M:

YU - my=v* - M=yt M (5)
Now, from (3) and (5):
Y' - My-I; >YY . Pre-D-&* -1 (6)
And the minimum cycle time in steady state is:

YT.Pre-D.-5* T M)
= max
v e{P-semiflow} YT Mo

Fmin

Of course, an upper bound for the throughput of ¢; is
1

Let us formulate the previous lower bound for the cy-
cle time in terms of a particular class of optimization
problems that we introduce now.

DEFINITION 3.1 A fractional programming problem
is an optimization problem of the form [Mur83]:

T r+a
max f(l') = m
subject to A-x=b; >0

Ae R, beR’
c,de RY; a,B€ER

A fractional programming problem is said to be homo-
geneous if coefficients o and 3 are equal to zero.

THEOREM 3.1 For any net, the minimum cycle time
associated with transition t; can be computed by the fol-
lowing homogeneous fractional programming problem:

YT.Pre-D-5*-T;
YT - M,

st. YE.0=0

Yy >0, I7-v >0

" = max

(FPP1)

PROOF: Just notice that the optimum can be always
reached with an elementary P-semiflow. If Y* gives us

the optimal solution, Z*, and it is not an elementary
P-semiflow, then

Yr=3 (V) (8)

with Y; elementary P-semiflows and a; > 0, Zle a; =1
(ie. Z* = Y8 (a;Y{-Pre-D-g*-T})). Then a; = * Vi,
all ;- Pre-D-&*-I'; must be equal (if not, the maximum
of them would give a larger value than Z*) and all Y; are
optimal solutions of the problem.
Q.E.D.

Because for MGs ¢* - I; = 1, writing 8 = D - T the
following can be directly stated:

COROLLARY 3.1 The minimum cycle time for
strongly connected MGs can be obtained by solving the
following fractional programming problem:

YT. Pre-6
YT . M,
st. YI.Cc=0
Y>0, IV v >0

'™ — max

(FPP2)

THEOREM 3.2 The minimum cycle time for live
strongly connected MGs can be obtained by solving the
following linear programming problem:

™" = max YT'.Pre-6
st. YE.c=0,Y" - My=1 (LPP1)
Y >0

PROOF: The problem (FPP2) can be rewritten into a
linear problem just taking into account that if we write:

YT. Pre-6

q
st. YI.c=0, q=Y7T. M,
Y >0, IT-v >0

'™ — max

Then, because Y1 - My > 0 (guaranteed for live MGs),
we can change % by Y and obtain the problem (LPP1) in
which I7-Y > 0is redundant (Y7 -My =1 = 17-Y > 0)
and can be removed.

Q.E.D.

It is well known that the simplex method for the solu-
tion of linear programming problems gives good results
in practice, even if it has exponential theoretical worst
case complexity. In any case an algorithm of polyno-
mial theoretical worst case complexity can be found in
[Kar84].

Theorem 3.2 shows that the problem of finding an up-
per bound for the steady-state throughput in a strongly
connected stochastic MG can be solved looking at the
cycle times associated with each P-semiflow (cycles for
MGs) of the net, considered in isolation. These cycle
times can be computed making the summation of the



average firing times of all the transitions involved in the
P-semiflow, and dividing by the number of tokens present
in it.

The above bound is the same that has been obtained
for strongly connected deterministic MGs by other au-
thors (see for example [Ram74], [RH80], [Mur85]), but
here it is considered in a practical LPP form. For these
nets, the reachability of this bound has been shown
([Ram74], [RH80]). Since deterministic timing is just
a particular case of stochastic timing, the reachability
of the bound is assured for our purposes. Even more,
the next result shows that the previous bound cannot
be improved only on the base of the knowledge of the
coeflicients of variation for the transition firing times.

THEOREM 3.3 For strongly connected MGs with ar-
bitrary values of mean and variance for transition firing
times, the bound for the cycle time obtained from (FPP2)
cannot be improved.

PROOF: Let o7 the arbitrary variance associated with
transition t;. We know from [Ram74] that for determin-
istic timing the bound is reached. Let 8; be the average
firing time associated with transition t;. Then there ex-
ists a sequence of families of m distributions with means
6; and variances o7, i = 1,...,m, for which the cycle time
tends to the one obtained from (FPP2).

