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No es dado a todos aventurarse en la selva y trazar,
a fuerza de enerǵıa, un camino practicable, pero aun
los más humildes podemos aprovecharnos del sendero
abierto por el genio, y arrancar, caminando por él,
algún secreto a lo desconocido.

Santiago Ramón y Cajal

Los tónicos de la voluntad, 1897
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Preface

Product form queueing networks have long been used for the perfor-
mance evaluation of computer systems. Their success has been due to
their capability of naturally expressing sharing of resources and queue-
ing, that are typical situations of traditional computer systems, as well
as to their efficient solution algorithms, of polynomial complexity on
the size of the model. Unfortunately, the introduction of synchroniza-
tion constraints usually destroys the product form solution, so that
general concurrent and distributed systems are not easily studied with
this class of models.

Petri nets have been proved specially adequate to model parallel
and distributed systems. Moreover, they have a well-founded theory of
analysis that allows to investigate a great number of qualitative prop-
erties of the system.

In the original definition, Petri nets did not include the notion of
time, and tried to model only the logical behaviour of systems by de-
scribing the causal relations existing among events. This approach
showed its power in the specification and analysis of concurrent sys-
tems in a way independent of the concept of time. Nevertheless the
introduction of a timing specification is essential if we want to use this
class of models for the performance evaluation of distributed systems.

One of the main problems in the actual use of timed and stochastic
Petri net models for the quantitative evaluation of large systems is the
explosion of the computational complexity of the analysis algorithms.
In general, exact performance results are obtained from the numerical
solution of a continuous time Markov chain, whose dimension is given
by the size of the state space of the model. Structural computation
of exact performance measures has been possible for some subclasses
of nets such as those with state machine topology. These nets, under

xv
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certain assumptions on the stochastic interpretation are isomorphic to
Gordon and Newell’s networks, in queueing theory terminology. In
the general case, efficient methods for the derivation of performance
measures are still needed.

Two complementary approaches to the derivation of exact measures
for the analysis of distributed systems are the utilization of approxima-
tion techniques and the computation of bounds. Approximate values
for the performance parameters are in general more efficiently derived
than the exact ones. On the other hand, “exactness” only exists in
theory! In other words, numerical algorithms must be applied in prac-
tice for the computation of exact values, therefore making errors is
inevitable.

Performance bounds are useful in the preliminary phases of the de-
sign of a system, in which many parameters are not known accurately.
Several alternatives for those parameters should be quickly evaluated,
and rejected those that are clearly bad. Exact (and even approximate)
solutions would be computationally very expensive. Bounds become
useful in these instances since they usually require much less computa-
tion effort.

The computation of upper and lower bounds for the steady-state
performance of timed and stochastic Petri nets is considered in this
work. In particular, we study the throughput of transitions, defined
as the average number of firings per time unit. For this measure we
try to compute upper and lower bounds in polynomial time on the size
of the net model, by means of proper linear programming problems
defined from the incidence matrix of the net (in this sense, we develop
structural techniques). These bounds depend only on the mean values
and not on the higher moments of the probability distribution functions
of the random variables that describe the timing of the system. The
independence of the probability distributions can be viewed as a useful
generalization of the performance results, since higher moments of the
delays are usually unknown for real cases, and difficult to estimate and
assess.

From a different perspective, the obtained results can be applied to
the analysis of queueing networks extended with some synchronization
schemes. Monoclass queueing networks can be mapped on stochastic
Petri nets. On the other hand, stochastic Petri nets can be interpreted
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as monoclass queueing networks augmented with synchronization prim-
itives.

Concerning the presentation of this manuscript, it should be men-
tioned that chapter 1 has been written with the object of giving the
reader an outline of the stochastic Petri net model: its definition, ter-
minology, basic properties, and related concepts, together with its deep
relation with other classic stochastic network models.

Chapter 2 is devoted to the presentation of the net subclasses con-
sidered in the rest of the work. The classification presented here is
quite different from the one which is usual in the framework of Petri
nets. The reason lies on the fact that our classification criterion, the
computability of visit ratios for transitions, is introduced for the first
time in the field of stochastic Petri nets in this work. The significance of
that criterion is based on the important role that the visit ratios play in
the computation of upper and lower bounds for the performance of the
models. Nevertheless, classical important net subclasses are identified
here in terms of the computability of their visit ratios from different
parameters of the model.

Chapter 3 is concerned with the computation of reachable upper
and lower bounds for the most restrictive subclass of those presented
in chapter 2: marked graphs. The explanation of this fact is easy to
understand. The more simple is the model the more accessible will be
the techniques an ideas for the development of good results.

Chapter 4 provides a generalization for live and bounded free choice
nets of the results presented in the previous chapter. Quality of ob-
tained bounds is similar to that for strongly connected marked graphs:
throughput lower bounds are reachable for bounded nets while upper
bounds are reachable for 1–bounded nets.

Chapter 5 considers the extension to other net subclasses, like mono-
T-semiflow nets, FRT-nets, totally open deterministic systems of se-
quential processes, and persistent nets. The results are of diverse
colours. For mono-T-semiflow nets and, therefore, for general FRT-
nets, it is not possible (so far) to obtain reachable throughput bounds.
On the other hand, for bounded ordinary persistent nets, tight through-
put upper bounds are derived. Moreover, in the case of totally open
deterministic systems of sequential processes the exact steady-state per-
formance measures can be computed in polynomial time on the net size.
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In chapter 6 bounds for other interesting performance measures are
derived from throughput bounds and from classical queueing theory
laws. After that, we explore the introduction of more information from
the probability distribution functions of service times in order to im-
prove the bounds. In particular, for Coxian service delay of transitions
it is possible to improve the throughput upper bounds of previous chap-
ters which held for more general forms of distribution functions. This
improvement shows to be specially fruitful for live and bounded free
choice nets.

Chapter 7 is devoted to case studies. Several examples taken from
literature in the fields of distributed computing systems and manu-
facturing systems are modelled by means of stochastic Petri nets and
evaluated using the techniques developed in previous chapters.

Finally, some concluding remarks and considerations on possible
extensions of the work are presented.
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Chapter 1

Synchronized queueing
networks and Petri nets

Queueing network models are one of the most popular and classical
tools for the performance evaluation of computer systems. With the
advent of complex distributed systems, many proposals have been made
to extend the modelling power of queueing networks by adding various
synchronization mechanisms to the basic model. One of the most im-
portant characteristics of basic queueing networks that determined their
popularity was the development of efficient (polynomial complexity) al-
gorithms, based on their “product form solution”. Unfortunately, the
introduction of synchronization mechanisms usually destroys this nice
property.

More recently, timed and/or stochastic Petri net models have been
introduced as a modelling tool capable of naturally represent synchro-
nization and concurrency. The intimate relation between synchronized
queueing networks and stochastic Petri nets is stressed in this chapter.
After an historical route through the main hits of queueing networks
theory, we justify the necessity of the introduction of synchronization
schemes for the performance evaluation of distributed systems. Then,
we formally introduce the model of Petri nets, as well as the differ-
ent implications that the addition of a timing interpretation has in the
model. Finally, the close relations between queueing networks with
synchronization constraints and stochastic Petri nets are remarked.

1



2 CHAPTER 1. Synchronized queueing networks and Petri nets

1.1 Queueing networks with synchro-

nizations

Queueing network models have been used for performance evaluation
since the early work of A. Erlang [Erl09]. Their success for the analysis
of computer systems (see, e.g., [Kle76,LZGS84,Lav89]) has been due to
their capability of naturally expressing sharing of resources and queue-
ing, that are typical situations of traditional computer systems, as well
as to their efficient solution algorithms, of polynomial complexity on
the size of the model.

1.1.1 Monoclass queueing networks

A queueing network model of a system is a collection of service centers
or stations and customers moving among them. The service centers
represent different processing sites while customers represent jobs or
processes. Customers can enter the system at certain points; after that
they move from one station to another, queueing up at each for some
service; and ocassionally they depart from the system.

More formally, a queueing network is a trio 〈SC, R,X0〉, where

• SC = {1, . . . ,m} is the set of service centers,

• R is the real matrix of routing probabilities rij ≥ 0; i, j = 1, . . . ,m;
where rij is the probability that a customer exiting center i goes
to j, and

• X0 is the vector of external arrival rates X0i ≥ 0, i = 1, . . . ,m,
to stations.

If X0i = 0 for all station i, the number of customers in the network
remains constant, it is denoted as N , and the system is called closed
network. Otherwise, the network is said to be open.

A queueing network can be seen as a directed graph in which service
centers are the nodes. An arc from node i to node j is drawn iff rij >
0. As an example, see the closed network depicted in figure 1.1, that
models a simple computer system with virtual memory [GP87]. In this
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Figure 1.1: A simple computer system with virtual memory.

case, if CPU, memory, and disc are labelled with indexes 1,2, and 3,
respectively, we have

R =

⎛⎜⎝ ρ1 ρ2 ρ3

1 0 0
1 0 0

⎞⎟⎠ (1.1)

In fact, since each node in the system is a service center with a
storage room for queues to form, a queueing network can be seen also
as a bipartite directed graph. Service centers and storage rooms are
the two kinds of nodes. An arc exists from each storage room to its
corresponding service center. Finally, an arc from the service center i
to the storage room preceding center j is drawn iff rij > 0.

The state of the network is defined by a vector �n = (n1, . . . , nm)T ,
where ni is the number of customers at center i (including those being
served and those waiting).

In order to completely define the model, the queueing disciplines
at each of the storage rooms, the intensity of arrivals from outside,
the service requirements of jobs at centers, and specially the average
service time si of each station i must be specified. When all the above
parameters are “appropriately” defined the evolution of the system can
be modelled by a continuous time Markov chain [Rev84]. In this case
the limit, or stationary, state distribution can be found, if it exists,
by solving a system of linear equations, called global balance equations,
which, for each state, equates the rate of flow into to the rate of flow
out of the state. Unfortunately, the number of states (and therefore
the dimension of the system of equations) increases quickly when the
number of customers and stations grows.



4 CHAPTER 1. Synchronized queueing networks and Petri nets

The following system of equations [Kle75] can be derived from the
global balance property:

X(j) = X0j +
m∑
i=1

X(i)rij j = 1, . . . ,m (1.2)

where X(i) is the limit throughput of station i, i.e., the average number
of service completions per unit time at station i.

If the network is open (i.e., if there exists a station j with posi-
tive external arrival rate, X0j > 0), then the above m equations are
linearly independent, and the exact throughputs of stations can be de-
rived (independently of the service times). This is not the case for
closed networks. If X0j = 0, j = 1, . . . ,m, then only m − 1 equa-
tions are linearly independent, and thus only ratios of throughputs can
be determined. These relative throughputs which are often called visit
ratios , denoted as vi for each station i, summarize all the information
given by the routing probabilities that is necessary in most cases for the
computation of the performance measures. The visit ratios normalized,
for instance, for station 1 are defined as:

v
(1)
i

def
=

X(i)

X(1)
i = 1, . . . ,m (1.3)

For a restricted class of networks, called product form networks,
the solution to the global balance equations can be shown to be a
product of terms, one for each station, where the form of each term
is explicitly given. This fact occurs when the system satisfies the local
balance equations [Cha72]. Informally, a local balance equation asserts
that for any two adjacent states the effective flow from one to the other
must be equal to the effective flow in the other direction.

J. Jackson [Jac63] found the first product form solution in a general
network of queues, motivated by manufacturing applications. J. Jack-
son considered open monoclass networks with a Markovian arrival pro-
cess dependent on the total population of the network. Service disci-
plines are FCFS (first-come first-served) and service times are exponen-
tial (with queue length dependent rates). W. Gordon and G. Newell
[GN67] extended Jackson’s results to cover closed networks.

The steady-state probability p(�n) of state �n = (n1, . . . , nm)T in a
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closed product form queueing network with m stations and N customers
has the form:

p(n1, . . . , nm) =
1

G(N)

m∏
i=1

(Di)
ni (1.4)

where Di is the average service demand of customers from station i or
loading of i, defined as:

Di
def
= visi i = 1, . . . ,m (1.5)

and G(N) is a normalization constant defined so that the p(�n) sum
to 1:

G(N)
def
=

∑
�n∈S(N,m)

m∏
i=1

(Di)
ni (1.6)

with S(N,m) the set of feasible or reachable states for the network, i.e.,
those states �n with ni ≥ 0 and

∑
i ni = N .

We remark that the knowledge of average service demands Di is
crucial for the computation of exact measures of product form queue-
ing networks. On the other hand, the normalization constant G(N)
depends on the number of states, therefore the direct “brute force”
algorithm for its computation can be really inefficient.

In 1975, F. Baskett, K. Chandy, R. Muntz, and F. Palacios
[BCMP75] proved the product form solution for mixed networks with
multiple chains (meaning networks with both open and closed chains,
or types of jobs). BCMP networks include also new service disciplines
like infinite-servers (IS), processor sharing (PS), last-come first-served
preemptive-resume (LCFSPR), in addition to FCFS. Moreover, general
service times distributions are allowed at IS, PS, and LCFSPR service
stations.

A somewhat different, but in many ways equivalent, formulation
of product form networks was introduced by F. Kelly [Kel76b], based
on quasi-reversibility of stochastic processes, an equivalent property to
that of local balance.

Although several extensions of BCMP networks have been presented
in the last years, these extensions have not been found to be particularly
useful in applications. Therefore the BCMP formulation has become
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the most widely used in practice. The main reason for this success
is probably the existence of efficient algorithms for deriving the solu-
tion from product form equations. J. Buzen [Buz73] was the first to
develop a computationally efficient algorithm, called the convolution
algorithm, focussed on the computation of the normalization constant,
for Gordon and Newell’s class of closed networks. The algorithm was
extended to BCMP networks by M. Reiser and H. Kobayashi in [RK75].
The next major advance in product form queueing networks was the
mean value analysis algorithm, presented in [RL80,RL81] by M. Reiser
and S. Lavenberg. It is not centred in the computation of the nor-
malization constant. Instead of this, a recursive relationship that gives
performance parameters at population N in terms of those at popula-
tion N −1 is used. It was first developed for closed networks with fixed
rate and queue length dependent rates only, but has been extended to
cover a broader range of product form networks.

1.1.2 Addition of synchronization schemes

One major limitation of product form queueing networks for computer
performance modelling applications is that, in such real systems, co-
operation and competence relationships among different processes are
usual. Product form queueing models do not allow the explicit repre-
sentation of synchronization primitives, that are necessary for express-
ing the previously mentioned relationships. In particular, in models of
computer systems, certain blocking phenomena frequently arise because
a job requires more than one resource before it can be processed. The
following examples are mentioned in [HL84]:

1) Holding a channel and a disk drive before data transfer can occur.

2) Obtaining a memory partition before job processing can occur.

3) Obtaining a database lock before the data item can be read from
disk.

The limitation of queueing networks for the modelling of the above
examples lies on the fact that this model has not a general construct for
representing synchronization. Many extensions (e.g., [Kel76a,SMK82,
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Figure 1.2: Queueing network model of a multiprogramming memory
limited system.

Mai87]) have been proposed to introduce synchronization primitives
into the queueing network formalism, in order to allow the modelling
of distributed asynchronous systems: passive resources, fork and join,
customer splitting, etc.

As an example, let us consider the model in figure 1.2. It repre-
sents a memory limited system in which each process requests a fixed
amount of memory before entering the central subsystem composed by
the CPU and several I/O devices. This memory (which is called a pas-
sive resource) is needed for loading the program to be run as a result of
the command issued by a terminal user. After the end of the command
execution, the allocated memory is released. Product form solution
cannot be derived for this model, because of the blocking caused by the
memory limitation.

Recent operating systems, like the one of Cray X-MP and the IBM’s
MVS, contain a multitasking feature that allows a job to spawn mul-
tiple tasks that can execute in parallel on a multiprocessor system. A
spawning job waits until all of its spawned tasks have completed service
before resuming the execution. Single chain closed queueing networks
including fork and join primitives constitute a suitable model for the
representation of this multitasking feature. This kind of model is con-
sidered in [HT83]. An example is depicted in figure 1.3, using RESQ
representation [SMK82] for the fork and join primitives.

Some very restricted forms of synchronization, such as, for instance,
some special use of passive resources [AMBCD86,LB86], preserve the
local balance property that allows efficient algorithms to be used for the
computation of exact product form solution. In general, however, these
extensions destroy the local balance property so that queueing models
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Figure 1.3: Queueing network model of a fork/join multitasking pro-
cess.

extended with synchronizations are used mainly as system descriptions
for simulation experiments [SMK82].

A common factor to all above referred extensions of networks with
synchronization primitives is that a formal unified definition in graph
theory terms is not as easy to derive as in the case of classic queueing
networks. In the next section, stochastic Petri nets are proposed as
a unified model including several extensions of queueing networks with
synchronization schemes and preserving a formal and simple interpre-
tation in graph terms which allows the use of graph theory and linear
algebra techniques for their analysis.

1.2 Stochastic Petri nets

The interest in parallel and distributed systems grows constantly ac-
cording to their new domains of application. One of the main problems
arising from these systems is their complexity that implies a stressed
necessity for analysis techniques of properties of good behaviour before
the implementation.

Petri nets have been proved specially adequate to model parallel
and distributed systems. Moreover, they have a well-founded theory of
qualitative analysis that allows to investigate a great number of prop-
erties of the system.

In this section, after an informal introduction to Petri nets, we
recall fundamental definitions, some of the basic properties, as well
as the timing specification of the model that converts it to a suitable
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performance analysis tool for distributed and concurrent systems.

1.2.1 Introducing nets

Petri nets [Pet66] are a well-known formalism for describing concurrent
discrete event systems with synchronizations (see, e.g., [Pet81,Sil85,
Mur89]). Petri net model is oriented to the description of both states
of a system and actions producing evolution through the states. In
this sense, it differs from other formal models of concurrent systems
which usually are state-based or action-based. Petri nets treat states
and actions on equal footing. In fact, the structure of a Petri net can be
seen as a bipartite graph whose two different kind of nodes, places and
transitions, correspond with states and actions of the system. Certain
similarity with queueing models can be observed at this point. Storage
rooms and service stations of queueing networks represent also states
and actions, respectively.

In queueing models the state of the system is represented by means
of a given distribution of customers at storage rooms (queues). In an
analogous way, a marking or distribution of tokens (marks) over the
places of the Petri net defines the state of the system. Therefore, as for
queueing networks, the representation of a state is distributed.

The behaviour of a queueing network is governed by the departures
of customers from stations, after finishing service, and the movement
towards other storage rooms. The token game is the analogue in Petri
net models. Tokens are stored at places and the firing of a transition
produces a change of the distribution of tokens (new marking).

The first main property of Petri net model for the description of
concurrent systems is its simplicity. A very few and simple mathemat-
ical entities are necessary for the formal definition of nets. This fact
constitute a great advantage, mainly in the modelling of concurrent
systems which are enough complicated per se.

In spite of the simplicity of the model, its generality must be re-
marked. The three basic schemes in the modelling of concurrent sys-
tems can be included in the Petri net structure: sequencing, choice, and
concurrency. Moreover, other typical and well-known elements in the
modelling of distributed systems, as “rendez-vous”, shared resources,
fork-joins. . . , can be easily derived by combination of the basic schemes
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Figure 1.4: Typical schemes in the modelling of distributed systems.
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Figure 1.5: Partial ordel formalism and temporal realism.

(see figure 1.4). In this direction, Petri nets improve clearly the mod-
elling power of classic queueing networks, for which synchronizations
are difficult or impossible to express, except for some extended for-
malisms (see section 1.1.2).

One aspect of the adequacy of Petri net models is their possibility
of expressing all basic semantics of concurrency, interleaving, step, and
partial order semantics, which can be compared within the Petri net
formalism. In this sense, Petri nets are capable of modelling “true
concurrency”. The importance of true concurrency in a performance
oriented concurrent model can be explained from the temporal realism
that provides step and partial order semantics of concurrent events.
Let us briefly describe these considerations with the use of the net
depicted in figure 1.5. Activities modelled with transitions t2 and t3
are truly concurrent. This means that the completion time of both
is max{γ2, γ3} if γ2 and γ3 are their respective random service times,
and not γ2 + γ3 that would be obtained with interleaving semantics
(and could be thought at first glance from a direct interpretation of
the reachability graph, which represents a complete sequentialization
of the behaviour of the model).

Locality of states and actions constitutes another aspect of adequacy
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for the modelling of concurrent systems. It provides the possibility
of progressive modelling by using stepwise refinements (top-down) or
modular composition (bottom-up modelling).

As in the case of queueing network models, the graphical represen-
tation of Petri nets is being crucial for the increasing interest of systems
designers in this model. However, distributed and concurrent systems
are complex and difficult to master for designers by nature. Therefore,
desirable “good properties” must be formally defined and the model
must be validated for these properties. In this sense, qualitative anal-
ysis of Petri nets is important before going on the implementation. A
wide range of techniques for checking synchronic (lead, distance, places
bounds, places mutual exclusions. . . ) and activity properties (deadlock-
freeness, liveness, home states. . . ) are reasonably known.

Reachability analysis, based on the construction of the state space
of the model, provides a complete knowledge of all its properties if the
net is bounded (i.e., if the number of reachable states is finite). How-
ever, the exponencial temporal and spatial computational complexity
originated from the state explosion reduces the applicability of this
enumeration technique.

In order to avoid the state explosion, reduction/transformation and
structural techniques have been developed. The first are based on the
application of local rules for the simplification of nets, preserving some
of the desirable properties. On the other hand, structural techniques
allow to conclude about some properties of the model just from the net
structure and using mathematical tools taken from graph theory, linear
algebra, convex geometry , or linear programming.

Regarding quantitative analysis of Petri nets with timing interpre-
tation, the most commonly used technique consists on the derivation of
exact performance measures from the reachability graph of the model
(if bounded) which is identified with a Markov chain, under certain as-
sumptions on the stochastic specification. As in the case of qualitative
reachability analysis, the explosion of the computational complexity is
the main problem in the actual use of this technique for the performance
evaluation of large models.

Alternative methods for the quantitative evaluation of Petri net
models have been tried out. As in the case of queueing networks, ap-
proximation techniques and the computation of bounds constitute an
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option instead of exact analysis. The study of the second one has been
our choice!

1.2.2 Some terminology

The purpose of this section is just to introduce some notations and
terminology to be extensively used in the sequel. The reader is assumed
to be familiar with basic Petri nets concepts.

1.2.2.1 Net structure

A Petri net is a 4-tuple N = 〈P, T, Pre, Post〉, where

• P is the set of places (|P | = n),

• T is the set of transitions (|T | = m, P ∩ T = ∅, P ∪ T �= ∅),

• Pre (Post) is the pre- (post-) incidence function representing the
input (output) arcs, Pre:P × T → IN = {0, 1, 2, . . .} (Post:P ×
T → IN).

A Petri net can be seen as a bipartite directed graph in which places
and transitions are the two kinds of nodes. Places are usually drawn
as circles while transitions are depicted as bars or boxes.

Ordinary nets are Petri nets whose pre and post incidence functions
take values in {0, 1}. The incidence function of a given arc in non-
ordinary nets is called weight or multiplicity.

The pre- and post-sets of a transition t ∈ T are defined respec-
tively as •t = {p|Pre(p, t) > 0} and t• = {p|Post(p, t) > 0}.
The pre- and post-sets of a place p ∈ P are defined respectively as
•p = {t|Post(p, t) > 0} and p• = {t|Pre(p, t) > 0}.

The incidence matrix of the net C = [cij], i = 1, . . . , n, j = 1, . . . ,m,
is defined by cij = Post(pi, tj) − Pre(pi, tj). Similarly the pre- and
post-incidence matrices are defined as PRE = [aij] and POST = [bij],
where aij = Pre(pi, tj) and bij = Post(pi, tj).
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1.2.2.2 Token game

A function M :P → IN (usually represented in vector form) is called
marking. A marked Petri net 〈N ,M0〉 is a Petri net N with an initial
marking M0.

A transition t ∈ T is enabled at marking M iff ∀p ∈ P : M(p) ≥
Pre(p, t). A transition t enabled at M can fire yielding a new marking
M ′ (reached marking) defined by M ′(p) = M(p)−Pre(p, t)+Post(p, t)
(it is denoted by M [t〉M ′).

A sequence of transitions σ = t1t2 . . . tn is a firing sequence of
〈N ,M0〉 iff there exists a sequence of markings such that M0[t1〉 M1[t2〉
M2 . . . [tn〉Mn. In this case, marking Mn is said to be reachable from M0

by firing σ, and this is denoted by M0[σ〉Mn. Expresion M [σ〉 denotes
a firable sequence σ from marking M .

The function �σ:T → IN is the firing count vector or Parikh vector
[Par66] of the firable sequence σ, i.e., �σ[t] represents the number of
occurrences of t ∈ T in σ. If M0[σ〉M , then we can write in vector form
M = M0 +C ·�σ, which is referred to as the linear state equation of the
net. A marking M is said to be potentially reachable iff ∃ �X ≥ 0 such
that M = M0 + C · �X ≥ 0.

1.2.2.3 Basic properties

The reachability set R(N ,M0) is the set of all markings reachable from
the initial marking. Denoting by PR(N ,M0) the set of all poten-
tially reachable markings we have the following relation: R(N ,M0) ⊆
PR(N ,M0). L(N ,M0) is the set of all firing sequences and their suf-
fixes in 〈N ,M0〉: L(N ,M0) = {σ | M [σ〉 with M ∈ R(N ,M0)}.

A place p ∈ P is said to be k–bounded iff ∀M ∈ R(N ,M0), M(p) ≤
k. A marked net 〈N ,M0〉 is said to be (marking) k–bounded iff each
of its places is k–bounded. A net N is structurally bounded iff ∀M0 the
marked nets 〈N ,M0〉 are k–bounded for some k ∈ IN.

Given an initial marking, an implicit place is one which never is the
unique that restricts the firing of its output transitions. Let N be any
net and N p be the net resulting from adding an implicit place p to N .
Therefore, the firing sequences in 〈N ,M0〉 and 〈N p,Mp

0 〉 are identical.
A transition t ∈ T is live in 〈N ,M0〉 iff ∀M ∈ R(N ,M0): ∃M ′ ∈

R(N ,M) such that M ′ enables t. The marked net 〈N ,M0〉 is live iff all
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its transitions are live (i.e., liveness of the net guarantees the possibility
of an infinite activity of all transitions). A net N is structurally live iff
∃M0 such that the marked net 〈N ,M0〉 is live. The marked net 〈N ,M0〉
is deadlock-free iff ∀M ∈ R(N ,M0): ∃t ∈ T such that M enables t. A
marked net has a total deadlock iff it is not deadlock-free.

A consistent component (or T-semiflow ) is a function (vector)
X:T → IN such that X �= 0 and C · X = 0. A conservative com-
ponent (or P-semiflow ) is a function (vector) Y :P → IN such that
Y �= 0 and Y T ·C = 0. The support of (T- and P-) semiflows is defined
by ||X|| = {t ∈ T |X(t) > 0} and ||Y || = {p ∈ P |Y (p) > 0}. A (T-
or P-) semiflow I has minimal support iff there exist no other semiflow
I ′ such that ||I ′|| ⊂ ||I||. A (T- or P-) semiflow is canonical iff the
greatest common divisor of its components is 1. A (T- or P-) semiflow
is elementary iff it is canonical and has minimal support.

A net N is consistent iff there exists a T-semiflow X ≥ 11. A net
N is conservative iff there exists a P-semiflow Y ≥ 11.

M ∈ R(N ,M0) is a home state iff ∀M ′ ∈ R(N ,M0) : M ∈
R(N ,M ′). M ∈ R(N ,M0) is a transient state iff it is not a home
state. A marked net is reversible iff its initial marking is a home state.

1.2.3 On stochastic Petri nets

In the original definition, Petri nets did not include the notion of time,
and tried to model only the logical behaviour of systems by describ-
ing the causal relations existing among events. This approach showed
its power in the specification and analysis of concurrent systems in a
non-interleaved way, independent of the concept of time. Nevertheless
the introduction of timing specification is essential if we want to use
this class of models for an evaluation of the performance of distributed
systems [TPN85,PNPM87,PNPM89].

1.2.3.1 Timing and firing process

Since Petri nets are bipartite graphs, historically there have been two
ways of introducing the concept of time in them, namely, associating
a time interpretation (deterministic or stochastic) with either places
[Sif78] or transitions [Ram74]. Since transitions represent activities that
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change the state (marking) of the net, it seems natural to associate a
duration with these activities (transitions). The latter has been our
choice. In other words, from a queueing theory perspective, the service
stations are represented by timed transitions, and we denote by si the
average service time of transition ti.

In the case of timed transition models, two different firing rules have
been defined:

1) “timed firing” of transitions in three phases which changes the
firing rule of Petri nets introducing a timed phase in which the
transition is “working” after having removed tokens from the in-
put and before adding tokens to the output places, or a

2) “timed enabling” followed by an atomic firing which does not
affect the usual Petri net firing rule.

These different timing interpretations have different implications on
the resolution of conflicts [AMBB+89]. On the one hand, using timed
transition models with three phases firing we can define a policy for
conflict resolution independent of the time specification but we cannot
model pre-emption. On the other hand, using timed transition models
with single phase firing we can model pre-emption but we cannot de-
fine conflict resolution policies independent of the timing specification
(the conflicts are usually resolved in this case with race policy, i.e., the
transition which samples the minimum service time is the one whose
firing determines the change of marking).

In order to avoid the coupling between resolution of conflicts and
duration of activities, we suppose that transitions in conflict are im-
mediate (they fire in zero time). Decisions at these conflicts are taken
according to routing rates associated with immediate transitions (gen-
eralized stochastic Petri nets [AMBC84,AMBCC87a]). In this way, pre-
emption cannot be modelled. In other words, each subset of transitions
{t1, . . . , tk} ⊂ T that are in conflict in one or several reachable mark-
ings are considered immediate, and the constants r1, . . . , rk ∈ IN+ are
explicitly defined in the net interpretation in such a way that when
t1, . . . , tk are enabled, transition ti (i = 1, . . . , k) fires with probability
(or with long run rate, in the case of deterministic conflicts resolution
policy) ri/(

∑k
j=1 rj). Note that the routing rates are assumed to be
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strictly positive, i.e., all possible outcomes of any conflict have a non-
null probability of firing. This fact guarantees a fair behaviour for the
non-autonomous Petri nets that we consider (a marked net is said to be
fair iff all transitions that are simultaneously enabled infinitely many
times will fire infinitely often).

In summary, we model service stations by means of (deterministic
or stochastic) timed transitions, routing by means of immediate tran-
sitions in conflict, and both kinds of transitions, timed and immediate,
can be used as fork (split) nodes and join (synchronization) nodes.

1.2.3.2 Single versus multiple server semantics

Another possible source of confusion in the definition of the timed inter-
pretation of a Petri net model is the concept of degree of enabling of a
transition (or re-entrance). In the case of timing associated with places,
it seems quite natural to define an unavailability time which is indepen-
dent of the total number of tokens already present in the place, an this
can be interpreted as an infinite-server policy from the point of view
of queueing theory. In the case of time associated with transitions, it is
less obvious a-priori whether a transition enabled k times in a marking
should work at conditional speed 1 or k times that it would work in the
case it was enabled only once. In the case of stochastic Petri nets with
exponentially distributed service times associated with transitions, the
usual implicit hypothesis is to have single-server semantics (see, e.g.,
[Mol82,FN85a]), and the case of multiple-server is handled as a case of
service rate dependent on the marking; this trick cannot work in the
case of more general probability distributions. This is the reason why
people working with deterministic timed transitions Petri nets prefer
an infinite-server semantics (see, e.g., [RP84,HV85,Zub85]). Of course
an infinite-server transition can always be constrained to a “k–server”
behaviour by adding one place that is both input and output (self-loop
with multiplicity 1) for that transition and marking it with k tokens.
Therefore, the infinite-server semantics appears to be the most general
one, and for this reason it is adopted in this work.

The maximum number of servers working in parallel at a given
transition will be characterized with the enabling bound concept.



18 CHAPTER 1. Synchronized queueing networks and Petri nets

Definition 1.2.1 (Enabling bound) Let 〈N ,M0〉 be a marked Petri
net. The enabling bound of a given transition t of N is

E(t)
def
= max{ k | ∃M ∈ R(N ,M0) : M ≥ kPRE[t] }

Since in this work we are interested in the steady-state performance
of a model, one can ask the question how many servers are available
in transitions in steady-state condition. The answer is the definition of
the liveness bound concept.

Definition 1.2.2 (Liveness bound) Let 〈N ,M0〉 be a marked Petri
net. The liveness bound of a given transition t of N is:

L(t)
def
= max{ k | ∀M ′ ∈ R(N ,M0), ∃M ∈ R(N ,M ′) : M ≥ kPRE[t] }

The above definitions allow to generalize the classical concepts of
enabling and liveness of a transition. In particular, a transition t is
live if and only if L(t) > 0, i.e., if there is at least one working server
associated with it in steady-state conditions. The following is also
obvious from the definitions.

Property 1.2.1 Let 〈N ,M0〉 be a marked Petri net, then for all tran-
sition t of N , E(t) ≥ L(t).

A case of strict inequality in this property can be interpreted as
a generalization of the concept of non-liveness: there exist transitions
containing “potential servers” that are never used in the steady-state;
these additional servers might only be used in a transient phase, so
they “die” during the evolution of the model. See, as an example, the
net in figure 1.6. For transition t1 we have: E(t1) = 2 > L(t1) = 1.

Since for any reversible net (i.e., such that M0 is a home state) the
reachability graph (which is a directed labelled graph with the reachable
markings as nodes) is strongly connected, the following can be stated:

Property 1.2.2 Let 〈N ,M0〉 be a reversible marked Petri net, then
for all transition t of N , E(t) = L(t).
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Figure 1.6: A net with enabling bound greater than liveness bound for
transition t1.

The definition of enabling bound refers to a behavioural property
that depends on the reachability graph of a Petri net. Since we are look-
ing for computational techniques at the structural level, we can also
introduce the structural counterpart of the enabling bound concept.
Structural net theory has been developed from two complementary
points of view: graph theory [Bes87] and mathematical programming
(or more specifically linear programming and linear algebra) [SC88].
Let us introduce our structural definition from the mathematical pro-
gramming point of view; essentially in this case the reachability condi-
tion is substituted by the (in general) weaker (linear) constraint that
markings satisfy the net state equation: M = M0+C ·�σ, with M,�σ ≥ 0.

Definition 1.2.3 (Structural enabling bound) Let N be a Petri
net. The structural enabling bound of a given transition t of N is

SE(t)
def
= maximize k

subject to M = M0 + C · �σ ≥ k PRE[t]
�σ ≥ 0

(LPP1)

Note that the definition of structural enabling bound reduces to the
formulation of a linear programming problem [Mur83].

Now let us remark the relation between behavioural and struc-
tural enabling bound concepts that follows from the implication “M ∈
R(N ,M0) ⇒ M = M0 + C · �σ ∧ �σ ≥ 0”.

Property 1.2.3 Let 〈N ,M0〉 be a marked Petri net, then for all tran-
sition t of N , SE(t) ≥ E(t).
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1.2.3.3 Ergodicity and measurability

In order to compute the steady-state performance of a system we have
to assume that some kind of “average behaviour” can be estimated on
the long run of the system we are studying. The usual assumption in
this case is that the system model must be ergodic [Ros83], meaning
that at the limit when the observation period tends to infinity, the esti-
mates of average values tend (almost surely) to the theoretical expected
values of the (usually unknown) probability distribution functions that
characterize the performance indexes of interest.

