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Abstract

A class of synchronized queueing networks with deterministic routing is identi�ed to be equiv�
alent to a subclass of timed Petri nets called marked graphs� First some structural and behavioral
properties of marked graphs are recalled and used to show interesting properties of this class of
performance models� In particular� ergodicity is derived from boundedness and liveness of the
underlying Petri net representation� which can be e�ciently computed in polynomial time on the
net structure� In case of unbounded �i�e�� non�strongly�connected� marked graphs� ergodicity is
computed as a function of the average transition �ring delays� Then the problem of computing
both upper and lower bounds for the steady�state performance of timed and stochastic marked
graphs is studied� In particular� linear programming problems de�ned on the incidence matrix of
the underlying Petri nets are used to compute tight �i�e�� attainable� bounds for the throughput
of transitions for marked graphs with deterministic or stochastic time associated with transitions�
These bounds depend on the initial marking and the mean values of the delays but not on the prob�
ability distribution functions �thus including both the deterministic and the stochastic cases�� The
bene�ts of interleaving qualitative and quantitative analysis of marked graph models are shown�

Keywords� Petri nets� marked graphs� structural analysis� synchronized queueing networks� qual�
itative properties� ergodicity� performance evaluation� upper and lower bounds� throughput� linear
programming�

� Introduction

Queueing network models are one of the more popular and classical tools for the performance evalua�
tion of computer systems ���� With the advent of complex distributed systems� many proposals have
been made to extend the modeling power of queueing networks by adding various synchronization
constraints to the basic model ��� 	� 
�� One of the most important characteristics of queueing net�
works determining their popularity was the development of e�cient� polynomial�complexity numerical
solution algorithms� based on their �product form solution
 ���� Unfortunately� the introduction of
synchronization constraints usually destroys this nice property�

More recently� timed and�or stochastic Petri net models have been introduced as a modeling tool
capable of naturally representing synchronization and concurrency ��� �� ��� The intimate relation
between some classes of synchronized queueing networks and some structural subclasses of timed
Petri nets has already been recognized and studied by several authors �	� �� �� ����

One of the main problems in the actual use of timed and stochastic Petri net models for the per�
formance evaluation of large systems is the explosion of the computational complexity of the analysis
algorithms� In general� exact performance measures are obtained from the numerical solution of a
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Figure �� Example of a safe MG and its synchronized queueing network counterpart�

Markov chain� whose dimension is given by the size of the state space of the model� Simpli�ed meth�
ods of computational complexity polynomial on the size of Petri net description have been developed
by introducing restrictions in the modeling power of Petri nets �����

In this paper� we obtain upper and lower bounds on the steady�state performance of marked
graphs �MG�� a well�known subclass of Petri nets that allows only concurrency and synchronization
but no choice� Even if MG�s is a restricted subclass of Petri nets� it is not di�cult to realize the
equivalence of strongly�connected stochastic MG�s and fork�join queueing networks with blocking �����
In particular� in this paper we study the throughput of transitions� de�ned as the average number
of �rings per unit time �or its inverse� that we call the mean cycle time of transitions�� From this
quantity� by applying Little�s formula ���� it is possible to derive other average performance estimates
of the model� Under these restrictions� we will show results that can be computed in polynomial
time on the size of the net model� and that depend only on the mean values and not on the higher
moments of the probability distribution functions �PDF� of the random variables that describe the
timing of the system� This notion of independence of the computed mean measures on the form of
the PDF is known as the insensitivity property in queueing networks literature� The independence of
the probability distribution can be viewed as a practical estimation of the performance results� since
higher moments of the delays are usually unknown for real cases� and di�cult to estimate and assess�
The bounds that we compute are based on proper linear programming problems �LPP� ���� that use
the incidence matrix of the net� Previous works where linear programming formulation is used to
solve qualitative problems on MG�s can be found in ��	� �
�� In ����� linear programming techniques
are applied for the structural analysis of more general net classes�

Moreover� we show that both upper and lower bounds are attainable� in the sense that for any MG
model it is possible to de�ne families of MG models with stochastic timing such that the steady�state
performances of the timed Petri net models are arbitrarily close to either bound�

Figure � depicts an example of a live and safe MG� In the same �gure� the equivalent representation
in terms of a queueing network with synchronization primitives ��� is also depicted� According to Figure
�� Petri net places correspond to queues �including waiting room and customer being served�� while
transitions represent servers and synchronization constraints� It is easily seen that only �sum
 and
�max
 operators are needed to compute the performance� indeed the actual cycle time in this example
is the random variable � � �� �max���� ��� � ��� where �i denotes the �ring delay of transition ti �or
its service time� with queueing networks terminology�� Therefore� the average cycle time is

� � E���� �E�max���� ���� �E���� � �� �E�max���� ���� � �� ���

�where �i denotes the average �ring delay of transition ti� i�e�� its average service time�� Cohen et al�
developed a special algebra to formalize the properties of this kind of model in the deterministic case
����� Baccelli et al� extended this approach to the stochastic case �
� ���
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Our idea is that of computing fast bounds for the throughput of transitions based only on the
knowledge of the �rst moments of the PDF� This idea can be intuitively explained as follows� The
sum is independent of the probability distribution �for linearity�� since for non�negative variables
xi � maxi�xi� �

P
i xi� E�maxi�xi�� can be bounded by maxi�E�xi�� � E�maxi�xi�� �

P
iE�xi��

Therefore� for the net in Figure � we can write�

�� �max���� ��� � �� � � � �� � �� � �� � �� ���

In this paper� which is an improved version of ����� we show how LPP�s based on the incidence matrix
of the underlying Petri net structure can be solved to compute these kinds of bounds for marked
graphs� even if they are not strongly�connected �i�e�� if live� they are unbounded��

The paper is organized as follows� Section � contains a discussion of the implications that the
introduction of timing semantics has on the behavior of an MG model� In particular the concepts of
enabling and liveness bounds and weak ergodicity are de�ned� Sections 	 and 
 present the upper and
lower bounds� respectively� for strongly�connected MG�s� In Section � the bounds are extended to the
non�strongly�connected case� An outline of the algorithm to �nd the derived bounds is presented in
Section �� in a step�by�step form� Section � presents a non�trivial application example taken from the
literature for the evaluation of a complex multiprocessor computer architecture� Section � contains
some concluding remarks and considerations on extensions of the work�

� Stochastic interpretation of marked graphs

We start by giving a brief recall of the basic Petri net terminology and notation� and then we present
some concepts concerning the introduction of the notion of time� The reader is referred to ���� for a
nice tutorial on Petri nets�

��� Place�transition nets

A place�transition net N is de�ned as a 
�tuple N � hP� T� Pre� Posti� where P is the set of places
�jP j � n�� T is the set of transitions �P � T � �� P � T �� �� �jT j � m�� Pre �Post� is the pre� �post��
incidence function representing the input �output� arcs Pre � P � T � IN �Post � P � T � IN��

The pre� and post�incidence functions can be represented as n �m matrices Pre and Post with
elements Pre�pi� tj� and Post�pi� tj�� respectively� The incidence matrix C of the net is de�ned by
C�pi� tj� � Post�pi� tj� � Pre�pi� tj�� We denote by Pre�p�� Post�p�� and C�p� the row vectors of
matrices Pre� Post� and C �respectively� corresponding to place p� Pre�t�� Post�t�� and C�t� are the
column vectors of Pre� Post� and C �respectively� corresponding to transition t�

The pre� and post�set of a transition t 	 T are de�ned respectively as �t � fpjPre�p� t� � �g
and t� � fpjPost�p� t� � �g� The pre� and post�set of a place p 	 P are de�ned respectively as
�p � ftjPost�p� t� � �g and p� � ftjPre�p� t� � �g�

A function M � P � IN is called a marking� A marking M can be represented in vector form� with
the ith component associated with the ith element of P � A marked net hN �M�i is a net N with an
initial marking M��

A transition t 	 T is enabled at marking M i� 
p 	 P � M�p� � Pre�p� t�� A transition t
enabled at M can �re yielding a new marking M � de�ned by M ��p� �M�p��Pre�p� t��Post�p� t� �
M�p��C�p� t��
p 	 P � We denote asM �tiM � that transition t is enabled atM and thatM � is reached
from M by �ring t�

A sequence of transitions � � t�t� � � � tn is a �ring sequence of hN �M�i i� there exist a sequence of
markings such that M��t�iM��t�iM� � � � �tniMn� In this case� marking Mn is said to be reachable from
M� by �ring �� and this is denoted by M���iMn�

M ��i denotes a �rable sequence � from marking M � The function �� � T � IN is the �ring
count vector of the �rable sequence �� i�e�� ���t� represents the number of occurrences of t 	 T in ��
If M���iM � then we can write in vector form M � M� � C � ��� which is referred to as the linear

	



state equation of the net� A marking M � is said to be potentially reachable i� 
�� � � such that
M � �M� � C � ���

The reachability set R�N �M�� is the set of all markings reachable from the initial one� Denoting by
PR�N �M�� the set of all potentially reachable markings we have the following relation� R�N �M�� �
PR�N �M��� L�N �M�� is the set of all �ring sequences and their su�xes in hN �M�i� L�N �M�� �
f�jM ��i and M 	 R�N �M��g�

A place p 	 P is said to be k�bounded i� 
M 	 R�N �M��� M�p� � k� A marked net hN �M�i is
said to be �marking� k�bounded i� each of its places is k�bounded� and it is said to be bounded i� it
is k�bounded for some �nite k� A net N is structurally bounded i� 
M� the marked nets hN �M�i are
bounded�

A transition t 	 T is live in hN �M�i i� 
M 	 R�N �M��� 
M � 	 R�N �M� such that M � enables
t� The marked net hN �M�i is live i� all its transitions are live �i�e�� liveness of the net guarantees the
possibility of an in�nite activity of all transitions�� A net N is structurally live i� 
M� such that the
marked net hN �M�i is live� The marked net hN �M�i is deadlock�free i� 
M 	 R�N �M��� 
t 	 T
such that M enables t�

A repetitive component is a function �vector� X � T � IN such that X �� � and C � X � �� A
consistent component �or T�semi�ow� is a repetitive component X such that C �X � �� A conservative
component �or P�semi�ow� is a function �vector� Y � P � IN such that Y �� � and Y T � C � �� The
supports of �T� and P�� semi ows are de�ned by jjXjj � ft 	 T jX�t� � �g and jjY jj � fp 	 P jY �p� �
�g� A �T� or P�� semi ow I has a minimal support i� there exist no other semi ow I � such that
jjI �jj � jjIjj� A �T� or P�� semi ow is canonical i� the greatest common divisor of its components is
�� A �T� or P�� semi ow is elementary i� it is canonical and has a minimal support�

A net N is repetitive if there exists a repetitive component X � � �where � is a vector with all its
entries equal to ��� A net N is consistent if there exists a T�semi ow X � �� A net N is conservative
if there exists a P�semi ow Y � ��

An implicit place is one which never is the only one that restricts the �ring of its output transitions�
Let N be any net and N p be the net resulting from adding a place p to N � If M� is an initial marking
of N � Mp

� denotes the initial marking of N p� The place p is implicit in the marked net hN p�Mp
� i i�

L�N p�Mp
� � � L�N �M���

M 	 R�N �M�� is a home state i� 
Mi 	 R�N �M�� � M 	 R�N �Mi�� A marked net is reversible
i� its initial marking is a home state�

��� Marked graphs

Marked graphs are a subclass of Petri nets characterized by the fact that each place has exactly one
input and exactly one output arc� thus they are structurally decision�free nets�

De�nition ��� ���� A marked graph �MG� is an ordinary Petri net �pre� and post�incidence functions
taking values in f�� �g� such that j�pj � jp�j � ��
p 	 P 	

Theorem ��� ���� Let hN �M�i be an MG	


	 The minimal support P�semi�ows of N are exactly its directed elementary circuits	

�	 hN �M�i is live i� all its directed circuits are marked	

Corollary ��� Let hN �M�i be an MG system and N� the net structure obtained deleting all places
marked by M�	 hN �M�i is live if and only if N� has no circuit �acyclic graph�	

In the sequel� when we write circuit we refer to an elementary circuit� Using the equivalence
between P�semi ows and circuits� the next result follows�

Corollary ��� The liveness of an MG can be decided in polynomial time on its size
 checking that
there do not exist unmarked P�semi�ows� � 
Y � �� Y �� �� Y T � C � � � Y T �M� � �	






Property ��� Let N be an MG	


	 The following three statements are equivalent�

i� N is structurally bounded	

ii� N is strongly�connected	

iii� N is conservative �i	e	
 
Y � �� Y T � C � ��	

�	 Let hN �M�i be live	 Then hN �M�i is bounded i� N is structurally bounded	

�	 N is a consistent net and its unique minimal T�semi�ow is X � �	

Theorem ��� ���� Let hN �M�i be a live �possibly unbounded� MG	 The three following statements
are equivalent�

i� M 	 R�N �M��
 i	e	
 M is reachable from M�	

ii� M �M� � C � ��
 with M 	 INn� �� � �	

iii� Bf �M � Bf �M�
 with Bf the fundamental circuit matrix of the graph
 and M 	 INn	

According to the above theorem M 	 R�N �M���M� 	 R�N �M�� In other words�

Corollary ��� Live MG�s are reversible	

��� Timing and �ring process

In the original de�nition� Petri nets did not include the notion of time� and tried to model only the
logical behavior of systems by describing the causal relations existing between otherwise unrelated
events� This approach showed its power in the speci�cation and analysis of concurrent systems�
Nevertheless� the introduction of timing speci�cation is essential if we want to use this class of models
for an evaluation of the performance of distributed systems�

Since Petri nets are bipartite graphs� historically there have been two ways of introducing the
concept of time in them� namely� associating a time interpretation with either transitions ���� or
places ����� Moreover� in the case of timed transition models� two di�erent �ring rules have been
de�ned� single phase �atomic� �ring� and three phase �start��ring with deletion of the input tokens�
delay� and end��ring with creation of the output tokens�� Since in the context of MG�s no con�ict
situation can ever arise� all these alternatives become equivalent for our purposes� we only say that
we consider timed�transition MG�s� without further speci�cation of the �ring semantics�

Another possible source of confusion in the de�nition of the timed interpretation of a Petri net
model is the concept of degree of enabling of a transition �or re�entrance�� In the case of timing
associated with places� it seems quite natural to de�ne an unavailability time which is independent
of the total number of tokens already present in the place� and this can be interpreted as an in�nite
server policy from the point of view of queueing theory� In the case of time associated with transitions�
it is less obvious a�priori whether a transition enabled k times simultaneously at a marking should
work at conditional throughput � or k times that in the case it was enabled only once� In the case of
stochastic Petri nets with exponentially distributed �ring times associated with transitions� the usual
implicit hypothesis is to have single server semantics �see� e�g�� ���� ����� and the case of multiple
server is handled as a case of �ring rate dependent on the marking� this trick cannot work in the case
of more general probability distributions� This is the reason why people working with deterministic
timed transition Petri nets prefer an in�nite server semantics �see� e�g�� ��	� �
� ����� Of course a
transition with in�nite server semantics can always be constrained to a k�server behavior by just
reducing its enabling bound to k� This can be obtained by adding one place that is both input and
output �self�loop whose arcs are weighted with �� for that transition and marking it with k tokens�
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Therefore the in�nite server semantics appears to be the most general one� and for this reason it is
adopted in this work�

From a Petri net perspective� the queueing network stations are represented by timed transitions�
The maximum number of servers working in parallel in a station will be characterized with the enabling
bound concept� Since we are interested in the steady�state performance of models� only the maximum
number of servers working in parallel in steady�state must be considered� The liveness bound concept
will give that index�

De�nition ��� Let hN �M�i be a marked Petri net and t 	 T a given transition of N 	 The enabling

bound of t is EB�t�
def
� maxfk j 
M 	 R�N �M�� � M � k Pre�t�g	 The liveness bound of t is

LB�t�
def
� maxfk j 
M � 	 R�N �M��� 
M 	 R�N �M �� � M � k Pre�t�g	

De�nition ��� A marked Petri net hN �M�i is said to be k�live i� maxfLB�t�jt 	 Tg � k	

A transition t is live i� LB�t� � �� i�e�� if there is at least one server associated with it in steady�
state conditions� Due to the reversibility property of live MG�s �see Corollary ��	�� the enabling and
liveness bounds yield the same value in all cases considered here�

The above de�nition of enabling bound refers to a behavioral property that� in the general case�
must be computed on the reachability graph of a Petri net� Since we are looking for computational
techniques at the structural level� we can also introduce the structural counterpart of the concept�
Structural net theory has been developed from two complementary points of view� graph theory ����
and mathematical programming �or more speci�cally linear programming and linear algebra� ����� Let
us introduce our structural de�nition using mathematical programming arguments� essentially� in this
case the reachability condition is relaxed to the potential reachability condition de�ned by the net
state equation� M �M� � C � ��� with M��� � ��

De�nition ��� Let hN �M�i be a marked Petri net	 The structural enabling bound of a given transition
t of N is

SEB�t�
def
� maximum k

subject to M� � C � �� � k Pre�t�
�� � �

�LPP��

Note that the de�nition of structural enabling bound reduces to the formulation of a linear program�
ming problem �LPP�� ���� with decision variables k� ��� and constraints based on incidence matrices
of the net and on the initial marking� According to Theorem ���� for live MG�s the next property
follows�

Property ��� Let hN �M�i be an MG	 Then EB�t� � LB�t� � SEB�t��
t 	 T 	

This allows an e�cient computation of enabling and liveness bounds based on the problem �LPP��
that characterizes the structural enabling bound�

In case of non�strongly�connected MG�s� it is quite possible to obtain SEB�t� � � for some
transition t� this creates no harm� because of the assumption of an in�nite server semantics� it only
means that the timing of that transition does not a�ect the steady�state performance of the model�

��� Ergodicity and measurability

In order to de�ne the steady�state performance of a system we have to assume that some kind of �aver�
age behavior
 can be estimated on the long run of the system we are studying� The usual assumption
in this case is that the system models must be �strongly� ergodic �see de�nitions of ergodicity in ������
This assumption is very strong and di�cult to verify in general� moreover� it creates problems when we
want to include the deterministic case as a special case of a stochastic model �as an example� consider
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a customer going round a cycle of two queues with deterministic service� in this case� the state of each
queue is a periodic function of time� hence the limit of expected values does not exist ������ Thus� we
introduce the concept of weak ergodicity that allows the estimation of long run performances also in
the case of deterministic models�

De�nition ��� The marking process M� 
 where � � � represents the time
 of a stochastic marked net
is weakly ergodic �or measurable in the long run� i� the following limit exists�

lim
���

�

�

Z �

�
Mu du �M 	 ��� a	s	 �	�

and the constant vector M is called the limit mean marking	
The �ring process ��� 
 where � � � represents the time
 of a stochastic marked net is weakly ergodic