Consider the family (for varying values of the param-
eter 0 < a < 1):

Xy 0o (a) = O;cx with probability 1 — ¢;
Poo i = 0i(a+ 1=2)  with probability €;

6?(1 — «)?

CT R0 o7

Now, taking « closer to 1 for the previous family of ran-
dom variables, the cycle time tends to the bound given by
(FPP2). This is because only “max” and sum operators
are needed to compute the cycle time and the previous
family of random variables behaves closer to determinis-
tic variables when « tends to 1, i.e.

lim E[max(Xy, s, (a), Xy

a—1

(@))] = max(6;,0;)

and, of course, V0 < a <1
E[Xaiyai (Oé) + X9j,aj (a)] =0; + 9]’

Q.E.D.

A polynomial computation of the minimal cycle time
for deterministic timed strongly connected MGs was pro-
posed in [Mag84], solving the following linear program-
ming problem:

™ = miny
st. —C-z+yMy> Post-0
720, 220

(LPP?2)

To investigate the relationship between (LPP1) and
(LPP2) let us consider the dual problem of (LPP2):
™" = max Y'-Post-6

st. Yr.c<o, YV - My<1
Y >0

(DPP2)

Since MGs are consistent nets, the restriction Y- C <
0 of (DPP2) can be substituted by Y2 - C = 0 (i.e. the
restriction of (LPP1)). For all Y such that Y* - C =0,
YT . Post = YT . Pre. Now, for live nets, YY € N7,
Y # 0 such that Y7 - C =0 then YT - My > 1. Thus the
restriction Y7 - My < 1 of (DPP2) can be substituted by
YT My =1 for live nets (i.e. the restriction of (LPP1)).

Then for live strongly connected MGs, the general
problem (FPP1) takes the linear form (LPP1) which is
equivalent to (LPP2) formulated in [Mag84] for deter-
ministic systems. For non-live nets the problem (FPP1)
has unbounded optimal solution (see Theorem 3.4). This
can be easily understood since non live nets have a null
throughput (infinite minimal cycle time).

3.2 Interpretation and derived results

Linear programming problems give an easy way to derive
results and interpret them. Just looking at the objec-
tive function of the problem (FPP2) the following mono-
tonicity property is obtained: the optimum value for the
minimum cycle time decreases if § decreases or if My in-
creases.

PROPERTY 3.1 Let N be a strongly connected MG
and 6 the mean times vector.

i) For a fized 8, if M} > My (i.e. increasing the number
of initial resources) then the throughput upper bound
of (N, M{,0) is larger than or equal to the one of
(N, Mg, ) (i.e. Dmin" < pmin )

il) For a fixzed My, if @' < @ (i.e. for faster resources)
then the throughput upper bound of (N, My,0') is
larger than or equal to the one of (N, My,0) (i.e.
Fmin' < Fmin)'

The next property is strongly related to the reversibil-
ity of live MGs.

LEMMA 3.1 For live strongly connected MGs, the
bound obtained with the problem (LPP1) does not change
for any reachable marking.

PROOF: Let us consider the minimum cycle time for a
marking M = My+C'-& in terms of a linear programming
problem:
™" = max Y7T.Pre-6
st. Y'.C=0, Y>0

M=M+C-&

vi.m=1

M>0, d>0



Since YT .M = YT . M, this problem is equivalent to:

™" = max Y7 -Pre-0
st. YI.C=0, Y >0
M=M,+C-&
YV - My=1
M>0, >0

Since the restrictions M = My+C-&, M > 0and & > 0
do not affect the solution, they can be removed without
changing the optimum of this problem with respect to
the one of (LPP1).

Q.E.D.

The next is a result on the complexity of the verifi-
cation of liveness for MGs. It has been recently pointed
out in [ES89] by using quite different arguments and tech-
niques. Here liveness is characterized by the finiteness of
the cycle time.

THEOREM 3.4 Liveness of a strongly connected MG
can be decided in polynomial time.

PROOF: We know that for strongly connected MGs, live-
ness and deadlock-freeness coincide. Then for deciding
liveness of a strongly connected MG it is enough to study
the finiteness of the optimal value of (LPP1).