This assumption is very strong and difficult to verify in general;
moreover, it creates problems when we want to include the determin-
istic case as a special case of a stochastic model, since the existence of
the theoretical limiting expected value can be hampered by the peri-
odicity of the model. Thus we introduce the concept of weak ergodicity
that allows the estimation of long run performance also in the case of
deterministic models.

Definition 1.2.4 (Weak and strong ergodicities)

1. A (not necessarily stochastic) process Zτ , where τ ≥ 0 represents
the time, is said to be weakly ergodic (or measurable in long run)
iff the following limit exists:

lim
τ→∞

1

τ

∫ τ

0
Zu du < ∞ (1.7)

2. A stochastic process Zτ , where τ ≥ 0 represents the time, is said
to be (strongly) ergodic iff the following condition holds:

lim
τ→∞

1

τ

∫ τ

0
Zu du = lim

τ→∞E[Zτ ] < ∞ (a.s.) (1.8)

For stochastic Petri nets, weak ergodicity of the marking and the
firing processes can be defined in the following terms:

Definition 1.2.5 (Weak ergodicity of marking and firing) The
marking process Mτ , where τ ≥ 0 represents the time, of a stochastic
marked net is weakly ergodic iff the following limit exists:

M
def
= lim

τ→∞
1

τ

∫ τ

0
Mu du < �∞ (1.9)
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Figure 1.7: A trivial weakly but non-strongly marking ergodic deter-
ministic net.

and M is called the limit average marking.
The firing process �στ , where τ ≥ 0 represents the time, of a stochas-

tic marked net is weakly ergodic iff the following limit exists:

X
def
= lim

τ→∞
�στ

τ
< �∞ (1.10)

and X is the limit vector of transition throughputs (or limit firing flow
vector).

The usual (i.e., strong) ergodicity concepts [FN85a] are defined in
the obvious way taking into consideration definition 1.2.4.2.

Figure 1.7 shows a trivial example of a Petri net in which the
marking process is weakly but not strongly ergodic when transitions
t1 and t2 are associated with deterministic service times s1 and s2: in-
deed E[Mτ ] = Mτ is in this case a periodic function of time, so that
limτ→∞E[Mτ ] does not exist even if M = (s2/(s1 + s2), s1/(s1 + s2))

T

in definition 1.2.5.
Ergodicity of the marking and of the firing processes are, in gen-

eral, unrelated properties. Let us consider an M |M |1 queue modelled
by means of the Petri net depicted in figure 1.8. If time-dependent
rates λτ and μτ , with λ < μ are considered for arrival and service dis-
tributions (i.e., for service time of t1 and t3, respectively), the marking
process is strongly ergodic while the firing process is not (even weakly)
ergodic. In what follows, we do not consider any more time-dependent
distributions. On the other hand, if the arrival and the service rates
are λ and μ, respectively, with λ > μ, then the firing process is strongly
ergodic but the marking process is non (even weakly) ergodic, because
the marking of the place p2 tends to infinity, almost surely.
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Figure 1.8: A net with home states but possibly non-ergodic marking
process.

Other cases in which the firing process is weakly non-ergodic can
be obtained when all the input places of a given transition are marking
unbounded or when a transition has not any input place. In these cases,
the liveness bound of that transition is infinite and, since infinite-server
semantics is assumed, the throughput of the transition tends to infinity,
unless the stochastic interpretation makes the limit marking bounded.
Other “pathological behaviour” of the firing process leading to weak
non-ergodicity can occur when there exits a circuit in the net including
only immediate transitions. In this case, if no synchronization exists
braking the firing speed of transitions in that circuit, their throughput
tends to infinity. In what follows, we discard the previous undesirable
cases.

For bounded nets, ergodicity of the firing process does not imply
marking ergodicity. This can be the case if after an initial transient
phase, the model can reach different closed subsets of the state space.
Even in those cases in which there does not exist a “true” mean marking
(i.e., the limit marking for τ → ∞ is not unique), it makes sense to
compute upper and lower bounds on transition throughputs.

Related to marking ergodicity, if a bounded Petri net has a home
state then its associated state space is finite and has a unique closed
subset of markings. Therefore, the next result follows:

Theorem 1.2.1 If a bounded marked net has a home state then its
marking process is weakly ergodic.

The above result provides an interesting example of possible in-
terleaving between qualitative (home state concept) and quantitative
(ergodicity concept) analysis for stochastic Petri nets.
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Figure 1.9: A live and bounded net without home states.

Markovian nets [FN85a] are stochastic Petri nets such that their
related marking processes are Markov processes [Rev84]. Markovian
Petri nets are obtained, e.g., using exponential distributions for transi-
tion service times. For Markovian bounded nets with home state, even
strong marking ergodicity is assured:

Theorem 1.2.2 If a Markovian bounded marked net has a home state
then its marking process is strongly ergodic.

Proof. The set of home states of the net is the unique recurrent class
of the underlying Markov process. If the net is bounded, this class is
positive recurrent and the marking process is strongly ergodic.

The conditions of this theorem cannot be relaxed. An unbounded
net can have home states but non-ergodic marking process if the mean
marking of a place tends to infinity. On the other hand, nets can
have bounded marking mean values and be non-ergodic because of the
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Figure 1.10: Reachability graph of the net in figure 1.9
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presence of more than one closed subset in the state space. This is the
case, for instance, for the net in figure 1.9 (taken from [BV84]). It is
live and bounded and has two different closed subsets in its state space
(depicted in figure 1.10). However, marking ergodicity does not imply
the existence of a home state: for the net in figure 1.9 (which has not
home state) an exponential distribution timing can be associated with
transitions (e.g., taking the same value for the rates of all transitions)
such that the related marking process is ergodic anyway.

Let us now give a structural necessary condition for the ergodicity
of the marking process of a live Markovian Petri net.

Theorem 1.2.3 Live and marking ergodic Markovian Petri nets are
consistent.

Proof. If a Markovian net is marking ergodic then, in particular,
supτ E[Mτ ] < ∞, thus:

lim sup
τ→∞

E[Mτ ]

τ
= 0 (1.11)

For all Markovian nets:

lim sup
τ→∞

E[�στ ]

τ
< ∞ (1.12)

Now, from the linear state equation of the net:

lim sup
τ→∞

E[Mτ ]

τ
= lim sup

τ→∞

M0 + E[C · �στ ]

τ
= lim sup

τ→∞

C · E[�στ ]

τ
(1.13)

Then, from (1.11), (1.12), and (1.13):

C ·X = 0, where X = lim sup
t→∞

E[�σt]

t
(1.14)

Finally, the liveness of the net assures that vector X is such that
X ≥ 11. Therefore, the net is consistent.
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Figure 1.11: An example of stochastic Petri net representing a network
of delay stations.

1.3 Mapping between monoclass syn-

chronized queueing networks and

stochastic Petri nets

In [VZL87] a comparison has been proposed between synchronized
queueing networks and stochastic Petri nets, showing that the two for-
malisms are roughly equivalent from a modelling point of view.

Here we show how the different queueing network models with syn-
chronizations presented in section 1.1 can be uniformely represented
with a Petri net formalism.

An infinite-server queue [Kle75] (i.e., a pure delay node) can be
represented by a Petri net containing one place to model the number
of customers in the system and a timed transition connected with the
place through an input arc to model departures. A queueing network
containing only pure delay nodes can be modelled, as depicted in the
example of figure 1.11, by a stochastic Petri net. Persistent timed tran-
sitions represent service times of the nodes, while conflicting immediate
transitions model the routing of customers moving from one node to
the other.

A monoclass single-server station [Kle75] can be modelled by a sub-
net of the type depicted in figure 1.12. Monoclass queueing networks
containing both delay and finite-server nodes are thus naturally mod-
elled by stochastic Petri nets of the type depicted in the example of fig-
ure 1.13 (t1 is a delay, while t2 and t3 are single-server stations). Also
in this more general context conflicting immediate transitions model
the routing of customers among the stations, while persistent timed
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Figure 1.12: A Petri net representation of a monoclass single-server
queue.

Figure 1.13: A Petri net representation of a queueing network.
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transitions model the service times.
On the other hand, stochastic nets can assume forms much more

complex than the one illustrated in the example of figure 1.13. Fig-
ure 1.14 illustrates a more general stochastic Petri net that cannot be
mapped onto a product form queueing network. In fact, this net can
be mapped on an extended queueing network [SMK82], in which such
constructs as fork, join, and passive resources are used to map the effect
of the pairs of transitions t2–t7 and t9–t10, respectively. These exam-
ples show how, using a Petri net formalism, extensions of product form
queueing networks are represented with an analogous level of structural
complexity of BCMP networks.

In section 1.1, extended queueing network models were presented
for the modelling of a multiprogramming memory limited system (fig-
ure 1.2) and a fork/join multitasking process (figure 1.3). The cor-
responding Petri net models are depicted in figures 1.15 and 1.16,
respectively.

The reader is noticed that “unclever” use of synchronizations in
queueing networks can lead to pathological cases as unbounded number
of customers or total deadlock (see figure 1.17), that need to be carefully
studied.

Finally, let us remark that stochastic Petri nets with weighted arcs
(i.e., non-ordinary nets) can be used for the modelling of bulk arrivals
and bulk services [Kle75], with deterministic size of batches (given by
the weights of arcs). As an example, transition t3 of Petri net in fig-
ure 1.6 is a bulk service system which accepts a batch of exactly two
tokens (customers) from the place p3, and serves them collectively.

1.4 Analytical techniques for synchro-

nized queueing networks

One of the main problems in the actual use of timed and stochastic
Petri net models for the performance evaluation of large systems is the
explosion of the computational complexity of the analysis algorithms.
In general, exact performance results are obtained from the numerical
solution of a continuous time Markov chain [BT81,Mol81,FN85b]. This
exact computation is only possible for bounded nets (finite state space),
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Figure 1.14: A more general stochastic net and the corresponding syn-
chronized queueing network.
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Figure 1.15: Petri net model of a multiprogramming memory limited
system.

Figure 1.16: Petri net model of a fork/join multitasking process.
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Figure 1.17: Pathological cases of synchronized queueing networks.

and under exponential assumption for the service time of transitions.
And the worst of it is that the dimension of the state space of the
embedded Markov chain grows exponentially with the net size.

The same problem arose in the framework of queueing networks
before the work of J. Jackson, and it was solved by means of the intro-
duction of product form equations [Jac63,GN67,BCMP75], and efficient
algorithms for their solution [Buz73,RK75,RL80,BB80]. Unfortunately,
the generalization of these results to more complex stochastic models
with synchronization features seems to be very difficult, and a very few
number of results have been already published.

Related with open networks, a matrix product form solution is
known only for stochastic Petri nets with at most one place unbounded
[FN86]. In [FN89a], G. Florin and S. Natkin presented the first general
product form expresion in matrix form for closed (i.e., bounded) ordi-
nary stochastic Petri nets with strongly connected reachability graph.
The great difference between scalar (Gordon-Newell result for closed
queueing networks) and matrix product forms appears in numerical
computation. Solving synchronized queueing networks implies much
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more complex algorithms than classical ones. The problem of comput-
ing the normalization constant in the scalar product form solution is
replaced by the computation of a constant vector obtained solving a sys-
tem of linear equations, which is ill-conditioned. This is the reason why
the paper of Florin and Natkin can be considered mainly of theoretical
significance. Other works dealing with this problem [AMBCD86,LR87]
consider only very restrictive subclasses of Petri nets. Therefore, effi-
cient computational methods are still needed.

Approximation techniques have been developed in the framework of
non-product form queueing networks for overcoming the practical lim-
itations of exact solutions. The “flow equivalent” server decomposition
method is probably the most used in practice [Lav89]. In this method,
a subnetwork is replaced by a server with exponentially distributed
service times and queue length dependent service rates. The rates are
obtained by solving the throughput of the isolated subnetwork once for
each possible value of number of customers in the subnetwork. The
aggregated system consisting of this flow equivalent server and the rest
of the original network is then solved.

Two different theoretical justifications for the fitness of the flow
equivalent server method can be given. The first is that it yields exact
results for single chain product form networks [CHW75]. This result
is called Norton’s theorem for product form queueing networks due to
its analogy with Norton’s theorem for electrical circuits (in which a
subsystem is replaced by a current source and parallel resistance that
are equivalent to the original subsystem in terms of their effect on
the rest of the system). This exact result for product form queueing
networks suggests that the flow equivalent server method may yield
fairly accurate approximations for networks that are “almost product
form”.

The second justification for the use of this method was performed
by P. Courtois [Cou77] within the framework of the computation of
the steady-state solution of large Markov chains in which states are
aggregated into macrostates to reduce the computational complexity
of the solution (nearly or completely decomposable systems).

Practical experience shows that using decomposition techniques for
the solution of non-product form networks made up of subsystems that,
taken in isolation, satisfy the product form conditions often yields quite
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acceptable results [AMBC86].
A complementary approach to the approximation techniques for

the analysis of queueing networks is the computation of bounds. Per-
formance bounds are useful in the preliminary phases of the design of
a system, in which many parameters are not known accurately. Sev-
eral alternatives for those parameters should be quickly evaluated, and
rejected those that are clearly bad. Exact (and even approximate) solu-
tions would be computationally very expensive. Bounds become useful
in these instances since they usually require much less computation
effort.

A large number of bounding techniques have been proposed for the
performance measures of queueing networks. The first family is that of
asymptotic bound analysis [Kle76,DB78]. Asymptotic bounds are ob-
tained by considering two extreme situations: (1) no queueing takes
place at any node, and (2) at least one station is saturated. These
bounds do not require the product form property to hold and their
computation is very fast, but they are not accurate in general. The
rest of bounds that have been introduced are tighter but do require
the product form assumption. This is the case of balanced job bounds
[ZSEG82,Kri84], which are based on the mean value theorem [RL80].
Finally, several schemes for the construction of hierarchies of bounds
have been developed that guarantee any level of accuracy (including the
exact solution), by investing the necessary computational effort: per-
formance bound hierarchies [ES83,ES86], succesively improving bounds
[Sri87], generalized quick bounds [Sur84]. All these techniques are de-
rived from mean value theorem, thus they are valid only for product
form networks.

1.5 An overview of performance bounds

for stochastic Petri nets

Many works exist concerning the performance evaluation in the case
of deterministically timed nets, mainly for strongly connected marked
graphs [Ram74,Sif78,RH80,Mag84,Mur85]. We assume all these results,
which can be identified as a particular case (in fact an “extreme” case)
of the general stochastic timing, and we reformulate them in a general
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form which allows efficient computation methods. Extensions to non-
ordinary nets have been presented in the case of deterministic timing
[Hil88]. Our work considers also these nets in a unified formulation.

In the framework of stochastic Petri nets, only a few works exist re-
lated with the computation of performance bounds [Mol85,BG85,IA89],
and all of them are valid just for restrictive assumptions on the nets.

M. Molloy [Mol85] noted that the average token flows in an ordinary
Markovian network at steady-state are conserved. Therefore, a series
of flow balance equations can be written. Token flows are conserved in
places so the sum of all flows into a place equals the sum of all flows out
of the place. On the other hand, all token flows on the input and output
arcs of a transition are equal. These equations determine the average
token flows in the cycles of the net to within a constant. This constant
cannot be determined without Markovian analysis at the reachability
graph level. However, limit flows when the number of tokens tends
to infinity can be computed. In order to do that, bottleneck transi-
tions must be first located. Then, the actual flow through a bottleneck
transition is (under saturation conditions) equal to its potential firing
rate.

It is well-known that the conservation of flows presented by M. Mol-
loy is not only valid for Markovian nets. In fact, some of most important
laws of queueing theory hold under very general assumptions. These
general situations are considered in our work, and some fundamental
laws taken from queueing theory (such as Little’s formula) are applied
to stochastic Petri net models.

S. Bruell and S. Ghanta [BG85] developed algorithms for comput-
ing upper and lower bounds for the throughput of a restricted subclass
of generalized stochastic Petri nets (with immediate and exponentially
timed transitions). The considered nets include control tokens to model
a physical restriction, such as semaphores, which is not a design param-
eter. The rest of tokens of such nets, grouped in classes, correspond to
the notion of a job or customer in a monoclass queueing network, and
its number is treated as a parameter of the net. The upper and lower
bounds on throughput are computed hierarchically estimating maxi-
mum and minimum time of the path followed by each class of jobs.

Unfortunately, the above cited article [BG85], which is considered
by the authors as a “preliminary work”, suffers from an excessive infor-
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mal style that makes confusing both the characterization of the consid-
ered net subclasses and the computation algorithms. However, in those
cases in which we have been able to applied the techniques presented
in [BG85], the obtained results agree with the ones that we get using
the algorithms we present in this work.

In the paper of S. Islam and H. Ammar [IA89], methods to com-
pute upper and lower bounds for the steady-state token probabilities
of a subclass of generalized stochastic Petri nets are presented. The
considered nets are obliged to admit a time scale decomposition. This
means that the transitions of the net are supposed to be divided into
two classes: slow and fast transitions, with several orders of magnitude
of difference in the duration of activities. Moreover, the subnets ob-
tained after removing all slow transitions with their input and output
arcs must be conservative and admit a reversible initial marking. The
computation is based on near-completely decomposability of Markov
chains.

Our approach is different, and complementary, from the one pre-
sented in [IA89]. One objective of this text is to present algorithms for
the computation of bounds for stochastic Petri nets for arbitrary mean
values of service times of transitions and, moreover, for arbitrary dis-
tribution functions of the timing. This main objective is attacked in an
unified framework considering both qualitative and quantitative prop-
erties of stochastic Petri nets, and laying special emphasis on structure
theory of nets. The computation of both the upper and lower bounds
is based on an efficient calculation of the visit ratios for transitions, a
concept taken from classical queueing theory. These visit ratios, to-
gether with the average service time of transitions, the net structure,
and the initial marking, are used for the derivation of proper linear pro-
gramming problems whose optimum solutions are the desired bounds.
In the next chapter, we focus on the computability of visit ratios from
different net parameters, such as the net structure and the stochastic
interpretation. Net subclasses for which this computation is possible
in polynomial time are especially considered (their characterization, in-
clusion relations. . . ), making emphasis on those qualitative properties
that are interesting from a performance point of view.
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Chapter 2

Petri net subclasses and
bases of qualitative theory

In the previous chapter, we recalled that the exact computation of
performance measures for closed product form queueing networks can
be computed from the knowledge of the average service demands of
customers from stations. These parameters have been defined for each
service center as the product of visit ratio by average service time.
While service times are supposed to be always explicitly given as a
part of the model specification, visit ratios for stations are derived, in
the case of queueing networks, from the routing probabilitites among
stations.

Concerning stochastic Petri nets, we assume also that the average
service times of transitions are known. Then, in order to compute the
average service demand of tokens from transitions, it is necessary to
compute just the visit ratios or relative throughputs of transitions.

Unfortunately, as we remarked in previous chapter, the introduction
of synchronization schemes can lead to the “pathological” behaviour of
models reaching a total deadlock, thus with null visit ratios for all
transitions, in the limit. In other words, for these models it makes no
sense to speak about steady-state behaviour. Therefore, in the rest of
this text we consider only deadlock-free Petri nets. Moreover, in most
subclasses in which we are interested, deadlock-freeness implies liveness
of the net, in other words, the existence of an infinite activity of all the
transitions is assured.

37
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Figure 2.1: A net whose visit ratios depend on the structure, on the
routing at conflicts, on the initial marking, and on the service times.

The counterpart of routing probabilities of queueing networks in
stochastic Petri nets consists both on the net structure N (as a par-
ticular case of deterministic routing) and the routing rates at conflicts
(let us denote as R). Unfortunately, in the general Petri net case it is
not possible to derive the visit ratios only from N and R. Nets can be
constructed such that the visit ratios for transitions do depend on the
net structure, on the routing rates at conflicts, but also on the initial
marking (distribution of customers), and on the average service time of
transitions:

�v(1) = ϕ(N ,R,M0, �s) (2.1)

where �v(1) and �s denote the vectors with components v
(1)
i , i = 1, . . . ,m,

and si, i = 1, . . . ,m, respectively.
As an example, let us consider the net depicted in figure 2.1. Tran-

sitions t1 and t3 are immediate (i.e., they fire in zero time). The
constants r1, r3 ∈ IN+ define the conflict resolution policy, i.e., when
t1 and t3 are simultaneously enabled, t1 fires with relative frequency
r1/(r1 + r3) and t3 with r3/(r1 + r3). Let s2 and s4 be the average
service times of t2 and t4, respectively. If m5 = 1 (initial marking
of p5) then p1 and p3 are implicit (see section 1.2.2), hence they can
be deleted (without affecting the behaviour!). Thus a closed queueing
network topology is derived. A product form queueing network can be
obtained and the visit ratios, normalized for transition t1 can be com-
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puted: �v(1) = (1, 1, r3/r1, r3/r1)
T . If m5 = 2 (different initial marking

for p5) then p5 is implicit, hence it can be deleted; two isolated closed
tandem queueing networks are obtained and �v(1)′ = (1, 1, s2/s4, s2/s4)

T .
Obviously �v(1) �= �v(1)′ , in general.

In this chapter we classify Petri nets attending to the computabil-
ity of visit ratios as functions of the net structure (or deterministic
routing), the routing rates at conflicts, the initial marking, and the av-
erage service time of transitions. This particular classification criterion
is quite different from the usually applied in the theory of Petri nets.
However, some of the main classical net subclasses (marked graphs,
state machines, free choice nets. . . ) will be recognized attending to
the dependence of visit ratios on the different parameters defining the
model. Some properties for the introduced net subclasses, interesting
from both the qualitative and the quantitative points of view are re-
called or derived here, like: the complexity of the characterization of
different subclasses; characterizations of structural liveness, liveness,
boundedness. . . ; liveness monotonicity, reversibility, home state exis-
tence; computation of the visit ratios and its complexity, weak and
strong ergodicities. . .

Firstly, in section 2.1, we consider those nets whose associated vec-
tor of visit ratios for transitions can be computed from the net structure
and the routing rates at conflicts. Since the existence of strictly posi-
tive visit ratios requires liveness of the net and we are looking for an
structural computation, we restrict ourselves to structurally live Petri
nets. On the other hand, unless otherwise explicitly stated, we consider
structurally bounded nets. Under these restrictions, we characterize the
class of nets for which the vector of visit ratios can be computed with-
out any behavioural analysis (i.e., from structure and routing rates at
conflicts) in terms of a rank condition over the incidence matrix of the
net. These nets are defined as having freely related T-semiflows and
denoted, for short, as FRT-nets. This means that they can have sev-
eral independent T-semiflows but the vector of visit ratios, which is
always a linear combination of the minimal T-semiflows, is computed
as an “average T-semiflow” from local free choices among transitions,
governed by the routing rates.

A particular class of FRT-nets is that of mono-T-semiflow nets,
which have a unique minimal T-semiflow. They include structurally
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decision-free nets and, in particular, the well-known net subclass of
marked graphs.

FRT-nets include also free choice nets. This last class includes
marked graphs, thus intersecting with mono-T-semiflow nets. State
machines are also included in the class of free choice nets and consti-
tute the Petri net counterpart of monoclass queueing networks.

Other well-known subclass of marked FRT-nets is that of determin-
istic systems of sequential processes, that is, 1–bounded state machines
communicating through private buffers non-disturbing local decisions
at state machines. In fact, FRT-nets communicating through private
buffers non-disturbing local decisions are also FRT-nets. In this sense,
FRT-nets can be recursively defined.

Finally, in section 2.2, net subclasses whose vector of visit ratios can
be computed from the structure, routing rates, and initial marking, but
independently of the service times, are considered. Persistent nets and
behaviourally extended free choice nets (“réseaux á choix non imposé”,
in French) are included in that paragraph. These nets are behaviourally
defined. Therefore, after the analysis of the reachability graph neces-
sary for their characterization, the vector of visit ratios for transitions
can be derived, and it is independent of the transitions service times.

2.1 FRT-nets and subclasses

In this section we define and give some interesting properties for the
class of structurally live and structurally bounded nets whose vector of
visit ratios for transitions can be computed just from the net structure
and the routing rates at conflicts. Nets belonging to this subclass,
presented in section 2.1.1, are said to have freely related T-semiflows
and called FRT-nets.

Later, in section 2.1.2, mono-T-semiflow nets are shown to be a
subclass of FRT-nets with the particular property of having the vector
of visit ratios computable just from the net structure. Structurally
decision-free nets are mono-T-semiflow nets, and marked graphs, a well-
known Petri net class, is identified as a subclass of structurally decision-
free nets whose vector of visit ratios is always the unity vector.

Free choice nets are also considered, in section 2.1.3, and identified
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Figure 2.2: Inclusion relations among FRT-net subclasses (∗ these are
marked nets).

as a subclass of FRT-nets with some interesting additional properties.
Finally, in section 2.1.4, a modular technique of composition of

FRT-nets for obtaining new FRT-nets is presented by means of the
communication with private buffers. Deterministic systems of sequen-
tial processes constitute the particular case in which the communicated
subnets are 1–bounded state machines.

Inclusion relations among above mentioned subclasses are depicted
in figure 2.2.

2.1.1 FRT-nets

In this section, we consider the most general class of structurally live
and structurally bounded nets whose vector of visit ratios can be com-
puted from the structure and the routing rates at conflicts. Before
giving a formal definition, let us remark that the vector of visit ratios
for transitions of any net should verify the two following conditions:

• The vector of visit ratios �v(j) (normalized, for instance, for tran-
sition tj) must be a non-negative right annuller of the incidence
matrix (i.e., a T-semiflow):

C · �v(j) = 0 (2.2)
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• The visit ratios of two different transitions ti1 and ti2 in struc-
tural free conflict (i.e., having equal pre-incidence function) must
be proportional to the corresponding routing rates ri1 and ri2
defining the conflict resolution: ri1v

(j)
i2 = ri2v

(j)
i1 . This condition

can be also written in vector form as:

R · �v(j) = 0 (2.3)

where R is a matrix with as many rows as pairs of transitions in
structural free conflict.

The above remarked conditions together with the normalization
v

(j)
j = 1 for a given transition tj characterize a unique vector if and

only if the number of independent rows of the matrix(
C
R

)
(2.4)

is m− 1, with m = |T |.

2.1.1.1 Definition

We introduce now the class of structurally live and structurally bounded
nets verifying the previous rank condition. In order to do that, we define
an equivalence relation on the set of T-semiflows of the net. After that,
the class of FRT-nets will be defined as nets having only one equivalence
class for this relation.

Definition 2.1.1 (Freely connected T-semiflows) Let N be a
Petri net and Xa, Xb two different T-semiflows of N . Xa and Xb are

said to be freely connected by places P ′ ⊂ P , denoted as Xa
P ′
∧ Xb,

iff ∃ta ∈ ||Xa||, tb ∈ ||Xb|| such that: PRE[ta] = PRE[tb] and
•ta = •tb = P ′.

Definition 2.1.2 (Freely related T-semiflows) Let N be a Petri
net and Xa, Xb two T-semiflows of N . Xa and Xb are said to be freely
related, denoted as (Xa, Xb) ∈ FR, iff one of the following conditions
holds:
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1. Xa = Xb,

2. ∃P ′ ⊂ P such that Xa
P ′
∧ Xb, or

3. ∃X1, . . . , Xk T-semiflows of N and P1, . . . , Pk+1 ⊂ P , k ≥ 1,

such that Xa
P1∧ X1

P2∧ . . .
Pk∧ Xk

Pk+1
∧ Xb.

From the above definition the next property trivially follows:

Property 2.1.1 FR is an equivalence relation on the set of T-semi-
flows of a net.

The introduction of this equivalence relation on the set of T-semi-
flows induces a partition into equivalence classes. FRT-nets are defined
as follows:

Definition 2.1.3 (FRT-nets) We say that a Petri net N is a net
with freely related T-semiflows (FRT-net, for short) iff the introduction
of the freely relation on the set of its T-semiflows induces only one
equivalence class.

Note that FRT-nets are necessarily connected. Therefore, in what
follows, unless otherwise explicitly stated, we consider only connected
nets.

As an example, let us consider the net depicted in figure 2.3. It is
a live and structurally bounded net. Its minimal T-semiflows are:

X1 = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0)T

X2 = (0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)T

X3 = (0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1)T

X4 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1)T

(2.5)

Then, the net is an FRT-net because:

X1
{p1}∧ X2

{p2}∧ X3
{p3}∧ X4 (2.6)
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Figure 2.3: A live and structurally bounded FRT-net.

2.1.1.2 Algebraic characterization

From the definition of FRT-nets, it may appears that a direct checking
of the pertenence of a given net to this net subclass is not a polynomial
problem on the net size. This is because the number of T-semiflows of a
net can grow exponentially with the number of places and transitions.
However, if structural liveness and structural boundedness are assumed,
a nice characterization of the FRT-nets subclass can be obtained and
checked in polynomial time. Before the presentation of that result, we
introduce a second equivalence relation, now on the set of transitions
of the net.

Definition 2.1.4 (Equality conflict relation) [CCS90d] Two tran-
sitions ta and tb are said to be in equality conflict relation, denoted by
(ta, tb) ∈ ECR, iff PRE[ta] = PRE[tb].

Since the equality conflict relation is based on the equality of vec-
tors, the next property follows:
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Property 2.1.2 ECR is an equivalence relation on the set of transi-
tions.

Each equivalence class will be called equality conflict set, and de-
noted as ECS. Let D be an ECS, the number δD = |D| − 1 is called
number of non-redundant free conflicts of D. The reason of the name
lies on the fact that δD is exactly the number of independent relations
among the throughput of transitions belonging to D that can be de-
rived from the routing rates defining the resolution of the conflict. The
number of non-redundant free conflicts of a net, denoted as δ, is the
sum of all δD corresponding to the ECSs of the net: δ =

∑
D∈T/ECR δD.

Theorem 2.1.1 Let N be a structurally live and structurally bounded
net. Then N is an FRT-net if and only if rank(C) = m − δ − 1,
where C is the incidence matrix of N , m = |T |, and δ is the number
of non-redundant free conflicts of the net.

Before giving the proof of the above theorem, let us state an impor-
tant conclusion.

Corollary 2.1.1 If N is structurally live and structurally bounded, de-
ciding if N belongs to the class of FRT-nets is polynomial on the net
size.

Structural boundedness of a net can be always be checked in poly-
nomial time (iff ∃Y ≥ 11 such that Y T ·C ≤ 0 [Mur89]). Unfortunately,
structural liveness of FRT-nets cannot be decided (so far) efficiently.
Nevertheless, a necessary condition for a net to be structurally live
structurally bounded and FRT-net can be checked in polynomial time,
looking for the consistency, conservativeness, and rank condition over
the incidence matrix, because structural liveness and structural bound-
edness implies consistency and conservativeness (see, e.g., [Sil85]).

In order to prove theorem 2.1.1 we previously present some lem-
matas. The first one concerns a reduction of the non-determinism at
equality conflicts, preserving the liveness property, by means of the
merging of a special class of nets: local schedulers.
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Figure 2.4: Introduction of a local scheduler at an equality conflict set.

Definition 2.1.5 (Local scheduler) [CCS90d] Let D = {ti | i =
1, . . . , δD + 1} be an ECS of the net N . A local scheduler
for D is a net LSD defined as (see figure 2.4): LSD =
〈PLSD

, TLSD
, P reLSD

, PostLSD
〉, such that TLSD

∩ T = D, T •
LSD

∪
•TLSD

= PLSD
, and PLSD

∩ P = ∅.

Lemma 2.1.1 Let N be a net and D an ECS of N . Let LSD be a
local scheduler for D. If N and LSD are structurally live in isolation,
then the net N LSD obtained by merging the common transitions of N
and LSD is structurally live.

Proof. Let M0 and M0LSD
be initial markings making live the nets N

and LSD, respectively. Let MLSD
0 be an initial marking of N LSD such

that its projection on P is M0 and its projection on PLSD
is M0LSD

.
Let MLSD ∈ R(N LSD ,MLSD

0 ) and t be a transition of N . We prove
that there exists a firing sequence, σLSD , in 〈N LSD ,MLSD〉 that yields
to a marking enabling t (i.e., the net N LSD is live under MLSD

0 ).
The projection of MLSD on P is a marking M ∈ R(N ,M0) from

which there exists at least one σ ∈ L(N ,M), yielding to a marking M ′

that enables t (because the net N is live). From this fact, three cases
arise:

a) If σ does not contain any transition belonging to D then it is also
firable in the net N LSD .

b) If σ contains one transition ta ∈ D, that is σ = σ0taσa, then there
exist δD + 1 firable sequences from M of the form σ0tiσi, ti ∈ D,
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Figure 2.5: Counter-example to the converse of lemma 2.1.1.

i = 1, . . . , δD+1, that allow to reach a marking enabling t. This is
because N is live and M [σ0〉MD; ∀ti ∈ D,MD[ti〉Mi ∈ R(N ,M0)
and ∀i = 1, . . . , δD + 1, Mi[σi〉M ′

i [t〉. Therefore, at least one of
the sequences σ0tiσi can be fired in N LSD : σ0 and σi are firable
according to the above case (a); at least one ti ∈ D is firable
because LSD is a live net (eventually, after the firing of some
internal transitions of the local scheduler in order to enable ti).

c) If σ contains more than one transition of D, we can find a firable
sequence in N that is firable in N LSD . This can be done by
applying repeatedly the above case (b).

Liveness of transitions belonging to LSD can be proved with similar
arguments. Therefore, the net N LSD is live under MLSD

0 and then
structurally live.

Unfortunately, the converse of lemma 2.1.1 is not true. Let us con-
sider, for instance, the structurally non-live net depicted in figure 2.5.a.
The net of figure 2.5.b is a structurally live local scheduler for transi-
tions a and b. The composition of the two nets is the net of figure 2.5.c
that now is structurally live.
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In the sequel, we consider a simple class of local schedulers called
regulation circuits. These nets are used as a tool to prove the theo-
rem 2.1.1. Nevertheless, they are not the unique local schedulers that
can be used for that purpose.

Definition 2.1.6 (Regulation circuit) [CCS90d] Let ta and tb be
two transitions of N in equality conflict relation. A regulation circuit
for ta and tb is a net rab = 〈Prab , Trab , P rerab , Postrab〉, where Prab =
{pab, pba}, Trab = {ta, tb}, •pab = {ta}, p•ab = {tb}, PRErab [pab, tb] =
POSTrab [pab, ta] = 1, •pba = {tb}, p•ba = {ta}, and PRErab [pba, ta] =
POSTrab [pba, tb] = 1.

As an example, the local scheduler depicted in figure 2.5 is a regula-
tion circuit for ta and tb. The composition of N and rab (by merging the
common transitions ta and tb) will be denoted as N rab . The incidence
matrix of N rab will be denoted as Crab .

Let N be a net and D = {ti | i = 1, . . . , δD + 1} be an ECS. The
net obtained from N by adding a regulation circuit per each pair of
transitions tk, tk+1 ∈ D, k = 1, . . . , δD, will be denoted as NRD , and its
corresponding incidence matrix as CRD . The net obtained by adding
regulation circuits for all ECSs as above will be denoted as NR, and
its corresponding incidence matrix as CR.

The following lemmatas present some properties of NRD derived
from the corresponding properties of N .

Lemma 2.1.2 Let N be a net and D = {ti | i = 1, . . . , δD + 1} be an
ECS. If N is structurally live and structurally bounded then NRD is
structurally live and structurally bounded.

