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Abstract

This paper addresses the computation of upper bounds for the throughput of transitions

of live and safe deterministically or stochastically timed free choice nets� The obtained

results are extensions of the marked graph case� presented by the authors in previous works�

Polynomial complexity algorithms are derived using linear programming techniques� The

obtained values are tight in the sense that� with the only knowledge of the net topology�

the mean service times of transitions� and the routing rates at con�icts� is not possible to

improve the bounds�

Topics� Timed and stochastic nets� Analysis and synthesis� structure� and behaviour of

nets�

� Introduction

One of the main problems in the actual use of timed and stochastic Petri net models for the
performance evaluation of large systems is the explosion of the computational complexity of
the analysis algorithms� In general� exact performance results are obtained from the numerical
solution of a continuous time Markov chain �BT��� Mol��� FN���� This exact computation is
only possible for bounded nets 	
nite state space� and some very restricted cases of unbounded
nets� and most of them under exponential assumption for the service time of transitions� And
the worst of it is that the dimension of the state space of the embedded Markov chain grows
exponentially with the net size�

Two complementary approaches to the derivation of exact measures for the analysis of dis�
tributed systems are the utilization of approximation techniques and the computation of bounds�
Performance bounds are useful in the preliminary phases of the design of a system� in which
many parameters are not known accurately� Several alternatives for those parameters should
be quickly evaluated� and rejected those that are clearly bad� Exact 	and even approximate�
solutions would be computationally very expensive� Bounds become useful in these instances
since they usually require much less computation e
ort�

Inside the domain of Petri nets� many works exist related to the performance evaluation
in the case of deterministically timed models� mainly for strongly connected marked graphs
�Ram��� Sif��� RH��� Mag��� Mur���� Extensions to non�ordinary nets have been presented in
the case of deterministic timing �Hil����
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Concerning stochastic nets� only a few works exist related with the computation of per�
formance bounds� In �Mol���� M� Molloy noted that the average token �ows in an ordinary
Markovian network at steady�state are conserved� Therefore� a series of �ow balance equations

can be written� Token �ows are conserved in places so the sum of all �ows into a place equals
the sum of all �ows out of the place� On the other hand� all token �ows on the input and
output arcs of a transition are equal� These equations determine the average token �ows in the
cycles of the net to within a constant� This constant cannot be determined without Markovian
analysis at the reachability graph level� However� limit �ows when the number of tokens tends
to in
nity can be computed� In order to do that� bottleneck transitions must be 
rst located�
Then� the actual �ow through a bottleneck transition is 	under saturation conditions� equal to
its potential 
ring rate�

It is well�known that the conservation of �ows presented by M� Molloy is not only valid for
Markovian nets� In fact� some of most important laws of queueing theory hold under very general
assumptions� These general situations are considered in our work� and some fundamental laws
taken from queueing theory 	such as Little�s formula� are applied to stochastic Petri net models�

S� Bruell and S� Ghanta �BG��� developed algorithms for computing upper and lower bounds
for the throughput of a restricted subclass of generalized stochastic Petri nets 	with immediate
and exponentially timed transitions� �AMBC����� The considered nets include control tokens to
model a physical restriction� such as semaphores� which is not a design parameter� The rest
of tokens of such nets� grouped in classes� correspond to the notion of a job or customer in a
monoclass queueing network� and its number is treated as a parameter of the net� The upper and
lower bounds on throughput are computed hierarchically estimating maximum and minimum
time of the path followed by each class of jobs�

In the paper of S� Islam and H� Ammar �IA���� methods to compute upper and lower bounds
for the steady�state token probabilities of a subclass of generalized stochastic Petri nets are
presented� The considered nets are obliged to admit a time scale decomposition� This means that
the transitions of the net are supposed to be divided into two classes� slow and fast transitions�
with several orders of magnitude of di
erence in the duration of activities� Moreover� the
subnets obtained after removing all slow transitions with their input and output arcs must be
conservative and admit a reversible initial marking� The computation is based on near�completely

decomposability of Markov chains�
The particular case of strongly connected marked graphs has been studied in �CCCS����

The bounds obtained for this subclass of Petri nets are computable in polynomial time on the
size of the net model� Moreover� both upper and lower bounds on throughput are tight� in the
sense that for any marked graph model it is possible to de
ne families of stochastic timings such
that the steady�state performances of the timed Petri net models are arbitrarily close to either
bound�

An extension to classes of nets behaviourally �similar� to strongly connected marked graphs
is studied in �CCS���� A characteristic of these nets is the existence of a unique consistent 
ring
count vector� They can be obtained from two non�disjoint subclasses of live and bounded nets�
named persistent and mono�T�semi�ow nets� These nets are either decision�free or such that
the decision policy at e
ective con�icts does not change the vector of visit ratios for transitions�
which is needed for the computation of performance bounds 	mono�T�semi�ow nets allow con�
currency and decision� in a particular way�� Both the upper and lower bounds on throughput
are independent of any assumption on the probability distribution of the delay associated with
transitions� and their values can be computed based on the knowledge of the averages� Even
more� the upper bound in case of persistent nets has been shown to be reachable�

The computation of a reachable lower bound for the steady�state performance of live and
safe free choice nets with deterministic or stochastic timing of transitions is considered in this
paper� The results presented here are extensions to live and safe free choice nets of the perfor�



mance bounds for strongly connected marked graphs developed in �CCCS���� and constitute an
improvement of those in �CCS��� Cam���� for the case of safe free choice nets�

The paper is organized as follows� In section �� the basic notation of Petri net models as
well as some preliminary considerations related to the introduction of a timing interpretation
in the model are presented� In section �� a result taken from �CCS��� is recalled in which
Little�s law �Lit��� and P�semi�ows are applied for the derivation of a linear programming prob�

lem �Mur���� Its optimum solution gives a lower bound for the mean inter�ring time of a tran�

sition� de
ned as the average time between two consecutive 
rings 	inverse of the throughput��
of timed or stochastic live and bounded free choice nets� This problem includes structural infor�
mation of the net by means of the global incidence matrix� All parameters de
ning stochastic
interpretation are summarized in the vector of average service demands for transitions 	products
of visit ratios by mean service times�� which can be e�ciently computed for live and bounded
free choice nets �CCS����

The bound derived in section � is� in general� non�reachable� A reachable lower bound for the
mean inter
ring time of transitions is obtained in section � for the case of safe nets� by computing
the bound for a behaviourally related strongly connected marked graph� This computation is
very ine�cient because of the size of the derived marked graph� A polynomial computation
is presented in section �� The idea is the following� a reachable bound for strongly connected
marked graphs was derived in �CCCS��� using the circuits of the net� A natural extension of
circuits of marked graphs for the case of free choice nets can be found in the framework of graph
theory� multisets of circuits� From this approach� a lower bound for the mean inter
ring time
can be derived that is reachable for some distribution functions of service times of transitions
with arbitrary mean values and for some deterministic con�ict resolution policy� with arbitrary
long run rates�

In section �� we justify why the method developed for safe nets cannot be directly extended
for bounded 	non�safe� nets� Some concluding remarks are presented in section ��

� Preliminary concepts

We assume the reader is familiar with the structure� 
ring rules� and basic properties of net
models 	see �Mur��� for a recent survey�� Let us recall some notation here� N � hP� T� Pre� Posti
is a net with n � jP j places and m � jT j transitions�

If Pre and Post incidence functions take values in f�� �g� N is said to be ordinary�
PRE� POST � and C � POST � PRE are n�m matrices representing the Pre� Post� and

global incidence functions�
The pre� and post�sets of a transition t � T are de
ned respectively as �t � fpjPre	p� t� � �g

and t� � fpjPost	p� t� � �g� The pre� and post�sets of a place p � P are de
ned respectively as
�p � ftjPost	p� t� � �g and p� � ftjPre	p� t� � �g�

Marked graphs are ordinary nets such that �p � P � j�pj � jp�j � �� Free choice nets are
ordinary nets such that �p � P � jp�j � �� �	p�� � fpg�

Vectors X � �� C � X � � 	Y � �� Y T � C � �� represent T�semi�ows 	P�semi�ows�� also
called consistent 	conservative� components� The support of T�semi�ows 	P�semi�ows� is de
ned
by jjXjj � ft � T jX	t� � �g 	jjY jj � fp � P jY 	p� � �g�� A 	T� or P�� semi�ow I has minimal

support i
 there exist no other semi�ow I � such that jjI �jj 	 jjIjj�
M 	M�� is a marking 	initial marking�� Finally� � represents a �reable sequence� while �� is

the �ring count vector associated to �� If M is reachable from M� 	i�e� 
� s�t� M���iM�� then
M � M� � C � �� � � and �� � ��

The introduction of a timing speci
cation is essential in order to use Petri net models for per�
formance evaluation of distributed systems� We consider nets with deterministically or stochas�

tically timed transitions with one phase 
ring rule� i�e�� a timed enabling 	called the service time



of the transition� followed by an atomic 
ring� The service times of transitions are supposed to
be mutually independent and time independent�

In order to avoid the coupling between resolution of con�icts and duration of activities� we
suppose that transitions in con�ict are immediate 	they 
re in zero time�� Decisions at these
con�icts are taken according to routing rates associated with immediate transitions 	general�
ized stochastic Petri nets �AMBC��� AMBCC����� In other words� each subset of transitions
ft�� � � � � tkg 	 T that are in con�ict in one or several reachable markings are considered immedi�
ate� and the constants r�� � � � � rk � IN� are explicitly de
ned in the net interpretation in such a
way that when t�� � � � � tk are enabled� transition ti 	i � �� � � � � k� 
res with probability 	or with
long run rate� in the case of deterministic con�icts resolution policy� ri�	

Pk
j�� rj�� Note that

the routing rates 	which are considered rational� are assumed to be strictly positive� i�e�� all
possible outcomes of any con�ict have a non�null probability of 
ring� This fact guarantees a
fair behaviour for the non�autonomous Petri nets that we consider�

� A �rst lower bound for the mean inter�ring time of live and
bounded nets and its limitations

In this section� we recall the lower bound for the mean inter
ring time of transitions� de
ned as
the average time between two consecutive 
rings� of live and bounded free choice nets� presented
in �CCS���� It is computed by solving a linear programming problem which includes structural
information by means of the incidence matrix of the net� On the other hand� the stochastic
interpretation is summarized in the vector of average service demands for transitions� computed
from mean service times and visit ratios for transitions� Mean service times are supposed to be
given with the model� while visit ratios can be e�ciently computed for live and bounded free
choice nets�

��� Computation of the visit ratios for transitions

Let us denote by si� i � �� � � � �m� the arbitrary mean service times of transitions� and by M and
��� the limit average marking and the limit vector of transition throughputs de
ned as �FN����

M
def
� lim

���

�

�

Z �

�
Mu du 	 ��� a�s� 	��

and

���
def
� lim

���

���
�

	 ��� a�s� 	��

where M� and ��� represent the marking and the 
ring processes of the net� respectively�
The existency of the limits M and ���� which is called weak ergodicity of the marking and


ring processes 	see �CCCS����� is assured for live and bounded free choice nets�

Theorem ��� �CCS��� Let hN �M�i be a live and bounded free choice net with deterministic
or stochastic service times of transitions� Then� both the marking and the �ring processes of

hN �M�i are weakly ergodic�

In order to compute the lower bounds for the mean inter
ring time of transitions� de
ned as
the inverse of the throughput� presented in �CCS���� it is necessary to obtain before the relative
throughputs of transitions that� in order to approach with queueing theory terminology� we call
visit ratios� The vector of visit ratios� normalized for instance for transition tj� is�

�v�j� �
�

���	tj�
��� � ��j� ��

� 	��



where ��j� is called the mean inter
ring time of tj � i�e�� the inverse of its throughput�
For live and bounded free choice nets� the vector of visit ratios for transitions can be computed

in polynomial time� from the net structure and the routing rates at con�icts� This computation
takes into account that the vector of visit ratios must be a T�semi�ow� i�e�� C � �v�j� � ��
Additionally� the components of �v�j� must verify the following relations with respect to the
routing rates for each subset of transitions T � � ft�� � � � � tkg 	 T in structural con�ict 	called
structural con�ict set��

r��v
�j�	t��� r��v

�j�	t�� � �

r��v
�j�	t��� r��v

�j�	t�� � � 	��

� � �

rk�v
�j�	tk���� rk���v

�j�	tk� � �

Expressing the former homogeneous system of equations in matrix form� RT � � �v�j� � ��
where RT � is an 	k � �� �m matrix� Now� by considering all structural con�ict sets T�� � � � � Tr�
R � �v�j� � �� where R is a matrix�

R �

�B� RT�
���

RTr

�CA 	��

Therefore� the following theorem can be stated�

Theorem ��� �CCS��� Let hN �M�i be a live and bounded free choice net� Let C be the incidence

matrix of N � and R the matrix previously de�ned� Then� the vector of visit ratios �v�j� normalized�

for instance� for transition tj can be computed from C and R solving the following linear system

of equations� �
C
R

�
� �v�j� � �� �v�j�	tj� � � 	��

Corollary ��� The computation of the vector of visit ratios for transitions for live and bounded

free choice nets is polynomial on the net size�

The following section presents the computation of a lower bound for the mean inter
ring
time using the vector of visit ratios�

��� A lower bound for the mean inter�ring time

Little�s theorem �Lit��� can be applied to each place of a weakly ergodic net� Denoting as M	pi�
the limit average number of tokens at place pi� ��

� the limit vector of transition throughputs�
and R	pi� the average time spent by a token within the place pi 	average response time at place
pi�� the above mentioned relationship is stated as follows 	see �FN�����

M	pi� � 	PRE�pi� � ��
�� R	pi� 	��

where PRE�pi� is the ith row of the pre�incidence matrix of the underlying Petri net� thus
PRE�pi� � ��� is the output rate of place pi�

In the above equation ��� is known except for a scaling factor 	see equation 	�� and theo�
rem ����� The average response time R	pi� at places with more than one output transition is
null because such transitions are considered immediate� For the places pi with only one output
transition� the average response time can be expressed as sum of the average waiting time due



to a possible synchronization in the output transition and the mean service time associated with
that transition� Thus the average response times can be lowerly bounded from the knowledge of
the mean service times of transitions� si� i � �� � � � �m� and the following system of inequalities
can be derived from 	���

��j�M � PRE � �D�j� 	��

which relates the mean inter
ring time ��j� of transition tj� the vector M of limit average

markings� and the vector �D�j� of average service demands for transitions� with components
�D�j�	ti�

def
� si�v

�j�	ti�� i � �� � � � �m�
We remark that vector �D�j� can be e�ciently computed for live and bounded free choice

nets� if mean service times si are given� because the vector of visit ratios �v�j� can be derived for
such nets by solving a linear system of equations 	cfr� theorem �����

The limit average marking M is unknown� However� taking the product with a P�semi�ow
Y 	i�e�� Y T �C � �� thus Y T �M� � Y T �M � Y T �M for all reachable markingM�� the following
inequality can be derived�

��j� � max
Y �fP�semiflowg

Y T � PRE � �D�j�

Y T �M�
	��

The previous lower bound can be formulated in terms of a fractional programming problem

�Mur��� and later� after some considerations� transformed into a linear programming problem�

Theorem ��� �CCS��� For live and bounded free choice nets� a lower bound for the mean

inter�ring time of transition tj can be computed by the following linear programming problem�

��j� � �PS�j� � maximum Y T � PRE � �D�j�

subject to Y T � C � �
Y T �M� � �
Y � �

	LPP��

We remark that the computation of the above bound for live and bounded free choice nets
has polynomial complexity on the net size� This is because the computation of vector �D�j� is
polynomial 	by corollary ���� and because linear programming problems can be also solved in
polynomial time �Kar����

For live and bounded marked graphs 	a subclass of free choice nets�� the bound derived from
theorem ��� has been shown to be reachable in the following sense�

Theorem ��� �CCCS��� For any live and bounded marked graph with arbitrary values of mean

and variance for transition service times� the lower bound for the mean inter�ring time obtained

from �LPP	
 cannot be improved�

Unfortunately� this is not the case for live and safe free choice net systems� Let us consider�
for instance� the system depicted in 
gure �� Let s� and s	 be the mean service times associated
with t� and t	� respectively� Let t�� t�� and t
 be immediate transitions 	i�e�� they 
re in zero
time�� Let q� ��q � 	�� �� be the routing probabilities de
ning the resolution of con�ict at place
p�� The vector of visit ratios normalized for t
 is

�v�
� � 	q� �� q� q� �� q� ��T 	���

All P�semi�ows can be generated by non�negative linear combinations of�



t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p 4 p 5

q 1-q

Figure �� The lower bound for the mean inter
ring time given by 	LPP�� is non�reachable�

Y� � 	�� �� �� �� ��T

Y� � 	�� �� �� �� ��T
	���

Then� applying the problem 	LPP�� to this net� the following lower bound for the mean
inter
ring time of transition t
 is obtained�

��
� � maxfqs�� 	�� q�s	g 	���

while the actual mean inter
ring time for this transition is

��
� � qs� � 	�� q�s	 	���

independently of the higher moments of the probability distribution functions associated with
transitions t� and t	� Therefore� the bound given by theorem ��� is non�reachable for the net in

gure ��

In the next section� a new method for the computation of a reachable lower bound for the
mean inter
ring time of transitions for live and safe free choice nets is derived� It is presented
through the derivation of a marked graph which is behaviourally equivalent for a given deter�
ministic con�ict resolution policy�

� A reachable bound for live and safe nets

In this section� let us consider live and safe free choice nets with arbitrary service times associated
with transitions� The con�icts resolution policy is also arbitrary� but with some given routing
rates� In fact� without loss of generality� we can restrict to deterministic resolution policies�
which for safe free choice nets give the same performance than any probabilistic routing� in
steady�state�

First� we give an algorithm to derive a live and safe marked graph which is behaviourally
equivalent to the live and safe free choice net with deterministic routing� For this marked graph�
well�known results �CCCS��� can be applied for the computation of bounds� After that� we
interpret the computation of bounds for the behaviourally equivalent marked graph considering
some collections of circuits� or multisets of the original net�

��� Derivation of a behaviourally equivalent marked graph

A deterministic resolution of the con�ict between two transitions t� and t� is a rule that 
xes
which transition of them will be authorized to 
re at the successive markings enabling both�



Thus� in some sense� the resulting interpreted net can be considered as a con�ict�free net�
In the next paragraph� we present an algorithm for the computation of bounds for a live and

safe free choice net hN �M�i with deterministic routing� based on the fact that the behaviour of
a safe con�ict�free net can be represented by means of an equivalent marked graph �Ram���� for
which the results of �CCCS��� can be applied�

Step �� From the given deterministic resolution policy� compute the vector of visit ratios �v�j�

in the net system hN �M�i� using the theorem ����

Step �� Steady�state markings must be home states� Let Mh be one of the home states 	there
always exist some for live and safe free choice nets �BV����� and select it as the initial
marking 	i�e�� hN �Mhi is reversible��

Step �� Apply the algorithm presented in �Ram���� with the initial marking of Step �� in order
to compute a behaviourally equivalent marked graph of safe con�ict�free nets� with the
following modi
cations� 	�� each time one place enables more than one transition� select the
transition authorized by the deterministic resolution policy� 	�� select one slice �Ram���
of the behaviour graph 	among those that occur repeatedly� according to Lemma �����
in �Ram���� including the same places marked at the initial home state and such that the
number of instances of each transition in the frustum �Ram��� is the same multiple of its
corresponding entry in the vector of visit ratios�

Step �� Compute the lower bound for the mean inter
ring time of the marked graph obtained
in Step �� in which all instances of a same transition have a service time equal to that of
the original one� The computation is made by solving the linear programming problem
	LPP��� 	Observe that the vector of visit ratios for the marked graph is �v � ��� where ��
denotes a vector with all entries equal to �� but the number of instances of each transition is
equal to the same multiple of its corresponding entry in the vector of visit ratios computed
in Step ���

Step �� A lower bound for the mean inter
ring time of a given transition in the original net
is computed by dividing the value obtained in Step � by the number of instances of this
transition in the derived equivalent marked graph�

Observe that the smallest behaviourally equivalent marked graph that can be derived with
previous algorithm is obtained by 
ring a sequence of transitions of the original net whose 
ring
count vector is a multiple of the vector of visit ratios 	let us denote as �v� such that� all its
components are integer and their greatest common divisor es equal to �� On the other hand�
from the deterministic routing assumption follows that the only repetitive sequences of the
interpreted net are such having a multiple of the vector of visit ratios as 
ring count vector�
Therefore� for a given transition� the number of instances of it in the behaviourally equivalent
marked graph is equal to its corresponding entry in vector �v� This is the reason why in Step � of
above algorithm the value obtained from 	LPP�� in Step � is divided by the number of instances
of the considered transition�

It must be pointed out that since the marked graph derived in Step � is behaviourally
equivalent to the original free choice net with deterministic con�ict resolution policy then� in
particular� their exact mean inter
ring times are equal� Therefore� the lower bound for the
mean inter
ring time of transitions of the original free choice net 	with the given deterministic
con�icts resolution policy� can be derived from the mean inter
ring time of the marked graph�
after a normalization operation 	dividing by the number of instances of the selected transition��

The bound computed for the marked graph by means of 	LPP�� given by theorem ��� is
reachable 	see theorem ����� This provides a method for the computation of a reachable lower
bound for the mean inter
ring time of transitions for live and safe free choice nets�
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Figure �� Behaviourally equivalent marked graph of the net in 
gure � for a deterministic
resolution of con�ict 	the routing associated with t� is equal to twice the routing associated
with t���

As an example� let us consider again the live and safe free choice net depicted in 
gure ��
Suppose that the deterministic con�ict resolution policy at place p� is� �authorize twice tran�
sition t�� then once transition t�� and repeat it� 	i�e�� the routing rate for transition t� is twice
the routing rate of t��� The application of Step � gives the vector �v�
� � 	���� ���� ���� ���� ��T �
The initial marking is already a home state and therefore the output of Step � is veri
ed� The
application of Step � gives the behaviourally equivalent marked graph depicted in 
gure �� The
lower bound for the mean inter
ring time of the derived marked graph 	which is equal for all its
transitions� is �s� � s	� according to Step �� Finally� the application of Step � leads to a lower
bound for the mean inter
ring time of transition t
 in the free choice net of 
gure � equal to
	�s� � s	��� 	the one of the marked graph divided by the number of instances of transition t
��
Observe that this value coincides with that given by 	��� with q � ����

As can be seen in the example� the proposed method can become very expensive in amount
of memory and computational time� Just consider� as an example� the net in 
gure � but with
routing rates of transitions t� and t� being �� and ��� only a bit di
erent from the considered
before 	� and �� respectively�� In this case the equivalent marked graph would have �� transitions
and ��� places �

��� Interpretation of previous result

This section is devoted to analyze the method to compute the lower bound for the mean inter�

ring time of the equivalent marked graph derived from the original safe free choice net� This is
done in order to translate the underlying structural property to an equivalent structural prop�
erty on the free choice net� This property is used in the next section to derive a polynomial
method to compute the lower bound of the mean inter
ring time for the original net without
the generation of the marked graph�

It is known �Ram��� RH��� Mur��� CCCS��� that the problem of 
nding a lower bound for
the mean inter
ring time of transitions in a strongly connected stochastic marked graph can be
solved looking at the cycle times associated with each minimal P�semi�ow 	circuits for marked
graphs� of the net� considered in isolation 	in fact� the simplex method used to solve the problem
of Step � proceeds in this way�� These cycle times can be computed making the summation
of the mean service times of all the transitions involved in the P�semi�ow� and dividing by the
number of tokens present in it� Therefore� the performance computation of Step � looks at the
circuits of the behaviourally equivalent marked graph�
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Figure �� A multiset of circuits of the net in 
gure ��

On the other hand� a circuit of the marked graph is composed by one or several instances
of circuits of the original free choice net� This collection of circuits� including one or several
instances of each circuit� is called multiset of circuits� and will be formally de
ned in the next
section�

For the previous example� these multisets are
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t
ig

	���

The reader can notice that multisets M
 and M� 	that we will call non�minimal� need not
be considered in order to obtain the slowest path because if hp�t�p�t�p
t
i is selected for the 
rst
time� it will be selected again instead of hp�t�p	t
i� We remark also that circuits hp�t�p	t
i and
hp�t�p�t�p
t
i appear twice in multisets M�� M�� M�� and M	� while circuits hp�t�p�t	p	t
i
and hp�t�p
t
i appear only once� according to the routing rates associated with transitions t�
and t�� As an example� multiset M� is depicted in 
gure �� It can be interpreted as a path
as follows� 	�� a token� initially placed at p� enables transitions t� and t�� 	�� transition t� is
authorized for 
ring� according to the given con�ict resolution policy� 	�� after the 
ring of t��
the token splits into two tokens� 	�� we follow one of them� for instance� the one that places
at p�� 	�� after the 
ring of t� and t
� it returns to p�� 	�� according to the con�ict resolution
policy� t� is authorized once more� 	�� we follow the same path than in steps � and �� until
the token returns to p� again� 	�� now� transition t� is autorized� 	�� the path ht�p�t	p	t
i is
followed� 	��� the situation now is the same than in step �� so the previous steps can be executed
ad in
nitum�

The mean inter
rng time of execution of previous path if the multiset of circuits M� is
considered in isolation is equal to the execution time of the corresponding isolated circuit
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i of the marked graph depicted in 
gure �� and it is� in

general� a lower bound for the exact mean inter
ring time� Therefore� a lower bound for the
mean inter
ring time can be computed taking the maximum among the mean inter
ring time
of execution of those multisets of circuits satisfying the routing rates� considered in isolation� In
the particular case of marked graphs� since no decision exists for such nets� multisets of circuits
were reduce to circuits� and these could be algebraically characterized as P�semi�ows of the
net �CCCS����

The next step is to construct another net 	with only a linear size increase of the original
size� for which the previously considered multisets of circuits of live and safe free choice nets
can be algebraically characterized 	in fact� computed as P�semi�ows�� This can be done in a
similar way to that presented in �Lau��� for the polynomial computation of the minimal traps

of a net� In the next section we formalize the concept of multiset of circuits and present a net
transformation for the e�cient computation of mean inter
ring time on multisets�

� Polynomial computation� multisets of circuits

A multiset is a collection of elements that may contain several copies of an element� More
formally� if S is a set� a multiset M of elements of S is an application M � S � f�� �� � � �g�

If N � hP� T� Pre� Posti is a Petri net and M a multiset of circuits of N 	in what follows
we write circuit instead of minimal circuit��

� M	y� denotes the number of circuits of M which pass through the node y � P 
 T �

� M	p� t� 	respectively M	t� p�� denotes the number of circuits of M which pass through the
arc 	p� t� 	respectively 	t� p��� if Pre	p� t� � � 	respectively Post	p� t� � ���

In the next de
nitions� we limit the class of multisets of circuits to those that will correspond
exactly with the circuits of the behaviourally equivalent marked graph that can give the optimum
of the problem 	LPP���

De	nition 
�� �R�multiset of circuits
 Let N � hP� T� Pre� Posti be a net� R the de�nition

of routing rates at con�icts� and M a non empty multiset of circuits of N � M is called an R�

multiset of circuits i� for all p � P such that jp�j � � and M	p� � �� rjM	p� ti� � riM	p� tj��
for all ti� tj � p�� where ri and rj are the routing rates of transitions ti and tj in the con�ict at

place p�

R multiset of circuits will be abreviated to R mc� The above de
nition constraints the
multiset to contain the di
erent circuits of the net according to the visit ratios for transitions
derived from the routing rates at con�icts�

We de
ne now the concept of set of places covered by an R mc and introduce minimal

R�mcs�

De	nition 
�� �Support of R�multisets of circuits
 The support of an R�mc M is the

set of nodes jjMjj � P 
 T covered by M�

De	nition 
�� �Minimal R�multisets of circuits
 An R�mc is called minimal i�

a
 its support does not contain the support of an R�mc as a proper subset and

b
 if M� is an R�mc with jjM�jj � jjMjj� then M	y� �M�	y�� �y � P 
 T �



In the above de
nition we denote the support with the same symbol than the support of a
vector� as they are closely related concepts� We consider that the context eliminates confusion�

The consideration of minimal R mc discards the possibility of including two circuits that
contain di
erent output places of a fork transition 	a transition with more than one output
place�� This constraint is not a problem in order to 
nd the slowest path 	with deterministic
service times� because if a given output place of the fork transition is selected for the 
rst time�
it must be selected also the rest of the times�

Lemma 
�� Let hN �M�i be a live and safe free choice net with deterministic con�ict resolution

policy� hNMG�MMG
� i its behaviourally equivalent marked graph derived in previous section� and

M a multiset of circuits of N � M is a minimal R�mc of N i�

	� There exists a circuit �minimal P�semi�ow
 cMG of NMG such that for all t�� t� � cMG

instances of the same t � T � then cMG � t�� and cMG � t�� are instances of the same p � P �
and


� There exists an integer k � � such that M	x� � k�ix where ix is the number of instances

of x in cMG� for all x � P 
 T �

Proof sketch� Let cMG be a circuit of NMG� If cMG contains several instances of a place of
N � 
nd a subpath of cMG that begins at an instance p� of a given place p � P and ends at
another instance p� of the same place and such that it does not include more than one instance
of any other place 	its existency is obvious�� This path correspond with a circuit of the net N �
Substitute the subpath of cMG by the single place p�� Repeat the procedure of 
nding subpaths
which correspond with circuits of the original net until cMG has been reduced to a circuit without
more than one instance of any place� It corresponds with a circuit of N � Therefore� to each
circuit of NMG corresponds a multiset of circuits of N � Moreover� by the method of derivation
of NMG 	taking into account the deterministic routing at con�icts� the multiset of circuits of N
corresponding with a circuit of NMG is an R mc� If the number of copies of all the circuits in
the multiset is a multiple of a given integer k� we consider the multiset obtained after dividing
all the number of copies by k� and this multiset 	which is also an R mc� veri
es condition 	b�
of de
nition of minimality� Now� if condition 	�� of the lemma is assumed for cMG� condition
	a� of minimality of the derived multiset follows�

Conversely� let M be a minimal R mc of N � Then there exists a non�minimal circuit c of
N with the same support than M and such that c	p� �M	p� for all p � jjMjj � P � Moreover�
by minimality of M� the circuit c veri
es a condition analogue to 	��� that is� if t � c then
there exists only one p � t� such that p � c� By the method of derivation of NMG from N
and since the original multiset was an R mc� there exists a path cMG of NMG equal 	except
instances� to the circuit c� Finally� either the obtained path of NMG is a circuit that veri
es 	��
and M	x� � ix 	where ix is the number of instances of x in cMG�� for all x � P 
 T � or there
exists a circuit of NMG that consists of k repeated instances of the path cMG� and that circuit
veri
es also 	�� and 	���

Now� we de
ne an expansion of a given live and safe stochastic free choice net with deter�
ministic resolution of con�icts which allows a polynomial computation of its minimal R mcs�

De	nition 
�� �Expansion of a stochastic net
 Let N � hP� T� Pre� Posti be a free choice

net� The expanded net of N � denoted as cN � is obtained from N after the following steps�

Step 	� �Lautenbach expansion
 Let N be initially equal to N � Replace each shared place ps � P
�i�e�� such that j�psj � � � jp�sj � �
 as follows �see �gure �
�
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Pre	ptps � tps� � �� �t � �ps
Post	ppst� tps� � �� �t � p�s
Post	ptps � t� � Post	ps� t�� �t � �ps
Pre	ppst� t� � Post	ps� t�� �t � p�s

Step 
� Derive a new net cN from N as follows� for each output�shared place ps � P �i�e�� such

that jp�sj � �
 and for each pair of output transitions t�� t� of ps add the transition tpst�t�
as follows �see �gure �
� bT �� T 
 ftpst�t�gdPre	ppst� � tpst�t�� � r�dPost	ppst� � tpst�t�� � r�

where r�� r� are positive integer numbers proportional to the routing rates associated with

t�� t� in the con�ict at place ps�

Step �� Associate to each t � bT the parameter bs	t� such that� bs	ti� � si if ti � bT � T �where si
is the mean service time of transition ti in the original net
� and bs	t� � � if t � bT n T �

For marked graphs� a graph theoretical concept 	circuit� is related with another one of alge�
braic nature 	minimal P�semi�ow�� Now� multisets of circuits are related with 	non necessarily
minimal� P�semi�ows� for marked graphs�

Lemma 
�� �Lau��� Let N � hP� T� Pre� Posti be a marked graph� Then Y is a P�semi�ow of

N i� there exists a multiset M of circuits of N such that Y 	p� �M	p� for all p � P �



Now� the following result can be derived from lemma ����

Theorem 
�� Let M be a multiset of circuits of a free choice net N � M is a minimal R�mc

of N i� there exists a minimal P�semi�ow bY of the expanded net cN such that�

	� For all p � P that is not a shared place then M	p� � bY 	p��


� For all p � P that is a shared place then M	p� ti� � bY 	ppti� and M	tj � p� � bY 	ptjp� for

all ti � p� and for all tj �
�p�

The paragraphs below contain all technical details in order to prove this theorem� Previously�
we introduce a simple de
nition and a technical lemma�

De	nition 
�
 Let N � hP� T� Pre� Posti be a free choice net� cN its corresponding expanded

net� and bY a P�semi�ow of cN � The restricted support of bY respect to places P of the original

net N � jjbY jjN � is given by�

�a
 If p is non�shared� then p � jjbY jjN �� p � jjbY jj�
�b
 If p is shared� then p � jjbY jjN if and only if all places ppt resulting from the expansion of

the output arcs of p belong to jjbY jj�
Now� as in �Lau���� the following result can be derived from lemma ����

Lemma 
�� Let M be a multiset of circuits of a free choice net� M is an R�mc of N i� there

exists a P�semi�ow bY of cN such that�

	� For all p � P that is non�shared M	p� � bY 	p��


� For all p � P that is a shared place M	p� ti� � bY 	ppti� and M	tj � p� � bY 	ptjp� for all

ti � p� and for all tj � �p�

Proof� Let bY be a P�semi�ow of cN � bY is also a P�semi�ow of N because N and cN di
er only
in the transitions added in Step � of de
nition ���� By construction� the net N is a marked
graph and therefore 	by lemma ���� there exists a multiset M of circuits of N such that for all
p � P � bY 	p� �M	p��

Let us suppose that M	tp� � �� where tp is generated in the expansion of an output shared

place p and t�p � fppti j ti � p�� � � i � vg In cN � between two places pptj � pptj�� 	� � j � v � ��
there exists a transition tptj tj�� that veri
es Pre	pptj � tptjtj��� � rj and Post	pptj�� � tptj tj��� �

rj�� 	see Step � in de
nition ����� Therefore� bY veri
es that rj bY 	pptj��� � rj��
bY 	pptj �� This

implies that rjM	pptj��� � rj��M	pptj ��
Finally� it is easy to see that� toM corresponds a multiset of circuitsM ofN with jjMjj�P �

jjbY jjN � such that M	p� ti� � M	ppti�� � � i � v 	being p a shared place�� M	tj � p� � M	ptjp�
and for all non�shared place M	p� �M	p�� Therefore� M is an R mc�

The converse implication can be obtained by reversing the previous arguments�

From the above lemma� we can deduce the following obvious result�

Corollary 
�� Let M be an R�mc of a free choice net N and bY the corresponding P�semi�ow

in the expanded net cN � Then jjMjj � P � jjbY jjN �



Now� we prove the theorem ����

Proof of theorem 
��� 	�� By lemma ���� there exists a P�semi�ow bY� of cN such that
jjMjj � jjbY�jjN and the conditions 	�� and 	�� of the theorem hold� If bY� is minimal� we are
done by taking bY � bY�� Assume bY� is not minimal� Then� by de
nition of minimality� there
exists a minimal P�semi�ow bY� such that jjbY�jj 	 jjbY�jj� Moreover� by lemma ��� there exists an
R mcM� that satis
es the conditions 	�� and 	�� of the theorem and jjM�jj�P � jjbY�jjN � Since
jjbY�jj 	 jjbY�jj implies that jjbY�jjN � jjbY�jjN � it follows jjM�jj � jjMjj� Because the minimality
of M� the equality holds� Then we take bY � bY��

	�� By lemma ���� there exists an R mc M� of N such that jjY jjN � jjM�jj � P and the
conditions 	�� and 	�� hold� If M� is minimal� we are done by taking M � M�� Assume that
M� is not minimal� Then� by de
nition of minimality� there exists a minimal R mc M� such
that the R mc M� is enclosed into the R mc M� 	this inclusion is stronger than the one of the
support of places�� Moreover� by the previous implication 	demostrated in this theorem� there
exists a minimal P�semi�ow bY � that satis
es conditions 	�� and 	�� of the thorem� Since M� is
enclosed into M� and this means inclusion at level of places� transitions� and arcs� jjbY �jj � jjbY jj
is veri
ed� Because the minimality of bY � the equality holds� Then we take bY � bY ��

The next theorem gives a lower bound for the mean inter
ring time of a transition of a live
and safe free choice net� using the P�semi�ows of the expanded net de
ned above�

Theorem 
�� A lower bound for the mean inter�ring time of transition tj of a live and safe
free choice net hN �M�i is�

�min
�j� �

kbY �
� 
	bY ��

kv�j�

where�

� 
	bY �� can be obtained by solving the following linear programming problem�


	bY �� � maximum bY T � dPRE ��bs
subject to bY T � bC � �

��T � bY � �bY � �

	LPP��

where � dPRE
 bC is the �pre�
 incidence matrix of the expanded net cN of N and �bs is the

vector de�ned in Step � of expansion of N �

� kbY �
is a non�negative number such that kbY �

bY � � bY �
Z where the vector bY �

Z � ZZjbP j and the

greatest common divisor of its components is equal to 	�

� kv�j� is a non�negative number such that kv�j��v
�j� � �vZ where the vector �vZ is such that

�vZ � ZZjT j and the greatest common divisor of its components is equal to 	�

Proof� The optimum solution of 	LPP�� is always reached for a minimal P�semi�ow because�
taking into account Theorem ��� in �Mur���� if 	LPP�� has an optimum feasible solution� then
it has a basic feasible solution bY that is optimum� Therefore� the set of rows that are used by bY
is linearly independent 	i�e� full rank�� Considering that bY T � bC � �� we obtain that the number
of non�null entries of vector bY 	i�e� the number of rows used by bY � is equal to the rank of rows
of bC used by bY plus one� This last statement is precisely the characterization of a minimal
P�semi�ow� presented in �CS����



Multiplying the optimum value of the above linear programming problem by the constant
kbY �

� we obtain the sum of mean service times of transitions covered by a minimal R mc� This

is because the vector bY �
Z � kbY �

� bY � is a minimal P�semi�ow whose components are integer and
minimal� thus there exists a minimal R mc� according to theorem ����

Then the above computation can be rewritten in terms of minimal R mc in the following
way�

kbY �
� 
	bY �� � maximum MjP � PRE � �s

such that M is a minimal R mc of N
	���

where MjP denotes the row vector with components MjP 	p� � M	p� for all place p of the
original net�

Now� we consider the behaviourally equivalent 	for a given deterministic con�icts resolution
policy� marked graph derived in section �� According to lemma ���� to each k multiple of a
minimalR mc of the original net corresponds a circuit 	i�e�� minimal P�semi�ow� of this marked
graph� and each of them contains only one token� Then k � kbY �

� 
	bY �� is the value computed in
the Step � of the algorithm presented in section �� Finally� since the number of instances of tj in
the behaviourally equivalent marked graph is k ��vZ	tj� 	lemma ���� then� dividing k �kbY �

�
	bY ��
by this constant� we obtain the mean inter
ring time of transition tj computed in Step � of the
algorithm presented in section �� hence being a lower bound for the mean inter
ring time of tj
in the original net�

In fact� from the reachability of the bound for strongly connected marked graphs 	see theo�
rem ���� the reachability of the bound given by theorem ��� follows for live and safe free choice
nets�

Theorem 
�� For live and safe free choice nets with arbitrary values of mean service times of
transitions and arbitrary routing rates de�ning the resolution of con�icts� the lower bound for

the mean inter�ring time obtained from theorem ��
 is reachable�

Proof� The result follows from the following considerations� 	�� deterministic service times and
deterministic routing are particular cases of timing and con�ict resolution policy� respectively�
	�� for such policy� theorem ��� can be applied� and 	�� for the case of marked graphs with
deterministic timing� the derived bound is reached�

As in the case of strongly connected marked graphs 	see �CCCS����� a characterization
of liveness and safeness for structurally live and structurally bounded free choice nets can be
derived�

Theorem 
�� Liveness and safeness of structurally live and structurally bounded free choice

nets can be characterized in polynomial time�

Proof� For structurally live and structurally bounded free choice nets� marking bound of places
equals structural marking bound �Esp���� Structural marking bound can be computed by solv�
ing an LPP similar to that presented in �SC���� thus in polynomial time� Therefore� safeness
can be characterized computing the structural marking bound of places� Liveness can be char�
acterized checking the boundedness of the problem 	LPP��� the value given by theorem ��� is
a lower bound for the mean inter
ring time� if this value is in
nite the mean inter
ring time
is unbounded� and the net is non�live� if the value given by theorem ��� is 
nite� since it is
reachable 	cfr� theorem ����� the net must be deadlock�free� We know that for structurally live
and structurally bounded free choice nets� liveness and deadlock�freeness are equivalent� Thus
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Figure �� Expanded net of the one depicted in 
gure � 	the weights r� and r� are such that
r��r� � q�	�� q���

the 
niteness of the value given by theorem ��� is su�cient to establish the liveness of a safe
structurally live and structurally bounded free choice net�

As an example� let us consider once more the live and safe free choice net depicted in 
gure ��
Its expanded net according to de
nition ��� is depicted in 
gure �� The application of theorem ���
for this net gives the value�

�min
�
� � qs� � 	�� q�s	 	���

which is exactly the actual inter
ring time of the net for deterministic service time of transitions�

� The case of bounded 	non
safe� nets

The natural extension of the results presented in previous section will consist on the computation
of lower bounds for the mean inter
ring time of transitions of live and bounded 	non�safe� free
choice nets� In this section we argue that a trivial extension cannot be obtained applying the
techniques used for safe nets� However� a preliminary idea for the correct extension is outlined�

Let us consider once more the Petri net depicted in 
gure �� but now with initial marking
of place p� equal to � tokens� We assume in�nite�server semantics for the timing of transitions�
i�e�� a transition enabled k times in a marking works at conditional speed k times that it would
work in the case it was enabled only once� Suppose the following deterministic con�ict resolution
policy at place p�� �select twice transition t�� then once transition t�� and repeat it� 	i�e�� the
routing rate for transition t� is twice the routing rate of t��� A trivial extension of the method
presented in section � for the computation of a lower bound for the mean inter
ring time of t

would be the following�

�� Derive the expanded net 	
gure ���

�� Apply the theorem ��� with j � � and divide by � the obtained value 	i�e�� divide the
inter
ring time of the slowest circuit by the number of contained tokens��



But the obtained value is not a lower bound for the mean inter
ring time of t
 in the original
net� in general� For instance� if transitions t� and t	 are supposed to be exponentially timed
with averages s� � s	 � �� the value that can be derived from theorem ���� dividing by �� is
	��� � ������ � ���� while the actual mean inter
ring time is ��
� � ������

The reason of this bad result is the following� when two tokens are initially put in p�� three
tokens in the subset fp�� p�g will subsequently be possible 	if t� and t� 
re� transition t
 becomes
enabled and� being immediate� 
res 
rst so that a new token is put in p� and subsequently!
always in zero time!delivered to place p��� Then� the value obtained in step �� dividing by two�
is pessimistic since more than two tokens can be in the subset of places fp�� p�g� An optimistic
assumption� thus leading to a throughput upper bound� will be to divide by three in step ��
which is the maximum number of tokens that can be in the subset fp�� p�g� Of course a general
procedure must be found that deals with these more general cases�

� Conclusions

Tight lower bounds for the steady�state mean inter
ring time of transitions for live and safe free
choice nets have been derived in this paper�

A direct application of the same result that gave a reachable bound for live and safe marked
graphs 	using P�semi�ows� does not lead to a tight bound� A reachable lower bound for the
mean inter
ring time has been derived using another �natural� generalization of the marked
graphs� result� multisets of circuits of free choice nets instead of circuits of marked graphs� A
polynomial complexity algorithm for the computation of this bound has been obtained after the
introduction of a particular net transformation� which is also of linear complexity�

A preliminary idea for the possible extension of the previous results for the case of bounded
	non�safe� nets has been outlined�
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