For strongly connected MGs, the optimal value of
(LPP1) is a lower bound for the cycle time. If this opti-
mal value is infinite the cycle time is unbounded so the
net is non live. If the optimal value of (LPP1) is finite,
since it is reachable for some (deterministic [Ram74] as
well as stochastic) timing (cfr. Theorem 3.3), the net
must be live.

Q.E.D.

COROLLARY 3.2 The problem (LPP1) has un-
bounded solution iff Y > 0,Y # 0 such that Y''- My = 0
andY' -C =0

This result has the following topological interpretation:
the problem (LPP1) has unbounded solution iff there ex-
ists an unmarked circuit in the strongly connected MG.

4 Lower bounds for strongly con-
nected MGs

4.1 Basic result for 1-live MG

A trivial lower bound in steady-state performance for
a live PN with a unique repetitive firing count vector
[CCS89] is of course given by the sum of the firing times
of all the transitions weighted by the firing count vector
itself. Since the net is live all transition must be fireable,
and the sum of all firing times multiplied by the number
of occurrences of each transition in the (unique) average
cycle of the model corresponds to any complete sequen-
tialization of all the activities represented in the model.
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This lower bound is always reached in an MG consist-
ing of a single loop of transitions and containing a single
token in one of the places, independently of the higher
moments of the PDFs (this observation can be trivially
confirmed by the computation of the upper bound, which
in this case gives the same value).

To improve this trivial lower bound let us first consider
the case of 1-enabled MGs (i.e. strongly connected MG
in which E(t) = 1 for all transitions t). Of course live
and safe MGs are guaranteed to be 1-enabled, but the
result that we are going to present apply to more general
cases. If we specify only the mean values of the transition
firing times and not the higher moments, we may always
find stochastic models whose steady-state throughput is
arbitrarily close to the trivial lower bound, independently
of the topology of the MG (ouly provided that it is 1—
enabled). Let us give a formal proof of this (somewhat
counter-intuitive) result.

LEMMA 4.1 Vu > 0 there exists a family of random

variables ! (¢) with expected value E[z!,(e)] = p VO <

€ <1, Vi > 0 and with coefficient of variation ranging

from 0 to oo for decreasing values of 0 < € < 1, and fized

values of i > 0. This family is defined as:

2 (e) = { with probability 1- €
£ with probability €

PROOF: E[z!(¢)] =

E[(:UL(E))Z] = ‘:—f implies that the coefficient of variation

is 0 for € = 1, and that it tends to co as € — 0 provided
that ¢ > 0.

u is straightforward to compute.

THEOREM 4.1 For any live and safe MG with a spec-
ification of the mean firing times 6; for each t; € T it
is possible to assign PDFs to the transition firing times
such that the average cycle time is I' = 3 .6; — O(e)
Y0 < € < 1, independently of the topology of the net (and
thus independently of the potential mazimum degree of
parallelism intrinsic in the MG). (We use here the no-
tation O(f(x)) to indicate any function g(x) such that
lim, o 45 <k € R.)
PROOF: by construction, we will show that the asso-
ciation of the family of random variables mé;l(e) with
each transition ¢; € T yields exactly the cycle time
I’ claimed by the theorem. To give the proof we will
consider a sequence of models ordered by the index of
transitions, in which the g-th model of the sequence has
transitions ¢1,?,...¢, timed with the random variables
mg;l(e), and all other transitions immediate (firing in
zero time); the |T'|-th model in the sequence represents
an example of reachability of the lower bound, indepen-
dent of the net topology. Now we will prove by induction
that the g-th model in the sequence has a cycle time
Fq = ?:1 9]' — 0(6)

Base: ¢ = 1 : trivial since the repetitive cycle that
constitute the steady—state behaviour of the MG contains



only one (single-server) deterministic transition with av-
erage firing time I'y = 6.

Induction step: q > 1 : taking the limit ¢ — 0, the
newly timed transition ¢, will fire most of the times with
time zero, thus normally not disturbing the behaviour
of the other timed transition, and not contributing to
the computation of the cycle time, that will be just
L, = Zg;i 6; — O(e) (as in the case of model ¢ — 1)
with probability 1 — e?~. On the other hand, the newly
timed transition has a (very small) probability €?~! of
delaying its firing of a time 63—31, which is at least order
of % bigger than any other firing time in the cycle, so
that in this case all other transitions will wait for the
firing of ¢, after having completed their possible current
firings in a time which is O(e) lower than the firing time

of t, itself (i.e., Ef—ﬁl = B’T’E;) Therefore we obtain that

Ty = (1—e™)0 1 +e7} (4 —0(e)) = L1, 6;—0Ce),
Q.E.D.