Proof. The set of regulation circuits added to N is a local scheduler for
D. This local scheduler is structurally live in isolation (this is obvious,
putting enough tokens at each of the regulation circuits). The net
N is also structurally live and then, by lemma 2.1.1, the net NRD is
structurally live.

All places of N are structurally bounded. Taking into account the
definitions of ptktk+1

and ptk+1tk it is easy to see that CRD [ptktk+1
] +

CRD [ptk+1tk ] = 0 (i.e., the sum of the rows in the incidence matrix
corresponding to these places is zero). Therefore all new places added to
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N are also structurally bounded and then NRD is structurally bounded.

Lemma 2.1.3 Let D = {ti | i = 1, . . . , δD + 1} be an ECS. If N is
structurally live and structurally bounded then

min{m− 1, n + 2δD − 1} ≥ rank(CRD) = rank(C) + δD (2.7)

Proof. NRD is structurally live and structurally bounded
(lemma 2.1.3), thus conservative and consistent [Sil85]. Therefore,
rank(CRD) ≤ min{mRD − 1, nRD − 1}, where mRD = |TRD | = |T | = m
and nRD = |PRD | = |P |+|Pr12|+· · ·+|Prkk+1

|+· · ·+|PrδD−1δD
| = n+2δD.

So, we obtain: rank(CRD) ≤ min{m− 1, n + 2δD − 1}.
Let N pt2t1 be a net obtained from N by adding the place pt2t1 be-

longing to the regulation circuit r1,2. N pt2t1 is non-conservative be-
cause for all marking that enables the transitions of D we can de-
cide to fire always the transition t2 (i.e., the place pt2t1 is structurally
unbounded). Then we can conclude that there is not a vector Y
such that Y T · C = Cpt2t1 [pt2t1 ] (see proposition 2.8 in [CCS90d])
(i.e., the row vector Cpt2t1 [pt2t1 ] is linearly independent with respect
to the row vectors of the incidence matrix of the net N ). There-
fore, rank(Cpt2t1 ) = rank(C) + 1. If we add the place pt1t2 to the
net N pt2t1 we obtain the net N r1,2 . This last net has the same rank
that the net N pt2t1 because Cr1,2 [pt2t1 ] = −Cr1,2 [pt1t2 ]. Therefore,
rank(Cr1,2) = rank(C) + 1.

Let NRk−1 be the net obtained from N by adding the regulation
circuits r1,2, . . . , rk−1,k. NRk−1 verifies rank(CRk−1) = rank(C)+ k− 1.
We prove now that if we add the regulation circuit rk,k+1 to the net
NRk−1 then rank(CRk) = rank(CRk−1) + 1.

We add the place ptk+1tk belonging to the regulation circuit rk,k+1

to the net NRk−1 . This place is unbounded because for all marking
that enables some transition of the set {t1, . . . , tk}, tk+1 is also enabled
at this marking and then we can decide to fire always the transition
tk+1. Then the row vector CRk [ptk+1tk ] is linearly independent with
respect to the row vectors of the incidence matrix of the net NRk−1 (by
proposition 2.8 in [CCS90d]). Therefore, rank(CRk) = rank(CRk−1)+1
(because CRk [ptk+1tk ] = −CRk [ptktk+1

]).
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The number of added regulation circuits is δD, hence rank(CRD) =
rank(C) + δD.

Lemma 2.1.4 Let N be a structurally live and structurally bounded
net. Then rank(C) ≤ m − δ − 1, where C is the incidence matrix of
N , m = |T |, and δ is the number of non-redundant free conflicts of the
net.

Proof. N is conservative and consistent [Sil85]. If we add a local
scheduler per each ECS of the net, we obtain a net denoted NR that
satisfies: min{m − 1, n + 2δ − 1} ≥ rank(CR) = rank(C) + δ. Then,
rank(C) ≤ min{m − δ − 1, n + δ − 1}. Taking into account that the
net N is conservative and consistent, we also have that rank(C) ≤
min{m− 1, n− 1}. Therefore, combining the two above upper bounds
of rank(C), we obtain: rank(C) ≤ min{m − δ − 1, n − 1}. But, N
being conservative, rank(C) ≤ n− 1 and the lemma follows.

Proof of theorem 2.1.1. The rank equality condition holds iff NR

has a unique minimal T-semiflow. So let us prove this condition.
The number of minimal T-semiflows of NR is greater than or equal

to 1 because this net is consistent.
We compute T-semiflows, X ≥ 0 and C ·X = 0, applying the algo-

rithm presented in [CS89b] to the net NR. To do so, we eliminate first
the places ptiti+1

that connect two transitions in equality conflict rela-
tion (obviously, if we eliminate ptiti+1

we also eliminate pti+1ti because
CR[ptiti+1

] = −CR[pti+1ti ]). The elimination of ptiti+1
generates a unique

new column that is a linear combination of the columns corresponding
to ti and ti+1. In order to eliminate pti+1ti+2

we generate again a unique
column that is a linear combination of the above added column and
the column of ti+2. If we repeat this procedure for all places ptiti+1

be-
longing to an ECS we obtain a unique new column in which all entries
corresponding to places of the local scheduler are zero. The non-null
entries of this row are •ECS ∪ ECS•. Applying this procedure for all
ECS of the net we obtain a matrix in which there is a new column per
ECS and all columns in the original net corresponding to transitions
that do not belong to any ECS. This matrix can be interpreted as the
incidence matrix of a new net with at most one minimal T-semiflow iff
the original net is an FRT-net. This is because, if the original net was
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an FRT-net, all its T-semiflows would be freely related (by definition
of FRT-net), thus freely connected by pairs. And this occurs iff after
the application of the above procedure (i.e., after the addition of the
regulation circuits) each pair of originally freely connected T-semiflows
constitute a unique T-semiflow.

Therefore, applying the rank formula of lemma 2.1.3 with
rank(CR) = m− 1 we obtain: rank(C) = m− δ − 1.

2.1.1.3 Qualitative properties

The next result gives a method for the computation of the vector of
visit ratios for transitions of a structurally live and structurally bounded
FRT-net (provided liveness), from the knowledge of the net structure
and the routing rates at equality conflict sets.

Theorem 2.1.2 Let N be a structurally live and structurally bounded
FRT-net. Let C be the incidence matrix of N , and R the matrix (with δ
independent rows, where δ is the number of non-redundant free conflicts
of N ) that defines the relative rates of transitions in equality conflict
relation (i.e., the routing at the equality conflict sets). Then, the vector
of visit ratios �v(j) normalized, for instance, for transition tj can be
computed from C and R solving the following linear system of equations:

(
C
R

)
· �v(j) = 0, v

(j)
j = 1 (2.8)

(Note that this computation only makes sense when infinite behaviour is
possible for the net from a given initial marking, in other words, when
the net is deadlock-free.)

Proof. We only have to check that the above system has a unique
solution. By theorem 2.1.1, the number of independent rows of matrix
C is m− δ− 1. Therefore, the m− δ− 1 independent conditions given
by C · �v(j) = 0 plus the δ independent conditions given by R · �v(j) = 0
plus the normalization condition �v(j)(tj) = 1 are enough to determine
exactly the m components of the vector �v(j).
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From the above theorem, as we announced previously, for struc-
turally live and structurally bounded FRT-nets we have:

�v(j) = ϕ(N ,R) (2.9)

and the next complexity result follows:

Corollary 2.1.2 The computation of the vector of visit ratios for tran-
sitions of a structurally live and structurally bounded FRT-net is poly-
nomial on the net size.

As an example, let us consider again the net depicted in figure 2.3.
The vector of visit ratios must be a right annuller of the incidence
matrix, hence a linear combination of a basis of T-semiflows:

�v(1) =
4∑

i=1

αiXi (2.10)

where Xi, i = 1, . . . , 4, are the minimal T-semiflows (2.5) of the net.
If r1, r2 are the routing rates of t1, t2 in the conflict at p1; r3, r4 the
routing rates of t3, t4 in the conflict at p2; and r5, r6 the routing rates
of t5, t6 in the conflict at p3, then �v(1) must satisfy:

r2v
(1)
1 = r1v

(1)
2

r4v
(1)
3 = r3v

(1)
4

r6v
(1)
5 = r5v

(1)
6

(2.11)

And together with the normalization requirement:

v
(1)
1 = 1 (2.12)

the four parameters αi, i = 1, . . . , 4, can be determined.

Another interesting qualitative property follows from theorem 2.1.2,
that does not hold for general nets:

Property 2.1.3 Let N be a structurally live and structurally bounded
FRT-net. Then N is live if and only if it is deadlock-free.
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Figure 2.6: The addition of a token to p5 kills the net (sequence σ = t4
leads to a deadlock).

Proof. The “only if” direction is always true by definitions of liveness
and deadlock-freeness. The other direction follows from theorem 2.1.2.
The vector of visit ratios for transitions is univocally determined in
that theorem and all its components are non-null. If an infinite be-
haviour of the net always occur (i.e., if the net is deadlock-free) the
limit throughput of transitions must be proportional to the vector of
visit ratios, which is strictly positive. Therefore, the net is live.

From previous considerations and results, weak ergodicity of the
firing process of live and structurally bounded FRT-nets follows:

Theorem 2.1.3 Let 〈N ,M0〉 be a live and structurally bounded FRT-
net. Then its firing process is weakly ergodic.

For finishing this section, let us present some negative answers to
several questions about qualitative properties of general FRT-nets. All
of them are proven by giving the corresponding counter-example. The
first one assures that liveness is not a monotonous property for the
increasing of initial marking, and can be proven looking at the live and
structurally bounded FRT-net depicted in figure 2.6. The addition of
a token to p5 kills the net.

Property 2.1.4 Let 〈N ,M0〉 be a structurally bounded FRT-net and
M ′

0 ≥ M0. Liveness of 〈N ,M0〉 does not imply liveness of 〈N ,M ′
0〉.
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Figure 2.7: Live and bounded FRT-net which is not structurally
bounded.

Other negative result is shown by the net depicted in figure 2.7. It
is a live and bounded FRT-net. But the addition of a token to place
p5 makes that the sequence t2t1 can be fired ad infinitum leading to an
unbounded marking at place p3. In other words:

Property 2.1.5 Let 〈N ,M0〉 be a live FRT-net. The boundedness of
〈N ,M0〉 does not imply the structural boundedness of N .

Given a place p of a marked net, the maximum number of tokens at
this place over all reachable markings is called the marking bound of p,
and denoted as B(p). The structural counterpart of this concept can
be defined in terms of a linear programming problem as follows:

Definition 2.1.7 (Structural marking bound) [SC88] Let 〈N ,M0〉
be a marked Petri net. The structural marking bound of a given place
p of N is

SB(p)
def
= maximize M(p)

subject to M = M0 + C · �σ
M,�σ ≥ 0

(LPP2)

Since M0[σ〉M implies M = M0 + C · �σ ≥ 0 with �σ ≥ 0, but the
reverse is not true in general, SB(p) is greater than or equal to B(p).

Now, let us consider the net depicted in figure 2.8. It is a live and
structurally bounded FRT-net, and it verifies: (1) The marking bound
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Figure 2.8: A non-reversible live and structurally bounded FRT-net.

of place p2 is 1 and it is different from its structural marking bound,
which is 2; (2) The enabling bound of transition t2 is 1 and it is different
from its structural enabling bound, which is 2; (3) It is not reversible
(i.e., the initial marking is not a home state; (4) The liveness bound of
transition t1 is 1 and it is different from its enabling bound, which is 2.
Therefore, the next result can be stated:

Property 2.1.6 Let 〈N ,M0〉 be a live and structurally bounded FRT-
net. Then,

1. Equality between the marking and the structural marking bound
of a place cannot be assured.

2. Equality between the enabling and the structural enabling bound
of a transition cannot be assured.

3. Reversibility of the net cannot be assured.

4. Equality between the liveness and the enabling bound of a transi-
tion cannot be assured.

Item 3 in the above property assures that, in general, the initial
marking of a live and structurally bounded FRT-net is not a home
state. Moreover, the existency of home states is not guaranteed for live
and structurally bounded FRT-nets, as can be seen for the net depicted
in figure 2.9.

Property 2.1.7 Let 〈N ,M0〉 be a live and structurally bounded FRT-
net. Then, the existency of home state cannot be assured.
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Figure 2.9: A live and structurally bounded FRT-net without home
states.
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Therefore, from the above property the next result follows (see sec-
tion 1.2.3.3):

Property 2.1.8 Let 〈N ,M0〉 be a live and structurally bounded FRT-
net. Then, (even weakly) marking ergodicity cannot be assured.

In the next sections we identify some subclasses of FRT-nets. Their
interest arises from the fact that the previous negative statements for
general FRT-nets turn into positive results for some particular sub-
classes.

2.1.2 Mono-T-semiflow, structurally decision-
free nets, and marked graphs

In this section we define and give some interesting properties for a
subclass of FRT-nets having only one minimal T-semiflow. The vector
of visit ratios can be computed for them just from the incidence matrix
of the net, since it is proportional to the unique minimal T-semiflow.
Nets belonging to this subclass are called mono-T-semiflow. Later,
structurally decision-free nets are shown to be a subclass of mono-T-
semiflow nets with some particular properties. Finally, marked graphs, a
well-known Petri net subclass, is identified as a subclass of structurally
decision-free nets, for which the vector of visit ratios is always the unity
vector.

2.1.2.1 Mono-T-semiflow nets

We introduce a class of structurally characterized nets, called mono-T-
semiflow.

Definition 2.1.8 (Mono-T-semiflow nets) A net N is called mono-
T-semiflow iff it has a unique minimal T-semiflow.

In a mono-T-semiflow net, conflicts may be reached, so that different
behaviours can occur. However, from the steady-state performance
point of view, these decisions yield a unique vector of visit ratios for
transitions, provided that the net is live (all different behaviours let
the same set of transitions, characterized by the only T-semiflow of
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Figure 2.10: A live and structurally bounded mono-T-semiflow net.

the net, fire, perhaps in a different order). For example, σa = t2t1t3
and σb = t3t1t2 are possible sequences in the net of figure 2.10, both
firable from M0. Even if the performance can be equal for any conflict
resolution policy (which is not always true), from the functional point
of view the results can be different (imagine t2 and t3 be two non-
commutative operations).

Note that mono-T-semiflow nets constitute (by definition) a sub-
class of FRT-nets, in which each pair of transitions in structural conflict
(i.e., sharing an input place) belongs to the unique minimal T-semiflow:

Property 2.1.9 Mono-T-semiflow nets are FRT-nets.

For the particular case of consistent nets, the following characteri-
zation of mono-T-semiflow subclass can be stated:

Theorem 2.1.4 Let N be a consistent net and C its incidence matrix.
Then N is mono-T-semiflow if and only if rank(C) = m− 1.

Proof. If a net is mono-T-semiflow then the dimension of the space of
right annullers of C is greater than or equal to 1, thus rank(C) ≤ m−1.
We prove rank(C) ≥ m − 1 by contradiction. Suppose X and X ′ are
two linearly independent right annullers of C, where X is a T-semiflow
such that X ≥ 11 (it exists by consistency). Then, two independent
and positive right annullers of C can be constructed: X1 = X and
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X2 = X ′ + kX, taking k > 0 large enough, and this is against the
hypothesis of mono-T-semiflow.

From previous theorem, the next statement follows:

Corollary 2.1.3 If N is consistent, deciding if N belongs to the class
of mono-T-semiflow nets is polynomial on the net size.

Now, we present an efficient method for the computation of the vec-
tor of visit ratios for transitions of a structurally live and structurally
bounded mono-T-semiflow net (provided liveness), from the net struc-
ture. It follows from theorems 2.1.2 and 2.1.4.

Theorem 2.1.5 Let N be a structurally live and structurally bounded
mono-T-semiflow net and C its incidence matrix. Then, the vector
of visit ratios �v(j) normalized, for instance, for transition tj can be
computed from C solving the following linear system of equations:

C · �v(j) = 0, v
(j)
j = 1 (2.13)

From the above theorem, for structurally live and structurally
bounded mono-T-semiflow nets we have:

�v(j) = ϕ(N ) (2.14)

and the next complexity result follows:

Corollary 2.1.4 The computation of the vector of visit ratios for tran-
sitions of a structurally live and structurally bounded mono-T-semiflow
net is polynomial on the net size.

Since mono-T-semiflow nets are FRT-nets, the “good” properties
exhibited for these are inherited by those. Related with the “bad”
results presented for general FRT-nets in properties 2.1.4, 2.1.5, 2.1.6,
2.1.7, and 2.1.8, the same can be stated for mono-T-semiflow nets. This
can be seen looking at the FRT-nets depicted in figures 2.6, 2.7, 2.8,
and 2.9, that were used as counter-examples. All of them are also
mono-T-semiflow nets.

In the next section, we identify a subclass of mono-T-semiflow nets
for which some of the previous negative results change.
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2.1.2.2 Structurally decision-free nets

Let us introduce a class of structurally defined nets for which never
exist conflicts, whichever it is the initial marking.

Definition 2.1.9 (Structurally decision-free nets) [CCS89] A net
N is said to be structurally decision-free iff for all place p: |p•| ≤ 1.

For example, the net depicted in figure 2.8 is a live structurally
bounded and structurally decision-free net. Now, we prove that all
structurally live structurally bounded and structurally decision-free
nets are mono-T-semiflow:

Property 2.1.10 Let N be a connected, consistent, and structurally
decision-free net. Then N is mono-T-semiflow.

Proof. Since the net is consistent, it has at least a T-semiflow. It has
not more than one because if a transition belongs to a T-semiflow X,
all output transitions of its output places must belong to X (because
the net is structurally decision-free). Since the net is connected there
exists at most one T-semiflow.

The reverse of property 2.1.10 is not true. For example the net
of figure 2.10 is mono-T-semiflow but is not structurally decision-free.
Thus, consistent and structurally decision-free nets constitute a proper
subclass of mono-T-semiflow nets.

We have seen that, in general, live structurally bounded mono-T-
semiflow nets have not home state. However the subclass of deadlock-
free and bounded structurally decision-free nets have home state.

Property 2.1.11 Let 〈N ,M0〉 be a deadlock-free and bounded struc-
turally decision-free net. Then, it has a home state.

Proof. Boundedness of the net guarantees a bounded number of reach-
able markings. In this case, the absence of decisions assures the exis-
tence of home state.

As a corollary, ergodicity of the marking process of such nets follows:

Corollary 2.1.5 Let 〈N ,M0〉 be a bounded structurally decision-free
net. Then its marking process is weakly ergodic. Moreover, if the net
is Markovian, its marking process is strongly ergodic.
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2.1.2.3 Marked graphs

In this section, ordinary structurally decision-free nets without multiple
attributions to places are considered: the well-known subclass of em
marked graphs.

Marked graphs can be seen as a generalization of the classical PERT
tool [MP70]. With PERT model, the relationship among the tasks of
a project can be represented by a network of activities (arrows) and
events (nodes). Timing interpretation can be added to activities for
the purpose of evaluating the completion time of the project. The
obtained network is an acyclic graph, i.e., repetitive systems cannot be
modelled.

With marked graphs, cyclic behaviours can be modelled as well as
many different classes of non shared resources for the realization of
activities (tokens at places of the net).

Let us briefly recall what marked graphs are and some of their basic
properties. Marked graphs allow to model concurrency and synchro-
nization but no decisions because they are structurally decision-free
nets.

Definition 2.1.10 (Marked graphs) [CHEP71] Marked graphs are
ordinary Petri nets (i.e., pre- and post-incidence functions taking values
in {0, 1}) such that for all place p: |•p| = |p•| = 1.

Property 2.1.12 Let N be a marked graph.

1. N is structurally decision-free.

2. N is consistent and its unique minimal T-semiflow is X = 11.

3. The vector of visit ratios for transitions of N is �v = 11 (provided
liveness), independently of the initial marking and of the average
service times associated with transitions.

The reverse of property 2.1.12.1 is not true. For example, the net
depicted in figure 2.8 is structurally decision-free but it is not a marked
graph.

Some interesting results from qualitative theory of marked graphs
are recalled bellow. In particular, checking their liveness characteriza-
tion is polynomial on the net size.
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Theorem 2.1.6 [Mur89] Let 〈N ,M0〉 be a marked graph.

1. The elementary P-semiflows of N are exactly its directed circuits.

2. 〈N ,M0〉 is live iff all its directed circuits are marked.

Putting an initial marking large enough, after marking all circuits
the system will be live:

Corollary 2.1.6 Marked graphs are structurally live.

Corollary 2.1.7 The liveness of a marked graph can be decided in poly-
nomial time on its size, checking that there is no unmarked P-semiflow:

� ∃Y ≥\ 0, Y T · C = 0, Y T ·M0 = 0 (2.15)

From the theorem 2.1.6.2, the following liveness monotonicity result
follows:

Corollary 2.1.8 If 〈N ,M0〉 is a live marked graph and M ′
0 ≥ M0 then

〈N ,M ′
0〉 is live.

For live marked graphs, boundedness and structural boundedness
are equivalent properties:

Property 2.1.13 [Sil85] Let N be a marked graph.

1. The following three statements are equivalent:

i) N is structurally bounded.

ii) N is strongly connected.

iii) N is conservative (i.e., ∃Y ≥ 11, Y T · C = 0).

2. Let 〈N ,M0〉 be live. Then 〈N ,M0〉 is bounded iff N is structurally
bounded.

Hopefully, the reachability problem, i.e., the efficient characteriza-
tion of reachable markings, has a satisfactory solution for live marked
graphs:
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Theorem 2.1.7 [Mur77] Let 〈N ,M0〉 be a live marked graph. The
three following statements are equivalent:

i) M ∈ R(N ,M0), i.e., M is reachable from M0.

ii) M = M0 + C · �σ, with M,�σ ≥ 0.

iii) Bf ·M = Bf ·M0, with Bf the fundamental circuit matrix of the
graph, and M ≥ 0.

According to the above theorem M ∈ R(N ,M0) if and only if M0 ∈
R(N ,M). In other words:

Corollary 2.1.9 Live marked graphs are reversible.

Weak ergodicity of the firing and the marking processes for live and
strongly connected marked graphs follows (from corollary 2.1.5), since
they are bounded and structurally decision-free nets:

Corollary 2.1.10 The firing process of a live marked graph is weakly
ergodic. If the net is strongly connected the marking process is also
weakly ergodic. Moreover, if the net is Markovian, its marking process
is strongly ergodic.

Finally, the next interesting property of live marked graphs, can be
deduced:

Property 2.1.14 Let 〈N ,M0〉 be a marked graph, and t a transition
of N . Then E(t) = L(t) = SE(t).

Proof. Marked graphs are reversible, by corollary 2.1.9. Then, by
property 1.2.2, E(t) = L(t) for all transitions t. Finally, E(t) = SE(t),
by theorem 2.1.7.i and ii.

This allows an efficient computation of enabling and liveness bounds
based on the linear programming problem (LPP1) that characterizes
the structural enabling bound of transitions.
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2.1.3 Free choice nets

Another interesting subclass of FRT-nets is that of free choice nets.
Free choice nets [Hac72] are a well-known subclass of ordinary Petri
nets that hold a particularly restricted interplay between concurrency
and decisions. They are rich enough to be non-trivial but restricted
enough to allow a number of interesting results that do not hold in
general and that constitute a quite elegant theory (see, e.g., [Hac72,
TV84,Bes87,CCS90a,Esp90,ES90]).

Free choice nets allow both synchronization and conflict but in a
restricted and disciplinated way. In a free choice net, if a place has a
shared output transition then it is the only output transition of this
place. And, equivalently, if a transition has a shared input place then
it is the only input place of this transition.

Definition 2.1.11 (Free choice nets) [Hac72] Free choice nets are
ordinary Petri nets (i.e., pre- and post-incidence functions taking values
in {0, 1}) such that for all place p: |p•| > 1 ⇒ •(p•) = {p}.

Since all decisions are free in a free choice net, all the T-semiflows
are freely related and the following inclusion holds:

Property 2.1.15 Free choice (connected) nets are FRT-nets.

Let us remark also that marked graphs, presented in previous sec-
tion, are free choice nets.

This section introduces a minimum of qualitative results from the
large body of free choice nets theory. Additional qualitative results
are derived from the quantitative/performance based approach intro-
duced in this work. This approach clearly points out the interest of
interleaving the qualitative and quantitative theories.

Let N = 〈P, T, Pre, Post〉 be a Petri net and P ′ ⊆ P . N ′ =
〈P ′, T ′, P re′, Post′〉 is called a P-component of N iff N ′ is the subnet
of N generated by P ′ (i.e., T ′ ⊆ T and Pre′, Post′ are the restrictions
of Pre, Post to P ′ and T ′) and ∀t ∈ T ′: |•t ∩ P ′| ≤ 1 ∧ |t• ∩ P ′| ≤ 1.

An important result in the structure theory of free choice nets as-
sures that each minimal P-semiflow of a structurally live and struc-
turally bounded free choice net generates a P-component, and that
liveness can be assured when all the P-components are marked:
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Theorem 2.1.8 Let N = 〈P, T, Pre, Post〉 be a structurally live and
structurally bounded free choice net.

1. [ES90] Y ≥ 0 is a minimal P-semiflow of N iff the two following
conditions hold:

a) ∀p ∈ P : Y (p) ∈ {0, 1}
b) ∃ N ′ = 〈P ′, T ′, P re′, Post′〉 P-component of N and ||Y || =

P ′

2. [Esp90] If M0 is a given initial marking for N , 〈N ,M0〉 is live if
and only if all its P-components are marked.

Note that the above theorem is a generalization of theorem 2.1.6
(stated for marked graphs), for the case of structurally live and struc-
turally bounded free choice nets. The characterization of liveness for
such nets is the same than for marked graphs (corollary 2.1.7):

Corollary 2.1.11 The liveness of a structurally live and structurally
bounded free choice net can be decided in polynomial time on its size,
checking that there is no unmarked P-component:

� ∃Y ≥\ 0, Y T · C = 0, Y T ·M0 = 0 (2.16)

From the previous characterization of liveness, a monotonicity result
trivially follows for structurally bounded nets:

Corollary 2.1.12 If 〈N ,M0〉 is a live structurally bounded free choice
net and M ′

0 ≥ M0 then 〈N ,M ′
0〉 is live.

In fact, structural boundedness is not necessary in the previous
property (since liveness monotonicity can be derived from a more gen-
eral characterization of liveness for free choice nets [Hac72]).

Unfortunately, for general (non-structurally bounded) free choice
nets, the following “bad” result has been proven:

Theorem 2.1.9 [JLL77] Let 〈N ,M0〉 be a free choice net. The deci-
sion of non-liveness for 〈N ,M0〉 is NP-complete.
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As in the more general case of live and bounded FRT-nets, weak
ergodicity of the firing process is assured (and strong ergodicity for
Markovian nets), and the vector of visit ratios can be computed in
polynomial time from the net structure and the routing rates at con-
flicts, solving the system 2.8 presented in section 2.1.1.

A particular version of the rank theorem of structurally live and
structurally bounded FRT-nets (cfr. theorem 2.1.1) for free choice nets
can be stated:

Theorem 2.1.10 [CCS90a] Let N be a strongly connected structurally
bounded free choice net. Then the net is structurally live iff rank(C) =
m−1−(a−n), where C is the incidence matrix of N , m = |T |, n = |P |,
and a is the number of input arcs to transitions.

The importance of this statement for free choice nets lies on the fact
that several key results of free choice theory appear as corollaries. For
example, the characterization of simultaneous structural liveness and
structural boundedness in free choice nets is of polynomial complexity,
therefore, from theorem 2.1.8.2, the next result follows:

Corollary 2.1.13 Let 〈N ,M0〉 be a structurally bounded free choice
net. Then it can be decided in polynomial time on the number of arcs
of N if the marked net is live, checking the rank characterization for
structural liveness (theorem 2.1.10) and if all P-components are marked
(with the algebraic characterization of corollary 2.1.11).

The following duality result follows also from theorem 2.1.10:

Corollary 2.1.14 Let N = 〈P, T, Pre, Post〉 be a free choice net. N
is structurally live and structurally bounded iff the reverse-dual of N ,
Nrd = 〈T, P, Post, Pre〉, is structurally live and structurally bounded.

Proof. If N is connected structurally live and structurally bounded
then it is strongly connected, consistent, and conservative [CCS90d].
Then Nrd is strongly connected, consistent, and conservative, thus
structurally bounded.

Finally, since rank(C) = rank(Crd), mrd = n, nrd = m, and ard =
a, we have mrd − 1− (ard − nrd) = n− 1− (a−m) = m− 1− (a− n),
i.e., if N is structurally live then Nrd is also structurally live.
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Based on [BV84], W. Vogler proved in 1989 that a live and bounded
free choice net has at least one home state.

Theorem 2.1.11 [Vog89] Let 〈N ,M0〉 be a live and bounded free
choice net. Then 〈N ,M0〉 has a home state.

The importance of the previous result from the performance evalu-
ation point of view is stated in the next corollary (see section 1.2.3.3):

Corollary 2.1.15 Let 〈N ,M0〉 be a stochastic live and bounded free
choice net. Then its marking process is weakly ergodic. Moreover, if
the net is Markovian, its marking process is strongly ergodic.

As in the case of marked graphs, for live and bounded free choice
nets, it is possible to show that SB(p) = B(p).

Theorem 2.1.12 [Esp90] Let 〈N ,M0〉 be a live and bounded free
choice net, then for all place p of N : B(p) = SB(p).

In other words, the structural marking bound is always reached in
a live and bounded free choice net, and the next result follows:

Corollary 2.1.16 A live free choice net is bounded iff it is structurally
bounded.

The importance of the above results lies on the fact that marking
bounds can be efficiently computed (looking for the structural ones)
and, in particular, that boundedness can be algebraically characterized
(∃Y ≥ 11 such that Y T · C ≤ 0 [Mur89]).

Using theorem 2.1.12, an interesting property of live and bounded
free choice nets, that allows an efficient computation of liveness bound
of transitions, can be derived:

Theorem 2.1.13 Let 〈N ,M0〉 be a live and bounded free choice net.
Then, for all transition t of N : E(t) = L(t) = SE(t).
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Proof. Let ti be a given transition of N . A new live and bounded
free choice net 〈N ′,M ′

0〉 is obtained by splitting transition ti into a
transition ti1 , an unmarked place pi, and another transition ti2 . Then,
for ti and pi: SE(ti) = SB(pi) and E(ti) = B(pi). Since for live and
bounded free choice nets B(pi) = SB(pi) (cfr. theorem 2.1.12) then
E(ti) = SE(ti).

Live and bounded free choice nets are structurally bounded (corol-
lary 2.1.16) and live. Since structurally bounded nets are conservative
[Sil85], the structural marking bound coincides with the bound ob-
tained from a basis of P-semiflows: SB(pi) = max{M(pi) | BT ·M =
BT ·M ′

0,M ≥ 0} [CS89c].

Let Mh be a home state of 〈N ,M0〉 (its existence is guaranteed by
theorem 2.1.11). Because Mh is reachable from M ′

0, B
T ·Mh = BT ·M ′

0.
Considering as a new starting time that in which Mh is reached for the
first time: SB(pi) = max{M(pi) | BT ·M = BT ·Mh,M ≥ 0}. Thus
SB(pi) is reached from a home state, and E(ti) = L(ti).

Now, from the previous theorem and taking into account that for
any transition t the computation of the structural enabling bound
SE(t) can be formulated in terms of the problem (LPP1), the follow-
ing monotonicity property of the liveness bound of a transition with
respect to the initial marking is obtained:

Corollary 2.1.17 If 〈N ,M0〉 is a live and bounded free choice net and
M ′

0 ≥ M0 then the liveness bound of t in 〈N ,M ′
0〉 is greater than or

equal to the liveness bound of t in 〈N ,M0〉.

The previous result appears to be a generalization (stated for the
particular case of bounded nets) of the classical liveness monotonicity
property for free choice nets stated in corollary 2.1.12.

Finally, let us define state machines, a well-known subclass of free
choice nets:

Definition 2.1.12 (State machines) State machines are ordinary
Petri nets (i.e., pre- and post-incidence functions taking values in
{0, 1}) such that for all transition t: |•t| = |t•| = 1.
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State machines allow the modelling of decisions (conflicts) and re-
entrancy (when

∑
p∈P M0(p) ≥ 2) but not synchronization. They are

the Petri net counterpart of monoclass queueing networks topology. We
recall some well-known results from qualitative theory of state machines
in the following property.

Property 2.1.16 [Sil85] Let 〈N ,M0〉 be a marked state machine.
Then:

1. N is structurally bounded.

2. N is structurally live iff it is strongly connected.

3. 〈N ,M0〉 is live iff N is strongly connected and
∑

p∈P M0(p) ≥ 1.

4. If 〈N ,M0〉 is live, then it is k–bounded iff
∑

p∈P M0(p) = k.

2.1.4 FRT-nets communicating through buffers

In this section, deterministic systems of sequential processes are identi-
fied as a subclass of marked FRT-nets. In fact, the more general class
of systems of FRT-nets communicating through private buffers belongs
also to the FRT-nets class, thus being recursively defined.

Firstly we define systems of FRT-nets and later we focus our at-
tention on the particular case of deterministic systems of sequential
processes.

Definition 2.1.13 (Systems of FRT-nets) A Petri net N = 〈P1 ∪
. . . ∪ Ps ∪B, T1 ∪ . . . ∪ Ts, P re, Post〉 is a system of FRT-nets iff:

i) Pi ∩ Pj = ∅, Ti ∩ Tj = ∅, Pi ∩B = ∅, i, j = 1, . . . , s; i �= j,

ii) Ni = 〈Pi, Ti, P re|i, Post|i〉, i = 1, . . . , s, are FRT-nets (where
Pre|i and Post|i are the restrictions of Pre and Post to Pi and
Ti), and

iii) the set of buffers B is such that ∀b ∈ B:

a) •b �= ∅, b• �= ∅,
b) ∃i, j ∈ {1, . . . , s}, i �= j, such that •b ⊂ Ti and b• ⊂ Tj, and

c) ∀p ∈ P1 ∪ . . . ∪ Ps : p• ∩ b• = ∅ ∨ p• ⊆ b•.
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We remark that the above defined systems of FRT-nets are com-
posed by FRT-nets communicating by means of private buffers (condi-
tion iii.b of previous definition).

From the strong conditions imposed to the connection of buffers
(iii.b and iii.c), the inclusion of the above class in FRT-nets can be
easily deduced:

Property 2.1.17 Systems of FRT-nets are also FRT-nets.

In fact, since a given FRT-net can be seen also as a (trivial) system
of FRT-nets (with an empty set of buffers), both net subclasses are the
same. In other words, we obtain the possibility of getting a decomposed
view of FRT-nets. This fact is useful from both a modelling (it allows a
modular design of systems) and analysis (it provides divide and conquer
techniques) point of views.

Therefore, all the results presented in section 2.1.1 for general FRT-
nets can be applied to systems of such nets communicating through
buffers. In particular, for structurally live and structurally bounded
systems, the vector of visit ratios for transitions can be computed in
polynomial time on the net size from the structure and routing rates
at conflicts, using theorem 2.1.2.

In the next section, a particular subclass of marked systems of FRT-
nets for which some interesting qualitative results can be derived are
considered.