�or measurable in the long run� i� the following limit exists�

lim
���

���
�

� ��� 	 ��� a	s	 �
�

and the constant vector ��� is the limit �ring �ow vector	

According to the above de�nitions and the properties listed in Section ��� the next result follows�

Corollary ��� Strongly�connected live MG�s have weakly ergodic �ring and marking processes
 in�
dependently of the transition �ring delays	 For non�strongly�connected live MG�s
 weak ergodicity is
guaranteed for the �ring process	

In the above statement� it is assumed that at least one transition has non�null �ring delay �in order
to obtain a �nite value of the limit �ring  ow��

� Throughput upper bounds for strongly�connected MG�s

In this and the next Section� performance bounds for the steady�state behavior of strongly�connected
�and thus structurally bounded� by Property ���� MG�s are presented� We recall that strong connec�
tivity of a graph is a well�known problem of polynomial time complexity �����

��� Computation of the bound

Let us take into account only the �rst moment of the PDF�s associated with transitions� In the
following� let �i be the mean value of the random variable associated with the �ring time of transition
ti �service time of ti� with queueing networks terminology� and � the vector with components �i�
i � �� � � � �m� The mean cycle time� �i� of transition ti is the mean time between two consecutive
�rings of ti�

�i �
�

����ti�
���

where ��� is the limit �ring  ow vector �or vector of transitions� throughputs��
The relative �ring frequency vector �or vector of visit ratios� is the limit �ring  ow vector normalized

for having a given component equal to �� Since MG�s are consistent nets and their unique minimal
T�semi ow is � �cfr� Property ����	�� their relative �ring frequency vector is also � �assuming weak
ergodicity of marking and �ring�� therefore �i � ��
i � �� � � � �m� and � is the mean cycle time of the
MG�

The following Little�s formula for stochastic Petri nets ���� holds under the weak ergodicity as�
sumption�
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M �pi� � �Pre�pi� � ��
�� R�pi� ���

where M�pi� is the limit mean marking of place pi� Pre�pi� is the i
th row of the pre�incidence matrix�

and R�pi� is the mean response time at place pi �i�e�� the mean sojourn time of tokens� sum of the
waiting time and the service time�� The response times at places are unknown but can be bounded
from below by the mean �ring time associated with transitions�

� M � Pre � � ���

Since the vector M is unknown� ��� cannot be solved� However� the following structural marking
invariant can be written using a P�semi ow Y �

Y T �M� � Y T �M � Y T �M� 
M 	 R�N �M�� ���

Now� from ��� and ����

� �Y T �M�� � Y T � Pre � � ���

And a lower bound for the mean cycle time in steady�state is�

�min � max
Y �fP�semiflowg

Y T � Pre � �

Y T �M�
����

Of course� an upper bound for the throughput of transitions is �
�min�
Let us formulate the previous lower bound for the mean cycle time in terms of a particular class

of optimization problems called fractional programming problems �����

�min � maximum
Y T � Pre � �

Y T �M�
subject to Y T � C � �� �T � Y � �

Y � �

����

The above problem can be rewritten as follows�

�min � maximum
Y T � Pre � �

q
subject to Y T � C � �� �T � Y � �

q � Y T �M�� Y � �

����

Then� because Y T �M� � � �guaranteed for live MG�s� by Corollary ����� we can change Y
q to
Y and obtain the linear programming formulation stated in the next theorem �in which �T � Y � � is
removed because Y T �M� � � �� �T � Y � ���

Theorem ��� A lower bound for the mean cycle time for live strongly�connected MG�s can be obtained
by solving the following LPP�

�min � maximum Y T � Pre � �
subject to Y T � C � �� Y T �M� � �

Y � �
�LPP��

The following result concerns a special class of optimum solutions of �LPP�� that will be used later
in the interpretation of this LPP� the minimal P�semi�ows� In order to prove this result� we use the
concept of basic feasible solution from linear programming ����� and the problem �LPP�� rewritten in
the following way�

�



�min � maximum Y T � Pre � �
subject to Y T � �CjM�� � ��j��

Y � �
�LPP	�

Let Y be the set of feasible solutions Y of �LPP	�� If Y 	 Y� the set of row vectors of A � �CjM��
that Y uses is fA�j� j j is such that Y �j� � �g� The feasible solution Y 	 Y is said to be a basic
feasible solution for �LPP	� i� the set of row vectors of A that Y uses is a linearly independent set�

Theorem ��� Under the conditions of Theorem �	

 if �LPP�� has an optimum solution
 then it has
an optimum solution which is a minimal P�semi�ow	

Proof� Taking into account Theorem 	�	 in ����� if �LPP	� has an optimum feasible solution� then
it has a basic feasible solution Y that is optimum� Therefore� the set of rows that are used by Y
is linearly independent �i�e�� full rank�� Considering that Y T � C � �� we obtain that the number of
non�null entries of vector Y �i�e�� the number of rows used by Y � is equal to the rank of rows of C
used by Y plus one� This last statement is precisely the characterization of a minimal P�semi ow�
presented in �����

It is well known that the simplex method ���� for the solution of LPP�s gives good results in practice�
even if it has exponential worst�case complexity� Moreover� the simplex method gives feasible solutions
being basic solutions� In any case� a discussion on algorithms of polynomial worst�case complexity
can be found in �	���

Theorem 	�� shows that the problem of �nding an upper bound for the steady�state throughput
�lower bound for the mean cycle time� in a strongly�connected stochastic MG can be solved looking at
the mean cycle time associated with each minimal P�semi ow �circuits for MG�s� of the net� considered
in isolation� These mean cycle times can be computed by taking the summation of the average �ring
times of all the transitions involved in the P�semi ow �service time of the whole circuit�� and dividing
by the number of tokens present in it �customers in the circuit�� Therefore� an alternative approach
to linear programming for the computation of the bound could be based on graph theory� We select
linear programming approach �also with polynomial solution algorithms� because of the possibility of
easily interpret� derive new results� and extend to other net subclasses �e�g�� live and bounded free
choice nets �����

The above bound� that holds for any stochastic interpretation� happens to be the same as that
obtained for strongly�connected deterministic MG�s by other authors �see for example ���� 	���� but
here it is considered in a practical LPP form� For deterministically timed nets� the attainability of this
bound has been shown ���� 	��� Since deterministic timing is just a particular case of stochastic timing�
the attainability of the bound is assured for our purposes as well� Even more� the next result shows
that the previous bound cannot be improved only on the basis of the knowledge of the coe�cients of
variation for the transition �ring times�

Theorem ��� For live strongly�connected MG�s with arbitrary values of mean and variance for tran�
sition �ring times
 the bound for the mean cycle time obtained from �LPP�� cannot be improved	

Proof� We know from ���� that for deterministic timing the bound is reached� Only �max
 and sum
operators are needed to compute the mean cycle time� Therefore� let us construct a family of random
variables with arbitrary means and variances behaving in the limit like deterministic timing for both
operators �max and sum��

This is the case for the following family of random variables� for varying values of the parameter
� �� � � � ���

X�i��i��� �

�
�i� with probability �� �i
�i��� ���

�i
� with probability �i

��	�

�



where

�i �
��i ��� ���

��i ��� ��� � ��i
��
�

These variables are such that E�X�i��i���� � �i� V ar�X�i��i���� � ��i � and they satisfy�

lim
���

E�max�X�i��i����X�j ��j ����� � max��i� �j� ����

and� of course� 
 � � � 	 �� E�X�i��i��� �X�j ��j ���� � �i � �j�
Then� if random variables X�i��i��� are associated with transitions ti� i � �� � � � �m� taking � closer

to �� the mean cycle time tends to the bound given by �LPP���
We remark that the contribution of the above theorem is the attainability of the bound for any

given means and variances of involved random variables� In other words� even with the knowledge of
second order moments� it is not possible to improve the bound given by �LPP��� computed only with
mean values�

A polynomial computation of the minimal cycle time for deterministic timed strongly�connected
MG�s was proposed in �	��� solving the following linear programming problem�

�min � minimum �
subject to �C � z � �M� � Post � �

� � �� z � �
�LPP
�

where the decision variables are � and z� � represents the mean cycle time while z is the vector of
instants at which each transition initiates its �rst �ring�

To investigate the relationship between �LPP�� and �LPP
� let us consider the dual problem of
�LPP
�� as usually de�ned in mathematical programming �����

�min � maximum Y T � Post � �
subject to Y T � C � �� Y T �M� � �

Y � �
�LPP��

Since strongly�connected MG�s are conservative �Property ����� there is no Y � � such that
Y T � C � �� Y T � C �� � and then the restriction Y T � C � � of �LPP�� becomes Y T � C � � �i�e��
the restriction of �LPP���� For all Y such that Y T � C � �� Y T � Post � Y T � Pre holds� For live
MG�s� 
Y 	 INn� Y �� � such that Y T �C � � then Y T �M� � � �Corollary ����� Thus� the restriction
Y T �M� � � of �LPP�� becomes Y T �M� � � for live nets �i�e�� the restriction of �LPP����

Hence for live strongly�connected MG�s� the problem �LPP�� is equivalent to �LPP
� formulated
in �	�� for deterministic systems�

��� Interpretation and derived results

Linear programming problems give an easy way to derive results and interpret them� Just looking at
the objective function of the problem �LPP��� the following monotonicity property is obtained� the
lower bound for the mean cycle time does not increase if � decreases or if M� increases�

Property ��� Let N be a live strongly�connected MG and � the mean �ring times vector	

i� For a �xed �
 if M �
� �M� �i	e	
 increasing the number of initial resources� then the lower bound

for mean cycle time of hN �M �
�� �i is less than or equal to that of hN �M�� �i �i	e	
 �min� � �min�	

ii� For a �xed M�
 if �
� � � �i	e	
 for faster servers� then the lower bound for mean cycle time of

hN �M�� �
�i is less than or equal to the one of hN �M�� �i �i	e	
 �min� � �min�	

��



Note that� since ergodicity is assumed� the mean cycle time of the MG does not change for any
reachable marking considered as initial marking� The next property� which is strongly related to the
reversibility of live MG�s �cfr� Corollary ��	�� states an analogous result for the bound computed in
�LPP���

Property ��� ���� For any live strongly�connected MG hN �M�i
 the bound obtained with the problem
�LPP�� does not change for any marking reachable from M�	

The proof of the above property can be derived from Theorem 	�� using the problem �LPP��� The
condition over a marking M for being reachable is M � M� � C � �� 	 INn for some �� � � �Theorem
����� Taking into account that Y T �M � Y T �M� for all marking M reachable from M� and for all Y
such that Y T � C � �� the statement of the property follows�

Since the upper bound on throughput is computed based on the total mean service time of
isolated circuits and on the marking contained in them� it is easy to see that the reverse net of
N � hP� T� Pre� Posti de�ned as N�� � hP� T� Post� P rei yields the same bound in case of strongly�
connected MG�s�

Property ��� Let N be a strongly�connected MG and N�� its reverse net	 Then
 the upper bounds
on throughput obtained for both nets
 preserving M�
 with the problem �LPP�� are the same	

In particular� if deterministic timing is considered �since the bound gives the exact throughput in
this case�� the throughput of the original and the reverse net are equal �an analogous result under
non�deterministic assumption for the distributions of timing is presented in ������

The next result is a characterization of liveness for MG�s in terms of the �niteness of the mean
cycle time�

Theorem ��� A strongly�connected MG is live i� the value �min given by �LPP�� in Theorem �	
 is
�nite	

Proof� For strongly�connected live MG�s� all circuits contain at least one token �i�e�� Y T �M� � �
with Y T � C � ��� Therefore� there is no solution such that Y T � C � �� Y T � M� � � and then
�LPP�� is bounded �i�e�� there is no extremal direction�� If the optimum value of �LPP�� is �nite�
since it is attainable for some deterministic ���� as well as stochastic �cfr� Theorem 	�	� timing� the net
must be deadlock�free� We know that for strongly�connected MG�s� liveness and deadlock�freeness are
equivalent� Thus the �niteness of the optimum value of �LPP�� is su�cient to establish the liveness
of a strongly�connected MG�

� Throughput lower bounds for strongly�connected MG�s

In this section� we present the computation of lower bounds on throughput for strongly�connected
MG�s� We start by presenting an attainable lower bound for ��live MG�s� and then we extend the
result to bounded MG�s� Finally� we propose a polynomial complexity computation based on linear
programming�

��� Basic result for ��live strongly	connected MG
s

A trivial lower bound on steady�state throughput for a live MG is of course given by the inverse of the
sum of the �ring times of all the transitions� Since the net is live all transitions must be �rable� and the
sum of all �ring times corresponds to any complete sequentialization of all the activities represented
in the model� This lower bound is always reached in an MG consisting of a single loop of transitions
and containing a single token in one place� independently of the higher moments of the PDF�s �this
observation can be trivially con�rmed by the computation of the upper bound� which in this case gives
the same value��

��



To improve this trivial lower bound let us �rst consider the case of ��live strongly�connected MG�s�
If we specify only the mean values of the transition �ring times and not the higher moments� we may
always �nd an stochastic model whose steady�state throughput is arbitrarily close to the trivial lower
bound� independently of the topology of the MG �only provided that it is ��live�� A formal proof of
this �somewhat counter�intuitive� result stated in the next theorem can be found in the Appendix� It
is based on the de�nition of the family of random variables�

xi���� �

�
� with probability �� �i



�i with probability �i
����

for 
 � �� � 	 � � �� i 	 IN� It is straightforward to see that E�xi����� � 
� and E��xi�����
�
� � 
�
�i�

This implies that the coe�cient of variation is � for � � �� and that it tends to � as �� � provided
that i � �� Then� the proof derives from considering that each transition tj in the MG has xj��

�j
��� as

random �ring time distribution�

Theorem ��� For any 
�live strongly�connected MG with a given speci�cation of the mean �ring
times �j for each tj 	 T 
 it is possible to assign PDF�s to the transition �ring times such that the
mean cycle time is � �

P
j �j � O���
 
� � � 	 � � �
 independently of the topology of the net �and

thus independently of the potential maximum degree of parallelism intrinsic in the MG�	 �We use here

the notation O�f�x�� to indicate any function g�x� such that limx��
g�x�
f�x� � k 	 IR	�

In the previous result� the upper bound for the mean cycle time �thus lower bound on throughput�
is reached in a limit case ��� �� in which the random variables associated with transitions have in�nite
coe�cient of variation� This is a way to obtain the minimum throughput if �ring times associated
with transitions are assumed mutually uncorrelated� It can be shown that it is also possible to reach
the lower bound in performance for �nite coe�cient of variation if a maximum negative correlation is
assumed among the �ring times of transitions�

��� Extension to bounded MG
s

Until now� we have shown that the trivial sum of the mean �ring times of all transitions in the net
constitutes a tight �attainable� lower bound for the performance of a live and safe MG �or more
generally of a ��live strongly�connected MG� but otherwise independently of the topology� in which
only the mean values and neither the PDF�s nor the higher moments are speci�ed for the transition
�ring times� Let us now extend this result to the more general case of k�live strongly�connected MG�s�

An intuitive idea is to derive a lower bound on throughput for an MG containing transitions
with liveness bound k � � �remember that� for MG�s� EB�t� � LB�t� � SEB�t�� Property ���� by
taking the method used for the computation of the upper bound in the case of non�safe MG�s� and
substitute in it the �max
 operator for the sum of the �ring times of all transitions involved� After
some manipulation to avoid counting more than once the contribution of the same transition� one can
arrive at the formulation of the following value for the maximum cycle time�

�max �
mX
j��

�j
LB�tj�

����

The proof of this result requires the following Lemma�

Lemma ��� Any strongly�connected MG with arbitrary initial marking can be constrained to contain
a main circuit including all transitions
 without changing their liveness bound	 This main circuit
�which
 in general
 is not unique� contains a number of tokens equal to the maximum of the liveness
bounds among all transitions	 In addition there are other minor circuits that preserve the liveness
bounds for transitions with bound lower than the maximum	
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Figure �� Example of structural sequentialization�

The idea behind this constraint is to introduce a structural sequentialization among all transitions�
thus potentially reducing the degree of concurrency between the activities modeled by the transitions�
In other words� from the partial order given by the initial MG structure� we try to derive a total
order without changing the liveness bound� The proof of the previous Lemma can be found in the
Appendix�

An example of application of the Lemma follows� in order to clarify the procedure� Consider the
net depicted in Figure ��a� This net contains only two circuits� namely t�� t�� t�� and t�� t�� t�� we can
then add either the circuit t�� t�� t�� t� or t�� t�� t�� t�� Figure ��b depicts the resulting net in case we
choose to add the second circuit� In this case only place p	 �from t� to t�� needs to be added to
obtain the longer circuit� and it should be marked with one token� so that the new circuit comprising
places p�� p�� p	� p� contains two tokens� as the original circuit p�� p�� p� �while the other original circuit
p�� p�� p
 contained only one�� In our example� we need not iterate the procedure since we have already
obtained a circuit containing all transitions of the MG� At this point we can identify and eliminate
the implicit places that have been created during the circuits interleaving procedure� In the present
example� we can easily see that place p� becomes implicit in Figure ��b� so that it can be eliminated�
�nally leading ourselves to the MG depicted in Figure ��c�

It should be evident that the MG transformed by applying the above Lemma has a mean cycle
time which is greater than or equal to the mean cycle time of the original one� since some additional
constraints have been added to the enabling of transitions� hence the mean cycle time of the trans�
formed MG is a lower bound for the performance of the original one� Now if NM � maxt�T EB�t� � �
in the above Lemma� we re��nd the lower bound of Theorem 
��� In the case of NM � �� we can show
that the mean cycle time of the transformed net cannot exceed �max�

Theorem ��� For any live and bounded MG with a given speci�cation of the mean �ring times �j for
each tj 	 T 
 it is not possible to assign PDF�s to the transition �ring times such that the mean cycle
time is greater than

�max �
mX
j��

�j
LB�tj�

����

independently of the topology of the net	

A detailed proof of the above result is presented in the Appendix� The application of Theorem 
��
to the example of Figure � gives� �max � �� � ��
� � �� � ���

�	



Now� two results for the lower bound on throughput� analogous to those in Properties 	�� and 	�	�
can be derived�

Property ��� For any live strongly�connected MG hN �M�i
 the bound obtained as in Theorem �	�
does not change for any marking reachable from M�	

Property ��� Let N be a strongly�connected MG and N�� its reverse net	 Then
 the lower bounds
on throughput obtained for both nets
 as in Theorem �	�
 are the same	

��� Attainability of the lower bound

The lower bound on steady�state throughput given by the computation of �
�max� as de�ned in
Theorem 
��� can be shown to be attainable for any MG topology and for some assignment of PDF to
the �ring delay of transitions� exploiting the attainability of the trivial bound shown in Theorem 
��
for ��live MG�s�

Theorem ��� For any strongly�connected MG with a given speci�cation of the mean �ring times �j
for each tj 	 T 
 and 
� � � 	 � � �
 it is possible to assign PDF�s to the transition �ring times such
that the average cycle time is�

�max �
mX
j��

�j
LB�tj�

�O��� ����

independently of the topology of the net	

A formal proof of Theorem 
�	 can be found in the Appendix�

��� A polynomial computation of the lower bound

First of all� we recall �cfr� Property ���� that in the case of live MG�s the liveness bound equals the
enabling and the structural enabling bounds for each transition �i�e�� LB�t� � EB�t� � SEB�t��� thus
we present a characterization for the determination of the structural enabling bound in terms of an
LPP� which is known to be solvable in polynomial time�

For any transition t 	 T � the computation of the structural enabling bound SEB�t� is formulated
in De�nition ��
 in terms of problem �LPP��� Alternatively� we can switch to the dual LPP�

SEB�t� � minimum Y T �M�

subject to Y T � C � �� Y T � Pre�t� � �
Y � �

�LPP��

We recall that MG�s are consistent nets with a single minimal T�semi ow which is the vector ��
so that the constraint �� � � can be relaxed in the primal problem� The e�ect on the dual problem of
this relaxation is the transformation of the �rst constraint into Y T � C � �� In other words� the dual
problem for the computation of SEB�t� can be rewritten as follows�

SEB�t� � minimum Y T �M�

subject to Y T � C � �� Y T � Pre�t� � �
Y � �

�LPP��

This LPP does not require slack variables while this is not the case for �LPP���
According with the above considerations� the next result follows�

Corollary ��� The lower bound on steady�state throughput for live and bounded MG�s given by The�
orem �	� can be obtained in polynomial time
 by computing LB�t� � SEB�t� as the optimum solution
of �LPP��
 for each transition t of the net	
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Figure 	� Non�strongly�connected MG�s�

For all strongly�connected MG�s there exists an elementary P�semi ow for which the optimum of
the objective function of �LPP�� is achieved� as shown in Theorem 	��� In the case of MG�s� these
elementary P�semi ows can only be circuits� so that we can give the following interpretation of the
dual LPP in net terms� the liveness bound for a transition t of a strongly�connected MG is given
by the minimum number of tokens contained in any circuit of places containing transition t� In a
non�strongly�connected MG there may be no such circuit� so that this number can be in�nite� The
advantage of �LPP�� lies in its compact statement and the polynomial time complexity of its solution�
An alternative approach that we do not consider here would be the use of shortest path algorithm
from graph theory�

As �nal remarks� we can state the following�

Property ��� Let hN �M�i be an MG	


� Liveness for hN �M�i can be a by�product of a more general �also with polynomial complexity�
computation� hN �M�i is a live MG �� 
t 	 T � SEB�t� � ��

�� If hN �M�i is live and 
t 	 T such that SEB�t� � �
 then 
t� 	 T belonging to the same circuit
characterized by Y in �LPP��
 SEB�t�� � �	

Note that the application of Property 
�	�� reduces the computational complexity of the structural
enabling bounds of transitions �in the sense that� in many cases� it is not necessary to solve m di�erent
LPP�s� one for each transition� but a few less��

� Extending results to non�strongly�connected MG�s

In the literature on deterministically�timed MG models� the case of non�strongly�connected nets is
usually considered a trivial extension to be left to the imagination of the reader �	�� 	��� In this
section� we argue that the question is less trivial than one can perceive at �rst glance� and in fact�
we shall derive some examples to show that �direct
 extensions of the results obtained in the case of
strongly�connected MG�s� in general� make no sense� For the upper bound on throughput� we obtain
a result similar to that proposed by F� Baccelli et al� ���� even though their work is situated in a quite
di�erent framework�

Example �� Let us �rst consider� as an example� the non�strongly�connected MG in Figure 	�a� First
of all� we can see that transition t� has an in�nite liveness bound� so that in steady�state it should not
contribute to the computation of the mean cycle time� Indeed� suppose that t� has a deterministic
service time of ���� time units� while transitions t� and t� have a deterministic service time of � time
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Figure 
� A more general non�strongly�connected MG�

unit� thus the circuit t��t� starts generating tokens at a rate of one token every � time units� so that�
initially� the tokens accumulate in place p�� At time ����� eventually� the �rst instance of transition t�
�res� and at that point� we reach the steady�state condition in which 
�� instances of �ring of t� are
concurrently enabled� with the remaining enabling time shifted by two time units between each pair
of subsequent �ring instances� As we can see� the actual �ring rate in steady�state for transition t�
is ��� �rings per second� i�e�� it is determined by the mean cycle time of transitions t��t�� completely
independent of the service time of t� itself� Therefore� from the steady�state performance point of
view� transition t� behaves as if it were an immediate transition� and it can be reduced by fusing
places p� and p� into a single place p��� as shown in Figure 	�b�

Now let us consider the behavior of the other two transitions t� and t
� Their actual �ring rate
is determined both by their own service times and the rate with which the circuit t��t� is able to
produce the tokens that are consumed by t� from place p��� Thus� the mean cycle time in steady�state
condition for transitions t��t
 is given by the maximum of the mean cycle time of t��t� and the sum
of the service times of t� and t
 �this sum would be the mean cycle time of the subnet generated by
t� and t
 if it were considered in isolation� i�e�� the potential mean cycle time of t��t
�� In the case in
which the mean cycle time of t��t� were greater than the one of t��t
� the number of tokens at place
p�� would remain bounded and the �ring rate of t��t
 would be the inverse of the mean cycle time
of t��t�� On the other hand� in the case in which the mean cycle time of t��t� were smaller than the
one of t��t
� place p�� would accumulate tokens and marking process of this place would not be �even
weakly� ergodic� However� �ring rate of transitions t��t
 would be� in that case� equal to the inverse
of their potential mean cycle time� In the case of equality between mean cycle time of t��t� and t��t
�
marking ergodicity at place p�� depends on the probability distribution of service time of transitions�
In the particular case of deterministic timing� the marking process is weakly ergodic� while in the case
of exponentially distributed service times the marking process is non�ergodic �because the embedded
Markov process is null�recurrent��

Example �� Let us consider the more general example shown in Figure 
�a� Also in this case it
is easy to accept that transition t
 does not contribute to the steady�state cycle time because it has
an in�nite liveness bound �it behaves as an immediate transition�� However� in this case� we cannot
just delete it because of the synchronization constraint due to its multiple input places �p� and p	��
On the other hand� it is clear that the two subnets composed of t��t� and t��t� behave completely
independently of each other and of the rest of the net� If the mean cycle times of these two subnets are
not exactly equal �let us assume without loss of generality that the mean cycle time of t��t� is greater
than that of t��t��� then one of the input places of t
 �p	 with our assumption� accumulates an in�nite
number of tokens in steady�state �in other words� the marking process at this place is not ergodic��

��



thus it becomes redundant �in steady�state� since it cannot constrain the enabling condition of t
� and
it can be deleted without altering the steady�state behavior of the net� In the case of exactly equal
mean cycle times of the two subnets �t��t� and t��t��� marking ergodicity depends on the distribution
functions associated with transitions� For instance� for deterministic timing� the marking process at
p� and p	 remains bounded �i�e�� it is weakly ergodic�� On the other hand� for exponential timing� the
marking of both places is a null�recurrent Markov process� thus non�ergodic� Deleting all the places
that become unbounded in steady�state due to the average transition �ring times� we obtain that the
net is partitioned into disconnected subnets that can be studied independently of one another� Of
course� not only the input but also the output places of t
 �p� and�or p��� may accumulate an in�nite
number of tokens in steady�state� provided that the potential mean cycle time of their output subnets
�respectively� t	�t� and t��t
� are greater than the actual �ring time of t
� In this case� also the output
places become redundant and can be deleted� and we may study the steady�state behaviors of the four
disconnected subnets in isolation�

From the analysis of the above examples� we can draw two considerations�

First� Marking ergodicity is not assured in the case of non�strongly�connected MG�s� Places having
non�ergodic marking process can be found among structurally unbounded places� i�e�� places
do not belonging to any strongly�connected component �SCC� in what follows�� in two cases�
��� after the comparison between the actual input �ring rate and the potential �ring rate of the
output SCC �Example ��� or ��� after the comparison among the actual �ring rate of all SCC�s
being synchronized by a given transition �Example ��� Some SCC�s of the MG can be seen
as producers of parts �or data� for other components� Other SCC�s act as consumers of parts
produced by other components� Other may be producers and consumers� Connections among
these producers�consumers subsystems are modeled by means of places �or bu�ers�� A place is
marking ergodic if the throughput of the corresponding producer is less than �or equal to� in the
deterministic case� the service rate of the consumer�

Second� There exists a partial order relation �POR� for short� ��
 among subsets of transitions
de�ned as� Ti � Tj i� the �ring delay of transitions in Ti can a�ect the actual �ring rate
of transitions in Tj but not vice versa� This POR can be computed by applying a standard
algorithm for the derivation of a condensation of the original graph� as we explain below�

The previous considerations suggest that the �rst step that must be taken� in order to check mark�
ing ergodicity and to compute actual throughput of transitions� is the construction of the condensation
of the net� The condensation of a given directed graph ���� represents the interconnections among the
SCC�s of the original graph� Therefore� the vertices vi of the condensation correspond with the SCC�s
Ci of the original one� There is an arc from one vertex v� to a di�erent vertex v� in the condensation
i� there is an arc in the original graph from some vertex in the component C� to some vertex in the
component C��

De�nition ��� Let N be an MG	 The MG resulting from N after the substitution of each SCC Ci

by a single transition Ti is called condensation of N 
 and denoted Nc	 There is a place pij connecting
two transitions Ti
 Tj in the condensation of an MG �pij 	 T �i �

�Tj� i� pij connects
 in the original
net
 one transition of the SCC associated with Ti with another one of the component associated with
Tj �pij 	 t�i� �

�tj�
 with ti� 	 Ti and tj� 	 Tj�	

The condensation of a directed graph is always a directed acyclic graph� because if there were a
cycle in it� then all the components in the cycle would really correspond to one SCC in the original
graph� An e�cient algorithm for the computation of SCC�s and the condensation of a directed graph
can be found� for instance� in �����

Now� let us remark that two kinds of transitions can be found in the condensation of a given non�
strongly�connected MG� those with in�nite liveness bound �corresponding with trivial SCC�s having
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only one transition� and those with �nite liveness bound �obtained from the substitution of a non�
trivial SCC� i�e�� having more than one transition�� The �rst ones have null potential mean cycle time
�i�e�� in�nite throughput if they are considered in isolation�� while the potential mean cycle times of
the second are always �nite�

Figure 	�c represents the condensation of the MG depicted in Figure 	�a� Its transitions can
be considered as complex servers in a producers�consumers system� from a queueing theory point of
view� Transitions T�� and T�
 have �nite liveness bound while transition T� has in�nite liveness bound�
Considering the net of Figure 
�a� its condensation is depicted in Figure 
�b� where transitions T���
T��� T	�� and T�
 have �nite liveness bound� while the one of T
 is in�nite�

The condensation of a given MG de�nes a relation on the set of its SCC�s�

De�nition ��� Let N be an MG and Nc its condensation	 We denote ��� the binary relation among
transitions of Nc de�ned as follows� Ti � Tj i� there is a directed path of length one or more from Ti
to Tj in Nc �i	e	
 Tj can be reached from Ti�	

From previous de�nition and from the fact that a condensation of a directed graph is always a
directed acyclic graph� the next property follows�

Property ��� Relation ��� is a POR on the set of transitions of the condensation Nc of an MG

because it is irre�exive and transitive	

The method for the computation of steady�state throughput of transitions of a non�strongly�
connected MG that we present now is based on the previous considerations� using the above de�ned
POR� and considers the liveness bounds of transitions and their potential mean cycle time �i�e�� their
mean cycle time if they were in isolation�� Before the presentation of the computation method we
recall the concept of maximal element for a POR�

De�nition ��� Let C be a set and ��� be a POR de�ned on C	 Then
 c 	 C is a maximal element of
C for the relation ��� i� � 
c� 	 C such that c� � c	

For the previously introduced POR on the set of SCC�s of an MG� maximal elements are the source
transitions of the condensation of the graph�

Theorem ��� Let hN �M�i be a non�strongly�connected MG with some given average service times
associated with transitions	 Let Nc be the condensation of N 	 Let Ti
 i � �� � � � �K
 be a transition of
Nc and �pot�i� its potential mean cycle time �mean cycle time of the SCC associated with Ti
 considered

in isolation�	 The actual mean cycle time ��i� of Ti
 is

i� If Ti is a maximal element for ��� then ��i� � �pot�i� 	

ii� If Ti is not a maximal element for ���
 let �i � maxf��i��� � � � � ��ir�g where Tij � j � �� � � � � r


are such that T �ij �
�Ti �� � �thus
 in particular
 Tij � Ti�	 Then ��i� � maxf�pot�i� � �ig	

We remark that transitions Ti with in�nite liveness bound have null potential mean cycle time
��pot�i� � ��� The exact mean cycle time of transitions can be computed according to the above theorem�
starting from the maximal SCC�s� which are independent of the others� and then iteratively using the
results to solve the subsequent components�

Note that� in practice� the potential mean cycle time of SCC�s ��pot�i� � i � �� � � � �K� are not known�
Moreover� their computation for general distributions is not possible� so far� in polynomial time on the
net size� However� the bounds for the mean cycle time of strongly�connected MG�s derived in previous
sections could be applied for deriving upper and lower bounds for the mean cycle time of transitions
in the whole net� substituting in Theorem �	
 the exact values �pot�i� of the mean cycle time of isolated
components by their upper and lower bounds
 respectively�
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Finally� we remark that� as a by�product of Theorem ���� necessary and su�cient conditions for
the marking ergodicity at places can be deduced� Let us de�ne the input  ow at a given place in the
condensation of an MG as the actual throughput of its input transition� and the potential service rate
of a transition in the condensation as the inverse of its potential mean cycle time� Two cases arise�
��� If a transition of the condensation has only one input place� then the results from queueing theory
can be applied �comparing the input  ow to the place and the potential service rate of the transition��
��� If a transition of the condensation has several input places� then every place whose input  ow is not
the minimum is marking non�ergodic� the place with minimum input  ow must be studied according
with case ���� Some cases are not well�characterized and it depends on the PDF�s whether the marking
process is ergodic or not� For instance� in the case of deterministic timing� equality between input  ow
to a place and potential service rate of its output transition assures weak ergodicity� On the other
hand� in the case of exponential distributions� such equality leads to non�ergodicity �null�recurrent
embedded Markov process��

� Algorithm for the computation of bounds

In this section� we outline the algorithm to compute the upper and lower bounds for the mean cycle
time of MG�s� in a step�by�step form�

Input� Let hN �M�i be an MG and � the vector of mean service times of its transitions�

Step �� Obtain the SCC�s Ni� i � �� � � � � k� and the condensation of the MG �see De�nition ����
using� for instance� the polynomial time algorithm presented in ����� For each Ni� let Ti be its
corresponding transition in the condensation graph� and label these transitions in such a way
that� 
Ti� Tj � i 	 j �� Tj ��Ti�

Step �� For each SCC Ni� i � �� � � � � k� considered in isolation�

�� Solve the linear programming problem �LPP�� �for example� using one of the polynomial
algorithms presented in �	���� Let �min�pot

�i� be its optimum value�

�� For each transition t of Ni� solve the linear programming problem �LPP�� �for example� us�
ing one of the polynomial algorithms presented in �	���� Let be �max�pot

�i� �
P

t��t
SEB�t���

Step �� For each SCC Ni� i � �� � � � � k�

a� If Ti is a maximal element for the relation ��
 in the condensation graph �see De�nitions
��� and ��	� then�

�min
�i� � �min�pot

�i�

�max
�i� � �max�pot

�i�

b� If Ti is not a maximal element for the relation ��
 in the condensation graph� let be
�min
i � maxf�min

�i��
� � � � ��min

�ir�
g and �max

i � maxf�max
�i��

� � � � ��max
�ir�

g where Tij � j � �� � � � � r�

are such that T �ij �
�Ti �� � �see Theorem ����� Then�

�min
�i� � maxf�min�pot

�i� � �min
i g

�max
�i� � maxf�max�pot

�i� � �max
i g

Output� The lower and upper bounds for the mean cycle time of each SCC� Ni� of the MG are �min
�i�

and �max
�i� � respectively�

Note that if the input MG of the previous algorithm is strongly�connected� the computation reduces
to solve Step ��� and Step ��� for the unique SCC �the whole net� and to apply Step 	�a� Finally� we
remark the polynomial complexity on the net size of all the derived methods�
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Figure �� CPN model of two�CPU per processor padmavati architecture�

	 Multiprocessor Architecture Example

As an example of application of the MG�s for the performance evaluation of complex multiprocessor
computer systems� let us consider a non�trivial model taken from the literature� By taking an al�
ready existing example� developed without consideration of the structural restrictions posed by the
techniques proposed in this paper� we hope to convince the reader that �in nature
 there exist some
interesting and nontrivial problems that are amenable to overcome such restrictions� Many other
interesting examples can be shown in the �elds of computer architecture� communications� and man�
ufacturing systems�

In particular� we consider one of the colored Petri net models of the base software architecture of the
padmavati machine� developed in �		�� In that paper� a class of Petri net models was derived directly
from a pseudo�code speci�cation of the base software implementing the inter�processor communication
software� The models were then completed by adding constraints representing the hardware resources�

We report here in Figure � the colored Petri net model in the case of a multiprocessor architecture
in which each processor is composed of two Transputer microprocessors� one devoted to the execution
of communication and memory handler processes� and the other one devoted to the execution of
�client
 application tasks� The unfolding of this colored model yields the MG depicted in Figure �
in case of a two�processor con�guration� In �		� it was shown that a �tandem
 model composed of
only two processors could be used to accurately estimate the performance of a larger multiprocessor
con�guration� so that the MG model in Figure � can be considered as an accurate performance model
of the architecture independently of the number of processors�

In the case studied in �		�� the evaluation was made before the actual implementation of the proto�
type of the machine� and the objective of the performance study was the assessment of the e�ectiveness
of multiprogramming in compensating for the large latency of the multistage interconnection network�
Only estimates of the average delays of the components �based on their hardware characteristics�
were available� no information was� instead� available on the higher moments and on the form of the
probability distributions� In the original work� an exponential distribution assumption was adopted
in order to apply Markovian analysis techniques� but this choice was clearly arbitrary�

This example represents a classical case in which the computation of performance bounds based
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Table �� Number of reachable markings and CPU time for the computation of the exact values �in
seconds� for a SUN 	��� Workstation�� for di�erent number of tasks�

on the assumption that only mean values are known is a good answer to the questions posed by the
system designers� the �true
 value computed by exact numerical solution of a Markov chain is neither
needed nor particularly meaningful in this case�

The obtained results for exponentially�distributed timing of transitions of the model of Figure � are
summarized in Figure �� The exact �mean� values� the upper and the lower bounds for the throughput
of this MG are superposed� for di�erent values of the mean service time of transitions labeled run

and run�� and for di�erent number of tasks �K � initial marking of places runtasks
 and runtasks���
See Table � for the CPU time measured on a SUN 	��� Workstation using the GreatSPN software
package �	
� for the analysis and solution of GSPN models� It must be pointed out that� while the
bounds can be computed practically in zero time independently of the number of tasks� the results in
Table � constitute an indicator of the exponential increase with K of the computation time of mean
values� Related with the accuracy of the bounds� in the case of only one task �K � �� the lower and
the upper bound are trivially equal �thus equal to the exact value�� Assuming the mean service times
of transitions run
 and run� are equal to ���� and K � �� the exact �mean� value of the throughput
is ����� while the lower and the upper bounds are ���
 and ����� respectively� i�e� the exact value is
not very close to either of the bounds� For a number of tasks greater than or equal to �� the exact
value coincides with the upper bound �both curves are superposed in the Figure ��� This means
that for higher token populations �i�e�� under saturation conditions�� that are the cases in which the
Markovian analysis is practically intractable� the upper bound becomes a very good approximation of
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the mean value� In other words� for higher token populations� the maximum parallelism represented
in the net system is achieved on the average �this is intuitive� since in�nite server semantics is assumed
for transitions��


 Conclusions

In this paper we have addressed the problem of computing upper and lower bounds for the throughput
of systems modeled by means of stochastic marked graphs� Both bounds can be computed by means of
proper linear programming problems on the incidence matrix of the net� whose solution is known to be
of worst�case polynomial complexity� As a by�product� we can characterize the liveness of a marked
graph in terms of non�null throughput for all its transitions� This shows an example of possible
interleaving between qualitative and quantitative analysis for timed and stochastic Petri nets�

The use of a net formalism can allow to derive reversibility properties similar to those developed in
the framework of synchronized queueing networks� It has been pointed out that the reverse net yields
the same bounds in the case of strongly�connected marked graphs� This result� which is analogous to
one presented in ����� can be considered a generalization of the reversibility property of �tandem �nite
bu�er queues
 �	�� 	�� 	��� This shows an example in which the use of structural considerations on
the Petri net structure can easily produce otherwise non�intuitive properties of performance models�

The upper bound on throughput for marked graphs was �rst proposed by Ramchandani in ���
�
and then re�discovered and�or re�interpreted by many others� in the framework of the study of the
exact performance of timed Petri nets with deterministic timing� The contributions given by this
paper in this sense are three� an alternative reformulation in terms of linear programming problems�
the proof that the deterministic case represents an upper bound on performance independently of the
probability distribution also in the framework of stochastic Petri nets� the proof that the upper bound
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is attainable for the mean not only by deterministic but also by stochastic models� with arbitrary
values of coe�cients of variation�

The lower bounds on throughput presented in this paper as well as the concepts of enabling and
liveness bounds for transitions are new� The lower bound on throughput consisting of the inverse of
the sum of the �ring times of all transitions divided by their respective liveness bounds reduces to the
trivial sequentialization of all transitions in the case of safe nets� but has been shown to be attainable
with some probability distribution when the coe�cient of variation increases� The concept of liveness
bound generalizes the usual one of liveness for a transition� and provides another example of possible
interleaving between qualitative and quantitative analysis for Petri net models�

Finally� we have taken one performance modeling example from the literature on stochastic Petri
nets� showed that it could be restated in terms of a marked graph� and compared numerically our
bounds with the exact solution in the case of exponential distribution of �ring times� This comparison
shows several interesting things� �rst� the bound computation time was always negligible compared
to the Markovian analysis� second� there were cases in which the upper and lower bounds were very
close �even identical� to each other� making useless the computation of the �exact
 result� third� the
upper bound became a very good approximation of the �exact
 value for higher token populations
�i�e�� exactly in the cases in which the Markovian analysis is more expensive or practically intractable��

The computational framework provided by linear programming theory for the performance analysis
of marked graphs can be also used for other net subclasses� such as structurally bounded nets with a
unique consistent �ring count vector �	�� or live and bounded free choice nets ���� Finally� we want to
stress the fact that the theoretical results presented in this paper� being easier not only to compute
but also to understand and to interpret than classical �exact
 ones� can have a substantial impact on
the application of performance evaluation techniques in the early design phases of complex distributed
systems�

A Appendix

A�� Proof of Theorem ���

By construction� we will show that the association of the family of random variables xj��
�j

���� de�ned

in ����� with each transition tj 	 T yields exactly the cycle time � claimed by the theorem� To give
the proof� we will consider a sequence of models ordered by the index of transitions� in which the
q�th model of the sequence has transitions t�� t�� � � � tq timed with the random variables xj��

�j
���� and

all other transitions immediate ��ring in zero time�� the jT j�th model in the sequence represents an
example of attainability of the lower bound on throughput� independent of the net topology� Now we
will prove by induction that the q�th model in the sequence has a cycle time �q �

Pq
j�� �j �O���

Base� q � � � trivial since the repetitive cycle that constitutes the steady�state behavior of the
MG contains only one �single�server� deterministic transition with average �ring time �� � ���

Induction step� q � � � taking the limit � � �� the newly timed transition tq will �re most of
the time with time zero� thus normally not contributing to the computation of the cycle time� that
will be just �q�� �

Pq��
j�� �j �O��� �as in the case of model q � �� with probability � � �q��� On the

other hand� the newly timed transition has a �very small� probability �q�� of delaying its �ring by a
time �q
�

q��� which is at least of order �
� bigger than any other �ring time in the circuit� so that
in this case all other transitions will wait for the �ring of tq� after having completed their possible
current �rings in a time which is O��� lower than the �ring time of tq itself �i�e�� �q
�

q�� � �q��
O�����

Therefore we obtain that �q � ��� �q����q�� � �q���
�q
�q�� �O���� �

Pq
j�� �j �O����

A�� Proof of Lemma ���

To construct an MG of the desired form we can apply the following iterative procedure that interleaves
two non�disjoint circuits into a single one� Since the MG is strongly�connected each node belongs to
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at least one circuit� moreover� since the original MG is �nite and each circuit cannot contain the
same node more than once� this circuit interleaving procedure must terminate after a �nite number
of iterations� To reduce the number of circuits� implicit places created after each iteration can be
removed� The iteration step is the following�

�� Take two arbitrary non�disjoint circuits �unless the MG already contains a main circuit including
all nodes� there always exists such a pair of circuits because the MG is strongly�connected��

�� Combine them in a single circuit in such a way that the partial order among transitions given by
the two original circuits is substituted by a compatible but otherwise arbitrary total order� This
combination can be obtained by adding new places that are connected as input for a transition
of one circuit and output for a transition of the other circuit that we decide must follow in the
sequence determined by the new circuit we are creating�

	� Mark the new added places in such a way that the new circuit contains the same number of
tokens as the maximum of the number of tokens in the two original circuits�

The above procedure is applied iteratively until all transitions are constrained into a single main
circuit� At this point� we can identify and eliminate the implicit places that have been created during
the circuits interleaving procedure� We obtain then an MG composed of one main circuit containing
NM � maxt�T EB�t� tokens that connects all transitions� and a certain number of minor circuits
containing less tokens than NM that maintain the liveness bound of the other transitions�

A�� Proof of Theorem ���

Without loss of generality� assume that transitions in the net resulting from the application of
Lemma 
�� are partitioned in two classes S� and S�� with liveness boundsK� � NM � � andK� 	 NM �
respectively �the proof is easily extended to the case of more than two classes�� Construct a new model
containing only K� tokens in the main circuit� at this point all transitions behave as K��servers� so
that the cycle time is given by the sum of the �ring times of all transitions� divided by the total
number of customers in the main loop K�� moreover� the delay time for the transitions belonging to
class S� is simply given by D� �

P
tj�S� �j� Now if we increase the number of tokens in the main loop

from K� to K�� the delay time of S� cannot increase� so that the contribution of S� to the cycle time
cannot exceed D� for each of the �rst K� tokens� Under the hypothesis that the throughput of the
system is given by the inverse of �max �i�e�� assuming X � �

�max �� the average number of tokens of the
main loop computed using Little�s formula cannot exceed N� � XD�� therefore the average number
of tokens available to �re transitions in S� cannot be lower than

N� � K� �N� � K�

K��K�

K�

P
tj�S� �j �

P
tj�S� �jP

tj�S� �j �
K�

K�

P
tj�S� �j

On the other hand� we need only

N� � XD� � K�
D�P

tj�S� �j �
K�

K�

P
tj�S� �j

tokens to sustain throughput X in subnet S�� so that we are assuming a delay in S�

D� �
K� �K�

K�

X
tj�S�

�j �
X
tj�S�

�j

Now we claim that this is the actual maximum delay because the �rst K� tokens can proceed at the
maximum speed in the whole net� thus experiencing only delay

P
tj�S� �j in subnet S�� while the

remaining K��K� tokens can also queue up for traveling through S�� thus experiencing an additional
delay of �

K�

P
tj�S� �j each�

�




A�� Proof of Theorem ���

We proceed by construction� in a way very similar to that of Theorem 
��� The only technical
di�erence is that now� without any loss of generality� we assume �rst of all to enumerate transitions
in non�increasing order of liveness bound� i�e�� rename the transitions in such a way that 
ti� tj 	 T �
i � j �� LB�ti� � LB�tj�� Then� as in the case of Theorem 
��� we can show that the association of

the family of random variables xj��
�j

��� with each transition tj 	 T yields exactly the cycle time �max

claimed by the theorem� To give the proof we consider a sequence of models ordered by the index of
transitions� in which the q�th model of the sequence has transitions t�� t�� � � � tq timed with the random

variables xj��
�j

���� and all other transitions immediate ��ring in zero time�� the jT j�th model in the
sequence represents the resulting model that is expected to provide the example of attainability of the
lower bound� By induction we prove that the q�th model in the sequence has a cycle time

�q �
qX

j��

�j
LB�tj�

�O���

Base� q � � � trivial since the repetitive cycle that constitute the steady�state behavior of the MG
contains only one �LB�t���server� deterministic transition with average �ring time �� � ��
LB�t���
Induction step� q � � � taking the limit �� �� each server of the newly timed transition tq will �re most
of the times with time zero� thus normally not disturbing the behavior of the other timed transitions�
and not contributing to the computation of the cycle time� that will be just �q �

Pq��
j��

�j
LB�tj �

�O���

�as in the case of model q � �� with probability � � �q��� On the other hand� each of the servers of
the newly timed transition has a �very small� probability �q�� of delaying its �ring of a time �q
�

q���
which is at least order of �
� bigger than any other �ring time in the circuit� Now if LB�tq� � �� then
the proof is completed� since also 
j � q� LB�tj� � � by hypothesis� and we reduce to the induction
step of the proof of Theorem 
��� Instead if LB�tq� � � then we can consider LB�tq� consecutive
�rings of tq� and compute the average �ring time as the total time to �re LB�tq� times the transition�
divided by LB�tq�� Now if we consider m consecutive �rings of instances of transition tq� we obtain
an average delay�

m��X
j��

��� �q���
j
��q����m�j� �m� j��q

��q���
� �q�� �O����

Therefore� the average cycle time of the q�th model will be

�q � ���O��q�����q�� �
�q

LB�tq�
�� �O���� �

qX
j��

�j
LB�tj�

�O����

References

��� E� Gelenbe and G� Pujolle� Introduction to Queuing Networks� John Wiley ! Sons� �����

��� C� H� Sauer� E� A� MacNair� and J� F� Kurose� The research queueing package� past� present�
and future� In Proceedings of the 
��� National Computer Conference� AFIPS� �����

�	� M� Vernon� J� Zahorjan� and E� D� Lazowska� A comparison of performance Petri nets and queue�
ing network models� In Proceedings of the 	rd International Workshop on Modeling Techniques
and Performance Evaluation� pages �������� Paris� France� March ����� AFCET�

�
� F� Baccelli and A� Makowski� Queueing models for systems with synchronization constraints�
Proceedings of the IEEE� �������	������ January �����

��� Proceedings of the International Workshop on Timed Petri Nets� Torino� Italy� July ����� IEEE
Computer Society Press�

��



��� Proceedings of the International Workshop on Petri Nets and Performance Models� Madison� WI�
USA� August ����� IEEE Computer Society Press�

��� Proceedings of the 	rd International Workshop on Petri Nets and Performance Models� Kyoto�
Japan� December ����� IEEE Computer Society Press�

��� F� Baccelli� N� Bambos� and J� Walrand� Flow analysis of stochastic marked graphs� In Proceedings
of the IEEE Conference on Decision and Control� �����

��� J� Campos� G� Chiola� and M� Silva� Properties and performance bounds for closed free choice
synchronized monoclass queueing networks� IEEE Transactions on Automatic Control� Special
Mini�Issue on Modeling and Analysis of Multidimensional Queueing Systems� December �����

���� Y� Dallery� Z� Liu� and D� Towsley� Equivalence� reversibility and symmetry properties in fork�join
queueing networks with blocking� Technical report� MASI ���	�� University Paris �� 
 Place
Jussieu� Paris� France� June �����

���� J� Campos and M� Silva� Steady�state performance evaluation of totally open systems of Marko�
vian sequential processes� In M� Cosnard and C� Girault� editors� Decentralized Systems� pages

���
	�� Elsevier Science Publishers B�V� �North�Holland�� Amsterdam� The Netherlands� �����

���� K� G� Murty� Linear Programming� John Wiley ! Sons� ���	�

��	� K� Thulasiraman and M� A� Comeau� Maximum�weight markings in marked graphs� Algorithms
and interpretations based on the simplex method� IEEE Transactions on Circuits and Systems�
	
�������	����
�� December �����

��
� M� A� Comeau and K� Thulasiraman� Structure of the submarking�reachability problem and
network programming� IEEE Transactions on Circuits and Systems� 	������������ January �����

���� M� Silva and J� M� Colom� On the computation of structural synchronic invariants in P�T nets�
In G� Rozenberg� editor� Advances in Petri Nets 
���� volume 	
� of LNCS� pages 	���
���
Springer�Verlag� Berlin� �����

���� G� Cohen� P� Moller� J� P� Quadrat� and M� Viot� Algebraic tools for the performance evaluation
of discrete event systems� Proceedings of the IEEE� ������	����� January �����

���� J� Campos� G� Chiola� J� M� Colom� and M� Silva� Tight polynomial bounds for steady�state
performance of marked graphs� In Proceedings of the 	rd International Workshop on Petri Nets
and Performance Models� pages �������� Kyoto� Japan� December ����� IEEE Computer Society
Press�

���� T� Murata� Petri nets� Properties� analysis� and applications� Proceedings of the IEEE� ���
���
��
���� April �����

���� C� Ramchandani� Analysis of Asynchronous Concurrent Systems by Petri Nets� PhD thesis� MIT�
Cambridge� MA� USA� February ���
�

���� J� Sifakis� Use of Petri nets for performance evaluation� Acta Cybernetica� 
������������ �����

���� G� Florin and S� Natkin� Les r"eseaux de Petri stochastiques� Technique et Science Informatiques�

�����
	����� February ����� In French�

���� M� K� Molloy� Performance analysis using stochastic Petri nets� IEEE Transaction on Computers�
	�������	����� September �����

��



��	� W� M� Zuberek� Performance evaluation using timed Petri nets� In Proceedings of the International
Workshop on Timed Petri Nets� pages �������� Torino�Italy� July ����� IEEE Computer Society
Press�

��
� R� R� Razouk and C�V� Phelps� Performance analysis using timed Petri nets� In Proceedings of
the International Conference on Parallel Processing� pages �������� August ���
�

���� M� A� Holliday and M� K� Vernon� A generalized timed Petri net model for performance analysis�
In Proceedings of the International Workshop on Timed Petri Nets� pages �������� Torino� Italy�
July ����� IEEE Computer Society Press�

���� E� Best� Structure theory of Petri nets� The free choice hiatus� In W� Brauer� W� Reisig� and
G� Rozenberg� editors� Advances in Petri Nets 
��� � Part I� volume ��
 of LNCS� pages ��������
Springer�Verlag� Berlin� �����

���� J� Campos� G� Chiola� and M� Silva� Properties and steady�state performance bounds for Petri
nets with unique repetitive �ring count vector� In Proceedings of the 	rd International Workshop
on Petri Nets and Performance Models� pages �������� Kyoto� Japan� December ����� IEEE
Computer Society Press�

���� A� Gibbons� Algorithmic Graph Theory� Cambridge University Press� London� Great Britain�
�����

���� J� M� Colom and M� Silva� Convex geometry and semi ows in P�T nets� A comparative study of
algorithms for computation of minimal p�semi ows� In G� Rozenberg� editor� Advances in Petri
Nets 
���� volume 
�	 of LNCS� pages ������� Springer�Verlag� Berlin� �����

�	�� G� L� Nemhauser� A� H� G� Rinnooy Kan� and M� J� Todd� editors� Optimization� volume � of
Handbooks in Operations Research and Management Science� North�Holland� Amsterdam� The
Netherlands� �����

�	�� C� V� Ramamoorthy and G� S� Ho� Performance evaluation of asynchronous concurrent systems
using Petri nets� IEEE Transactions on Software Engineering� �����

��

�� September �����

�	�� J� Magott� Performance evaluation of concurrent systems using Petri nets� Information Processing
Letters� ������	� ���
�

�		� M� Ajmone Marsan� G� Balbo� G� Chiola� and G� Conte� Modeling the software architecture
of a prototype parallel machine� In Proceedings of the 
��� SIGMETRICS Conference� Ban��
Alberta� Canada� May ����� ACM�

�	
� G� Chiola� A graphical Petri net tool for performance analysis� In Proceedings of the 	rd Inter�
national Workshop on Modeling Techniques and Performance Evaluation� Paris� France� March
����� AFCET�

�	�� E� G� Muth� The reversibility property of production lines� Management Science� ��������������
�����

�	�� G� Yamazaki� T� Kawashiha� and H� Sakasegawa� Reversibility of tandem blocking queueing
systems� Management Science� 	���������	� �����

�	�� B� Melamed� A note on the reversibility and duality of some tandem blocking queueing systems�
Management Science� 	��������
������� �����

�	�� J� Campos� G� Chiola� and M� Silva� Ergodicity and throughput bounds of Petri nets with
unique consistent �ring count vector� IEEE Transactions on Software Engineering� ����������
���� February �����

��



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