Until now we have shown that the trivial sum of the
average firing times of all transitions in the net consti-
tutes a tight (reachable) lower bound for the performance
of a live and safe MG (or more generally of a 1-enabled
strongly connected MG, but otherwise independently of
the topology) in which only the mean values and nei-
ther the PDFs nor the higher moments are specified for
the transition firing times. Let us now extend this result
to the more general case of k—enabled strongly connected
MGs, and see whether we can derive some reachable lower
bound.

An intuitive idea could be to try to derive a lower
bound for MG containing transitions with enabling
bound k£ > 1 (remember that for MGs E(t) = SE(t))
by taking the algorithm used for the computation of the
upper bound in the case of non-safe MG, and substitute
in it the “max” operator with the sum of the firing times
of all transitions involved. After some manipulation to
avoid counting more than once the contribution of the
same transition, one can arrive at the formulation of the
following value for the maximum cycle time.

THEOREM 4.2 For any live and bounded MG with a
specification of the mean firing times 0; for each t; € T
it is not possible to assign PDF's to the transition firing
times such that the average cycle time is greater than

0.
r = J
independently of the topology of the net (and thus inde-

pendently of the potential mazimum degree of parallelism
intrinsic in the MG).

PROOF: we give in the following a proof of this results
by constructing some auxiliary MG models. These auxil-
iary models are obtained by adding structural constraints
on the firing of the transitions with respect to the orig-
inal one, in such a way that the performance may only
remain the same or decrease, and than verify that their
maximum cycle time is I' < ' 40

4.1.1 Construction to demonstrate the Theorem

LEMMA 4.2 Any strongly connected MG can be con-
straint to contain a main cycle including all transitions,
without changing their enabling bound. This main cycle
contains a number of tokens equal to the mazimum of the
enabling bounds among all transitions. In addition there
are other minor cycles that preserve the enabling bounds
for transitions with bound lower than the maximum. The
tdea behind this constrain is to introduce a structural se-
quentialization between all transitions, thus potentially
reducing the degree of parallelism between the activities
modelled by the transitions. In other words from the par-
tial order given by the initial MG structure we try to de-
rive a total order without changing the enabling bound.

PROOF: To construct an MG of the desired form we can
apply the following iterative procedure that interleaves
two non-disjoint cycles into a single one. Since the MG
is strongly connected each node belongs to at least one
cycle; moreover, since the original MG is finite and each
cycle cannot contain the same node more than once, this
cycle interleaving procedure must terminate after a finite
number of iterations. To reduce the number of cycles, im-
plicit places created after each iteration can be removed.
The iteration step is the following:

1. take two arbitrary non-disjoint cycles (unless the
MG already contains a main cycle including all
nodes, there always exists such a pair of cycles be-
cause the MG is strongly connected);

2. combine them in a single cycle in such a way that
the partial order among transitions given by the two
original cycles is substituted by a compatible but
otherwise arbitrary total order. This combination
can be obtained by adding new places that are con-
nected as input for a transition of one cycle and out-
put for a transition of the other cycle that we decide
must follow in the sequence determined by the new
cycle we are creating;

3. mark the new places added in such a way that the
new cycle contains the same number of tokens as the
maximum of the number of tokens in the two original
cycles.

Consider as an example of the application of this iterative
step the net depicted in Figure 2a. This net contains
only two cycles, namely t1,t2,t4, and t1,t3,t4; we can
then add either the cycle t1,t2,t3,t4 or t1,t3,t2,t4; Figure
2b depicts the resulting net in case we choose to add
the second cycle. In this case only place p6 (from t3 to
t2) needs to be added to obtain the longer cycle, and
it should be marked with one token, so that the new
cycle comprising places pl,p3,p6,p4 contains two tokens,
as the original cycle pl,p2,p4 (while the other original
cycle p1,p3,p5 contained only one).