2.1.4.1 Deterministic systems of sequential processes

Deterministic systems of sequential processes [SB88] are used for the
modelling and analysis of distributed systems composed by sequen-
tial processes communicating through private buffers. Each sequential
process is modelled by a binary (1–marked) state machine. The com-
munication among them is described by buffers (places) which contain
products/messages (tokens) of some processes that are resources for oth-
ers. Each buffer is private for two state machines, in the sense that it is
an output place of only one machine and input place of the other (possi-
bly the same). From a queueing network perspective, 1–bounded state
machines represent “complex servers” while buffers represent queues
(see figure 2.11 where grey places are buffers).
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Figure 2.11: A deterministic system of sequential processes.

Definition 2.1.14 (Deterministic systems of sequential pro-
cesses) [SB88] A marked Petri net 〈N ,M0〉 = 〈P1 ∪ . . . ∪ Ps ∪B, T1 ∪
. . .∪Ts, P re, Post,M0〉 is a deterministic system of sequential processes
iff:

i) Pi ∩ Pj = ∅, Ti ∩ Tj = ∅, Pi ∩B = ∅, i, j = 1, . . . , s; i �= j,

ii) 〈Ni,M0|i〉 = 〈Pi, Ti, P re|i, Post|i,M0|i〉, i = 1, . . . , s, are live and
1–bounded state machines (where Pre|i,Post|i, and M0|i are the
restrictions of Pre, Post, and M0 to Pi and Ti), and

iii) the set of buffers B is such that ∀b ∈ B:

a) •b �= ∅, b• �= ∅,
b) ∃i, j ∈ {1, . . . , s}, i �= j, such that •b ⊂ Ti and b• ⊂ Tj, and

c) ∀p ∈ P1 ∪ . . . ∪ Ps : p• ∩ b• = ∅ ∨ p• ⊆ b•.

Trivially, such systems are a subclass of marked systems of FRT-
nets (hence marked FRT-nets), thus the vector of visit ratios can be
computed by the application of theorem 2.1.2. However, we present
here a modular technique for the computation of the visit ratios: the
relative throughput among transitions of each state machine can be
computed separately, and then conveniently scaled because of the influ-
ence of buffers.
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Theorem 2.1.14 Let 〈N ,M0〉 = 〈P1 ∪ . . . ∪ Ps ∪ B, T1 ∪ . . . ∪
Ts, P re, Post,M0〉 be a live and bounded deterministic system of se-
quential processes. The visit ratios for transitions can be computed in
polynomial time on the net size using the following algorithm:

Step 1. For each i = 1, . . . , s, compute the visit ratios �u(i1) for transi-
tions of Ti, solving the system (2.8) of theorem 2.1.2 for the state
machine 〈Ni,M0|i〉 = 〈Pi, Ti, P re|i, Post|i,M0|i〉.

Step 2. For each i = 1, . . . , s, substitute the state machine 〈Ni,M0|i〉
of the system by a single transition ti, with pre- and post-
incidence functions given by: Pre(b, ti) =

∑
t∈Ti

u
(i1)
t Pre(b, t) and

Post(b, ti) =
∑

t∈Ti
u

(i1)
t Post(b, t), for all b ∈ B.

Step 3. The net resulting from Step 2 is structurally decision-free, thus
mono-T-semiflow. Compute the visit ratios �w(1) for transitions of
this net, according to theorem 2.1.5.

Step 4. The visit ratios for transitions of the whole net are given by:
v

(11)
t = w

(1)
i u

(i1)
t , for each t ∈ Ti, for all Ti.

Proof. In Step 1, the relative throughput of transitions of each state
machine can be computed in isolation, and it is equal to the one com-
puted in non-isolation, by requirement iii.c of definition 2.1.14 (i.e.,
buffers do not disturb the decisions taken by state machines).

In Step 2, the pre- and post-incidence functions of the new tran-
sitions which substitute the state machines must preserve the relative
throughput among the whole state machines. This means that if a
state machine 〈Ni,M0|i〉 needs

∑
t∈Ti

u
(i1)
t Pre(b, t) tokens from buffer b

for the firing of a sequence with firing count vector equal to the visit
ratio �u(i1), then the pre-incidence function from buffer b to the new
transition ti must be Pre(b, ti) =

∑
t∈Ti

u
(i1)
t Pre(b, t). And the same for

the post-incidence function.

The net resulting from Step 2 is structurally decision-free because
the buffers of the original system are private (requirement iii.b of defi-
nition 2.1.14).

Finally, in step 4 the visit ratios of separate state machines are
scaled because of the influence of buffers.
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Figure 2.12: Substitution of state machines by transitions in the net of
figure 2.11.

We remark that the previous divide and conquer technique can be
applied for general systems of structurally live and structurally bounded
FRT-nets communicating through buffers.

As an example, let us consider the net depicted in figure 2.11. For
transitions t11 and t21 the visit ratios in the isolated state machine are:

�u(11) = (1, 1)T (2.17)

If the conflict at place p1
2 is solved with equal rate in favour of t12 and

t22 (i.e., with probabilities 1/2 and 1/2), the visit ratios for transitions
of the isolated second state machine are:

�u(21) = (1, 1, 2)T (2.18)

And for the third state machine in isolation:

�u(31) = (1, 1)T (2.19)

The next step (according to theorem 2.1.14) consists of substituting
the state machines for transitions, as depicted in figure 2.12. Now, the
visit ratios for transitions t1, t2, t3 of the net in figure 2.12, which are
given by its T-semiflow, are:

�w(2) = (2, 1, 2) (2.20)
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Finally, the vector of visit ratios for the transitions in the whole net
can be easily derived from (2.17), (2.18), (2.19), and (2.20):

�v(21) = (2, 2, 1, 1, 2, 2, 2)T (2.21)

In [SB88] a characterization for structural liveness of deterministic
systems of sequential processes is derived. We recall this result after
the definition of the small ring concept.

Definition 2.1.15 [SB88] Let 〈N ,M0〉 be a deterministic system of
sequential processes. The string Z = b0M0b1M1 . . . bk−1Mk−1 is called
a small ring of N iff:

a) ∀Mi,Mj, i, j = 0, . . . , k−1 state machines of N : i �= j ⇒ Mi �=
Mj.

b) bi ∈ •Ti and bi+1 ∈ T •
i , i = 0, . . . , k − 1 (i + 1 is modulo k).

c)
k∏

i=1

min

{ ∑
t∈Y Post(bi, t)∑
t∈Y Pre(bi+1, t)

| Y simple circuit of Mi

}
< 1.

Theorem 2.1.15 [SB88] Let 〈N ,M0〉 be a deterministic system of se-
quential processes. Then N is structurally live iff it does not contain a
small ring.

The following monotonicity property can be found also in the work
of Y. Souissi et N. Beldiceanu:

Property 2.1.18 [SB88] Let 〈N ,M0〉 be a live deterministic system
of sequential processes. If the initial marking of buffers increases, the
obtained marked net is also live.

2.1.4.2 Totally open deterministic systems of sequential pro-
cesses

The special subclass of totally open deterministic systems of sequential
processes is introduced now. Its interest lies on the fact that some
qualitative and quantitative properties can be derived, that do not hold
for general (non-totally open) systems. In particular, necessary and
sufficient conditions for the existency of an exponential timing making
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Figure 2.13: A totally open deterministic system of sequential pro-
cesses.

ergodic such systems are derived. Moreover, in chapter 5 we prove that
the ergodicity characterization and the exact computation of steady-
state performance measures is possible in polynomial time on the net
size for these nets (assuming exponential timing).

Definition 2.1.16 (Totally open deterministic systems of se-
quential processes) [CS89a] A deterministic system of sequential pro-
cesses is called totally open iff the underlying net has not any circuit
containing buffers.

An example of totally open deterministic system of sequential pro-
cesses is depicted in figure 2.13.

Some interesting qualitative results can be derived from the struc-
ture of these nets. Liveness of totally open deterministic systems of
sequential processes and unboundedness of the buffers are presented in
theorem 2.1.16. In theorem 2.1.17, consistency (necessary condition for
marking ergodicity of live Markovian nets, cfr. theorem 1.2.3) is shown
to collapse with existence of home state for this subclass of nets.

Theorem 2.1.16 Let 〈N ,M0〉 be a totally open deterministic system
of sequential processes. Then 〈N ,M0〉 is live and all buffers are un-
bounded.
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Proof. Let be 〈N ,M0〉 = 〈P1∪. . .∪Ps∪B, T1∪. . .∪Ts, P re, Post,M0〉.
All 〈Ni,M0|i〉 = 〈Pi, Ti, P re|i, Post|i,M0|i〉 are live in isolation (by
property 2.1.16, because M0 marks all the state machines by defini-
tion 2.1.14.ii). All transitions of those state machines without input
buffers can be fired an infinite number of times, independently of the
rest, so all the output buffers of these machines do not restrict the fir-
ing of the other machines. This argument can be repeated for all the
system because of the absence of circuits containing buffers. Thus, the
net is live.

From the liveness of the system and from the fact that buffers are not
contained in any circuit, the input transitions of buffers can be fired an
infinite number of times without firing their output transitions. Thus,
all buffers are unbounded.

An interesting property of live marked graphs, presented in theo-
rem 2.1.7, that states a bridge between its behavioural and structural
analysis is that all potentially reachable markings are reachable. It is
also true for totally open deterministic systems of sequential processes:

Property 2.1.19 Let 〈N ,M0〉 be a totally open deterministic system
of sequential processes. Then M ∈ R(N ,M0) iff M ∈ PR(N ,M0). In
other words, each vector �σ ∈ INm such that M0 +C · �σ ≥ 0 corresponds
at least to one firable sequence in N from M0.

Proof. Let �σ ∈ INm be such that M0 + C · �σ ≥ 0. All transitions
represented in �σ belonging to state machines without input buffers
(Ni1 , . . . ,Nir) are firable at first. Then, transitions belonging to state
machines whose input buffers are output of Ni1 , . . . ,Nir can be fired.
This procedure can be repeated for all state machines since no circuits
containing buffers exist.

The following theorem relates, for totally open deterministic sys-
tems of sequential processes, a behavioural property (existence of home
state) with a structural one (consistency).

Theorem 2.1.17 Let 〈N ,M0〉 be a totally open deterministic system
of sequential processes. Then N is consistent iff M0 is a home state.
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Figure 2.14: A non-consistent totally open deterministic system of se-
quential processes.

Proof. Let us suppose that there exists X ∈ (IN+)m such that C ·X =
0 (i.e., the net is consistent). Let M ∈ R(N ,M0) and σ such that

M0[σ〉M . Let k ∈ IN be such that kX ≥ �σ. Then, �δ = kX − �σ ≥ 0,
M0[σ〉M [δ〉M0 (fireability of δ is deduced from property 2.1.19) and M0

is a home state.

Let us suppose that M0 is a home state. Since the net is live (cfr. the-
orem 2.1.16), there exist a marking M1 and a firing sequence σ1 includ-
ing all transitions such that M0[σ1〉M1. Since M0 is a home state,
there exists a firing sequence σ2 such that M1[σ2〉M0. Then the vector
�σ1 + �σ2 ∈ (IN+)m is such that C · ( �σ1 + �σ2) = 0, where C is the incidence
matrix of the net. Therefore, N is consistent.

In theorem 1.2.3, a necessary condition for the marking ergodicity
of a live Markovian Petri net is shown. Now, let us remark that there
exist non-consistent totally open deterministic systems of sequential
processes (see figure 2.14: M(b1) − M(b2) = �σ(t11) − �σ(t31) = �σ(t11) −
[�σ(t11)− �σ(t21)−M(p1

1)] = M(p1
1) + �σ(t21). Since the net is live, �σ(t21) →

∞ ⇒ M(b1) −M(b2) → ∞ ⇒ structurally marking non-ergodic net).
Then, in practice, it is convenient to check consistency (a polynomial
time computation) of the underlying net before computing marking
ergodicity conditions for a given Markovian interpretation of the totally
open deterministic system of sequential processes. Taking into account
the above remark and theorem 1.2.3, the following result with practical
interest can be stated:
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Figure 2.15: Consistent totally open deterministic systems of sequential
processes with two state machines and two buffers.

Corollary 2.1.18 There exist totally open deterministic systems of se-
quential processes that are marking non-ergodic for all timing interpre-
tation. In particular, non-consistent systems are always marking non-
ergodic.

Unfortunately, it cannot be stated that if 〈N ,M0〉 is a consistent
totally open deterministic system of sequential processes, there exists
a Markovian interpretation such that the stochastic net is marking er-
godic. The net in figure 2.15.a is consistent but there does not exist
any Markovian interpretation making it marking ergodic: the case of
(exponential) distribution rates λ2

1 = λ3
1 (of course, only possible in

theory!) leads to a null recurrent Markov process and so non-ergodic,
because the marking process at buffers b1 and b2 can be shown to be
isomorphic to a symmetrical random walk [Rev84].

The rest of this section is devoted to the study of necessary and suf-
ficient conditions for the “potential marking ergodicity” of systems. We
say that a net is potentially marking ergodic iff there exists a Marko-
vian interpretation (i.e., an assignment of exponential random timing)
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that can lead to marking ergodic systems.
For characterizing the possible existence of a Markovian interpreta-

tion making marking ergodic a given totally open deterministic system
of sequential processes, let us give local rules that will be composed
step by step for a large system.

As a first step, a necessary and sufficient condition for a determinis-
tic system of two sequential processes to be potentially marking ergodic
in terms of consistency of the net and of some synchronic distance re-
lations among transitions is presented.

After that, a “transitivity rule” for systems composed by three state
machines is presented. It gives a necessary and sufficient condition for
such systems to be potentially marking ergodic.

An iterative application of the presented rules leads to the deriva-
tion of necessary and sufficient conditions for a general totally open
deterministic system of sequential processes to be potentially marking
ergodic.

Let us now recall the concept of global synchronic distance relation.
If two subsets of transitions are in global synchronic distance relation
then it is not possible to fire an infinite number of times some transition
of the first subset without firing any transition of the second subset,
and vice versa. Even more, if two subsets of transitions are in global
synchronic distance relation they behave like if they were included in
a regulation circuit (see definition 2.1.6). Global synchronic distance
relation is used below for finding necessary and sufficient conditions for
the existence of a Markovian interpretation that makes marking ergodic
a totally open deterministic system of sequential processes.

Definition 2.1.17 (Global synchronic distance relation) [Sil87]
Let 〈N ,M0〉 be a Petri net and T1, T2 subsets of transitions. T1 and T2

are in global synchronic distance relation, denoted as (T1, T2) ∈ SDR,
iff ∃W1,W2 ∈ INm vectors which express the weights associated with the
transitions of the subsets T1 and T2 (i.e., ||W1|| = T1 and ||W2|| = T2),
and ∃k ∈ IN such that

sup
σ∈L(N ,M)
M∈R(N ,M0)

|(W1 −W2)
T · �σ| ≤ k (2.22)
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Figure 2.16: Structurally marking non-ergodic system with three state
machines.

The first result is a negative one. If a given state machine receives
tokens from two different state machines, one of them without input
buffers, the system cannot be marking ergodic (see figure 2.16).

Theorem 2.1.18 Let 〈N ,M0〉 = 〈P1 ∪ . . . ∪ Ps ∪ B, T1 ∪ . . . ∪
Ts, P re, Post,M0〉 be a totally open deterministic system of sequen-
tial processes such that for one of their communicating state machines
〈Ni,M0|i〉 = 〈Pi, Ti, P re|i, Post|i,M0|i〉:

a) ∃b1 such that b•1 ⊆ Ti (i.e., it is an input buffer of the machine
〈Ni,M0|i〉) and •b1 ⊆ Tj, where Tj is the set of transitions of
another state machine 〈Nj,M0|j〉 such that � ∃b ∈ B satisfying
b• ⊆ Tj (i.e., the input state machine of buffer b1 has not input
buffers), and

b) ∃b2 such that b•2 ⊆ Ti (i.e., another input buffer of the machine
〈Ni,M0|i〉) and •b2 �⊆ Tj (i.e., the input state machine of buffer
b2 is not 〈Nj,M0|j〉).

Then, there is no Markovian interpretation such that the corresponding
stochastic net is marking ergodic.

Proof. The arrival processes of tokens to buffers b1 and b2 are Poisson-
like independent stochastic processes [Ros83] joint by a state machine.
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Then, the underlying Markov chain is transient (in the case in which
the marking of one buffer tends to infinity with time) or null recurrent
(case os stochastic equilibrium, equivalent to a symmetrical random
walk) but never positive recurrent.

Now, let us give necessary and sufficient conditions for the existence
of a Markovian timing interpretation that makes marking ergodic a
system composed by two state machines (see figures 2.14 and 2.15).
Basically, the net must be consistent and for each pair of buffers be-
tween both state machines, the input (output) transitions of one buffer
cannot fire an infinite number of times without firing the input (out-
put) transitions of the other buffer. In this way, null recurrency of the
associated Markov process is discarded.

Theorem 2.1.19 Let 〈N ,M0〉 = 〈P1 ∪P2 ∪B, T1 ∪ T2, P re, Post,M0〉
be a totally open deterministic system of sequential processes composed
by two state machines and a set of buffers B such that ∀b ∈ B : •b ⊆
T1, b

• ⊆ T2. Then, there exists a Markovian interpretation making
marking ergodic the system if and only if:

i) N is consistent and

ii) ∀bi, bj ∈ B: (•bi,
•bj) ∈ SDR and (b•i , b

•
j) ∈ SDR.

Proof. Let us suppose that there exists a Markovian timing mak-
ing marking ergodic the system. Then the net is consistent by theo-
rem 1.2.3. If (•b1,

•b2) �∈ SDR or (b•1, b
•
2) �∈ SDR then the marking of

b1 and b2 cannot be linearly expressed the one in function of the other.
These buffers have two non-equal arrival rates, joint by a unique server
(the state machine). Thus, the underlying Markov chain is transient
or null recurrent, but never positive recurrent. Therefore, it is marking
non-ergodic.

Now, let us suppose that (i) and (ii) hold. Let us consider b1, b2 ∈ B.
Let us denote •b1 = T11,

•b2 = T12, b•1 = T21, and b•2 = T22.
Since (T11, T12) ∈ SDR and (T21, T22) ∈ SDR, there exist vectors
W11,W12,W21,W22 ∈ INm with ||Wij|| = Tij, i, j = 1, 2 (see defini-
tion 2.1.17) such that two regulation circuits can be added without
changing the behaviour of the net, as follows (see figure 2.17):
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Figure 2.17: Regulation circuits between transitions in global syn-
chronic distance relation.

P ′
1 = P1 ∪ {s11, s12} with s•11 = •s12 = T11,

•s11 = s•12 = T12,
and Pre(s11, t) = Post(s12, t) = W11(t),∀t ∈ T11, Pre(s12, t) =
Post(s11, t) = W12(t),∀t ∈ T12.

P ′
2 = P2 ∪ {s21, s22} with s•21 = •s22 = T21,

•s21 = s•22 = T22,
and Pre(s21, t) = Post(s22, t) = W21(t),∀t ∈ T21, Pre(s22, t) =
Post(s21, t) = W22(t),∀t ∈ T22.

Now, from consistency of the net: ∃X ≥ 11 such that C · X = 0.
Then, the column vectors of the incidence matrix (of the modified net)
corresponding with transitions T11, T12, T21, and T22 must be linearly
independent, or equivalently: W11 = W21 and W12 = W22. This im-
plies that the markings of both buffers are linearly independent. The
argument above can be applied to all pair of buffers of the net. Then,
the marking of all of them can be expressed in terms of the marking
of one buffer and the marking of the state machines. Then, a Markov
timing can be associated such that the interarrival times of tokens to
the buffers are greater than the “service times” (mean cycle times of
the output state machines, in isolation).
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Note that in the case of totally open deterministic systems of se-
quential processes composed by two state machines, if (i) and (ii) of
theorem 2.1.19 hold then the marking of all the buffers can be always
computed from the marking of one buffer and the marking of the state
machines. With the object of computing ergodicity conditions for a
larger system including N as a subsystem, if (i) and (ii) hold, from
the performance point of view, we can suppose without loss of gener-
ality that the two state machines are communicating with at most one
buffer.

Let us now give the “transitivity rule” for three state machines
communicating with buffers like in figure 2.13. This rule completes
the stating of necessary and sufficient conditions for the existence of
a Markovian timing that makes marking ergodic a given totally open
deterministic system of sequential processes.

Theorem 2.1.20 Let 〈N ,M0〉 = 〈P1 ∪ P2 ∪ P3 ∪ {b1, b2, b3}, T1 ∪ T2 ∪
T3, P re, Post,M0〉 be a totally open deterministic system of sequential
processes composed by three state machines and three buffers such that
•b1 ⊆ T1, b

•
1 ⊆ T3,

•b2 ⊆ T1, b
•
2 ⊆ T2,

•b3 ⊆ T2, and b•3 ⊆ T3. Then, there
exists a Markovian interpretation making marking ergodic the system
iff:

i) N is consistent and

ii) (•b1,
• b2) ∈ SDR, (b•2,

• b3) ∈ SDR, (b•1, b
•
3) ∈ SDR.

Proof. If (•b1,
• b2) �∈ SDR or (b•2,

• b3) �∈ SDR or (b•1, b
•
3) �∈ SDR then

the marking of b1 and b3 cannot be linearly expressed the one in function
of the other. Then, these buffers have non-equal arrival rates, joint by a
unique server (the state machine). Thus, the underlying Markov chain
is transient or null recurrent, but never positive recurrent. Therefore,
it is marking non-ergodic.

Now, let us suppose that (i) and (ii) hold. (b•2,
• b3) ∈ SDR

implies that b2, 〈N2,M0|2〉 = 〈P2, T2, P re|2, Post|2,M0|2〉, and b3
can be substituted by a unique buffer without changing the be-
haviour of 〈N1,M0|1〉 = 〈P1, T1, P re|1, Post|1,M0|1〉 and 〈N3,M0|3〉 =
〈P3, T3, P re|3, Post|3,M0|3〉. Then, if the net is consistent, (•b1,

• b2) ∈
SDR and (b•1, b

•
3) ∈ SDR, and theorem 2.1.19 can be applied.
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If (i) and (ii) of theorem 2.1.20 hold, then the marking of b3 can
be always computed from the marking of b1, b2 and the marking of the
state machines. As an example, let as consider the system depicted in
figure 2.13. It verifies conditions (i) and (ii) of theorem 2.1.20. And it
can be easily checked that: M(b3) = M(b1)+M(p2

1)+M(p2
3)−M(b2)−

M(p1
2), for all marking M , reachable from the initial marking.

With the object of computing conditions for a larger system includ-
ing N as a subsystem, if (i) and (ii) hold, the state machine M2 and
the buffers b2, b3 can be substituted by a unique buffer.

Theorems 2.1.19 and 2.1.20 provide rules for an iterative reduction
of buffers of a totally open deterministic system of sequential processes.
These rules preserve the possibility of existence of a Markovian timing
that makes the system marking ergodic if the necessary and sufficient
conditions (stated in the mentioned theorems) hold.

Therefore the existence of a Markovian timing that makes marking
ergodic a totally open deterministic system of sequential processes is
characterized in terms of pure structural conditions that can be checked
in polynomial time: consistency and some global synchronic distance
relations.

2.2 Persistent nets and behaviourally ex-

tended free choice nets

Persistent nets [LR78] and behaviourally extended free choice nets (or
“réseaux à choix non-imposé” [Bra83]) are recalled in this section as be-
haviourally defined net subclasses for which some reachability analysis
is needed for the computation of the vector of visit ratios for transi-
tions. Therefore, visit ratios do depend not only on the structure and
routing but also on the initial marking.

2.2.1 Persistent nets

Persistent nets [LR78] constitute a behaviourally characterized sub-
class of Petri nets which has a common property with live and bounded
mono-T-semiflow nets: all their consistent firing count vectors are pro-
portional to a unique vector, which is the unique minimal T-semiflow
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Figure 2.18: Persistent net.

in the case of mono-T-semiflow nets [CCS89,CCS91].

Definition 2.2.1 (Persistent nets) [LR78] A marked net 〈N ,M0〉 is
said to be persistent iff for all reachable marking M and for all different
transitions, t1 and t2, enabled in M , the sequences t1t2 and t2t1 are
firable from M .

As an example look at the net in figure 2.18. This net has struc-
tural conflicts (e.g., p4 has two output transitions, t2 and t5) but for
the initial marking M0 = (1, 0, 0, 0, 1, 0, 0, 0, 1)T no state can be reached
in which a decision must be taken. Persistency is a behavioural prop-
erty. However, we have not found in the literature any result about
theoretical complexity of deciding persistency.

The same net structure with a different initial marking can give non-
persistent behaviour. For example, the net in figure 2.19.a is persistent,
but that in figure 2.19.b (with the same structure) is not.

Definition 2.2.2 (Nets with unique consistent firing count vec-
tor) [CCS89,CCS91] A marked net 〈N ,M0〉 has a unique consistent
firing count vector �σR associated with all marking repetitive sequences
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Figure 2.19: Persistent and non-persistent nets with the same structure.

iff for all markings M reachable from M0 such that M [σ〉M , there exists
k ∈ IN such that �σ = k�σR.

Note that the vector �σ in the above definition is a (possibly non-
elementary) T-semiflow because M = M + C · �σ, thus C · �σ = 0.

Obviously, live and bounded mono-T-semiflow nets have a unique
consistent firing count vector, the minimal T-semiflow, which can be
structurally characterized.

Let us recall a property and two results that will lead to the conclu-
sions that persistent nets have a unique consistent firing count vector
and that the firing process associated with a bounded persistent net is
weakly ergodic. The property is that of directedness:

Definition 2.2.3 (Directedness property) [Bra83] A marked net
〈N ,M0〉 possesses the directedness property iff ∀M,M ′ ∈ R(N ,M0) :
R(N ,M) ∩R(N ,M ′) �= ∅.

This means that if a net possesses the directedness property, any
two reachable markings have at least one common successor marking.

Lemma 2.2.1 [Bra83] All persistent nets have the directedness prop-
erty.
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Figure 2.20: An unbounded live persistent net having the directedness
property but without home states.

Lemma 2.2.2 [BV84] For bounded marked nets, directedness and the
existence of a home state are equivalent properties.

Corollary 2.2.1 Bounded persistent nets have home states.

Figure 2.20 illustrates an example that shows that the above lemma
does not hold for unbounded nets: the net depicted there is unbounded,
it has the directedness property, and has not home state.

Using the previous lemmatas, the following statement can be de-
rived:

Theorem 2.2.1 Live bounded persistent connected nets without im-
plicit places have a unique consistent firing count vector.

Proof. Consider a live bounded persistent connected net 〈N ,M0〉.
Bounded persistent nets have home states (corollary2.2.1), so that let
M be a home state of the net. Since the net is live, there exist at
least one firing sequence σ such that M [σ〉M and �σ ≥ 11. Now assume
that there exist two different firing count vectors �σ1 and �σ2 such that
M [σ1〉M , M [σ2〉M , and �σ1, �σ2 ≥ 11. Then, there must exist three
transitions ti, tj, and tk such that ti ∈ || �σ1||, ti �∈ || �σ2||, tj ∈ || �σ2||,
tj �∈ || �σ1||, tk ∈ || �σ1||, and tk ∈ || �σ2||. Moreover, since the net is
connected and each firing count vector is a consistent component, there
must be a structural conflict between the two transitions ti and tj, i.e.,
∃p ∈ t•k such that p ∈ •ti∩•tj. Since the net is persistent, the structural
conflict between ti and tj cannot be effective, and the two sequences σ1

and σ2 are firable independently one of the other, so that the shared
place p must be implicit.

Since live bounded persistent connected nets have a unique consis-
tent firing count vector and home states, the following result can be
obtained:
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Theorem 2.2.2 Let 〈N ,M0〉 be a live bounded connected marked net
without implicit places. If 〈N ,M0〉 is persistent then:

1. Both the marking and the firing processes are weakly ergodic.

2. The vector of visit ratios for transitions is proportional to the
unique consistent firing count vector.

3. If 〈N ,M0〉 is Markovian, its marking and firing processes are also
strongly ergodic.

Let us now introduce a subclass of persistent nets such that the
persistency is inherent to the structure.

Definition 2.2.4 (Structurally persistent nets) [LR78] A net N
is said to be structurally persistent iff 〈N ,M0〉 is persistent for all finite
initial marking M0.

Structurally decision-free nets (definition 2.1.9) are trivially in-
cluded in with structurally persistent nets:

Property 2.2.1 If a net is structurally decision-free then it is struc-
turally persistent.

The converse of the above property is not true. As an example,
the net depicted in figure 2.21 is structurally persistent but it is not
structurally decision-free. Nevertheless, if self-loops are discarded (pure
nets), structurally persistent nets are also structurally decision-free:

Property 2.2.2 [LR78] If a net is structurally persistent, then either
it is structurally decision-free or for each place p with more than one
output transition, such transitions are on self-loop with p.

2.2.2 Behaviourally extended free choice nets

In a similar way than persistent nets (behaviourally characterized) have
a common property with live mono-T-semiflow nets (structurally char-
acterized), a behaviourally counterpart of extended free choice nets can
be defined. These nets are called behaviourally extended free choice or
“réseaux à choix non imposé”, in French [Bra83].
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Figure 2.21: Structurally persistent but non-structurally decision-free
net.

For these nets structural asymmetric and/or structural non-
transitive conflicts [Bes87] can exist, violating the extended free choice
assumption, but a marking allowing this kind of non-free choice is never
reached from the initial one.

Definition 2.2.5 (Behaviourally extended free choice nets) A
marked Petri net 〈N ,M0〉 is said to be behaviourally extended free
choice iff ∀t, t′ ∈ T such that •t ∩ •t′ �= ∅, ∀M ∈ R(N ,M0):
M [t〉 ⇐⇒ M [t′〉.

For live and bounded behaviourally extended free choice nets, the
vector of visit ratios can be computed in an analogous way than for
live and bounded extended free choice nets, from the net structure and
from the routing rates at (effectively free) conflicts. Nevertheless, a
previous behavioural analysis based on the reachability graph is needed
for concluding about the “choix non imposé” assumption (the same that
occurs for persistent nets).

2.3 Conclusions

In this chapter we have recalled or introduced those net subclasses
whose vector of visit ratios for transitions can be computed indepen-
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dently of the average service times of transitions. The first section
was dedicated to structurally defined nets. FRT-nets have been char-
acterized as nets whose visit ratios can be efficiently derived from net
structure and routing rates at conflicts (if structural liveness and struc-
tural boundedness is assumed), solving a linear system of equations.
An alternative recursive definition has been presented with interesting
consequences: modularity of modelling and analysis, by means of com-
munication through private buffers of FRT-subnets. Some qualitative
properties interesting per se or from a performance point of view have
been derived.

Well-known Petri net subclasses have been recalled and identified
as particular classes of FRT-nets (marked graphs, structurally decision-
free nets, state machines, free choice nets, deterministic systems of
sequential processes), and other subclasses with interesting properties
have been introduced, such as mono-T-semiflow nets.

Finally, some behavioural extensions have been considered. Persis-
tent nets and behaviourally extended free choice nets are net subclasses
whose vector of visit ratios for transitions can be computed indepen-
dently of the average service times, after a previous behavioural anal-
ysis, if liveness and boundedness are assumed.



Chapter 3

Bounds for strongly
connected marked graphs

In this chapter, we obtain upper and lower bounds on the steady-state
performance of marked graphs [CCCS89,CCCS90], a well-known sub-
class of Petri nets (see definition 2.1.10) that allow only concurrency
and synchronization but no choice. In particular we derive bounds for
the throughput of transitions (see definition 1.2.5), defined as the av-
erage number of firings per time unit (or its inverse, that we call the
mean cycle time of transitions). From this quantity, applying Little’s
formula [Lit61] it is possible to derive other average performance esti-
mates of the model. Under these restrictions we will show results that
can be computed in polynomial time on the size of the net model, and
that depend only on the mean values and not on the higher moments
of the probability distribution functions of the random variables that
describe the timing of the system. The independence of the probability
distribution can be viewed as a useful generalization of the performance
results, since higher moments of the service delays are usually unknown
for real cases, and difficult to estimate and assess. Moreover we show
that both upper and lower bounds, computed by means of proper lin-
ear programming problems, are tight, in the sense that for any marked
graph model it is possible to define families of stochastic timings such
that the steady-state performances of the timed Petri net models are
arbitrarily close to either bound.

Figure 3.1 depicts an example of a live and 1–bounded marked

91
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Figure 3.1: Example of a 1–bounded marked graph and its synchronized
queueing network counterpart.

graph. In the same figure the equivalent representation in terms of
queueing network with synchronization primitives [SMK82] is also de-
picted. According to figure 3.1, Petri net places correspond with
queues, while net’s transitions represent servers and synchronization
constraints. It is easily seen that only sum and “max” operators are
needed to compute the performance: indeed the actual cycle time in
this example is the random variable γ = τ1 + max{τ2, τ3} + τ4 (where
τi denotes the enabling time of transition ti, or its service time, with
queueing networks terminology), therefore the mean cycle time is

Γ = E[γ] = E[τ1] + E[max{τ2, τ3}] + E[τ4] = s1 + E[max{τ2, τ3}] + s4

(3.1)
where si denotes the average enabling time of transition ti, i.e., its
average service time. Cohen et al. developed a special algebra to for-
malize the properties of this kind of models in the deterministic case
[CMQV89]. F. Baccelli et al. extended this approach to the stochastic
case [BM89,BBW89].

Our idea is that of computing fast bounds for the throughput
of transitions based only on the knowledge of the first moments of
probability distribution functions. This can be intuitively explained
as follows. The sum is independent of the probability distribution
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(for linearity); since for non-negative variables xi ≤ maxi{xi} ≤∑
i xi, E[maxi{xi}] can be bounded by maxi{E[xi]} ≤ E[maxi{xi}] ≤∑
iE[xi]. Therefore for the net in figure 3.1 we can write:

s1 + max{s2, s3} + s4 ≤ Γ ≤ s1 + s2 + s3 + s4 (3.2)

In this chapter, we show how linear programming problems based on
the incidence matrix of the underlying Petri net structure can be solved
to compute this kind of bounds for marked graphs. In section 3.1, we
focus our attention on throughput upper bounds for strongly connected
marked graphs. Applying Little’s formula [Lit61] to each place of the
net and using structural information taken from P-semiflows, a linear
programming problem is derived whose optimum solution (which can
be computed in polynomial time) is a lower bound for the mean cy-
cle time of transitions (inverse of the average throughput). Moreover,
this bound is shown to be reachable for arbitrary net structure, initial
marking, and mean and variance for transition service times. From
the linear programming form of the computed bound, some interesting
results are derived.

A tight lower bound for the steady-state throughput (upper bound
for the mean cycle time) is obtained in polynomial time in section 3.2,
from the knowledge of the given average service times and the liveness
bounds of transitions, which are computed by solving proper linear
programming problems. This bound cannot be improved unless more
information from the service times of transitions than their mean values
are used.

The case of non-strongly connected (i.e., unbounded) marked graphs
is considered in section 3.3. For these nets, the exact throughput of
transitions can be derived from the knowledge of the exact throughput
of the isolated strongly connected components. Since we are able to
compute bounds for the throughput of the isolated strongly connected
components, bounds for the whole net can be obtained. Finally, in
section 3.4, some concluding remarks are presented.
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3.1 Upper bound for the steady-state

throughput

In this section, upper bounds on throughput for strongly connected
(and thus structurally bounded, by property 2.1.13) marked graphs are
presented. We remark that strong connectivity of a graph is a well-
known problem of polynomial time complexity.

3.1.1 Little’s law and P-semiflows

Three of the most significant performance measures for a closed region
r of a network in the analysis of queueing systems are related by Little’s
formula [Lit61], which holds under very general (i.e., weak) conditions:

Qr = XrRr (3.3)

Qr is the average number of customers in the region, Xr is the
output rate (throughput) from the region (which is equal to the input
rate), and Rr is the average time spent by a customer within the region.

Now, Little’s result is applied to each place of a weakly ergodic net.
Denoting as M(pi) the limit average number of tokens at place pi, X
the limit vector of transition throughputs (see definition 1.2.5), and
R(pi) the average time spent by a token within the place pi (average
response time at place pi), the above mentioned relationship is stated
as follows (see [FN85a]):

M(pi) = (PRE[pi] ·X)R(pi) (3.4)

where PRE[pi] is the ith row of the pre-incidence matrix of the under-
lying Petri net, thus PRE[pi] ·X is the output rate of place pi.

In the study of computer systems, Little’s law is frequently used
when two of the related quantities are known and the third one is
needed. This is not exactly the case here. Now, R(pi) and M(pi) are
unknown. On the other hand, the vector of visit ratios

�v(j) =
1

X(tj)
X = Γ(j)X (3.5)
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normalized for having the jth component equal 1, can be easily com-
puted for important net subclasses (see chapter 2) and, in particular,
for live marked graphs. Γ(j) is called mean cycle time of transition tj
(inverse of its average throughput).

The average response times at places R(pi) are unknown. In fact,
they can be expressed as sums of the average waiting times due to
the synchronization schemes and the average service times associated
with transitions, and only average service times are known: si, i =
1, . . . ,m. Thus the average response times can be lowerly bounded from
the knowledge of the average service times, and the following system of
inequalities can be derived from (3.4):

Γ(j)M ≥ PRE · �D(j) (3.6)

where �D(j) is the vector with components D
(j)
i = v

(j)
i si, average service

demand (or loading) for each transition ti of the net, that is the average
total service that a token demands from transition ti in all its visits to
it. The superscript “(j)” indicates that the vector is normalized for
having the jth component D

(j)
j equal to sj (i.e., v

(j)
i = 1).

Since marked graphs are consistent nets and their unique minimal
T-semiflow is 11, we have �v(j) = 11 = �v for all transition tj (cfr. prop-

erty 2.1.12), thus for all j = 1, . . . ,m, Γ(j) = Γ, �D(j) = �D = �s (where �s
denotes the vector with components si, i = 1, . . . ,m), and

Γ M ≥ PRE · �s (3.7)

From this inequality, a lower bound Γmin for the mean cycle time
of transitions can be derived. We take into account that Γmin must be
such that inequality (3.7) holds and for some place pi the equality is
reached:

Γmin =
PRE[pi] · �s

M(pi)
(3.8)

Since the vector M is unknown, (3.8) cannot be solved. However,
the following structural marking invariant can be written using a P-
semiflow Y :

Y T ·M0 = Y T ·M = Y T ·M, ∀M0 ∈ INn, ∀M ∈ R(N ,M0) (3.9)
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Now, from (3.7) and (3.9):

Γ(Y T ·M0) ≥ Y T · PRE · �s (3.10)

And a lower bound for the mean cycle time in steady-state is:

Γmin = max
Y ∈{P−semiflow}

Y T · PRE · �s
Y T ·M0

(3.11)

Of course, an upper bound for the throughput of transitions is
1/Γmin.

Let us formulate the previous lower bound for the mean cycle time
in terms of a particular class of optimization problems called fractional
programming problems [Mur83]:

Γmin = maximize
Y T · PRE · �s

Y T ·M0

subject to Y T · C = 0

11T · Y > 0

Y ≥ 0

(3.12)

The above problem can be rewritten as follows:

Γmin = maximize
Y T · PRE · �s

q

subject to Y T · C = 0

11T · Y > 0

Y T ·M0 = q

Y ≥ 0

(3.13)

Then, because Y T ·M0 > 0 (guaranteed for live marked graphs, by
corollary 2.1.7), we can change Y

q
by Y and obtain the linear program-

ming formulation stated in the next theorem (in which 11T · Y > 0 is
removed because Y T ·M0 = 1 implies 11T · Y > 0):
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Theorem 3.1.1 A lower bound for the mean cycle time for live
strongly connected marked graphs can be obtained by solving the fol-
lowing linear programming problem:

Γmin = maximize Y T · PRE · �s
subject to Y T · C = 0

Y T ·M0 = 1
Y ≥ 0

(LPP3)

The following theorem concerns a special class of optimum solutions
of (LPP3) that will be used later in the interpretation of this linear
programming problem: the minimal P-semiflows. Firstly, we present a
lemma that will be used in the proof of the theorem.

Lemma 3.1.1 [MS82] Let N be a Petri net and C its incidence matrix.
A P-semiflow Y of N is minimal iff the cardinal of its support is one
unit higher than the rank of the submatrix made up of the rows li of C
such that Y (i) is not zero.

In order to prove the theorem, we use the concept of basic feasible
solution from linear programming [Mur83], and the problem (LPP3)
rewritten in the following way:

Γmin = maximize Y T · PRE · �s
subject to Y T · [C|M0] = (0|1)

Y ≥ 0
(LPP4)

Let Y be the set of feasible solutions of (LPP4). If Y ∈ Y , the
set of row vectors of A = [C|M0] that Y uses is {A[j] | j is such that
Y [j] > 0}. The feasible solution Y ∈ Y is said to be a basic feasible
solution for (LPP4) iff the set of row vectors of A that Y uses is a
linearly independent set.

Theorem 3.1.2 Under the conditions of theorem 3.1.1, if (LPP3) has
an optimum solution, then it has an optimum solution which is a min-
imal P-semiflow.

Proof. Taking into account [Mur83, theorem 3.3], if (LPP4) has an
optimum feasible solution, then it has a basic feasible solution Y that
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is optimum. Therefore, the set of rows that are used by Y is linearly
independent (i.e., full rank). Considering that Y T ·C = 0, the number
of non-null entries of vector Y (i.e., the number of rows used by Y ) is
equal to the rank of rows of C used by Y plus one. This last statement
is precisely the characterization of a minimal P-semiflow, presented in
lemma 3.1.1.

It is well-known that the simplex method for the solution of lin-
ear programming problems gives good results in practice, even if it
has exponential worst case complexity. In any case, an algorithm of
polynomial worst case complexity can be found in [Kar84].

Theorem 3.1.1 shows that the problem of finding an upper bound for
the steady-state throughput (lower bound for the mean cycle time) in a
strongly connected stochastic marked graph can be solved looking at the
mean cycle time associated with each P-semiflow (circuits for marked
graphs, see theorem 2.1.6) of the net, considered in isolation. These
cycle times can be computed making the summation of the average
enabling times of all the transitions involved in the P-semiflow (service
time of the whole circuit), and dividing by the number of tokens present
in it (customers in the circuit).

3.1.2 Reachability of the upper bound

The above bound that holds for any stochastic interpretation, hap-
pens to be the same that has been obtained for strongly connected
deterministically timed marked graphs by other authors (see for ex-
ample [Ram74,RH80]), but here it is considered in a practical linear
programming form. For deterministically timed nets, the reachability
of this bound has been shown [Ram74,RH80]. Since deterministic tim-
ing is just a particular case of stochastic timing, the reachability of the
bound is assured for our purposes as well. Even more, the next result
shows that the previous bound cannot be improved only on the base of
the knowledge of the coefficients of variation for the transition service
times.

Theorem 3.1.3 For live strongly connected marked graphs with ar-
bitrary values of mean and variance for transition service times, the
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lower bound for the mean cycle time obtained from (LPP3) cannot be
improved.

Proof. We know from [Ram74] that for deterministic timing the bound
is reached. Only “max” and sum operators are needed to compute the
cycle time. Therefore we must construct a family of random variables
with arbitrary means and variances behaving in the limit like deter-
ministic timing for both operators (max and sum).

This is the case for the following family of random variables, for
varying values of the parameter α ∈ [0, 1):

Xsi,σi
(α) =

{
siα with probability 1 − εi
si(α + 1−α

εi
) with probability εi

(3.14)

where

εi =
s2
i (1 − α)2

s2
i (1 − α)2 + σ2

i

(3.15)

These variables are such that E[Xsi,σi
(α)] = si, V ar[Xsi,σi

(α)] = σ2
i ,

and they verify:

lim
α→1

E[max{Xsi,σi
(α), Xsj ,σj

(α)}] = max{si, sj} (3.16)

and, of course, for all α such that 0 ≤ α < 1: E[Xsi,σi
(α)+Xsj ,σj

(α)] =
si + sj.

Then, if random variables Xsi,σi
(α) are associated with transitions

ti, i = 1, . . . ,m, taking α closer to 1, the mean cycle time tends to the
bound given by (LPP3).

A polynomial computation of the minimal cycle time for deter-
ministically timed strongly connected marked graphs was proposed in
[Mag84], solving the following linear programming problem:

Γmin = minimize γ
subject to −C · z + γM0 ≥ POST · �s

γ, z ≥ 0
(LPP5)
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To investigate the relationship between (LPP3) and (LPP5) let us
consider the dual problem [Mur83] of (LPP5):

Γmin = maximize Y T · POST · �s
subject to Y T · C ≤ 0

Y T ·M0 ≤ 1
Y ≥ 0

(LPP6)

Since strongly connected marked graphs are conservative (prop-
erty 2.1.13), there does not exist Y ≥ 0 such that Y T ·C ≤/ 0 and then the
constraint Y T ·C ≤ 0 of (LPP6) becomes Y T ·C = 0 (i.e., the constraint
of (LPP3)). For all Y such that Y T ·C = 0: Y T · POST = Y T · PRE.
For live marked graphs, ∀Y ∈ INn, Y �= 0 such that Y T · C = 0 then
Y T ·M0 ≥ 1 (corollary 2.1.7). Thus the constraint Y T ·M0 ≤ 1 of (LPP6)
becomes Y T ·M0 = 1 for live nets (i.e., the constraint of (LPP3)).

Hence for live strongly connected marked graphs, the problem
(LPP3) is equivalent to (LPP5) formulated in [Mag84] for determin-
istic systems.

3.1.3 Interpretation and derived results

Linear programming problems give an easy way to derive results and
interpret them. Just looking at the objective function of the prob-
lem (LPP3) the following monotonicity property is obtained: the lower
bound for the mean cycle time does not increase if �s decreases or if M0

increases.

Property 3.1.1 Let 〈N ,M0〉 be a live strongly connected marked graph
and �s the vector of average service times.

1. For a fixed �s, if M ′
0 ≥ M0 (i.e., increasing the number of ini-

tial resources) then the lower bound for the mean cycle time of
〈N ,M ′

0, �s〉 is less than or equal to the one of 〈N ,M0, �s〉 (i.e.,
Γmin′ ≤ Γmin).

2. For a fixed M0, if �s′ ≤ �s (i.e., for faster resources) then the lower
bound for the mean cycle time of 〈N ,M0, �s′〉 is less than or equal
to the one of 〈N ,M0, �s〉 (i.e., Γmin′ ≤ Γmin).



3.1. Upper bound on throughput 101

The next property is strongly related to the reversibility of live
marked graphs.

Property 3.1.2 For any live strongly connected marked graph
〈N ,M0〉, the bound obtained with the problem (LPP3) does not change
for any marking reachable from M0.

Proof. Let us consider the lower bound for the mean cycle time for a
marking M ∈ R(N ,M0) ⇔ M = M0 + C · �σ ≥ 0 for some �σ ≥ 0 in
terms of a linear programming problem:

Γmin = maximize Y T · PRE · �s
subject to Y T · C = 0

Y T ·M = 1
M = M0 + C · �σ
Y, M, �σ ≥ 0

(LPP7)

Since Y T ·M = Y T ·M0, this problem is equivalent to:

Γmin = maximize Y T · PRE · �s
subject to Y T · C = 0

Y T ·M0 = 1
M = M0 + C · �σ
Y, M, �σ ≥ 0

(LPP8)

Because the restrictions M = M0 + C · �σ, M ≥ 0 and �σ ≥ 0 do not
affect the solution, they can be removed without changing the optimum
of this problem with respect to (LPP3).

Since the upper bound on throughput is computed based on the
total mean service time of elementary cycles and on the marking con-
tained in them, it is easy to prove that the reverse net of N =
〈P, T, Pre, Post〉 defined as N−1 = 〈P, T, Post, Pre〉 yields the same
bound in case of strongly connected marked graphs.

Property 3.1.3 Let N be a strongly connected marked graph and N−1

its reverse net. Then, the upper bounds on throughput obtained for both
nets with the problem (LPP3) are the same.
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In particular, if deterministic timing is considered (since the bound
gives the exact throughput in this case), a reversibility property for the
exact throughput follows. An analogous result under non-deterministic
assumption is presented in [DLT90].

The next is a characterization of liveness for marked graphs in terms
of the finiteness of the mean cycle time.

Theorem 3.1.4 Let 〈N ,M0〉 be a strongly connected marked graph.
〈N ,M0〉 is live iff the value Γmin given by theorem 3.1.1 is finite.

Proof. For strongly connected marked graphs, the optimum value of
(LPP3) is a lower bound for the mean cycle time. If this optimum value
is infinite the mean cycle time is unbounded, and the net is dead. If the
optimum value of (LPP3) is finite, since it is reachable for determinis-
tic [Ram74] as well as for some stochastic (cfr. theorem 3.1.3) timing,
the net must be deadlock-free. We know that for strongly connected
marked graphs, liveness and deadlock-freeness are equivalent. Thus the
finiteness of the optimum value of (LPP3) is sufficient to establish the
liveness of a strongly connected marked graph.

The reader can interpret the previous result by noticing that the
only way to obtain an infinite optimum solution for the problem (3.12)
is for a solution of the system Y ≥\ 0, Y T ·C = 0, Y T ·M0 = 0, and the ex-
istence of such solution is a characterization of non-liveness (cfr. corol-
lary 2.1.7).

3.2 Lower bound for the steady-state

throughput

In this section, we present the computation of lower bounds on through-
put for strongly connected marked graphs. We start by presenting a
reachable lower bound for 1–live marked graphs (i.e., marked graphs
with liveness bound for all transitions equal 1), and then we extend
the result to bounded marked graphs. Finally we propose a polynomial
complexity computation based on linear programming.
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3.2.1 Basic result for 1–live marked graphs

A trivial lower bound for the steady-state performance of a live marked
graph is, of course, given by the inverse of the sum of the service times
of all the transitions. Since the net is live all transitions must be firable,
and the sum of all service times corresponds to any complete sequen-
tialization of all the activities represented in the model. This lower
bound is always reached in a marked graph consisting of a single loop of
transitions and containing a single token in one of the places, indepen-
dently of the higher moments of the probability distribution functions
(this observation can be trivially confirmed by the computation of the
throughput upper bound, which in this case gives the same value).

To improve this trivial lower bound let us first consider the case of
1–live marked graphs (i.e., strongly connected marked graphs in which
L(t) = 1 for all transition t, see definition 1.2.2). Of course live and
1–bounded marked graphs are guaranteed to be 1–live, but the result
that we are going to present apply to more general cases. If we specify
only the mean values of the transition service times and not the higher
moments, we may always find stochastic models whose steady-state
throughput is arbitrarily close to the trivial lower bound, independently
of the topology of the marked graph (only provided that it is 1–live).
Let us give a formal proof of this (somewhat counter-intuitive) result.

We define the family of random variables:

xi
μ(ε) =

⎧⎪⎨⎪⎩
0 with probability 1 − εi

μ

εi
with probability εi

(3.17)

for μ ≥ 0; 0 < ε ≤ 1; i ∈ IN.
It is straightforward to see that E[xi

μ(ε)] = μ, and E[(xi
μ(ε))

2
] =

μ2/εi. This implies that the coefficient of variation is 0 for ε = 1, and
that it tends to ∞ as ε → 0 provided that i > 0.

Theorem 3.2.1 For any live and 1–bounded marked graph with a spec-
ification of the average service time sj for each transition tj it is possi-
ble to assign probability distribution functions to the transition service
times such that the mean cycle time is Γ =

∑
j sj − O(ε), ∀ 0 < ε ≤ 1,

independently of the topology of the net (and thus independently of the
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potential maximum degree of parallelism intrinsic in the marked graph).
(We use here the notation O(f(x)) to indicate any function g(x) such

that limx→0
g(x)
f(x)

≤ k ∈ IR.)

Proof. By construction, we will show that the association of the family
of random variables xj−1

sj
(ε) with each transition tj ∈ T yields exactly

the mean cycle time Γ claimed by the theorem. To give the proof we
will consider a sequence of models ordered by the index of transitions,
in which the qth model of the sequence has transitions t1, t2, . . . , tq timed
with the random variables xj−1

sj
(ε), and all other transitions immediate

(firing in zero time); the |T |th model in the sequence represents an
example of reachability of the lower bound on throughput, independent
of the net topology. Now we will prove by induction that the qth model
in the sequence has a mean cycle time

Γq =
q∑

j=1

sj −O(ε) (3.18)

Base: q = 1: trivial since the repetitive cycle that constitute the
steady-state behaviour of the marked graph contains only one (single-
server) deterministic transition with average service time Γ1 = s1.

Induction step: q > 1: taking the limit ε → 0, the newly timed
transition tq will fire most of the times with time zero, thus normally
not contributing to the computation of the mean cycle time, that will
be just

Γq−1 =
q−1∑
j=1

sj −O(ε) (3.19)

(as in the case of model q − 1) with probability 1− εq−1. On the other
hand, the newly timed transition has a (very small) probability εq−1 of
delaying its firing of a time sq/ε

q−1, which is at least order of 1/ε bigger
than any other firing time in the cycle, so that in this case all other
transitions will wait for the firing of tq after having completed their
possible current firings in a time which is O(ε) lower than the firing
time of tq itself (i.e., sq/ε

q−1 = Γq−1/O(ε)). Therefore we obtain that

Γq = (1 − εq−1)Γq−1 + εq−1(
sq
εq−1

−O(ε)) =
q∑

j=1

sj −O(ε). (3.20)
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3.2.2 Extension to bounded marked graphs

Until now we have shown that the trivial sum of the average service
times of all transitions in the net constitutes a tight (reachable) lower
bound for the performance of a live and 1–bounded marked graph (or
more generally of a 1–live strongly connected marked graph, but other-
wise independently of the topology) in which only the mean values and
neither the probability distribution functions nor the higher moments
are specified for the transition service times. Let us now extend this
result to the more general case of k–live strongly connected marked
graphs.

Let us remember that for marked graphs E(t) = L(t) = SE(t)
(property 2.1.14); thus, the liveness bound of transitions can be effi-
ciently computed using (LPP1). Now, an intuitive idea is to derive a
lower bound on throughput for marked graphs containing transitions
with liveness bound k ≥ 1 by taking the algorithm used for the compu-
tation of the throughput upper bound in the case of k–bounded marked
graphs, and substitute in it the “max” operator with the sum of the ser-
vice times of all transitions involved. After some manipulation to avoid
counting more than once the contribution of the same transition, one
can arrive at the formulation of the following value for the maximum
cycle time:

Γmax =
m∑
j=1

sj
L(tj)

(3.21)

The proof of this result requires the following lemma.

Lemma 3.2.1 Any strongly connected marked graph with arbitrary ini-
tial marking can be constraint to contain a main cycle including all
transitions, without changing their liveness bound. This main cycle
(which is not unique) contains a number of tokens equal to the max-
imum of the liveness bounds among all transitions. In addition there
are other minor cycles that preserve the liveness bounds for transitions
with bound lower than the maximum.

The idea behind this constraint is to introduce a structural sequen-
tialization among all transitions, thus potentially reducing the degree
of concurrency among the activities modelled by the transitions. In
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other words, from the partial order given by the initial marked graph
structure we try to derive a total order without changing the liveness
bounds.

Proof of lemma 3.2.1. To construct a marked graph of the desired
form we can apply the following iterative procedure that interleaves
two non-disjoint cycles into a single one. Since the marked graph is
strongly connected, each node belongs to at least one cycle; moreover,
since the original marked graph is finite and each cycle cannot contain
the same node more than once, this cycle interleaving procedure must
terminate after a finite number of iterations. To reduce the number of
cycles, implicit places created after each iteration can be removed. The
iteration step is the following:

Step 1. Take two arbitrary non-disjoint cycles (unless the marked
graph already contains a main cycle including all nodes, there
always exists such a pair of cycles because the marked graph is
strongly connected).

Step 2. Combine them in a single cycle in such a way that the par-
tial order among transitions given by the two original cycles is
substituted by a compatible but otherwise arbitrary total order.
This combination can be obtained by adding new places that are
connected as input for a transition of one cycle and output for
a transition of the other cycle that we decide must follow in the
sequence determined by the new cycle we are creating.

Step 3. Mark the new places added in such a way that the new cy-
cle contains the same number of tokens as the maximum of the
number of tokens in the two original cycles.

The above procedure is applied iteratively until all transitions are
constrained into a single main cycle. At this point we can identify and
eliminate the implicit places that have been created during the cycles
interleaving procedure. We obtain then a marked graph composed by
one main cycle containing NM = maxt∈T L(t) tokens that connects all
transitions, and a certain number of minor cycles containing less tokens
than NM that maintain the liveness bound of the other transitions.
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Figure 3.2: Example of structural sequentialization.

An example of application of the lemma follows, in order to clarify
the procedure. Consider the net depicted in figure 3.2.a. This net
contains only two cycles, namely t1, t2, t4, and t1, t3, t4; we can then
add either the cycle t1, t2, t3, t4 or t1, t3, t2, t4; figure 3.2.b depicts the
resulting net in case we choose to add the second cycle. In this case
only place p6 (from t3 to t2) needs to be added to obtain the longer
cycle, and it should be marked with one token, so that the new cycle
comprising places p1, p3, p6, p4 contains two tokens, as the original cycle
p1, p2, p4 (while the other original cycle p1, p3, p5 contained only one).
In our example, we need not to iterate the procedure since we already
have obtained a cycle containing all transitions of the marked graph.
At this point we can identify and eliminate the implicit places that have
been created during the cycles interleaving procedure. In the present
example, we can easily see that place p2 becomes implicit in figure 3.2.b,
so that it can be removed, finally leading ourselves to the marked graph
depicted in figure 3.2.c.

It should be evident that the marked graph transformed by applying
the above lemma has a mean cycle time which is greater than or equal
to the mean cycle time of the original one, since some additional con-
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straints have been added to the enabling of transitions: hence the mean
cycle time of the transformed marked graph is a lower bound for the
performance of the original one. Now if NM = maxt∈T L(t) = 1 in the
above lemma, we re-find the lower bound of theorem 3.2.1. In the case
of NM > 1 we can show that the mean cycle time of the transformed
net cannot exceed Γmax of equation 3.21 as follows.

Theorem 3.2.2 For any live and bounded marked graph with a spec-
ification of the average service time sj for each transition tj it is not
possible to assign probability distribution functions to the transition ser-
vice times such that the mean cycle time is greater than

Γmax =
m∑
j=1

sj
L(tj)

(3.22)

independently of the topology of the net (and thus independently of the
potential maximum degree of parallelism intrinsic in the marked graph).

Proof. Without loss of generality, assume that transitions in the net
resulting from the application of lemma 3.2.1 are partitioned in two
classes C2 and C1, with liveness bounds K2 = NM > 1 and K1 < NM ,
respectively (the proof is easily extended to the case of more than two
classes). Construct a new model containing only K1 tokens in the main
cycle; at this point all transitions behave as K1–servers, so that the
mean cycle time is given by the sum of the firing times of all transitions,
divided by the total number of customers in the main loop K1; moreover
the delay time for the transitions belonging to class C1 is simply given
by S1 =

∑
tj∈C1

sj. Now if we increase the number of tokens in the main
loop from K1 to K2, the delay time of C1 cannot increase, so that the
contribution of C1 to the mean cycle time cannot exceed S1 for each of
the first K1 tokens. Under the hypothesis that the throughput of the
system is given by the inverse of Γmax (i.e., assuming X = 1/Γmax),
the average number of tokens of the main loop computed using Little’s
formula cannot exceed N1 = XS1, therefore the average number of
tokens available to fire transitions in C2 cannot be lower than

N2 = K2 −N1 = K2

K2−K1

K1

∑
tj∈C1

sj +
∑

tj∈C2
sj∑

tj∈C2
sj + K2

K1

∑
tj∈C1

sj
(3.23)
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On the other hand, we need only

N2 = XS2 = K2
S2∑

tj∈C2
sj + K2

K1

∑
tj∈C1

sj
(3.24)

tokens to sustain throughput X in subnet C2, so that we are assuming
a delay in C2

S2 ≤
K2 −K1

K1

∑
tj∈C1

sj +
∑
tj∈C2

sj (3.25)

Now we claim that this is the actual maximum delay because the
first K1 tokens can proceed at the maximum speed in the whole net,
thus experiencing only delay

∑
tj∈C2

sj in subnet C2, while the remain-
ing K2 − K1 tokens can also queue up for travelling through C1, thus
experiencing an additional delay of 1

K1

∑
tj∈C1

sj each.

Now, taking into account that the liveness bound of a transition of
a net N does not change in the reverse net N−1, an analogous result
to property 3.1.3 for the lower bound on throughput can be derived.

Property 3.2.1 Let N be a strongly connected marked graph and N−1

its reverse net. Then, the lower bounds on throughput obtained for both
nets as in theorem 3.2.2 are the same.

3.2.3 Reachability of the lower bound

The lower bound in performance given by the computation of 1/Γmax as
defined in theorem 3.2.2 can be shown to be reachable for any marked
graph topology and for some assignement of probability distribution
functions to the service time of transitions, exploiting the reachability
of the trivial bound shown in theorem 3.2.1 for 1–live marked graphs.

Theorem 3.2.3 For any strongly connected marked graph with a spec-
ification of the average service time sj for each transition tj, and for
all 0 < ε ≤ 1, it is possible to assign probability distribution functions
to the transition service times such that the mean cycle time is:

Γmax =
m∑
j=1

sj
L(tj)

−O(ε) (3.26)
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independently of the topology of the net (and thus independently of the
potential maximum degree of parallelism intrinsic in the marked graph).

Proof. By construction, in a very similar way than in the case of
theorem 3.2.1. The only technical difference is that now, without any
loss of generality, we assume first of all to enumerate transitions in
non-increasing order of liveness bound, i.e., rename the transitions in
such a way that ∀ti, tj ∈ T , i > j =⇒ L(ti) ≤ L(tj). Then, as in the
case of theorem 3.2.1, we can show that the association of the family of
random variables xj−1

sj
(ε) with each transition tj ∈ T yields exactly the

mean cycle time Γmax claimed by the theorem. To give the proof we
consider a sequence of models ordered by the index of transitions, in
which the qth model of the sequence has transitions t1, t2, . . . , tq timed
with the random variables xj−1

sj
(ε), and all other transitions immediate

(firing in zero time); the |T |th model in the sequence represents the
resulting model that is expected to provide the example of reachability
of the lower bound. By induction we prove that the qth model in the
sequence has a mean cycle time

Γq =
q∑

j=1

sj
L(tj)

−O(ε) (3.27)

Base: q = 1: Trivial since the repetitive cycle that constitute the
steady-state behaviour of the marked graph contains only one (L(t1)–
server) deterministic transition with average firing time Γ1 = s1/L(t1).

Induction step: q > 1: Taking the limit ε → 0, each server of the
newly timed transition tq will fire most of the times with time zero,
thus normally not contributing to the computation of the mean cycle
time, that will be just

Γq−1 =
q−1∑
j=1

sj
L(tj)

−O(ε) (3.28)

(as in the case of model q − 1) with probability 1− εq−1. On the other
hand, each of the servers of the newly timed transition has a (very
small) probability εq−1 of delaying its firing of a time sq/ε

q−1, which
is at least order of 1/ε bigger than any other firing time in the cycle.
Now if L(tq) = 1, then the proof is completed, since also ∀j > q,
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L(tj) = 1 by hypothesis, and we reduce to the induction step of the
proof of theorem 3.2.1. Instead if L(tq) > 1 then we can consider L(tq)
consecutive firings of tq, and compute the average firing time as the
total time to fire L(tq) times the transition, divided by L(tq). Now if
we consider m consecutive firings of instances of transition tq we obtain
an average delay:

m−1∑
j=0

(1 − εq−1)
j
ε(q−1)(m−j) (m− j)sq

ε(q−1)
= sq(1 + O(ε)) (3.29)

Therefore the mean cycle time of the qth model will be

Γq = (1−O(εq−1))Γq−1 +
sq

L(tq)
(1+O(ε)) =

q∑
j=1

sj
L(tj)

−O(ε). (3.30)

3.2.4 A polynomial algorithm to compute the
lower bound

First of all we recall (cfr. property 2.1.14) that in the case of live marked
graphs the liveness bound equals the enabling and the structural en-
abling bounds for each transition; thus we present a characterization of
the problem of the determination of the structural enabling bound in
terms of a linear programming problem, which is known to be solvable
in polynomial time.

For any transition t ∈ T , the computation of the structural en-
abling bound SE(t) is formulated in definition 1.2.3, in terms of prob-
lem (LPP1). In that problem we can observe that the vector M is
redundant in the system of linear inequalities, so that we can remove
it, obtaining:

SE(t) = maximize k
subject to M0 + C · �σ ≥ kPRE[t]

M0 + C · �σ ≥ 0, �σ ≥ 0
(LPP9)

Alternatively, we can switch to the dual linear programming prob-
lem:
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SE(t) = minimize Y T ·M0

subject to Y T · C ≤ 0
Y T · PRE[t] = 1
Y ≥ 0

(LPP10)

Marked graphs are consistent nets with a single minimal T-semiflow
which is the vector 11 (property 2.1.12), so that the constraint �σ ≥ 0 can
be relaxed in the primal problem. The effect on the dual problem of this
relaxation is the transformation of the first constraint into Y T ·C = 0.
In other words, the dual problem for the computation of SE(t) can be
rewritten as follows:

SE(t) = minimize Y T ·M0

subject to Y T · C = 0
Y T · PRE[t] = 1
Y ≥ 0

(LPP11)

This linear programming problem is less complex to solve with the
simplex algorithm than the original dual problem because it involves
the introduction of fewer slack variables.

For all strongly connected marked graph there exists an elementary
P-semiflow for which the optimum of the objective function is achieved,
as shown in theorem 3.1.2. In case of marked graphs, these elementary
P-semiflows can only be elementary cycles, so that we can give the
following interpretation of the linear programming problem (LPP11) in
net terms: the liveness bound for a transition t of a strongly connected
marked graph is given by the minimum number of tokens contained in
any cycle of places containing transition t. In a non-strongly connected
marked graph there can be no such cycle, so that this number can be
infinite.

As final remarks we can state the following:

Property 3.2.2 Let 〈N ,M0〉 be a marked graph.

1. Liveness for 〈N ,M0〉 can be a byproduct of a more general (poly-
nomial complexity) computation: 〈N ,M0〉 is a live marked graph
if and only if for all transition t, SE(t) > 0.
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Figure 3.3: Non-strongly connected marked graphs.

2. If 〈N ,M0〉 is live and ∃t ∈ T such that SE(t) = 1, then ∀t′ ∈ T
belonging to the same cycle denoted by Y in (LPP11), SE(t′) = 1.

Note that the application of property 3.2.2.2 reduces the computa-
tional complexity of the structural enabling bound of all transitions.

3.3 Extending results to unbounded

marked graphs

In the literature on deterministically timed marked graph models the
case of non-strongly connected nets is usually considered a trivial exten-
sion to be left to the imagination of the reader [RH80,Mag84]. In this
section we argue that the question is less trivial than one can perceive
at first glance, and in fact we shall derive some examples that show
that “direct” extensions of the results obtained in the case of strongly
connected marked graphs, in general, make no sense. In fact, for the
upper bound on throughput, we obtain a result similar to that proposed
by F. Baccelli et al. [BBW89], even though their work is situated in a
quite different framework.

Example 1. Let us first consider as an example the non-strongly
connected marked graph in figure 3.3.a. First of all we can see that
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transition t3 has an infinite liveness bound, so that in steady-state it
should not contribute to the computation of the mean cycle time. In-
deed, suppose that t3 has a deterministic service time of 1000 time
units, while transitions t1 and t2 have a deterministic service time of
1 time unit; thus the cycle t1–t2 starts generating tokens at a rate of
one token every 2 time units, so that initially tokens accumulate in
place p3. At time 1001 eventually the first instance of transition t3
fires, and at that point we reach the steady-state condition in which
499 instances of firing of t3 are concurrently enabled, with a remaining
enabling time shifted of two time units between each pair of subsequent
firing instances. As we can see, the actual firing rate in steady-state for
transition t3 is 1/2 firings per second, i.e., it is determined by the mean
cycle time of transitions t1–t2 completely independent of the service
time of t3 itself. Therefore, from the steady-state performance point of
view, transition t3 behaves as if it were an immediate transition, and
it can be reduced by fusing places p3 and p4 into a single place p34, as
shown in figure 3.3.b.

Now let us consider the behaviour of the other two transitions t4 and
t5. Their actual firing rate is determined both by their own service times
and the rate with which the cycle t1–t2 is able to produce the tokens that
are consumed by t4 from place p34. Thus the mean cycle time in steady-
state condition for transitions t4–t5 is given by the maximum between
the mean cycle time of t1–t2 and the sum of the service times of t4 and
t5 (this sum would be the mean cycle time of the subnet generated by
t4 and t5 if it were considered in isolation, i.e., the potential mean cycle
time of t4–t5). In the case in which the mean cycle time of t1–t2 were
greater than the one of t4–t5, the number of tokens at place p34 would
remain bounded and the firing rate of t4–t5 would be the inverse of the
mean cycle time of t1–t2. On the other hand, in the case in which the
mean cycle time of t1–t2 were less than the one of t4–t5, place p34 would
accumulate tokens and marking process of this place would not be (even
weakly) ergodic. However, firing rate of transitions t4–t5 would be, in
that case, equal to the inverse of their potential mean cycle time. In the
case of equality between mean cycle time of t1–t2 and t4–t5, marking
ergodicity at place p34 depends on the probability distribution of service
time of transitions. In the particular case of deterministic timing, the
marking process is weakly ergodic, while in the case of exponentially



p1

p2 p 3 p 6

p5

p4

p 7
p10

p11p8

p9
p12

t 1 t 2 t 3 t 4

t 5

t 6 t 7 t 8 t 9

(a) (b)

p3 p6

p 7 p10

T 12 T 34

T 5

T 67 T 89

3.3. Unbounded marked graphs 115

Figure 3.4: A more general non-strongly connected marked graph.

distributed service times the marking process is non-ergodic (because
the embedded Markov process is null-recurrent).