The above procedure is applied iteratively until all
transitions are constrained into a single main cycle. In
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Figure 2: Example of structural sequentialization.

our example, we need not iterate the procedure since we
already have obtained a cycle containing all transitions of
the MG. At this point we can identify and eliminate the
implicit places that have been created during the cycles
interleaving procedure. We obtain then an MG composed
by one main cycle containing Ny, = maxer E(t) tokens
that connects all transitions, and a certain number of mi-
nor cycles containing less tokens than /Ny, that maintain
the enabling bound of the other transitions. In our ex-
ample we can easily see that place p2 become implicit in
Figure 2b, so that it can be eliminated, finally leading
ourselves to the MG depicted in Figure 2c.

Q.E.D.

It is evident that the MG transformed by applying the
above Lemma has a cycle time which is greater than or
equal to the cycle time of the original one, since some
additional constraints have been added to the enabling
of transitions: thus the cycle time of the transformed MG
is a lower bound for the performance of the original one.
Now if Nj; = 1 in the above lemma, we re-find the lower
bound of Theorem 4.1. In the case of Ny > 1 we can
show that the cycle time of the transformed net cannot
exceed I'y, 4. as follows.

PROOF for Theorem 4.2: without loss of generality,
assume that transitions in the net resulting from the ap-
plication of Lemma 4.2 are partitioned in two classes
So and S7, with enabling bounds Ko = Ny > 1 and
K, < Ny, respectively (the proof is easily extended to
the case of more than two classes). Construct a new
model containing only K; tokens in the main cycle; at
this point all transitions behave as Kj—servers, so that
the cycle time is given by the sum of the firing times
of all transitions, divided by the total number of cus-
tomers in the main loop K;; moreover the delay time
for the transitions belonging to class S; is simply given

8

by D; = Zt]—GS1 0;. Now if we increase the number of
tokens in the main loop from K;j to K, the delay time
of Sy cannot increase, so that the contribution of S; to
the cycle time cannot exceed D; for each of the first K3
tokens. Under the hypothesis that the throughput of
the system is given by the inverse of [}, (i.e., assum-
ing X = ﬁ), the average number of tokens of the
main loop computed using Little’s formula cannot ex-
ceed N1 = X D1, therefore the average number of tokens

available to fire transitions in Sy cannot be lower than

Ky—K,y ) .
K1 Etjesl 9] + thes2 0]

.y K» )

Etjesz 9] + K. thesl 0]

On the other hand, we need only

Ny = Ky — N1 = K>

D,
K
thEsz 6] + K_T thesl 0.7

tokens to sustain throughput X in subnet Sy, so that we
are assuming a delay in S,

Ky — K,
t; €51 t; €S2

Ny = XDy =K

Now we claim that this is the actual maximum delay
because the first K; tokens can proceed at the maxi-
mum speed in the whole net, thus experiencing only de-
lay thes2 0; in subnet S2, while the remaining K, — K;
tokens can also queue up for travelling through S;, thus
experiencing an additional delay of 3=, . 6; each.
Q.E.D.

4.2 Reachability of the lower bound

The lower bound in performance given by the computa-
tion of I';,4. as defined in Theorem 4.2 can be shown to



be reachable for any MG topology and for some assigne-
ment of PDF to the firing delay of transitions, exploiting
the reachability of the trivial bound shown in Theorem
4.1 for 1-enabled MGs.

THEOREM 4.3 For any strongly connected MG with
a specification of the mean firing times 8; for eacht; € T,
and for all 0 < € < 1, it is possible to assign PDFs to the
transition firing times such that the average cycle time

18/ 9.
Ciaz = ; E(;J) - 0(6)

independently of the topology of the net (and thus inde-
pendently of the potential mazimum degree of parallelism
intrinsic in the MG).

PROOF: by construction, in a very similar way than in
the case of Theorem 4.1. The only technical difference is
that now, without any loss of generality, we assume first
of all to enumerate transitions in non-increasing order
of enabling bound, i.e., rename the transitions in such
a way that Vti,tj eT,i>j) = E(tz) < E(tj).
Then, as in the case of Theorem 4.1, we will show that
the association of the family of random variables x’a:l (€)
with each transition ¢; € 1" yields exactly the cycle time
[ae claimed by the theorem. To give the proof we will
consider a sequence of models ordered by the index of
transitions, in which the g—th model of the sequence has
transitions ¢, s, ...t timed with the random variables

mé;l(e), and all other transitions immediate (firing in

zero time); the |T'|-th model in the sequence represents
the resulting model that is expected to provide the ex-
ample of reachability of the lower bound. Now we will
prove by induction that the ¢-th model in the sequence
has a cycle time

0 .
rq=§:Eé)—0@

J

=1

Base: ¢ = 1: trivial since the repetitive cycle that consti-
tute the steady—state behaviour of the MG contains only
one (E(t;)-server) deterministic transition with average
firing time 'y = 6,/ E(t1).