Example 2. Let us consider the more general example shown in fig-
ure 3.4.a. Also in this case it is easy to understand that transition t5
gives no contribution to the steady-state cycle time because it has an
infinite liveness bound (it behaves as an immediate transition). How-
ever in this case we cannot just delete it because of the synchronization
constraint that is due to its multiple input places (p3 and p6). On
the other hand, it is clear that the two subnets composed of t1–t2 and
t3–t4 behave completely independently of each other and of the rest
of the net. If the mean cycle times of these two subnets are not ex-
actly equal (let us assume without loss of generality that the mean
cycle time of t1–t2 is greater than that of t3–t4), then one of the input
places of t5 (p6 with our assumption) accumulates an infinite number
of tokens in steady-state (in other words, the marking process at this
place is not ergodic); thus it becomes redundant (in steady-state) since
it cannot constraint the enabling condition of t5, and it can be deleted
without altering the behaviour of the net. In the case of exactly equal
mean cycle times of the two subnets (t1–t2 and t3–t4), marking ergod-
icity depends on the distribution functions associated with transitions.
For instance, for deterministic timing the marking process at p3 and
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p6 remains bounded (i.e., it is weakly ergodic). On the other hand,
for exponential timing, the marking of both places is a null-recurrent
Markov process, thus non-ergodic. Deleting all the places that become
unbounded in steady-state due to the average transition firing times,
we obtain that the net is partitioned in disconnected subnets that can
be studied independently of one another. Of course, not only the input
but also the output places of t5 (p7 and/or p10) may accumulate an
infinite number of tokens in steady-state, provided that the potential
mean cycle times of their output transitions (respectively, t7 and t8) are
greater than the actual firing time of t5. In this case, also the output
places become redundant and can be deleted, and we may study the
steady-state behaviours of the four disconnected subnets in isolation.

From the analysis of the above examples we can draw two consid-
erations.

First: Marking ergodicity is not assured in the case of non-strongly
connected marked graphs. Places having non-ergodic mark-
ing process can be found among structurally unbounded places
(places do not belonging to any strongly connected component)
in two cases: (1) after the comparison between the actual input
firing rate and the potential firing rate of the output strongly
connected component (example 1), or (2) after the comparison
among the actual firing rate of all strongly connected compo-
nents being synchronized by a given transition (example 2). In
other words, strongly connected components of the marked graph
can be seen as producers of parts (or data) for other components
and consumers of parts that are produced by other components.
Connections among these producers/consumers are modelled by
means of places (or buffers). A place is marking ergodic if the
throughput of the corresponding producer is less than the service
rate of the consumer.

Second: There exists a partial order relation “�” among subsets of
transitions defined as Ti � Tj iff the firing delay of transitions in
Ti can affect the actual firing rate of transitions in Tj but not vice
versa. This partial order relation can be computed by applying
a standard algorithm for the derivation of a condensation of the
original net, as we explain below.
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The previous considerations suggest that the first step that must
be taken in order to check marking ergodicity and to compute actual
throughput of transitions is the construction of the condensation of the
net. The condensation of a given directed graph [Deo74] represents the
interconnections among the strongly connected components of the orig-
inal graph. Therefore, the vertices vi of the condensation correspond
with the strongly connected components Ci of the original one. There
is an arc from one vertex v1 to a different vertex v2 in the condensa-
tion iff there is an arc in the original graph from some vertex in the
component C1 to some vertex in the component C2.

Definition 3.3.1 (Condensation of a marked graph) [Deo74] Let
N be a marked graph. The marked graph resulting from N after the
substitution of each strongly connected component by a single transi-
tion is called condensation of N , and denoted Nc. There is a place
pij connecting two transitions Ti, Tj in the condensation of a marked
graph (pij ∈ T •

i ∩ •Tj) iff pij connects, in the original net, at least one
transition of the strongly connected component associated with Ti with
another one of the component associated with Tj (pij ∈ t•i1 ∩ •tj1, with
ti1 ∈ Ti and tj1 ∈ Tj).

The condensation of a directed graph is always a directed acyclic
graph, because if there were a cycle in it, then all the components in
the cycle would really correspond to one strongly connected compo-
nent in the original graph. An efficient algorithm for the computation
of strongly connected components and the condensation of a directed
graph can be found, for instance, in [MB86].

Now, let us remark that two kinds of transitions can be found in the
condensation of a given non-strongly connected marked graph: those
with infinite liveness bound (corresponding with trivial strongly con-
nected components having only one transition) and those with finite
liveness bound (obtained from the substitution of a non-trivial strongly
connected component, i.e., having more than one transition). The first
ones have null potential mean cycle time (i.e., infinite throughput if
they are considered in isolation), while the potential mean cycle times
of the second are always finite.

Figure 3.3.c represents the condensation of the marked graph de-
picted in figure 3.3.a. Its transitions can be considered as complex
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servers in a producers/consumers system, from a queueing theory point
of view. Transitions T12 and T45 have finite liveness bound while transi-
tion T3 has infinite liveness bound. Considering the net of figure 3.4.a,
its condensation is depicted in figure 3.4.b, where transitions T12, T34,
T67, and T89 have finite liveness bound, while the one of T5 is infinite.

The condensation of a given marked graph defines a partial order
relation on the set of its strongly connected components:

Definition 3.3.2 (Partial order relation) Let N be a marked graph
and Nc its condensation. We denote “�” the binary relation among
transitions of Nc defined as follows: Ti � Tj iff there is a directed path
of length one or more from Ti to Tj in Nc.

From previous definition and from the fact that a condensation of
a directed graph is always a directed acyclic graph, the next property
follows:

Property 3.3.1 Relation “�” is a partial order on the set of transi-
tions of the condensation Nc of a marked graph, because it is irreflexive
and transitive.

The method for the computation of steady-state throughput of tran-
sitions of a non-strongly connected marked graph that we present now
is based on the previous considerations, using the above defined par-
tial order relation, and considers the liveness bounds of transitions and
their potential mean cycle time (i.e., their mean cycle time if they were
in isolation). Before the presentation of the computation method we
recall the concept of maximal element for a partial order relation:

Definition 3.3.3 (Maximal element) Let C be a set and “�” be a
partial order relation defined on C. Then, c ∈ C is a maximal element
of C for the relation “�” iff � ∃c′ ∈ C such that c′ � c.

For the previously introduced partial order on the set of strongly
connected components of a marked graph, maximal elements are the
source transitions of the condensation of the graph.
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Theorem 3.3.1 Let 〈N ,M0〉 be a non-strongly connected marked
graph with some given average service times associated with transi-
tions. Let Nc be the condensation of N . Let Ti, i = 1, . . . , K, be a
transition of Nc and Γpot

(i) its potential mean cyle time (mean cycle time
of the strongly connected component associated with Ti, considered in
isolation). The actual mean cycle time Γ(i) of Ti, is

i) If Ti is a maximal element for “�” then Γ(i) = Γpot
(i) .

ii) If Ti is not a maximal element for “�”, let γi = max{Γpot
(i1), . . . ,

Γpot
(ir)

} where Tij , j = 1, . . . , r are such that Tij � Ti, j = 1, . . . , r
and T •

ij
⊆ •Ti, j = 1, . . . , r (i.e., there is a path of length one from

Tij to Ti, j = 1, . . . , r). Then Γ(i) = max{Γpot
(i) , γi}.

We remark that transitions Ti with infinite liveness bound have null
potential mean cycle time (Γpot

(i) = 0). The exact mean cyle time of
transitions can be computed according to the above theorem, starting
from the maximal strongly connected components, which are indepen-
dent of the others, and then iteratively using the results to solve the
subsequent components.

Note that, in practice, the potential mean cycle time of strongly
connected components (Γpot

(i) , i = 1, . . . , K) are not known. Moreover,
their computation is not possible, so far, in polynomial time on the
net size from the transition service times. However, the bounds for
the mean cycle time of strongly connected marked graphs derived in
previous sections could be applied for deriving upper and lower bounds
for the mean cycle time of transitions in the whole net, substituting in
theorem 3.3.1 the exact values Γpot

(i) of the mean cycle time of isolated
components by their upper and lower bounds, respectively.

Finally, we remark that, as a by-product of theorem 3.3.1, neces-
sary and sufficient conditions for the marking ergodicity at places can
be deduced. If we define the input flow at a given place in the condensa-
tion of a marked graph as the actual throughput of its input transition,
in the case of a transition with several input places, only places with
minimum input flow has ergodic marking process (the rest of places
accumulate infinite tokens in the limit). In the case of a transition with
infinite liveness bound and only one input place, this place has always
ergodic marking process. On the other hand, if the transition has finite
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liveness bound and only one input place, two cases arise: if the input
flow to the place is less than the potential service rate of the transi-
tion (i.e., the inverse of its potential mean cyle time), the marking of
the place is ergodic; but if the input flow is greater than the potential
service rate of the transition, the marking of the place is unbounded,
thus non-ergodic. The case of equality between the input flow and the
service rate is not very well known, so far. It depends on the proba-
bility distribution functions associated with service time of transitions
wether the marking process is ergodic or not. For instance, in the case
of deterministic timing, equality between input and service rates as-
sures weak ergodicity, while in the case of exponential distributions,
such equality assures non-ergodicity (null-recurrent embedded Markov
process).

3.4 Conclusions

The computation of the throughput of strongly connected marked
graphs has been considered by many authors in the case of determin-
istically timed transitions [Ram74,Sif78,RH80,Mag84,Mur85]. In this
chapter, we have shown that deterministic case represents an upper
bound in performance independently of the probability distribution
also in the framework of stochastic Petri nets. The computation of
this bound has been reformulated in terms of a linear programming
problem. Moreover, we have shown how the upper bound is reached
not only in the deterministic case but also by stochastic models, with
arbitrary values of coefficients of variation.

Concerning the trivial lower bound in performance consisting of the
inverse of the sum of the average service times of all transitions, it has
been shown to be reachable in the case of 1–bounded marked graphs (in
fact, for marked graphs with 1–live transitions). The improvement for
the case of bounded marked graphs, obtained dividing by the liveness
bounds of transitions is new, and has been shown to be reachable for
some service probability distributions when the coefficient of variation
increases.

The extension to the case of non-strongly connected marked graphs,
which has been considered in the literature of deterministically timed
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nets as straightforward, is less trivial than one can perceive at first
glance. We have derived an algorithm for the computation of exact
measures for the performance of non-strongly connected marked graphs,
from the knowledge of the throughput of their isolated strongly con-
nected components.

All the algorithms that we present have polynomial complexity on
the net size, since they are mainly based on the solution of linear pro-
gramming problems, which are known to be solvable in polynomial
time [Kar84].

Some interesting behavioural properties have been derived from the
performance/quantitative approach. We remark the monotonicity of
performance bounds with the increasing of initial resources or with
their faster processing. A reversibility property, concerning the equal-
ity between bounds for a given strongly connected marked graph and
its reverse net, has been also obtained, analogous to that presented
in [DLT90]. Finally, a polynomial complexity liveness characterization
of strongly connected marked graphs in terms of the finiteness of the
mean cycle time (which can be applied also to non-strongly connected
marked graphs, looking for the liveness of isolated strongly connected
components) is a good example of the interest of interleaving the qual-
itative and quantitative theories.
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Chapter 4

Bounds for live and bounded
free choice nets

The results presented in this chapter (that include part of those
in [CCS90a] and [CCS90b]) are an extension to live and bounded
free choice nets (see definition 2.1.11) of the performance bounds for
strongly connected marked graphs developed in the previous chapter.
The idea is that several consistent firing count vectors can be repro-
duced in steady-state, but decisions, freely done at certain places, are
completely governed by the stochastic interpretation (in particular, by
the routing rates) of the net, and the vector of visit ratios for transitions
can be defined independently of the marking and the service times (see
section 2.1).

In section 4.1 we focus our attention on throughput upper bounds
for live and bounded free choice nets. Using Little’s law like in previous
chapter and structural linear marking relations, linear programming
problems are derived whose optimum solutions are lower bounds for
the mean cycle time of transitions. These problems include structural
information of the net by means of the (pre-, post-) incidence matrices.
All parameters defining stochastic interpretation are summarized in
the vector of average service demands for transitions (products of visit
ratios by average service times), which can be efficiently computed for
live and bounded free choice nets (see section 2.1).

Lower bounds for the steady-state throughput are considered in
section 4.2. These bounds are computed from the liveness bounds of

123
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transitions (obtained from linear programming problems in the case of
live and bounded free choice nets) and from the average service demands
for transitions.

The throughput upper bound is shown to be reachable for 1–
bounded nets for some distribution functions of service times with ar-
bitrary mean values and for some conflict resolution policy, with arbi-
trary long run rates. The lower bound on throughput is reachable for
1–bounded nets.

4.1 Upper bounds for the steady-state

throughput

The computation of upper bounds for the throughput of transitions,
defined as the average number of firings per time unit, is consider in
this section, for live and bounded free choice nets.

In section 4.1.1, Little’s law and structural linear marking relations
are applied for the derivation of linear programming problems, analo-
gous to that presented in section 3.1. The bounds obtained using P-
semiflows (section 4.1.1.2) can be improved taking into account other
marking invariants derived from the concept of trap (section 4.1.1.3),
or after the addition of some implicit places to the net (section 4.1.2).

The bounds derived in sections 4.1.1 and 4.1.2 are non-reachable,
in general. A reachable throughput upper bound for the case of 1–
bounded nets is obtained in section 4.1.3. The idea is the following: a
reachable bound for strongly connected marked graphs was computed
in previous chapter using the circuits of the net. Such circuits can
be interpreted in algebraic terms for marked graphs as elementary P-
semiflows (see theorem 2.1.6.1). This is the reason why we try to derive
bounds for free choice nets from P-semiflows in section 4.1.1.2. Other
natural extension of circuits of marked graphs for the case of free choice
nets can be found in the framework of graph theory: multisets of cir-
cuits. From this approach, a reachable throughput upper bound can
be derived for 1–bounded nets.
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4.1.1 Little’s law and linear marking relations

Let us recall the system of inequalities (3.6) presented in chapter 3:

Γ(j)M ≥ PRE · �D(j) (4.1)

where Γ(j) is the mean cycle time of transition tj (i.e., the inverse of its
throughput), M is the vector of limit average markings, PRE is the

pre-incidence matrix of the net, and �D(j) is the vector of average service
demands for transitions, with components �D

(j)
i = v

(j)
i si, i = 1, . . . ,m.

We remark that vector �D(j) can be efficiently computed for live and
bounded free choice nets, if average service times si are given, because
the vector of visit ratios �v(j) can be derived for such nets by solving
a linear system of equations (free choice nets are FRT-nets; therefore,
theorem 2.1.2 can be used).

A goal of this section is the computation of lower bounds for the
mean cycle time of transitions, based on the inequality (4.1). Since the
limit average marking M is unknown, linear marking relations derived
from the underlying net will be considered to achieve this goal:

ZT ·M ≤ k, ∀M ∈ R(N ,M0), with Z ≥\ 0 (4.2)

Linearity is required in the above relation because, taking into ac-
count the definition of the limit average marking, a similar inequality
can be derived for M :

ZT ·M = lim
τ→∞

1

τ

∫ τ

0
ZT ·Mu du ≤ lim

τ→∞
1

τ

∫ τ

0
k du = k (4.3)

In this case, the (unknown) vector M can be substituted in (4.1),
premultiplied by Z, obtaining:

Γ(j) ≥
ZT · PRE · �D(j)

k
(4.4)

and so a lower bound for the mean cycle time of tj.
An additional advantage can be taken of the use of linear relations,

since this linearity will lead, in most cases, to polynomial complexity cal-
culations, based on linear algebra and linear programming techniques.
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4.1.1.1 Structural linear marking relations

Since the limit average marking M is unknown, we can use the approx-
imation given by linear relations verified by all reachable markings. A
first family of linear marking relations is obtained considering those be-
ing structurally characterized. These are stronger conditions than those
expressed by inequality (4.2) (behaviourally defined), but they provide
easier and more efficient techniques for their manipulation. Structural
linear marking relations can be expressed using the incidence matrix C
of the net:

Y T ·C = 0, Y ≥ 0 =⇒ Y T ·M = Y T ·M0,∀M ∈ R(N ,M0),∀M0 (4.5)

Y T ·C ≤/ 0, Y ≥ 0 =⇒ Y T ·M ≤ Y T ·M0,∀M ∈ R(N ,M0),∀M0 (4.6)

Y T ·C ≥\ 0, Y ≥ 0 =⇒ Y T ·M ≥ Y T ·M0,∀M ∈ R(N ,M0),∀M0 (4.7)

Let us consider firstly the case of equality relation given by equa-
tion (4.5). Vectors Y ≥ 0 verifying this equation are often called con-
servative components or P-semiflows (see section 1.2.2), and they have
been used for the computation of throughput upper bounds for strongly
connected marked graphs, in section 3.1.1, by premultiplying the in-
equality (4.1). The obtained results using P-semiflows as well as their
limitations for the computation of reachable (i.e., tight) bounds for live
and bounded free choice nets are summarized in the next section.

Regarding structural linear inequality relations for the reachable
markings of a marked Petri net, vectors Y ≥ 0 verifying (4.6) could
be considered. Premultiplying the linear state equation of the net by
such vectors, the following sequence of inequalities is obtained for each
sequence of successor markings, and for all initial marking M0:

Y T ·M0 ≥ · · · ≥ Y T ·Mi−1 ≥ Y T ·Mi ≥ Y T ·Mi+1 ≥ · · · (4.8)

Moreover, Y T ·C �= 0 implies that there exists (at least) a transition
tj such that Y T ·C[tj] < 0, and if Mi[tj〉Mi+1 then Y T ·Mi > Y T ·Mi+1

in the sequence of inequalities (4.8) (i.e., strict inequality). But in this
case the net cannot be live (because if it was live then transition tj
could be fired an infinite number of times, an infinite number of strict
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inequalities would appear in (4.8), and this is impossible if the initial
marking is finite). Thus, linear inequalities of the form Y T · C ≤/ 0 are
not usefull for us.

Non-negative vectors satisfying the inequality (4.7): ZT · C ≥\ 0
cannot be used directly for the substitution of M in (4.1) (because
they give inequalities in the opposite direction). P-semiflows Y could
be considered such that Y − Z ≥ 0, thus:

(Y − Z)T · C = Y T · C︸ ︷︷ ︸
0

−ZT · C ≤/ 0 (4.9)

But the existence of such vectors Y − Z ≥ 0, (Y − Z)T · C ≤/ 0,
is not possible for conservative nets (and structurally live structurally
bounded nets are conservative; see, e.g., [Sil85]).

Alternatively, other linear marking inequalities of the form Y T
Θ ·M ≥

1, for all (non-transient) marking M can be derived considering vectors
YΘ ≥ 0 having a trap Θ as support. Traps are sets of places which re-
main marked once they have gained at least one token. This structural
concept can be used to improve the throughput upper bound computed
by means of Little’s law and P-semiflows, and will be explained later.

4.1.1.2 Little’s law and P-semiflows

P-semiflows Y are non-negative left annullers of the incidence matrix
C (i.e., Y T · C = 0, thus Y T ·M = Y T ·M0 for all reachable marking
M). Now, using relation (4.4), the following lower bound for the mean
cycle time of a given transition tj can be derived:

Γ(j) ≥ max
Y ∈{P−semiflow}

Y T · PRE · �D(j)

Y T ·M0

(4.10)

The previous lower bound can be formulated in terms of a frac-
tional programming problem and later, after some considerations (see
section 3.1.1), transformed into a linear programming problem:

Theorem 4.1.1 For any net, a lower bound for the mean cycle time
of transition tj can be computed by the following linear programming
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problem:

Γ(j) ≥ ΓPS
(j) = maximize Y T · PRE · �D(j)

subject to Y T · C = 0
Y T ·M0 = 1
Y ≥ 0

(LPP12)

If the solution of the problem (LPP12) is unbounded, since it is a
lower bound for the mean cycle time of transition tj, the non-liveness
can be assured (infinite cycle time). If the visit ratios for all transi-

tions are non-null, then �D(j) > 0, and the unboundedness of the above
problem implies that a total deadlock is reached by the net. This result
has the following interpretation: if the problem (LPP12) is unbounded
then there exists an unmarked P-semiflow, and the net is non-live (re-
call corollary 2.1.11).

Corollary 4.1.1 The problem (LPP12) has unbounded solution iff
∃Y ≥\ 0 such that Y T · M0 = 0 and Y T · C = 0. Moreover, if this
occurs, the net is non-live.

In order to interpret the result presented in theorem 4.1.1, let us
consider the particular case of the state machine (see definition 2.1.12)
depicted in figure 4.1.a. Assume that s1 = 1, s2 = s3 = 0, s4 = 1,
and s5 = 2 are the average service times of t1, t2, t3, t4, and t5, re-
spectively, and that routing rates solving the conflict at place p2 are
r2 = r3 = 1/2 for the firing of transitions t2 and t3. In this case, the
vector of visit ratios for transitions is �v(1) = (1, 1/2, 1/2, 1/2, 1/2)T ,

thus the vector of average service demands is �D(1) = (1, 0, 0, 1/2, 1)T .
The unique elementary P-semiflow is Y1 = (1, 1, 1, 1)T , and it is such
that Y T

1 ·M0 = 3. Therefore, the application of theorem 4.1.1 gives the
value ΓPS

(1) = (1+1/2+1)/3 = 0.8333. In fact, in this case the obtained
value is the exact mean cycle time of transition t1, independently of the
probability distribution of service times. As we remarked in chapter 1,
state machines are the Petri net counterpart of classical queueing net-
works. Since we assume infinite server semantics for transitions, the net
of figure 4.1.a is isomorphic to a queueing network with delay stations,
and in this case the cycle time is easily obtained as the sum of all the
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Figure 4.1: Queueing networks with: (a) only delay nodes and (b) delay
and single-server nodes, represented by means of (a) a state machine
and (b) a free choice net.

average service demands divided by the number of customers, because
no queueing takes place at any node.

Now, let us consider the net of figure 4.1.b, in which stations rep-
resented by transitions t4 and t5 are single-servers instead of delay
nodes (with queueing terminology) or, in other words, have their live-
ness bounds limited to one (with our notation). In this case, the ele-
mentary P-semiflows are Y1 = (1, 1, 1, 1, 0, 0)T , Y2 = (0, 0, 0, 0, 1, 0)T ,
and Y3 = (0, 0, 0, 0, 0, 1)T , with Y T

1 · M0 = 3, Y T
2 · M0 = 1, and

Y T
3 · M0 = 1. Therefore, the problem (LPP12) gives the value

ΓPS
(1) = max{(1 + 1/2 + 1)/3, 1/2, 1} = max{0.8333, 0.5, 1} = 1, and

its inverse, which is the throughput upper bound, is also 1. In a queue-
ing theory framework, the obtained bound is known as the asymptotic
throughput upper bound [Kle76,DB78] and is obtained as the minimum
between (a) the bound computed assuming that no queueing takes place
at any node (0.8333, in this case), and (b) the maximum throughput
of the bottleneck station (transition t5 in the figure) which cannot have
an utilization rate greater than 1.

In the general free choice nets case, the bound presented in theo-
rem 4.1.1 can be interpreted as the maximum among the asymptotic
bounds obtained for the isolated subnets generated by all the elemen-
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Figure 4.2: The throughput upper bound given by (LPP12) is
non-reachable.

tary P-semiflows of the net.
Linear programming problems give an easy way to derive results

and interpret them. Just looking at the problem (LPP12) the follow-
ing monotonicity property is obtained, analogous to that obtained for
marked graphs (property 3.1.1).

Corollary 4.1.2 Let 〈N ,M0〉 be a live and bounded free choice net and
�s the vector of average service times.

i) For a fixed �s, if M ′
0 ≥ M0 (i.e., increasing the number of ini-

tial resources) then the lower bound for the mean cycle time of
〈N ,M ′

0, �s〉 is less than or equal to the one of 〈N ,M0, �s〉 (i.e.,
ΓPS′

(j) ≤ ΓPS
(j) ).

ii) For a fixed M0, if �s′ ≤ �s (i.e., for faster resources) then the lower
bound for the mean cycle time of 〈N ,M0, �s′〉 is less than or equal
to the one of 〈N ,M0, �s〉 (i.e., ΓPS′

(j) ≤ ΓPS
(j) ).

Performance monotonicity does not hold for non-free choice nets
increasing the number of initial resources, as was shown with the live
net in figure 2.6 (for which the addition of one token makes it non-live).

For strongly connected marked graphs, the bound derived from the-
orem 4.1.1 has been shown to be reachable for arbitrary mean values
and coefficients of variation associated with transition service times



4.1. Upper bounds on throughput 131

(theorem 3.1.3). Unfortunately, this is not the case for live and bounded
free choice nets. Let us consider, for instance, the live and 1–bounded
free choice net depicted in figure 4.2. Let s3 and s4 be the average ser-
vice times associated with t3 and t4, respectively. Let t1, t2, and t5 be
immediate transitions (i.e., they fire in zero time). Let q, 1 − q ∈ (0, 1)
be the routing probabilities defining the resolution of conflict at place
p1. The vector of visit ratios normalized for t5 is

�v(5) = (q, 1 − q, q, 1 − q, 1)T (4.11)

The elementary P-semiflows are

Y1 = (1, 1, 0, 0, 1)T

Y2 = (1, 0, 1, 1, 0)T
(4.12)

Then, applying the problem (LPP12) to this net, the following lower
bound for the mean cycle time of transition t5 is obtained:

Γ(5) ≥ max{qs3, (1 − q)s4} (4.13)

while the actual cycle time for this transition is

Γ(5) = qs3 + (1 − q)s4 (4.14)

independently of the higher moments of the probability distribution
functions associated with transitions t3 and t4. Therefore, the bound
given by theorem 4.1.1 is non-reachable for the net in figure 4.2.

In the next section, we consider other linear marking relations, de-
rived from the structural concept of trap, that can be used to improve
the bound of theorem 4.1.1.

4.1.1.3 Little’s law and traps

A trap in a Petri net N is a subset of places Θ ⊆ P such that Θ• ⊆ •Θ.
A well-known property of these structural elements is recalled below.

Theorem 4.1.2 [Hac72] Let 〈N ,M0〉 be a marked Petri net and Θ ∈ P
a trap. If Θ is initially marked, then Θ is marked throughout the net’s
evolution.
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This property can be expressed in algebraic terms considering the
vector YΘ associated with a given trap Θ, and defined as YΘ(p) = χΘ(p),
for all place p (we denote χΘ the characteristic function of the set Θ,
i.e., χΘ(p) = 1 if p ∈ Θ, and χΘ(p) = 0 otherwise). If Y T

Θ · M0 ≥ 1
then Y T

Θ ·M ≥ 1 for all marking M reachable from M0.
Now let us consider the vector YΘ associated with a given trap Θ of

a net, and a P-semiflow Y such that Y − YΘ ≥ 0 (it always exists for
conservative nets). The following linear relation can be derived:

(Y − YΘ)T ·M ≤ Y T ·M0 − 1 (4.15)

for all marking M reachable from M0 (thus the same relation holds for
M). Premultiplying inequality (4.1) by Y − YΘ, the following lower
bound for the mean cycle time of a transition t1 is derived:

Theorem 4.1.3 For any net N and for any trap Θ of N , a lower
bound for the mean cycle time Γ(j) of transition tj is given by:

Γ(j) ≥ ΓΘ
(j) = maximize

(Y − YΘ)T · PRE · �D(j)

Y T ·M0 − 1
subject to Y T · C = 0

Y − YΘ ≥ 0
YΘ(p) = χΘ(p), ∀p ∈ P

(4.16)

In the next section we derive a linear programming problem for the
computation of an improvement of the previous bound based on the
concept of implicit place.

Going back to the net in figure 4.2, the unique minimal trap different
from the P-semiflows is

Θ = {p1, p4, p5} (4.17)

Considering the P-semiflow

Y = (2, 1, 1, 1, 1)T (4.18)

we have

Y ≥ YΘ = (1, 0, 0, 1, 1)T (4.19)
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Figure 4.3: Behaviourally equivalent 1–bounded marked graph of the
net in figure 4.2 for deterministic resolution of conflict and q = 1/2.

and theorem 4.1.3 can be applied:

Γ(5) ≥ qs3 + (1 − q)s4 (4.20)

Therefore the bound obtained in the previous section using only
P-semiflows has been improved for the example (in fact the bound
computed now is tight for this example, i.e., it coincides with the actual
cycle time).

In order to explain in an intuitive way the reason of the previ-
ous improvement, let us derive a behaviourally equivalent 1–bounded
marked graph (figure 4.3) for the free choice net of figure 4.2, assuming
for the sake of simplicity that the resolution of conflict at place p1 is
deterministic with q = 1/2 (i.e., transitions t1 and t2 fire once each
one, alternatively). The lower bound for the mean cycle time of this
marked graph based on theorem 4.1.1 (i.e., using the P-semiflows) is
ΓMG ≥ s3 + s4 (in fact it is reached) and corresponds to the circuit
〈p1, p2, p5, p

′
1, p3, p

′
4〉. Since transition t5 appears instantiated twice in

the marked graph, the obtained bound for the mean cycle time of this
transition is Γ(5) ≥ (s3 + s4)/2. In the original free choice net there
does not exist any minimal P-semiflow including both p2 and p3 in its
support, thus the previous bound is not obtained. In other words, in
this net there exists more linear information about the marking than
the one derived from P-semiflows, that can be obtained from other
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Figure 4.4: The net of figure 4.2 with the addition of the implicit
place p6.

structural relations (that of traps).

4.1.2 A new perspective: implicit places

In this section we recall the concept of implicit place. It allows us to
reinterpret the improvement of the upper bound on throughput pre-
sented in the previous section, using the P-semiflows of a derived net
instead of the trap structures in the original one.

4.1.2.1 Implicit places

An implicit place (see section 1.2.2) is one which never is the unique
place that restricts the firing of its output transitions. Let N be a net
and N p be the net resulting from adding a place p to N . If M0 is
an initial marking of N , Mp

0 denotes the initial marking of N p, i.e.,
Mp

0 (p′) = M0(p
′) for all p′ �= p.

Definition 4.1.1 (Implicit place) Given a net 〈N p,Mp
0 〉, the place

p is implicit iff L(N p,Mp
0 ) = L(N ,M0) (i.e., it preserves the firing

sequences).

As an example let us consider the net in figure 4.4. Place p6 is
implicit since its elimination does not change the firing sequences of the
net (i.e., its firing sequences coincide with those of the net in figure 4.2).
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Implicit places are behaviourally defined. The structural counter-
part of this concept is recalled in the next definition.

Definition 4.1.2 (Structurally implicit place) [CS89c] Given a
net N p, the place p is structurally implicit iff for all initial marking
M0 of N there exists an Mp

0 (p) such that p is an implicit place in
〈N p,Mp

0 〉.

In [CS89c], linear programming techniques are used for deriving nec-
essary and sufficient conditions for a place to be structurally implicit as
well as for computing an upper bound of the minimum initial marking
that makes it implicit.

Theorem 4.1.4 [CS89c]

1. A place p is structurally implicit in N p iff ∃Y ≥ 0 such that
Y T · C ≤ lp, where C is the incidence matrix of N and lp is the
incidence vector of place p in N p.

2. Let p be a structurally implicit place and let define

w
def
= minimize Y T ·M0 + μ

subject to Y T · C ≤ lp
Y T · PRE[tk] + μ ≥ pre(p, tk), ∀tk ∈ p•

Y ≥ 0
(LPP13)

If the initial marking Mp
0 (p) of place p is such that Mp

0 (p) ≥ w
then p is implicit.

As it is remarked in [CS89c], the previous theorem allows to detect
stuctural implicit places (p is structurally implicit iff (LPP13) has a fea-
sible solution) and implicit places (if the initial marking of p is greater
than or equal to that computed by (LPP13)) in polynomial time.

The reason for the introduction of implicit places in this work and
their relation with the linear marking inequalities presented above are
explained in the next sections.
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4.1.2.2 Reinterpretation of traps using implicit places

Let us consider once more the net in figure 4.2 and its behaviourally
equivalent (for q = 1/2) marked graph depicted in figure 4.3. The
elementary circuits (P-semiflows) of this marked graph are

c1 = 〈p1, p2, p5, p
′
1, p

′
5〉

c2 = 〈p1, p4, p
′
1, p3, p

′
4〉

c3 = 〈p1, p2, p5, p
′
1, p3, p

′
4〉

c4 = 〈p1, p4, p
′
1, p

′
5〉

(4.21)

The circuits c1 and c2 correspond with the elementary P-semiflows
of the original net Y1 and Y2 (4.12), respectively. Thus, these circuits
cannot contribute to the improvement of the bound computed for the
original net based on the P-semiflows. This is not the case for the
circuits c3 and c4. These circuits add linear information which is not
reflected by P-semiflows in the original net. The circuit c4 does not
include any timed transition and must not be considered. On the other
hand, the circuit c3 reflects the sequentialization of transitions t3 and
t4, and it gives the actual cycle time of the net.

A given elementary circuit of the derived marked graph does not
correspond with any elementary P-semiflow of the original free choice
net when it includes several instances of a unique transition and each
instance has as input (or output) places which are instances of different
original places. This is the case, for example, for the circuit c3 of the
marked graph of figure 4.3. It includes instances t5 and t′5 of a unique
transition, and the input places of these transitions in circuit c3 are p5

and p′4, respectively, which are instances of different original places.

Now, let us increment the number of circuits of the marked graph of
figure 4.3, by adding the places p6 and p′6 as it is depicted in figure 4.5.
Places p6 and p′6 are replicas of places p5 and p′4, respectively (thus they
are implicit), and can be supposed to be different instances of a new
(implicit) place in the original net (place p6 of the net in figure 4.4).
The addition of this place to the net in figure 4.2 generates a new
elementary P-semiflow

Y3 = (1, 1, 1, 0, 0, 1)T (4.22)
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Figure 4.5: Addition of the implicit places p6 and p′6 to the marked
graph of figure 4.3.

With this P-semiflow, the lower bound for the mean cycle time
computed with problem (LPP12) is

Γ(5) ≥ qs3 + (1 − q)s4 (4.23)

which is the same previously obtained using relations derived from trap
structures (and, in fact, it is the actual cycle time).

Let us remark that the relation between the implicit place p6 of
the net in figure 4.4 and the trap Θ = {p1, p4, p5} considered before is
straightforward: lp6 = YΘ · C, that is, the incidence vector of p6 is the
sum of those of places p1, p4, and p5.

The following linear relation can be derived from the trap Θ (and
the P-semiflow Y = Y1 + Y2):

(Y −YΘ)T ·M = M(p1)+M(p2)+M(p3) ≤ 1, ∀M ∈ R(N ,M0) (4.24)

Alternatively, this one follows from the new P-semiflow Y3 that in-
cludes the implicit place p6:

Y T
3 ·M = M(p1) + M(p2) + M(p3) + M(p6) = 1, ∀M ∈ R(N ,M0)

(4.25)
It can be pointed out that the information given by relation (4.24)

is included in that given by the new P-semiflow (equation (4.25)).
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In the next section, technical details related with the addition of
implicit places which improve the throughput upper bound computed
by means of P-semiflows and traps are considered.

4.1.2.3 Implicit places improve traps-based bounds

Let us consider an initially marked trap Θ of a given net N , and its
associated vector YΘ defined as in previous sections. The following
result, which follows from theorem 4.1.4.1, assures that a structurally
implicit place pΘ associated with Θ, can be added to N .

Corollary 4.1.3 Let Θ be an initially marked trap of N , YΘ(p) =
χΘ(p) for all place p, Y T

Θ ·M0 ≥ 1, and N pΘ the net resulting from the
addition of place pΘ with incidence vector lpΘ

= Y T
Θ ·C to N . Then pΘ

is structurally implicit in N pΘ.

The importance of the previous structural implicit place lies in the
fact that, if a marking makes it implicit (e.g., the marking given by the-
orem 4.1.4.2), then the lower bound for the mean cycle time of a transi-
tion computed using P-semiflows of the augmented net can improve the
bounds based on P-semiflows of the original net (theorem 4.1.1) and on
the trap Θ (theorem 4.1.3). This result is stated in theorem 4.1.5. We
firstly present a technical lemma.