Induction step: ¢ > 1 : taking the limit ¢ — 0, each
server of the newly timed transition ¢, will fire most of
the times with time zero, thus normally not disturbing
the behaviour of the other timed transition, and not con-
tributing to the computation of the cycle time, that will
be just I'y = Zg;i % — O(e) (as in the case of model
q — 1) with probability 1 — e?~!. On the other hand,
each of the servers of the newly timed transition has a
(very small) probability €?~! of delaying its firing of a
time Ef—ﬁl, which is at least order of % bigger than any
other firing time in the cycle. Now if E(t,) = 1, then
the proof is completed, since also Vj > ¢ E(t;) = 1 by
hypothesis, and we reduce to the induction step of the
proof of Theorem 4.1. Instead if E(¢,) > 1 then we can
consider E(t,) consecutive firings of ¢4, and compute the

average firing time as the total time to fire E(¢,) times
the transition, divided by E(t,). Now if we consider m
consecutive firings of instances of transition ¢, we obtain
an average delay:

0

Z1vd (=1 (m—q) (M — )0
> (et el ﬂizaz%l=941+0@»
j=m—1
Therefore the average cycle time of the g—th model will
be
L, = (1-0(et )T, 1+ (140() = 3" 22
! U E() Bt

=1

j)—O(‘

Q.E.D.

4.3 A polynomial algorithm to compute
the lower bound

First of all we recall that in the case of live MGs the
enabling bound equals the structural enabling bound for
each transition; thus we present a characterization of the
problem of the determination of the structural enabling
bound in terms of a Linear Programming problem, which
is known to be solvable in polynomial time.

For any transition ¢t € T, the computation of the struc-
tural enabling bound SE(t) can be formulated in terms
of the following LPP:

SE(t) = max «
M > aPRE]Jt]
M>0,6d>0
by definition. Then we can observe that the vector M is

redundant in the system of linear inequalities, so that we
can remove it, obtaining:

SE(t) = max «
s.t. Mo+ Cd > aPRE[t]
Mo + oFi Z 0, g 2 0
Alternatively, we can switch to the dual LPP:
SE()= min YTM,
st. YI'C <0
Y'PRE[l] =1
YT >0
Now we can recall that strongly connected MGs are
consistent nets with a single minimal T-semiflow which
is the vector 1, so that the constraint @ > 0 can be relaxed
in the primal problem. The effect on the dual problem of
this relaxation is the transformation of the first constraint
into YTC = 0. In other words, the dual problem for the
computation of SE(t) can be rewritten as follows:
SE(t)= min Y¥M,
st. YIC=0
YTPRE[] =1
YT >0



This LPP is less complex to solve with the simplex algo-
rithm than the original dual problem because it involves
the introduction of fewer slack variables.

Because of the minimization requirement, the optimum
of the objective function is always achieved with elemen-
tary P-semiflows Y. In case of MGs, these elementary
P-semiflows can only be elementary cycles, so that we
can give the following interpretation of the dual LPP in
net terms: the enabling bound for a transition ¢ of a
strongly connected MG is given by the minimum num-
ber of tokens contained in any cycle of places containing
transition ¢. In a non-strongly connected MG there can
be no such cycle, so that this number can be infinite.

As final remarks we can state the following:

a) Liveness for a strongly connected MG can be a
byproduct of a more general (polynomial complex-
ity) computation:

(N, M) is alive MG <= VteT SE(t) > 0.

b) If the MG is known to be live for My, and 3t € T
such that SE(t) = 1, then Vt' € T belonging to the

same cycle denoted by Y in the corresponding LPP,
SE(t") = 1.

5 Conclusions

In this paper we have addressed the problem of comput-
ing upper and lower bounds for the throughput of sys-
tems modelled by means of strongly connected stochastic
MGs. Both bounds can be computed by means of proper
Linear Programming problems on the incidence matrix
of the net, whose solution is known to be of worst case
theoretical polynomial complexity. As a by-product, we
can characterize the liveness of a MG in terms of non-null
throughput for all its transitions, so that we obtained an
alternative proof of a recently obtained result on the poly-
nomiality of the liveness problem for MGs [ES89]. This
shows an example of possible interleaving between quali-
tative and quantitative analysis for timed and stochastic
Petri nets.

The upper bound on throughput for MGs was first pro-
posed by Ramchandani in 1974, and then re-discovered
and/or re-interpreted by many others, in the framework
of the study of the exact performance of timed Petri nets
with deterministic timing. The contributions given by
this paper in this sense are three: an alternative refor-
mulation in terms of Linear Programming problems; the
proof that this case represents an upper bound in perfor-
mance independently of the probability distribution also
in the framework of stochastic Petri nets; the proof that
the upper bound is reachable not only by deterministic
but also by stochastic models, with arbitrary values of
coefficient of variations.

The lower bounds on throughput presented in this pa-
per as well as the concept of enabling bound for tran-
sitions are new results. The lower bound in through-
put consisting in the inverse of the sum of the firing
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times of all transitions divided by their respective en-
abling bounds reduces to the trivial sequentialization of
all transitions in the case of safe nets, but has been shown
to be reachable with some probability distribution when
the coefficient of variation increases. The concept of en-
abling bound generalizes the usual one of enabling for a
transition, and provides another example of possible in-
terleaving between qualitative and quantitative analysis
for timed and stochastic Petri nets.

This work can be extended in two directions: by con-
sidering classes of Petri nets behaviourally “similar” to
MGs, as done in the companion paper [CCS89], or by
removing some behavioural restriction. Work is still in
progress for the case of unbounded MGs, for which the
extension of the results presented in this paper is not
trivial. In particular, some “trivial” extensions suggested
by many authors that studied the case of deterministic
bounded MGs (like, e.g., [Mag84]) appear not to work in
the case of unbounded MGs.
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A Petri net definitions and nota-
tion

A.1 Net structure

A place/transition net N is a 4-tuple N =

(P, T, Pre, Post), where
- P is the set of places (|P| =n),
- T is the set of transitions (PNT = 0) (|T'] =m),

- Pre (Post) is the pre- (post-) incidence function repre-
senting the input (output) arcs Pre : P x T — IN
(Post : PxT — IN)

The pre- and post-set of a transition ¢ € T are de-
fined respectively as °t = {p|Pre(p,t) > 0} and ¢* =
{p|Post(p,t) > 0}. The pre- and post-set of a place p € P
are defined respectively as *p = {¢|Post(p,t) > 0} and
p* = {t|Pre(p,t) > 0}.

The incidence matriz of the net C' = [¢;;] (1 < @ <n,
1 < j <m) is defined by ¢;; = Post(p;,t;) — Pre(p;, t;).
Similarly the pre- and post-incidence matrices are de-
fined as PRE = [a;;] and POST = [b;;], where a;; =
Pre(p;,t;) and b;; = Post(p;,t;).

A.2 Token game

A function M : P — IN is called a marking. A marking
M can be represented in vector form, with the it* com-
ponent associated with the it* element of P. A marked
P/T net (N, My) is a P/T net N with an initial marking
M.

A transition ¢ € T' is enabled in marking M iff Vp € P
M (p) > Pre(p,t). A transition t; enabled in M can fire
yielding a new marking M’ defined by M'(p) = M(p) —
Pre(p,tj)+ Post(p,t;) (or in vector form, M'[i] = M[i]+
Cli, j]). The notation M[t)M' denotes that transition t



is enabled in M and that M’ is reached from M by firing
t in it.

A finite sequence of transitions o = 1ty ... t, is a finite
firing sequence of (N, M) iff there exist a sequence of
markings such that My[t1)M[te) My ... [t,)M,,. In this
case, marking M, is said to be reachable from My by
firing o, and this is denoted by My[o)M,,. Similarly, an
infinite firing sequence o = t1ts . .. is defined for (N, My)
iff there exist an infinite sequence of markings such that
Vie N Mz—l[tz>Mz

The notation M o) denotes a firable sequence o from
marking M. The function & T — IN is the firing
count vector of the firable sequence o, i.e. &[t] represents
the number of occurrences of ¢ € T in o. If Mylo)M,
then we can write in vector form M = My + C&, which
is referred to as the linear state equation of the net. A
marking M’ is said to be potentially reachable iff 35 > 0
such that M' = My + C&.