Lemma 4.1.1 Let Θ be an initially marked trap of N , YΘ(p) = χΘ(p)
for all place p. Let pΘ be a place defined as lpΘ

= Y T
Θ · C. Then YΘ,

μΘ = −1 is a feasible solution of the problem (LPP13) and MpΘ
0 (pΘ) ≤

Y T
Θ ·M0 + μΘ (place pΘ is assumed to be pure, i.e., selfloop-free).

Proof. Since Y T
Θ ·C = lpΘ

, then ∀t ∈ •pΘ : Y T
Θ ·POST [t]−Y T

Θ ·PRE[t] =
−pre(pΘ, t). Taking into account that YΘ(p) is the characteristic func-
tion of a trap we have in the last equality that Y T

Θ · PRE[t] > 0 if and
only if Y T

Θ ·POST [t] > 0. Therefore, ∀t ∈ •pΘ: Y T
Θ ·PRE[t] > pre(pΘ, t)

and from the problem (LPP13) we conclude that YΘ and μΘ = −1 are
a feasible solution. From this linear programming problem we also con-
clude directly that MpΘ

0 (pΘ) ≤ Y T
Θ · M0 + μΘ because Y T

Θ · M0 ≥ 1.
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Theorem 4.1.5 Let 〈N ,M0〉 be a marked net, Θ an initially marked
trap of N , YΘ(p) = χΘ(p) for all place p, and 〈N pΘ ,MpΘ

0 〉 the marked
net resulting from the addition to the original net of the structural im-
plicit place pΘ with incidence vector lpΘ

= YΘ · C and with MpΘ
0 (pΘ)

given by theorem 4.1.4.2. Then a lower bound ΓpΘ

(j) for the mean cycle
time Γ(j) of transition tj in 〈N ,M0〉 can be computed applying theo-
rem 4.1.1 to the net 〈N pΘ ,MpΘ

0 〉.
Moreover, if ΓPS

(j) and ΓΘ
(j) are the lower bounds of Γ(j) derived from

the direct application of theorems 4.1.1 and 4.1.3, respectively, to the
original net, then ΓpΘ

(j) ≥ ΓPS
(j) and ΓpΘ

(j) ≥ ΓΘ
(j).

Proof. ΓpΘ

(j) is a lower bound for the mean cycle time of tj in 〈N pΘ ,MpΘ
0 〉

by theorem 4.1.1. Since pΘ is implicit, tj has the same mean cycle time
in 〈N ,M0〉 and in 〈N pΘ ,MpΘ

0 〉. Then, ΓpΘ

(j) is a lower bound for the
mean cycle time of tj in 〈N ,M0〉.

ΓpΘ

(j) ≥ ΓPS
(j) because if Y is a P-semiflow of N , then Z = [Y T |0]T is

a P-semiflow of N pΘ .
Finally, we prove that ΓpΘ

(j) ≥ ΓΘ
(j). Let Y be a P-semiflow of N such

that Y − YΘ ≥ 0. Then Z = [(Y − YΘ)T |1]T is a P-semiflow of N pΘ .
Now, applying equation (4.10) for ΓpΘ

(j):

ΓpΘ

(j) ≥ [(Y − YΘ)T |1] · PREpΘ · �D(j)

Y T ·M0 − Y T
Θ ·M0 + MpΘ

0 (pΘ)
=

=
(Y − YΘ)T · PRE · �D(j)

Y T ·M0 − Y T
Θ ·M0 + MpΘ

0 (pΘ)
+ (4.26)

+
pre(pΘ) · �D(j)

Y T ·M0 − Y T
Θ ·M0 + MpΘ

0 (pΘ)

And this value is greater than or equal to that given by equa-
tion (4.16) in theorem 4.1.3 because the second term of the above sum
is non-negative and the first term in the above sum is greater than or
equal to that given by equation (4.16) in theorem 4.1.3 (taking into
account that MpΘ

0 (pΘ) ≤ Y T
Θ · M0 − 1, by lemma 4.1.1, and then the

denominator is less than or equal to Y T ·M0 − 1).

In the previous section, the net of figure 4.2 is considered as an
example in which the bound computed using the trap Θ = {p1, p4, p5}
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Figure 4.6: The throughput upper bounds given by theorems 4.1.1
and 4.1.3 are non-reachable, while the bound given by theorem 4.1.5 is
reached.

is tight because it reaches the actual value of the mean cycle time. It is
also shown that the same value can be derived, after the addition of the
associated implicit place p6 (figure 4.4), considering the new P-semiflow
(1, 1, 1, 0, 0, 1)T .

Let us consider the same net of figure 4.2, but assuming now that
transition t5 is not immediate but timed, with average service time
equal to s5 (as depicted in figure 4.6). If problem (LPP12) is applied
to the net, the following bound is obtained:

ΓPS
(5) = max{qs3 + s5, (1 − q)s4 + s5} (4.27)

If trap Θ = {p1, p4, p5} is considered, theorem 4.1.3 does not improve
the above bound, since it gives the value:

ΓΘ
(5) = qs3 + (1 − q)s4 (4.28)

Finally, if the implicit place pΘ associated with Θ is added to the
net, theorem 4.1.5 gives the bound:

ΓpΘ

(5) = qs3 + (1 − q)s4 + s5 (4.29)

(for the P-semiflow (1, 1, 1, 0, 0, 1)T ), which improves both ΓPS
(5) and ΓΘ

(5),
and, in fact, it gives the actual cycle time of transition t5 (i.e., it is tight
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Figure 4.7: The throughput upper bounds given by theorems 4.1.1,
4.1.3, and 4.1.5 are non-reachable.

for this example). Note that, in this case, the improvement is due to
the non-null second term of the expresion (4.26).

Unfortunately, the bound given by theorem 4.1.5 is not reachable
in all cases. As an example, let us consider the net of figure 4.7.a.
The lower bound for the mean cycle time of transition t7 given by
theorem 4.1.1 is

ΓPS
(7) = max{qs3 + s6, (1 − q)s4 + s5} + s7 (4.30)

If the unique elementary trap of the net (different from the P-semi-
flows) is considered, Θ = {p1, p4, p5, p6, p7}, the application of theo-
rem 4.1.3 gives the bound:

ΓΘ
(7) = qs3 + (1 − q)s4 (4.31)

Finally, if the implicit place p8 associated with Θ is added to the
net (see figure 4.7.b), theorem 4.1.5 gives the bound:

ΓpΘ

(7) = max{qs3 + s6, (1 − q)s4 + s5, qs3 + (1 − q)s4} + s7 (4.32)
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While the lowest mean cycle time, which is reached for deterministic
timing, is

Γ(7) = qmax{s5, s3 + s6} + (1 − q) max{s4 + s5, s6} + s7 =
= max { qs3 + s6,

(1 − q)s4 + s5,
qs3 + (1 − q)s4 + (1 − q)s5 + qs6,
qs5 + (1 − q)s6}+

+s7

(4.33)
and it is clearly greater than the value ΓpΘ

(7). Therefore, for the net in
figure 4.7.a, the lower bound for the mean cycle time given by theo-
rem 4.1.5 is non-reachable.

In the next section, a new method for the computation of a reachable
throughput upper bound for live and 1–bounded free choice nets is
presented, based on the structural concept of multiset of circuits.

4.1.3 Multisets of circuits: derivation of a reach-
able upper bound

In this section, let us consider live and 1–bounded free choice nets with
arbitrary service times associated with transitions. The conflicts res-
olution policy is also arbitrary, but with some given routing rates. In
fact, without loss of generality, we can restrict to deterministic res-
olution policies, which for 1–bounded free choice nets give the same
performance than any probabilistic routing, in steady-state.

First, we give an algorithm to derive a live and 1–bounded marked
graph which is behaviourally equivalent to the live and 1–bounded free
choice net with deterministic routing. For this marked graph, the re-
sults presented in chapter 3 can be applied for the computation of
bounds. After that, we interpret the computation of bounds for the
behaviourally equivalent marked graph considering some collections of
circuits, or multisets of the original net.

A deterministic resolution of the conflict between two transitions t1
and t2 is a rule that fixes which transition of them will be authorized
to fire at the successive markings enabling both. Thus, in some sense,
the resulting interpreted net can be considered as a conflict-free net.
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In the next paragraph, we present an algorithm for the computation
of bounds for a live and 1–bounded free choice net 〈N ,M0〉 with deter-
ministic routing, based on the fact that the behaviour of a 1–bounded
conflict-free net can be represented by means of an equivalent marked
graph [Ram74], for which the results of chapter 3 can be applied.

Step 0. From the given deterministic resolution policy, compute the
vector of visit ratios �v(j) in the net system 〈N ,M0〉, using the
theorem 2.1.2.

Step 1. Steady-state markings must be home states. Let Mh be one
of the home states (there always exist some for live and bounded
free choice nets, according to theorem 2.1.11), and select it as the
initial marking (i.e., 〈N ,Mh〉 is reversible).

Step 2. Apply the algorithm presented in [Ram74], with the initial
marking of Step 1, in order to compute a behaviourally equivalent
marked graph of 1–bounded conflict-free nets, with the following
modifications: (1) each time one place enables more than one
transition, select the transition authorized by the deterministic
resolution policy; (2) select one slice [Ram74] of the behaviour
graph (among those that occur repeatedly, according to [Ram74,
lemma 3.4.2]) including the same places marked at the initial
home state and such that the number of instances of each tran-
sition in the frustum [Ram74] is the same multiple of its corre-
sponding entry in the vector of visit ratios.

Step 3. Compute the lower bound for the mean cycle time of the
marked graph obtained in Step 2, in which all instances of a
same transition have a service time equal to that of the original
one. The computation is made by solving the linear programming
problem (LPP3). (Observe that the vector of visit ratios for the
marked graph is �v = 11, but the number of instances of each tran-
sition is equal to the same multiple of its corresponding entry in
the vector of visit ratios computed in Step 0.)

Step 4. A lower bound for the mean cycle time of a given transition
in the original net is computed by dividing the value obtained in
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Step 3 by the number of instances of this transition in the derived
equivalent marked graph.

Observe that the smallest behaviourally equivalent marked graph
that can be derived with previous algorithm is obtained by firing a
sequence of transitions of the original net whose firing count vector is a
multiple of the vector of visit ratios (let us denote as �v) such that: all its
components are integer and their greatest common divisor es equal to 1.
On the other hand, from the deterministic routing assumption follows
that the only repetitive sequences of the interpreted net are such having
a multiple of the vector of visit ratios as firing count vector. Therefore,
for a given transition, the number of instances of it in the behaviourally
equivalent marked graph is equal to its corresponding entry in vector �v.
This is the reason why in Step 4 of above algorithm the value obtained
from (LPP3) in Step 3 is divided by the number of instances of the
considered transition.

It must be pointed out that since the marked graph derived in Step 2
is behaviourally equivalent to the original free choice net with deter-
ministic conflict resolution policy then, in particular, their exact mean
cycle times are equal. Therefore, the lower bound for the mean cycle
time of transitions of the original free choice net (with the given deter-
ministic conflicts resolution policy) can be derived from the mean cycle
time of the marked graph, after a normalization operation (dividing by
the number of instances of the selected transition).

The bound computed for the marked graph by means of (LPP3)
given by theorem 3.1.1 is reachable (see theorem 3.1.3). This provides
a method for the computation of a reachable lower bound for the mean
cycle time of transitions for live and 1–bounded free choice nets.

As an example, let us consider the live and 1–bounded free choice net
depicted in figure 4.8. Suppose that the deterministic conflict resolution
policy at place p1 is: “authorize twice transition t1, then once transition
t2, and repeat it” (i.e., the routing rate for transition t1 is twice the
routing rate of t2). The application of Step 0 gives the vector �v(7) =
(2/3, 1/3, 2/3, 1/3, 1, 1, 1)T . The initial marking is already a home state
and therefore the output of Step 1 is verified. The application of Step 2
gives the behaviourally equivalent marked graph depicted in figure 4.9.
The lower bound for the mean cycle time of the derived marked graph
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Figure 4.8: A live and 1–bounded free choice net.

Figure 4.9: Behaviourally equivalent marked graph of the net in fig-
ure 4.8 for a deterministic resolution of conflict (the routing associated
with t1 is equal to twice the routing associated with t2).
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(which is equal for all its transitions) is, according to Step 3, equal to:

Γ(7) = max { 2s3 + 3s6 + 3s7,
s4 + 3s5 + 3s7,
2s3 + s4 + s5 + 2s6 + 3s7,
2s5 + s6 + 3s7}

(4.34)

Finally, the application of Step 4 (divide by the number of instances
of transition t7) leads to a lower bound for the mean cycle time of
transition t7 in the free choice net of figure 4.8 equal to the value given
by (4.33) with q = 2/3.

As can be seen in the example, the proposed method can become
very expensive in amount of memory and computational time. Just
consider, as an example, the net in figure 4.8 but with routing rates
of transitions t1 and t2 being 21 and 11, only a bit different from the
considered before (2 and 1, respectively). In this case the equivalent
marked graph would have 160 transitions and 192 places!

The next paragraphs of this section are devoted to analyze the
method to compute the lower bound for the mean cycle time of the
equivalent marked graph derived from the original 1–bounded free
choice net. This is done in order to translate the underlying struc-
tural property to an equivalent structural property on the free choice
net. This property is used in the last part of the section to derive a
polynomial method to compute the lower bound of the mean cycle time
for the original net without the generation of the marked graph.

It has been shown (theorem 3.1.2) that the problem of finding a
lower bound for the mean cycle time of transitions in a strongly con-
nected stochastic marked graph can be solved looking at the cycle times
associated with each minimal P-semiflow (circuits for marked graphs)
of the net, considered in isolation (in fact, the simplex method used to
solve the problem of Step 3 proceeds in this way). These cycle times can
be computed making the summation of the average service times of all
the transitions involved in the P-semiflow, and dividing by the number
of tokens present in it. Therefore, the performance computation of Step
3 looks at the circuits of the behaviourally equivalent marked graph.

On the other hand, a circuit of the marked graph is composed by
one or several instances of circuits of the original free choice net. This
collection of circuits, including one or several instances of each circuit,
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is called multiset of circuits, and will be formally defined below.
For the previous example, these multisets are

M1 = {〈p1t1p4t5p6t7〉, 〈p1t1p4t5p6t7〉, 〈p1t2p3t4p4t5p6t7〉}
M2 = {〈p1t1p4t5p6t7〉, 〈p1t1p4t5p6t7〉, 〈p1t2p5t6p7t7〉}
M3 = {〈p1t1p2t3p5t6p7t7〉, 〈p1t1p2t3p5t6p7t7〉, 〈p1t2p3t4p4t5p6t7〉}
M4 = {〈p1t1p2t3p5t6p7t7〉, 〈p1t1p2t3p5t6p7t7〉, 〈p1t2p5t6p7t7〉}
M5 = {〈p1t1p2t3p5t6p7t7〉, 〈p1t1p4t5p6t7〉, 〈p1t2p3t4p4t5p6t7〉}
M6 = {〈p1t1p2t3p5t6p7t7〉, 〈p1t1p4t5p6t7〉, 〈p1t2p5t6p7t7〉}

The reader can notice that multisets M5 and M6 (that we will call
non-minimal) need not to be considered in order to obtain the slowest
path because if 〈p1t1p2t3p5t6p7t7〉 is selected for the first time, it will be
selected again instead of 〈p1t1p4t5p6t7〉. We remark also that circuits
〈p1t1p4t5p6t7〉 and 〈p1t1p2t3p5t6p7t7〉 appear twice in multisets M1, M2,
M3, and M4, while circuits 〈p1t2p3t4p4t5p6t7〉 and 〈p1t2p5t6p7t7〉 appear
only once, according to the routing rates associated with transitions t1
and t2. As an example, multiset M2 is depicted in figure 4.10. It can
be interpreted as a path as follows: (1) a token, initially placed at p1

enables transitions t1 and t2; (2) transition t1 is authorized for firing,
according to the given conflict resolution policy; (3) after the firing of t1,
the token splits into two tokens; (4) we follow one of them; for instance,
the one that places at p4; (5) after the firing of t5 and t7, it returns to
p1; (6) according to the conflict resolution policy, t1 is authorized once
more; (7) we follow the same path than in steps (4) and (5), until the
token returns to p1 again; (8) now, transition t2 is autorized; (9) the
path 〈t2p5t6p7t7〉 is followed; (10) the situation now is the same than in
step (1), so the previous steps can be executed ad infinitum.

The mean cycle time of execution of previous path if the multiset of
circuits M2 is considered in isolation is equal to the execution time of
the corresponding isolated circuit 〈p1t1p4t5p6t7p

′
1t

′
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′
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′
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′
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′
7p
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1t2p

′′
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′′
7t

′′
7〉

of the marked graph depicted in figure 4.9, and it is, in general, a lower
bound for the exact mean cycle time. Therefore, a lower bound for
the mean cycle time can be computed taking the maximum among the
mean cycle time of execution of those multisets of circuits satisfying the
routing rates, considered in isolation. In the particular case of marked
graphs (considered in the previous chapter), since no decision exists for
such nets, multisets of circuits were reduce to circuits, and these could
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Figure 4.10: A multiset of circuits of the net in figure 4.8.
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be algebraically characterized as P-semiflows of the net (see theorems
2.1.6.1 and 3.1.1).

The next step is to construct another net (with only a linear size in-
crease of the original size) for which the previously considered multisets
of circuits of live and 1–bounded free choice nets can be algebraically
characterized (in fact, computed as P-semiflows). This can be done in a
similar way to that presented in [Lau87] for the polynomial computation
of the minimal traps of a net. In the rest of this section we formalize
the concept of multiset of circuits and present a net transformation for
the efficient computation of mean cycle time on multisets.

A multiset is a collection of elements that may contain several copies
of an element. More formally, if S is a set, a multiset M of elements
of S is an application M : S → {0, 1, . . .}.

If N = 〈P, T, Pre, Post〉 is a Petri net and M a multiset of circuits
of N (in what follows of this section we write circuit instead of minimal
circuit):

• M(y) denotes the number of circuits of M which pass through
the node y ∈ P ∪ T .

• M(p, t) (respectively M(t, p)) denotes the number of circuits
of M which pass through the arc (p, t) (respectively (t, p)), if
Pre(p, t) > 0 (respectively Post(p, t) > 0).

In the next definitions, we limit the class of multisets of circuits to
those that will correspond exactly with the circuits of the behaviourally
equivalent marked graph that can give the optimum of the problem
(LPP3).

Definition 4.1.3 (R–multiset of circuits) Let N = 〈P, T, Pre,
Post〉 be a net, R the definition of routing rates at conflicts, and M
a non empty multiset of circuits of N . M is called an R–multiset of
circuits iff for all p ∈ P such that |p•| > 1 and M(p) > 0: rjM(p, ti) =
riM(p, tj), for all ti, tj ∈ p•, where ri and rj are the routing rates of
transitions ti and tj in the conflict at place p.

R–multiset of circuits will be abreviated to R–mc. The above def-
inition constraints the multiset to contain the different circuits of the
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net according to the visit ratios for transitions derived from the routing
rates at conflicts.

We define now the concept of set of nodes covered by an R–mc and
introduce minimal R–mcs.

Definition 4.1.4 (Support of R–multisets of circuits) The sup-
port of an R–mc M is the set of nodes ||M|| ⊆ P ∪ T covered by
M.

Definition 4.1.5 (Minimal R–multisets of circuits) An R–mc is
called minimal iff:

a) its support does not contain the support of an R–mc as a proper
subset and

b) if M′ is an R–mc with ||M′|| = ||M||, then M(y) ≤
M′(y), ∀y ∈ P ∪ T .

In the above definition we denote the support with the same symbol
than the support of a vector, as they are closely related concepts. We
consider that the context eliminates confusion.

The consideration of minimal R–mc discards the possibility of in-
cluding two circuits that contain different output places of a fork tran-
sition (a transition with more than one output place). This constraint
is not a problem in order to find the slowest path (with deterministic
service times) because if a given output place of the fork transition is
selected for the first time, it must be selected also the rest of the times.

Lemma 4.1.2 Let 〈N ,M0〉 be a live and 1–bounded free choice net with
deterministic conflict resolution policy, 〈NMG,MMG

0 〉 its behaviourally
equivalent marked graph derived in previous paragraphs of this section,
and M a multiset of circuits of N . M is a minimal R–mc of N iff

1. there exists a circuit (minimal P-semiflow) cMG of NMG such that
for all t1, t2 ∈ cMG instances of the same t ∈ T , then cMG ∩ t•1
and cMG ∩ t•2 are instances of the same p ∈ P , and

2. there exists an integer k ≥ 1 such that M(x) = k.ix where ix is
the number of instances of x in cMG, for all x ∈ P ∪ T .
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Proof sketch. Let cMG be a circuit of NMG. If cMG contains several
instances of a place of N , find a subpath of cMG that begins at an in-
stance p1 of a given place p ∈ P and ends at another instance p2 of the
same place and such that it does not include more than one instance of
any other place (its existency is obvious). This path corresponds with
a circuit of the net N . Substitute the subpath of cMG by the single
place p1. Repeat the procedure of finding subpaths which correspond
with circuits of the original net until cMG has been reduced to a circuit
without more than one instance of any place. It corresponds with a
circuit of N . Therefore, to each circuit of NMG corresponds a multi-
set of circuits of N . Moreover, by the method of derivation of NMG

(taking into account the deterministic routing at conflicts) the multiset
of circuits of N corresponding with a circuit of NMG is an R–mc. If
the number of copies of all the circuits in the multiset is a multiple of
a given integer k, we consider the multiset obtained after dividing all
the number of copies by k, and this multiset (which is also an R–mc)
verifies condition (b) of definition of minimality. Now, if condition (1)
of the lemma is assumed for cMG, condition (a) of minimality of the
derived multiset follows.

Conversely, let M be a minimal R–mc of N . Then there exists a
non-minimal circuit c of N with the same support than M and such
that c(p) = M(p) for all p ∈ ||M|| ∩ P . Moreover, by minimality of
M, the circuit c verifies a condition analogue to (1), that is: if t ∈ c
then there exists only one p ∈ t• such that p ∈ c. By the method
of derivation of NMG from N and since the original multiset was an
R–mc, there exists a path cMG of NMG equal (except instances) to the
circuit c. Finally, either the obtained path of NMG is a circuit that
verifies (1) and M(x) = ix (where ix is the number of instances of x in
cMG), for all x ∈ P ∪ T , or there exists a circuit of NMG that consists
of k repeated instances of the path cMG, and that circuit verifies also
(1) and (2).

Now, we define an expansion of a given live and 1–bounded stochas-
tic free choice net with deterministic resolution of conflicts which allows
a polynomial computation of its minimal R–mcs.

Definition 4.1.6 (Expansion of a stochastic net) Let N =
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Figure 4.11: The replacement of a shared place: Step 1.

〈P, T, Pre, Post〉 be a free choice net. The expanded net of N , denoted
as N̂ , is obtained from N after the following steps:

Step 1. (Lautenbach expansion) Let N be initially equal to N . Replace
each shared place ps ∈ P (i.e., such that |•ps| > 1 ∨ |p•s| > 1) as
follows (see figure 4.11):

P := (P \ {ps}) ∪
⋃

t∈•ps ptps ∪
⋃

t∈p•s ppst
T := T ∪ tps
Pre(ptps , tps) = 1, ∀t ∈ •ps
Post(ppst, tps) = 1, ∀t ∈ p•s
Post(ptps , t) = Post(ps, t), ∀t ∈ •ps
Pre(ppst, t) = Post(ps, t), ∀t ∈ p•s

Step 2. Derive a new net N̂ from N as follows: for each output-shared
place ps ∈ P (i.e., such that |p•s| > 1) and for each pair of output
transitions t1, t2 of ps add the transition tpst1t2 as follows (see
figure 4.12):

T̂ := T ∪ {tpst1t2}
P̂ re(ppst1 , tpst1t2) = r2

P̂ ost(ppst2 , tpst1t2) = r1

where r1, r2 are positive integer numbers proportional to the rout-
ing rates associated with t1, t2 in the conflict at place ps.

Step 3. Associate to each t ∈ T̂ the parameter ŝ(t) such that: ŝ(ti) = si
if ti ∈ T̂ ∩ T (where si is the average service time of transition ti
in the original net), and ŝ(t) = 0 if t ∈ T̂ \ T .
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Figure 4.12: Additional constraint for an output-shared place: Step 2.

In chapter 2 (theorem 2.1.6.1) a graph theoretical concept (circuit)
was related with another one of algebraic nature (minimal P-semiflow)
for marked graphs. Now, multisets of circuits are related with (non
necessarily minimal) P-semiflows.

Lemma 4.1.3 [Lau87] Let N = 〈P, T, Pre, Post〉 be a marked graph.
Then Y is a P-semiflow of N iff there exists a multiset M of circuits
of N such that Y (p) = M(p) for all p ∈ P .

Now, the following result can be derived from lemma 4.1.3.

Theorem 4.1.6 Let M be a multiset of circuits of a free choice net
N . M is a minimal R–mc of N iff there exists a minimal P-semiflow
Ŷ of the expanded net N̂ such that:

1. For all p ∈ P that is not a shared place then M(p) = Ŷ (p).

2. For all p ∈ P that is a shared place then M(p, ti) = Ŷ (ppti) and
M(tj, p) = Ŷ (ptjp) for all ti ∈ p• and for all tj ∈ •p.

The paragraphs below contain all technical details in order to prove
this theorem. Previously, we introduce a simple definition and a tech-
nical lemma.

Definition 4.1.7 Let N = 〈P, T, Pre, Post〉 be a free choice net, N̂ its
corresponding expanded net, and Ŷ a P-semiflow of N̂ . The restricted
support of Ŷ respect to places P of the original net N , ||Ŷ ||N , is given
by:
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(a) If p is non-shared, then p ∈ ||Ŷ ||N ⇔ p ∈ ||Ŷ ||.
(b) If p is shared, then p ∈ ||Ŷ ||N if and only if all places ppt resulting

from the expansion of the output arcs of p belong to ||Ŷ ||.

Now, as in [Lau87], the following result can be derived from
lemma 4.1.3.

Lemma 4.1.4 Let M be a multiset of circuits of a free choice net. M
is an R–mc of N iff there exists a P-semiflow Ŷ of N̂ such that:

1. For all p ∈ P that is non-shared M(p) = Ŷ (p).

2. For all p ∈ P that is a shared place M(p, ti) = Ŷ (ppti) and
M(tj, p) = Ŷ (ptjp) for all ti ∈ p• and for all tj ∈ •p.

Proof. Let Ŷ be a P-semiflow of N̂ . Ŷ is also a P-semiflow of N
because N and N̂ differ only in the transitions added in Step 2 of
definition 4.1.6. By construction, the net N is a marked graph and
therefore (by lemma 4.1.3) there exists a multiset M of circuits of N
such that for all p ∈ P : Ŷ (p) = M(p).

Let us suppose that M(tp) > 0, where tp is generated in the ex-
pansion of an output shared place p and t•p = {ppti | ti ∈ p•, 1 ≤
i ≤ v} In N̂ , between two places pptj , pptj+1

(1 ≤ j ≤ v − 1) there
exists a transition tptjtj+1

that verifies Pre(pptj , tptjtj+1
) = rj and

Post(pptj+1
, tptjtj+1

) = rj+1 (see Step 2 in definition 4.1.6). There-

fore, Ŷ verifies that rjŶ (pptj+1
) = rj+1Ŷ (pptj). This implies that

rjM(pptj+1
) = rj+1M(pptj).

Finally, it is easy to see that, to M corresponds a multiset of circuits
M of N with ||M|| ∩ P = ||Ŷ ||N , such that M(p, ti) = M(ppti),
1 ≤ i ≤ v (being p a shared place), M(tj, p) = M(ptjp) and for all
non-shared place M(p) = M(p). Therefore, M is an R–mc.

The converse implication can be obtained by reversing the previous
arguments.

From the above lemma, we can deduce the following obvious result:

Corollary 4.1.4 Let M be an R–mc of a free choice net N and Ŷ the
corresponding P-semiflow in the expanded net N̂ . Then ||M|| ∩ P =
||Ŷ ||N .
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Now, we prove the theorem 4.1.6.

Proof of theorem 4.1.6. (⇒) By lemma 4.1.4, there exists a P-semi-
flow Ŷ1 of N̂ such that ||M|| = ||Ŷ1||N and the conditions (1) and (2)
of the theorem hold. If Ŷ1 is minimal, we are done by taking Ŷ = Ŷ1.
Assume Ŷ1 is not minimal. Then, by definition of minimality, there
exists a minimal P-semiflow Ŷ2 such that ||Ŷ2|| ⊂ ||Ŷ1||. Moreover, by
lemma 4.1.4 there exists an R–mc M′ that satisfies the conditions (1)
and (2) of the theorem and ||M′|| ∩ P = ||Ŷ2||N . Since ||Ŷ2|| ⊂ ||Ŷ1||
implies that ||Ŷ2||N ⊆ ||Ŷ1||N , it follows ||M′|| ⊆ ||M||. Because the
minimality of M, the equality holds. Then we take Ŷ = Ŷ2.

(⇐) By lemma 4.1.4, there exists an R–mc M1 of N such that
||Y ||N = ||M1|| ∩ P and the conditions (1) and (2) hold. If M1 is
minimal, we are done by taking M = M1. Assume that M1 is not
minimal. Then, by definition of minimality, there exists a minimal R–
mc M2 such that the R–mc M2 is enclosed into the R–mc M1 (this
inclusion is stronger than the one of the support of places). Moreover,
by the previous implication (demostrated in this theorem) there exists
a minimal P-semiflow Ŷ ′ that satisfies conditions (1) and (2) of the
theorem. Since M2 is enclosed into M1 and this means inclusion at
level of places, transitions, and arcs, ||Ŷ ′|| ⊆ ||Ŷ || is verified. Because
the minimality of Ŷ , the equality holds. Then we take Ŷ = Ŷ ′.

The next theorem gives a lower bound for the mean cycle time of a
transition of a live and 1–bounded free choice net, using the P-semiflows
of the expanded net defined above.

Theorem 4.1.7 A lower bound for the mean cycle time of transition
tj of a live and 1–bounded free choice net 〈N ,M0〉 is:

Γmin
(j) =

k
Ŷ ∗ γ(Ŷ ∗)

kv(j)

where:

• γ(Ŷ ∗) can be obtained by solving the following linear programming
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problem:

γ(Ŷ ∗) = maximize Ŷ T · ̂PRE · �̂s
subject to Ŷ T · Ĉ = 0

11T · Ŷ = 1

Ŷ ≥ 0

(LPP14)

where ( ̂PRE) Ĉ is the (pre-) incidence matrix of the expanded
net N̂ of N and �̂s is the vector defined in Step 3 of expansion of
N .

• k
Ŷ ∗ is a non-negative number such that k

Ŷ ∗Ŷ
∗ = Ŷ ∗

Z where the

vector Ŷ ∗
Z ∈ ZZ|P̂ | and the greatest common divisor of its compo-

nents is equal to 1.

• kv(j) is a non-negative number such that kv(j)�v(j) = �vZ where the
vector �vZ ∈ ZZ|T | and the greatest common divisor of its compo-
nents is equal to 1.

Proof. The optimum solution of (LPP14) is always reached for a min-
imal P-semiflow because, taking into account [Mur83, theorem 3.3], if
(LPP14) has an optimum feasible solution, then it has a basic feasible
solution Ŷ that is optimum. Therefore, the set of rows that are used by
Ŷ is linearly independent (i.e., full rank). Considering that Ŷ T · Ĉ = 0,
we obtain that the number of non-null entries of vector Ŷ (i.e., the
number of rows used by Ŷ ) is equal to the rank of rows of Ĉ used by
Ŷ plus one. This last statement is precisely the characterization of a
minimal P-semiflow, presented in [CS89b].

Multiplying the optimum value of the above linear programming
problem by the constant k

Ŷ ∗ , we obtain the sum of average service
times of transitions covered by a minimal R–mc. This is because the
vector Ŷ ∗

Z = k
Ŷ ∗Ŷ

∗ is a minimal P-semiflow whose components are
integer and minimal, thus there exists a minimal R–mc, according to
theorem 4.1.6.

Then the above computation can be rewritten in terms of minimal
R–mc in the following way:

k
Ŷ ∗ γ(Ŷ ∗) = maximize M|P · PRE · �s

such that M is a minimal R–mc of N (4.35)
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where M|P denotes the row vector with components M|P (p) = M(p)
for all place p of the original net.

Now, we consider the behaviourally equivalent (for a given determin-
istic conflicts resolution policy) marked graph derived in the first para-
graphs of this section. According to lemma 4.1.2, to each k multiple of
a minimal R–mc of the original net corresponds a circuit (i.e., minimal
P-semiflow) of this marked graph, and each of them contains only one
token. Then k k

Ŷ ∗ γ(Ŷ ∗) is the value computed in the Step 3 of the algo-
rithm for the derivation of the behaviourally equivalent marked graph.
Finally, since the number of instances of tj in the behaviourally equiva-
lent marked graph is k �vZ(tj) (lemma 4.1.2) then, dividing k k

Ŷ ∗ γ(Ŷ ∗)
by this constant, we obtain the mean cycle time of transition tj com-
puted in Step 4 of the algorithm for the derivation of the behaviourally
equivalent marked graph, hence being a lower bound for the mean cycle
time of tj in the original net.

In fact, from the reachability of the bound for strongly connected
marked graphs (see theorem 3.1.3) the reachability of the bound given
by theorem 4.1.7 follows for live and 1–bounded free choice nets.

Theorem 4.1.8 For live and 1–bounded free choice nets with arbitrary
values of average service times of transitions and arbitrary routing rates
defining the resolution of conflicts, the lower bound for the mean cycle
time obtained from theorem 4.1.7 is reachable.

Proof. The result follows from the following considerations: (1) deter-
ministic service times and deterministic routing are particular cases of
timing and conflict resolution policy, respectively; (2) for such policy,
theorem 4.1.7 can be applied; and (3) for the case of marked graphs
with deterministic timing, the derived bound is reached.

As in the case of strongly connected marked graphs (cfr. theo-
rem 3.1.4), a characterization of liveness and 1–boundedness for struc-
turally live and structurally bounded free choice nets can be derived:

Theorem 4.1.9 Liveness and 1–boundedness of structurally live and
structurally bounded free choice nets can be characterized in polynomial
time.
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Figure 4.13: Expanded net of the one depicted in figure 4.7.a (the
weights r1 and r2 are such that r1/r2 = q/(1 − q)).

Proof. 1–boundedness can be characterized computing the structural
marking bound of places which is equal to the actual marking bound
for structurally live and structurally bounded free choice nets (cfr. the-
orem 2.1.12). Liveness can be characterized checking the boundedness
of the problem (LPP14): the value given by theorem 4.1.7 is a lower
bound for the mean cycle time; if this value is infinite the mean cycle
time is unbounded, and the net is non-live; if the value given by theo-
rem 4.1.7 is finite, since it is reachable (cfr. theorem 4.1.8), the net must
be deadlock-free. We know that for structurally live and structurally
bounded free choice nets, liveness and deadlock-freeness are equivalent
(cfr. property2.1.3). Thus the finiteness of the value given by theo-
rem 4.1.7 is sufficient to establish the liveness of a 1–bounded struc-
turally live and structurally bounded free choice net.

As an example, let us consider once more the live and 1–bounded
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free choice net depicted in figure 4.7.a. Its expanded net according
to definition 4.1.6 is depicted in figure 4.13. The application of theo-
rem 4.1.7 for this net gives the value:

Γ(7) = qmax{s5, s3 + s6} + (1 − q) max{s4 + s5, s6} + s7 =
= max { qs3 + s6,

(1 − q)s4 + s5,
qs3 + (1 − q)s4 + (1 − q)s5 + qs6,
qs5 + (1 − q)s6}+

+s7

(4.36)
which is exactly the actual cycle time of the net for deterministic service
time of transitions.