A.3 Basic properties

The reachability set R(N, My) is the set of all mark-
ings reachable from the initial marking. Denoting by
PR(N, My) the set of all potentially reachable markings
we have the following relation: R(N', My) C PR(N, My).
L(N, M) is the set of all firing sequences and their
suffixes in (N, Mo): L(N,My) = {o|M[s) and M €
R(Na MO)}

A place p € P is said to be k-bounded iff VM €
R(N,My) M(p) < k. A marked net (N, Mp) is said
to be (marking) K-bounded iff each of its places is K—
bounded. A net N is structurally bounded iff VM, the
marked nets (N, M) are K—bounded for some K € IN.

A transition ¢ € T is live in (N, M) iff VM €
R(N, My) AM' € R(N, M) such that M’ enables t. The
marked net (N, Mp) is live iff all its transitions are live
(i-e. liveness of the net guarantees the possibility of an in-
finite activity of all transitions). A net N is structurally
live iff M such that the marked net (N, My) is live. The
marked net (N, My) is deadlock-free iff VM € R(N', My)
3t € T such that M enables t.

A repetitive component is a function (vector) X : T —
IN such that X # 0 and C-X > 0. A consistent repetitive
component (or T-semiflow) is a repetitive component X
such that C - X = 0. A conservative component (or P-
semiflow) is a function (vector) Y : P — IN such that
Y #0and Y'-C = 0. The support of (T- and P-)
semiflows are defined by || X|| = {t € T|X(¢) > 0} and
Y]] = {p € P|Y(p) > 0}. A (T- or P-) semiflow I is
manimal support iff there exist no other semiflow I’ such
that ||I'|| C ||I]|- A (T- or P-) semiflow is canonical iff
the greatest common divisor of its components is 1. A
(T- or P-) semiflow is elementary iff it is canonical and
minimal support.

A net N is repetitive if there exist a repetitive com-
ponent X > I. A net N is consistent if there exist a
T-semiflow X > 1. A net N is conservative if there exist
a P-semiflow X > T.
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A.4 Additional properties

An implicit place is one which never restricts the firing
of its output transitions. Let N be any net and N, be
the net resulting from adding a place p to N'. If My is
an initial marking of A/, My U mgo(p) denotes the initial
marking of NV,. The place p is implicit in the marked net
(Nys Mo Umo(p)) iff LN, Mo Umo(p)) = LN, Mo).

A livelock is a maximal subset of strongly connected
states that have no connections outside the subset itself.

DEFINITION A.1 [BV84], [Bra83] A marked Petri
net has the directedness (or confluence) property iff for
all pair of reachable markings, Mo[o1) My and My[os) Mo,
there exist two sequences o and o’y such that My[o])M
and My[oh) M.

DEFINITION A.2 M € R(N, M) is a home state iff
VMZ € R(./\/., Mo) M € R(./\/., Ml)

DEFINITION A.3 A marked net is reversible iff its
initial marking is a home state.

A.5 Marked Graphs

DEFINITION A.4 [CHEPT71] MGs are ordinary Petri
nets (pre and post incidence functions taking values in
{0,1}) such that |*p| = |p*| = 1,Vp € P.

PROPERTY A.1 MGs
nets.

are structurally persistent

THEOREM A.1 [Mur77] Let (N, My) be a live (pos-
sibly unbounded) MG. The two following statements are
equivalent:

i) M € R(N, M), i.e. M is reachable from M.

il) By - M = By - My, with By the fundamental circuit
matriz of the graph, and M > 0.

According to the above theorem M € R(N, M) &
My € R(N, M). In other words:

PROPERTY A.2 Live MGs are reversible.

PROPERTY A.3 Let N be a MG.

i) N s structurally bounded (i.e. (N, M) is bounded
Y My) iff it is strongly connected.

it) Let (N, My) be live. Then (N, My) is bounded iff N
is structurally bounded.
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