The natural extension of the results presented in this section would
consist on the computation of lower bounds for the mean cycle time of
transitions of live and k–bounded (k > 1) free choice nets. Now, we
argue that such extension cannot be obtained applying the techniques
used for 1–bounded nets.

Let us consider the Petri net depicted in figure 4.2, but now with
initial marking of place p1 equal to 2 tokens. Suppose the following
deterministic conflict resolution policy at place p1: “select twice tran-
sition t1, then once transition t2, and repeat it” (i.e., the routing rate
for transition t1 is twice the routing rate of t2). A direct extension of
the method presented above for the computation of a lower bound for
the mean cycle time of t5 would be the following:

1. Derive the expanded net.

2. Apply the theorem 4.1.7 with j = 5 and divide by 2 the obtained
value (i.e., divide the cycle time of the slowest circuit by the
number of contained tokens).

But the obtained value is not a lower bound for the mean cycle time
of t5 in the original net, in general. For instance, if transitions t3 and
t4 are supposed to be exponentially timed with averages s3 = s4 = 1,
the value that can be derived from theorem 4.1.7, dividing by 2, is
(2/3 + 1/3)/2 = 0.5, while the actual cycle time is Γ(5) = 0.387.
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The reason of this bad result is the following: the value obtained
from theorem 4.1.7, dividing by 2, is equal to the one obtained devel-
oping the behaviourally equivalent marked graph, putting 2 tokens in
place p1, computing the mean cycle time applying (LPP3), and divid-
ing by 3 (because t5 is instantiated three times in the marked graph).
But this marked graph (with 2 tokens at place p1) is not behaviourally
equivalent to the original free choice net. Actually, the marked graph
is slower than the original net. This is because in the marked graph
the T-components of the net are completely sequentialized one after
the other, while in the original net they share the places p4 and p5, and
this fact makes faster the synchronization at t5.

The above result is not always true. That is, the value obtained
from theorem 4.1.7 dividing by the number of tokens present in the
optimum P-semiflow is not greater than the exact mean cycle time, in
all cases. For instance, if the net depicted in figure 4.8 is considered
with deterministic resolution of conflicts (2 times t1, then once t2) and
exponentially distributed service times of transitions t3, t4, t5, t6, and
t7 (with means equal to 1), the value that can be derived from theo-
rem 4.1.7 dividing by 2 is (2/3 + 1/3 + 2/3 + 2/3 + 2/3)/2 = 1.5, while
the actual cycle time is Γ(7) = 1.52

4.2 Lower bounds for the steady-state

throughput

In this section, lower bounds on throughput are proposed, indepen-
dent of the higher moments of the service time probability distribution
functions, based on the computation of the transition liveness bounds,
defined in section 1.2.3.

The trivial lower bound on throughput consisting of the inverse
of the sum of the service times of all transitions, has been improved
for strongly connected marked graphs in section 3.2.2, based on the
knowledge of the liveness bound L(t) for all transitions t of the marked
graph.

Moreover, this lower bound for the throughput has been shown to
be reachable for any marked graph topology and for some assignement
of probability distribution functions to the service time of transitions
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(cfr. theorem 3.2.3).
This lower bound for the throughput of transitions can be applied

for live and bounded free choice nets in the following way: weighting
the average service time si of ti with the corresponding visit ratio v

(j)
i

(for a fixed tj); in other words, considering the average service demand

D
(j)
i for transition ti (as defined in section 4.1.1).

Theorem 4.2.1 For any live and bounded free choice net with a spec-
ification of the average service time si for each transition ti it is not
possible to assign probability distribution functions to the transition ser-
vice times such that the mean cycle time of transition tj is greater than

Γmax
(j) =

m∑
i=1

D
(j)
i

L(ti)
=

m∑
i=1

v
(j)
i si
L(ti)

(4.37)

independently of the topology of the net.
Moreover, this upper bound for the mean cycle time is reachable

for any live and bounded free choice net, for some conflicts resolution
policy, and for some assignement of probability distribution functions
to the service time of transitions (i.e., the bound cannot be improved).

Proof. Derive a marked graph (for deterministic conflicts resolution
policy) with the same vector of visit ratios (as in section 4.1.3) and
apply the bound obtained in theorem 3.2.2. Different instances of a
given transition are considered in the relative throughput of the cor-
responding component in the vector of visit ratios. Thus, the bound
obtained for the derived marked graph applying theorem 3.2.2 coincides
with the bound obtained for the original net using the formula stated
in this theorem. The bound is reachable because, for a deterministic
conflict resolution, the throughput of the derived marked graph and
of the original net are equal and in this case the lower bound for the
throughput of marked graphs is reachable (see theorem 3.2.3).

We recall (cfr. theorem 2.1.13) that in the case of live and bounded
free choice nets, the liveness bound equals the enabling and the struc-
tural enabling bounds for each transition. Therefore, the reachable
lower bound for the throughput of these nets, presented in the above
theorem, can be computed as follows:
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Theorem 4.2.2 For any live and bounded free choice net with a spec-
ification of the average service time si for each transition ti, the reach-
able upper bound for the mean cycle time of transition tj given by the-
orem 4.2.1 can be computed as:

Γmax
(j) =

m∑
i=1

D
(j)
i

SE(ti)
=

m∑
i=1

v
(j)
i si

SE(ti)
(4.38)

where SE(ti) is the structural enabling bound of ti.

From the above theorem, the next result follows:

Corollary 4.2.1 The computation of the upper bound for the mean
cycle time of a transition of a live and bounded free choice net presented
in theorem 4.2.1 has polynomial complexity on the net size.

Really, the computation of Γmax
(j) can be achieved by solving the lin-

ear programming problems (LPP1) that define the structural enabling
bound of transitions (definition 1.2.3).

4.3 Conclusions

Upper and lower bounds for the steady-state throughput of transitions
of live and bounded free choice nets have been derived in this chapter.

Concerning the throughput upper bound, a direct application of the
same result that gave a reachable bound for live and bounded marked
graphs (using P-semiflows) does not lead to a tight bound. In order
to improve the bound, other marking invariants have been considered,
as some ones derived from traps. Unfortunately, the bounds obtained
from these invariants are not always tighter than the ones based on
P-semiflows. A real improvement has been obtained after the addition
of implicit places to the net. The bound computed using P-semiflows
of the augmented net (with implicit places) does really improve the
previous bound, but it is not reachable either. A reachable throughput
upper bound has been derived for the case of 1–bounded nets using
another “natural” generalization of the marked graphs result: multisets
of circuits of free choice nets instead of circuits of marked graphs. A
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polynomial complexity algorithm for the computation of this bound has
been obtained after the introduction of a particular net transformation,
which is also of linear complexity.

In the case of the upper bound for the mean cycle time (throughput
lower bound), the sum of the average service demands for transitions
divided by their corresponding liveness bounds has been shown to be
a reachable value. For a deterministic resolution policy and for some
distribution functions with arbitrary mean values and increasing the
coefficients of variation, the bound tends to the exact value. The com-
putation of this bound has also polynomial complexity, since for live
and bounded free choice nets the computation of the average service
demands and the liveness bounds of transitions can be reduced to the
solution of a linear system of equations and of some (no more than the
number of transitions) linear programming problems, respectively.
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Chapter 5

Extensions to other net
subclasses

In chapter 2, a classification of stochastic Petri nets attending to the
computability of visit ratios from different net parameters was pre-
sented. After that, the main results on the computation of bounds for
marked graphs and live and bounded free choice nets have been derived
in chapters 3 and 4, respectively.

Now, we extend some of these results for other net subclasses pre-
sented in chapter 2. The first one (section 5.1) is that of live and struc-
turally bounded mono-T-semiflow nets. After that, in section 5.2, we
present bounds for general live and structurally bounded FRT-nets. In
section 5.3, totally open deterministic systems of sequential processes,
that are defined not only from the structure but also from the initial
marking are considered. Their exact analysis is possible in polynomial
time on the net size. Bounds for live and bounded persistent nets are
considered in section 5.4. These nets are behaviourally characterized
and require the expansion of the reachability graph for the computation
of the vector of visit ratios, hence for the computation of performance
bounds.

5.1 Mono-T-semiflow nets

Let us now consider live and structurally bounded mono-T-semiflow
nets and give upper and lower bounds for their steady-state throughput.
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Figure 5.1: Live and 1–bounded mono-T-semiflow net whose cycle time
depends on the conflict resolution policy.

Since mono-T-semiflow nets are structurally characterized, they can be
recognized without a previous behavioural analysis. According to the
results in section 2.1.2, they can be detected by computing their unique
minimal T-semiflow X, in polynomial time. Since mono-T-semiflow
nets are FRT-nets, weak ergodicity of its firing process is assured (see
theorem 2.1.3) but, unfortunately, the ergodicity of the marking process
is not guaranteed (property 2.1.8). However, even in the case in which
the marking process is non-ergodic, the computation of the throughput
bounds makes sense. The values that we compute in this section are
bounds for all possible steady-state behaviours of the marking process
of the net.

Let us remark also that for live structurally bounded mono-T-semi-
flow nets, the vector of visit ratios is fixed from the structure, like in the
particular case of marked graphs (unity vector in that case). But the
exact cycle time of a mono-T-semiflow net depends on the probabilities
defining the resolution of conflicts and, of course, on the service times.

As an example, let us consider the live and 1–bounded mono-T-
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semiflow net depicted in figure 5.1. Let t1, t2, and t3 be immediate
transitions. Let s4 = 1, s5 = 2, s6 = 2, and s7 = 3 be the deterministic
service times of transitions t4, t5, t6, and t7, respectively. Let q and
1 − q be the probabilities of firing transitions t2 and t3, respectively,
when they are simultaneously enabled (0 ≤ q ≤ 1). If the conflict
between t2 and t3 is almost surely solved in favour of t2 (i.e., if q = 1),
the mean cycle time of the net is:

Γ(q=1) = 1 + max{2, 2 + 3} = 6 (5.1)

On the other hand, if t3 always fires before t2 (i.e., q = 0), the mean
cycle time is:

Γ(q=0) = 2 + max{1 + 2, 3} = 5 (5.2)

Therefore, the mean cycle time depends on the conflict resolution
policy.

5.1.1 Lower bound for the mean cycle time

Let 〈N ,M0〉 be a live and structurally bounded mono-T-semiflow net
and X its unique minimal T-semiflow. Then, the visit ratio for transi-
tion ti (i = 1, . . . ,m) normalized, for instance, for transition tj is (by
theorem 2.1.5):

v
(j)
i =

X(i)

X(j)
(5.3)

If si denotes the average service time of transition ti, the average
service demand of transition ti (i = 1, . . . ,m) is:

D
(j)
i

def
= v

(j)
i si (5.4)

Then, from Little’s law (equation (3.4) in section 3.1.1) and con-
sidering the P-semiflows of N , the following lower bound for the mean
cycle time of transition t1 can be derived, as in section 4.1.1.2:

Γ(j) ≥ max
Y ∈{P−semiflow}

Y T · PRE · �D(j)

Y T ·M0

(5.5)

where �D(j) denotes the vector with components D
(j)
i , i = 1, . . . ,m.
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Theorem 5.1.1 For any live and structurally bounded mono-T-
semiflow net, a lower bound for the mean cycle time of transition tj
can be computed by the following linear programming problem:

Γ(j) ≥ maximize Y T · PRE · �D(j)

subject to Y T · C = 0
Y T ·M0 = 1
Y ≥ 0

(LPP15)

As in the case of free choice nets, if the solution of (LPP15) is
unbounded (i.e., if there exists an unmarked P-semiflow), since it is a
lower bound for the mean cycle time of transition tj, the non-liveness
can be assured (infinite cycle time). In fact, if (LPP15) is unbounded,
then the net reaches a deadlock because liveness and deadlock-freeness
are equivalent properties for mono-T-semiflow nets (because they are
FRT-nets, see property 2.1.3).

Nevertheless, the bound given by theorem 5.1.1 is not reachable,
in general. Moreover, a mono-T-semiflow net can be non-live and the
obtained lower bound for the mean cycle time be finite. In other words:

Property 5.1.1 For mono-T-semiflow nets, liveness is not character-
ized by the finiteness of the lower bound of the mean cycle time computed
by means of (LPP15).

This can be easily checked by considering the net depicted in fig-
ure 5.2. It is non-live, so that the actual steady-state cycle time is
infinite, even if the obtained bound is finite.

At this point, the techniques developed in section 4.1 for the im-
provement of the throughput upper bound of live and bounded free
choice nets can be applied for live and structurally bounded mono-T-
semiflow nets. Let us illustrate that possible improvement by consid-
ering the live and structurally bounded mono-T-semiflow depicted in
figure 5.3.a. The unique minimal T-semiflow of this net is:

X = (2, 2, 1, 1, 1, 1)T = �v(3) (5.6)

The elementary P-semiflows are:
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Figure 5.2: Non-live mono-T-semiflow net, even if all P-semiflows are
marked and thus the bound given by (LPP15) is finite.

Figure 5.3: The bound given by theorem 5.1.1 is non-reachable for the
original net while it gives the actual cycle time after the addition of
implicit places.
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Y1 = (2, 1, 1, 1, 1, 0, 0)T

Y2 = (0, 0, 0, 0, 0, 1, 1)T
(5.7)

Then, the application of the problem (LPP15) stated in theo-
rem 5.1.1 gives the bound:

Γ(3) ≥ max { 2s1 + 2s2 + 1
2
s3 + 1

2
s4 + s5 + s6,

s3 + s4 }
(5.8)

Let us consider now the addition of the implicit places p8, p9, and
p10 (associated with the minimal traps {p1, p2, p5}, {p1, p2, p3, p4}, and
{p1, p3, p5}, respectively) computed in [CS89c] for the elimination of
all spurious solutions from the linear state equation of the net (solu-
tions that correspond to non-reachable markings), as it is depicted in
figure 5.3.b. This net has six elementary P-semiflows:

Y1 = (2, 1, 1, 1, 1, 0, 0, 0, 0, 0)T

Y2 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0)T

Y3 = (1, 0, 1, 1, 0, 0, 0, 1, 0, 0)T

Y4 = (1, 1, 0, 1, 0, 0, 0, 0, 0, 1)T

Y5 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0)T

Y6 = (1, 0, 0, 1, 0, 0, 0, 1, 1, 1)T

(5.9)

And if theorem 5.1.1 is applied to it, gives the bound:

Γ(3) ≥ max { 2s1 + 2s2 + 1
2
s3 + 1

2
s4 + s5 + s6,

s3 + s4,
2s1 + 2s2 + s3 + s4 + s5 + s6,
2s1 + 2s2 + s3 + s4 + s5 + s6,
2s1 + 2s2 + s5 + s6,
2s1 + 2s2 + s3 + s4 + s5 + s6 } =

= 2s1 + 2s2 + s3 + s4 + s5 + s6

(5.10)

which is reached for all timing interpretations of the net, i.e., it is the
exact mean cycle time for transition t3, independently of the probability
distribution functions associated with the service time of transitions.
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5.1.2 Upper bound for the mean cycle time

Concerning the upper bound for the mean cycle time, only the “trivial”
one, given by the sum of the average service times of all the transitions
weighted by the vector of visit ratios, can be computed, so far.

If the net is live all transition must be firable, and the sum of all
average service times multiplied by the number of occurrences of each
transition in the (unique) average cycle of the model corresponds to
any complete sequentialization of all the activities represented in the
model. This pesimistic behaviour can be reached in some particular
cases (e.g., for live and 1–bounded marked graphs, see section 3.2.1)
if random variables with arbitrarily large coefficient of variation are
conveniently selected (theorem 3.2.1).

Theorem 5.1.2 For any live and structurally bounded mono-T-
semiflow net with a specification of the average service time si for each
transition ti it is not possible to assign probability distribution func-
tions to the transition service times such that the mean cycle time of
transition tj is greater than

m∑
i=1

D
(j)
i =

m∑
i=1

v
(j)
i si (5.11)

independently of the topology of the net.

In order to improve the previous bound, an intuitive idea could be
to take into account that some work can be done in parallel at each
transition, since infinite-server semantics is assumed. From a queue-
ing theory perspective and considering the steady-state behaviour, the
number of servers at each station (transition) is equal to the corre-
sponding enabling bound in steady-state (i.e., liveness bound), and the
contribution of each transition to the duration of the complete sequen-
tialization of all activities can be divided by its liveness bound. Thus,
we could conjecture the following upper bound for the mean cycle time
of tj:

Γ(j)

?
≤

m∑
i=1

D
(j)
i

L(ti)
=

m∑
i=1

v
(j)
i si
L(ti)

(5.12)
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Figure 5.4: “Non-trivial” upper bound for the mean cycle time cannot
be applied.

The same value would be obtained taking the algorithm used for
the computation of the lower bound for the mean cycle time (theo-
rem 5.1.1), substituting in it the “max” operator with the sum of the
average service times of all transitions involved, and making some ma-
nipulation to avoid counting more than once the contribution of the
same transition.

The conjecture (5.12) has been shown to be true for strongly con-
nected marked graphs, in section 3.2.2. In fact, for this subclass of
nets the upper bound for the mean cycle time given by (5.12) has been
shown to be reachable for any net topology, for any specification of the
average service times, and for some assignement of probability distri-
bution functions to the service times of transitions, in section 3.2.3.

Concerning mono-T-semiflow nets, the conjecture (5.12) is false.
This can be shown considering, for example, the mono-T-semiflow net
depicted in figure 5.4 with average service times s1, s2, s3 for transitions
t1, t2, t3, respectively. For this net, the vector of visit ratios normalized
for transition t2 is �v(2) = (2, 1, 1)T , and the liveness bounds of tran-
sitions are given by L(t1) = 2, L(t2) = 1, and L(t3) = 1. Thus, the
conjecture (5.12) would give the value s1 + s2 + s3 as upper bound
for Γ(2). If exponentially distributed random variables (with means
s1, s2, s3; s1 �= s3) are associated with transitions, the steady-state cy-
cle time for transition t2 is
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Γ(2) = s1 + s2 + s3 +
s2
1

2(s1 + s3)
(5.13)

which is greater than the value obtained applying (5.12), thus the con-
jecture is false.

Unfortunately, the trivial bound given by theorem 5.1.2 is non-
reachable in general, and in some cases its value can be too pesimistic.
An improving of this bound would probably require more information
about the probability distribution functions of service times than their
mean values, and this approach is not within the scope of this work.

5.2 FRT-nets

In this section, we derive performance bounds for the steady-state be-
haviour of live and structurally bounded FRT-nets (see definition 2.1.3).
Lower bounds for the mean cycle time are derived in section 5.2.1, while
in section 5.2.2 the computation of upper bounds for the mean cycle
time is considered.

5.2.1 Lower bound for the mean cycle time

Let us consider a live and structurally bounded FRT-net; let si denote
the average service time of transition ti, i = 1, . . . ,m; let �v(j) be the vec-
tor of visit ratios for transitions normalized, for instance, for transition
tj (computed using equation (2.8) given by theorem 2.1.2); and let �D(j)

be the vector of service demands for transitions (i.e., with components

D
(j)
i = v

(j)
i si). Then, as in the previous section for mono-T-semiflow

nets, the following can be stated:

Theorem 5.2.1 For any live and structurally bounded FRT-net, a
lower bound for the mean cycle time of transition tj can be computed
by the following linear programming problem:

Γ(j) ≥ maximize Y T · PRE · �D(j)

subject to Y T · C = 0
Y T ·M0 = 1
Y ≥ 0

(LPP16)
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Figure 5.5: A live and structurally bounded FRT-net.

As an example, let us consider the live and structurally bounded
FRT-net depicted in figure 5.5 (which can be seen as a system of three
FRT-nets communicating through private buffers). Let us suppose that
the conflict at place p1

2 is solved equitably in favour of t12 and t22 (i.e.,
with probabilities 1/2 and 1/2). Then, the vector of visit ratios for
transitions normalized for t12 (computed using equation (2.8) given by
theorem 2.1.2) is:

�v(t12) = (2, 2, 1, 1, 2, 2, 2)T (5.14)

The elementary P-semiflows of the net are:

p1
1 p2

1 p1
2 p2

2 p1
3 p2

3 b1 b2 b3 b4
Y1 1 1 0 0 0 0 0 0 0 0
Y2 0 0 1 1 0 0 0 0 0 0
Y3 0 0 0 0 1 1 0 0 0 0
Y4 0 1 0 0 0 1 1 0 0 1
Y5 0 0 0 1 0 0 0 1 1 1

Then a lower bound for the mean cycle time of transition t12 given
by theorem 5.2.1 is:
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Γ(t12) ≥ max { 2s1
1 + 2s2

1,
s1
2 + s2

2 + 2s3
2,

2s1
3 + 2s2

3,
2s1

1 + 2s2
1 + 2s1

3 + 2s2
3,

2s2
1 + s1

2 + s2
2 + 2s3

2 + 2s2
3 } =

= 2s2
3 + 2s2

1 + max {2s1
1 + 2s1

3, s
1
2 + s2

2 + 2s3
2}

(5.15)

where sij denotes the average service time of transition tij. For this
example, the bound is tight. It is exactly the actual cycle time if
deterministic service is assumed for transitions.

5.2.2 Upper bound for the mean cycle time

In what concerns the upper bound for the mean cycle time of tran-
sitions, the improvement of the “trivial” bound obtained for marked
graphs and free choice nets dividing by the liveness bounds of tran-
sitions cannot be applied for live and structurally bounded FRT-nets
(we have seen in section 5.1.2 that this improvement is not valid for
mono-T-semiflows nets, which are FRT-nets). Therefore, as in the case
of mono-T-semiflow nets, only the following result can be stated:

Theorem 5.2.2 For any live and structurally bounded FRT-net with
a specification of the average service time si for each transition ti it is
not possible to assign probability distribution functions to the transition
service times such that the mean cycle time of transition tj is greater
than

m∑
i=1

D
(j)
i =

m∑
i=1

v
(j)
i si (5.16)

independently of the topology of the net.

For example, if the above theorem is applied to the net depicted
in figure 5.5, the following upper bound for the mean cycle time of
transition t12 is obtained:

Γ(t12) ≤ 2s1
1 + 2s2

1 + s1
2 + s2

2 + 2s3
2 + 2s1

3 + 2s2
3 (5.17)

which corresponds to a complete sequentialization of the model.
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5.3 Totally open deterministic systems

of sequential processes

Totally open deterministic systems of sequential processes with Marko-
vian timing of transitions, defined in section 2.1.4.2, are considered in
this section. First of all, we remark that those nets are unbounded
(in particular, the buffers are unbounded). Therefore, ergodicity of the
marking process must be assured before the computation of steady-
state performance measures. A characterization of this ergodicity is
stated in section 5.3.1, using analogous arguments to that presented in
section 3.3 for unbounded marked graphs. Sequential processes can be
seen as complex servers that produce/consume tokens which are stored
at the buffers. The marking of a buffer will be ergodic if the input rate
of tokens is less than the service rate of the output complex server.

Once ergodicity characterization has been checked for a given totally
open system, a polynomial time computation of the exact mean cycle
time of transitions can be achieved with a similar procedure to that used
for unbounded marked graphs in section 3.3: the exact mean cycle time
of “source complex servers” can be computed firstly (because complex
servers are state machines) and, after that, for each output buffer of
a complex server, the input flow of tokens must be equal (in steady-
state) to the output flow. In this way the throughput of the output
transitions can be computed, and the procedure is repeated until all the
state machines have been considered. This computation is presented in
section 5.3.2.

5.3.1 Characterization of ergodicity

In [FN89b], an ergodicity theorem is proved for a particular class of
open synchronized queueing networks. Let us recall now the concept of
saturated net and the adaptation of the above-mentioned theorem for
totally open deterministic systems of sequential processes with Marko-
vian timing.

Definition 5.3.1 (Saturated system) Let 〈N ,M0〉 be a totally open
deterministic system of sequential processes with Markovian timing and
b one of its buffers. The net obtained from 〈N ,M0〉 by deleting the
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buffer b and its adjacent arcs is called the saturated system according
to b.

Note that the saturated system according to b behaves like 〈N ,M0〉
in the case in which the buffer b is always marked.

Theorem 5.3.1 [FN89b] Let 〈N ,M0〉 be a totally open deterministic

system of sequential processes with Markovian timing, and X
(b)

be the
limit vector of transition throughputs of the saturated net according to b.

1. Let B′ ⊆ B be the subset of buffers the marking of which can vary
independently. If

POST [b] ·X(b)
< PRE[b] ·X(b)

, ∀b ∈ B′ (5.18)

then the associated Markov process is positive recurrent.

2. If there exists a buffer b such that

POST [b] ·X(b)
> PRE[b] ·X(b)

(5.19)

then the associated Markov process is transient.

Part 1 of theorem 5.3.1 means that for each buffer (queue) the input
flow (arrival rate) must be less than the service rate of the output state
machine.

As it is remarked in [FN89b], the application of this ergodicity cri-
terion requires the computation of the steady-state behaviour of all
saturated systems that can be obtained from 〈N ,M0〉. This computa-
tion is not possible (so far) for all open synchronized queueing networks
(in fact, it is possible just for those nets having at most two unbounded
places). However the computation is possible for totally open determin-
istic systems of sequential processes with Markovian timing, because for
these nets an efficient method (in fact, polynomial on the number of
nodes of the net) for computing the steady-state behaviour exists (it
is explained below), and all saturated systems of a totally open deter-
ministic system of sequential processes are totally open deterministic
systems of sequential processes again.

Let us illustrate the numerical computation of the ergodicity crite-
rion with the net in figure 5.6. The left and right hand side expressions
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Figure 5.6: A totally open deterministic system of sequential processes.

of theorem 5.3.1.1 for buffer b2 can be computed considering the state
machines M1 and M2 in isolation:

POST [b2] ·X(b2)
=

λ1
1λ

2
1

λ1
1 + λ2

1

;

PRE[b2] ·X(b2)
=

(λ1
2 + λ2

2)λ
3
2

λ1
2 + λ2

2 + λ3
2

(5.20)

where λi
j is the rate of the exponentially distributed random variable

associated with transition tij. We assume that the conflict at place p1
2

is solved in favour of transition t12 with probability λ1
2/(λ

1
2 + λ2

2) and in
favour of t22 with probability λ2

2/(λ
1
2 + λ2

2).
The same computation for the buffer b1 leads to the expresions:

POST [b1]T ·X(b1)
=

λ1
1λ

2
1

λ1
1 + λ2

1

;

PRE[b1]T ·X(b1)
=

λ1
3λ

2
3

λ1
3 + λ2

3

(5.21)

The marking of buffer b3 linearly depends on the marking of the
other buffers, so it must not be considered (see section 2.1.4.2, where
the following equation was deduced for this net: M(b3) = M(b1) +
M(p2

1) + M(p2
3) −M(b2) −M(p1

2)).
Then, the system is ergodic if and only if:
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λ1
1λ

2
1

λ1
1 + λ2

1

< min

{
(λ1

2 + λ2
2)λ

3
2

λ1
2 + λ2

2 + λ3
2

,
λ1

3λ
2
3

λ1
3 + λ2

3

}
(5.22)

5.3.2 Computing the steady-state performance
measures

Let us suppose in this section that the system ergodicity conditions
given in theorem 5.3.1 are satisfied. The following theorem gives a
method for computing efficiently the steady-state behaviour of the con-
nected machines of a totally open deterministic system of sequential
processes with Markovian timing. The idea is analogous to that pre-
sented in section 3.3 for the case of unbounded marked graphs. A par-
tial order relation can be introduced on the set of strongly connected
components of the system (set of sequential processes) as follows: a
sequential process Mi is “greater” than other Mj iff there exists a
directed path from nodes of Mi to nodes of Mj. Maximal elements
of this partial order are sequential processes that have not any input
buffer.

Theorem 5.3.2 Let 〈N ,M0〉 be a totally open deterministic system of
sequential processes with Markovian timing. If its marking process is
ergodic then:

i) If Mi has not any input buffer then the limit average marking of
each place and the limit throughput of transitions can be computed
solving the following marking invariant and flow equations:∑

p∈Pi
M(p) = 1;

X(t) = λtM(p), if Pre(p, t) = 1,∀t ∈ Ti∑
t∈•pX(t) =

∑
t∈p• X(t),∀p ∈ Pi

(5.23)

where X(t) is the limit throughput of transition t, λt is the rate
of the exponentially distributed random variable associated with t,
and M(p) is the limit average marking of place p.

ii) If Mj has input buffers that are output buffers of the state ma-
chines Mi1 , . . . ,Mir then the limit average marking of each place
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and the limit throughput of transitions can be computed solving
the equations:∑

p∈Pj
M(p) = 1;

X(t) = λtM(p), if Pre(p, t) = 1,∀t ∈ Tj : •t ∩B = ∅;∑
t∈p• X(t) =

∑
t′∈•pX(t′),∀b ∈ B : b• ⊂ Tj ∧ •b ⊂ Ti1 ∪ . . . ∪ Tir ;∑

t∈•pX(t) =
∑

t∈p• X(t),∀p ∈ Pj

(5.24)

We remark that the application of the method described in the
above theorem has polynomial complexity:

Corollary 5.3.1 The computation of the limit average marking of
places and of the limit throughput of transitions of a totally open de-
terministic system of sequential processes given by theorem 5.3.2 has
polynomial complexity on the net size.

As an example, let us consider once more the net in figure 5.6. In
this case, there exists one state machine without input buffers: M1.
Marking invariant and flow equations for this machine have the form:

M(p1
1) + M(p2

1) = 1;
X(t11) = λ1

1M(p2
1);

X(t21) = λ2
1M(p1

1);
X(t11) = X(t21)

(5.25)

This system can be solved, obtaining:

M(p1
1) =

λ1
1

λ1
1 + λ2

1

;

M(p2
1) =

λ2
1

λ1
1 + λ2

1

;

X(t11) = X(t21) =
λ1

1λ
2
1

λ1
1 + λ2

1

(5.26)

Now, for computing the steady-state measures of the other state
machines under the assumption of ergodicity (5.22), it is necessary to
take into account that

X(t21) = X(t12) + X(t22) and X(t13) = X(t11) (5.27)
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that is, the input flow of tokens to each buffer in steady-state must be
equal to the output flow, and:

M(p1
2) = 1 −M(p2

2); M(p2
2) =

λ1
1λ

2
1

(λ1
1 + λ2

1)λ
3
2

;

X(t12) =
λ1

1λ
2
1λ

1
2

(λ1
1 + λ2

1)(λ
1
2 + λ2

2)
; X(t22) =

λ1
1λ

2
1λ

2
2

(λ1
1 + λ2

1)(λ
1
2 + λ2

2)
;

X(t32) = X(t13) = X(t23) =
λ1

1λ
2
1

λ1
1 + λ2

1

(5.28)

5.4 Persistent nets

For live and bounded persistent nets, weak ergodicity of the firing and
marking processes is assured (theorem 2.2.2.1). Thus, for these nets
a unique limit behaviour exists, and bounds can be computed for the
steady-state throughput.

5.4.1 Lower bound for the mean cycle time

As remarked in section 2.2.1, persistent nets are behaviourally defined.
This means that a behavioural analysis must be made before com-
puting performance bounds in order to check for the persistency of
the net. Few results are known in the literature related to bounds
for the performance of bounded persistent nets. A partial result was
presented in [Ram74] for 1–bounded persistent nets with deterministic
timing. For these nets a behaviourally equivalent 1–bounded marked
graph (behaviour graph) can be built.

The method consists in drawing the initially marked places and en-
abled transitions. After that, firing all transitions and drawing the out-
put places and repeating the procedure until a marking in the process
is re-found (see figure 5.7). Then, the methods explained in chapter 3
can be applied for computing the bounds for this marked graph and
so for the steady-state performances of the initial persistent net. Un-
fortunately, this analysis is not possible for bounded (k–bounded with
k > 1) nets when non-deterministic timing is considered.
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Figure 5.7: Behaviourally equivalent marked graph for 1–bounded per-
sistent net.

Let us now introduce some general results useful for computing
bounds for the performance of bounded persistent nets. Later we shall
improve some of these results.

Let us consider live bounded persistent nets without implicit places.
According to theorem 2.2.1 consistent firing count vectors are propor-
tional to a unique �σR (remember definition 2.2.2). Thus the following
theorem can be applied for computing a lower bound of the steady-
state cycle time of a selected transition tj taking into account that the
vector of visit ratios �v(j) = k�σR is a T-semiflow (non-minimal if there

exist more than one) with v
(j)
j = 1.

Theorem 5.4.1 For any live and bounded persistent net, a lower
bound for the mean cycle time of transition tj can be computed by the
following linear programming problem:

Γ(j) ≥ maximize Y T · PRE · �D(j)

subject to Y T · C = 0
Y T ·M0 = 1
Y ≥ 0

(LPP17)

where �D(j) denotes the vector with components D
(j)
i = v

(j)
i si, i =

1, . . . ,m.
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Figure 5.8: Bound (LPP17) non-reachable.

The optimal value of the previous problem is a non-reachable bound
in general (i.e., there exist net models such that no stochastic interpre-
tation allows to reach the computed bound). To see it, let us consider
for example the net in figure 5.8. Selecting transition t2, the vector of
visit ratios is �v(2) = (2, 1, 1)T and the obtained bound is

max
{
s2 + s3,

2s1 + s2 + s3

2

}
(5.29)

Now, considering deterministic timing for all transitions with s1 = 2,
s2 = 60, and s3 = 1, the obtained bound is 61 while the actual cycle
time for transition t2 is greater because of the sequence t1t2 which takes
62 units of time. Nevertheless, for 1–bounded (and ordinary, in order
to be live) persistent nets, the bound given by (LPP17) can be always
reached: it would be obtained by deriving the equivalent marked graph
(according to [Ram74]) and computing the bound, using (LPP3).

Even though the cycle time bound obtained from (LPP17) can be
non-reachable for k–bounded (with k > 1) persistent nets, it can be
pointed out that the bound is finite if and only if the actual cycle time
is finite, and this trivially characterizes the liveness of the model.

Theorem 5.4.2 Let 〈N ,M0〉 be a bounded persistent net. The follow-
ing three statements are equivalent:

i) The optimal value of (LPP17) for 〈N ,M0〉 is finite.
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Figure 5.9: Behaviourally equivalent marked graph for deterministic
timing.

ii) The actual cycle time of 〈N ,M0〉 is finite.

iii) 〈N ,M0〉 is live.

The above result is not true for other net classes. In property 5.1.1
it is proved that for mono-T-semiflow nets the actual cycle time can be
infinite (so that the net be non-live) while the lower bound obtained
from (LPP15) is finite.

5.4.1.1 A reachable bound

Let us now describe a method to compute a reachable lower bound
for the mean cycle time of live and bounded ordinary persistent nets.
Deterministic timing yields the best performance for a given persistent
net and average service time associated to transitions. If we consider
only deterministic timing, a behaviourally equivalent marked graph can
be derived in an analogous way to that proposed in [Ram74] (see the
example depicted in figure 5.9):

Step 1. Split the places into instances in such a way that their 1–
bounded markings represent conditions for the enabling of tran-
sitions.
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Step 2. Develop the behaviour graph of the net (under deterministic
timing assumption) from the initial marking. Since the original
net is live, the behaviour graph could be indefinitely extended.

Step 3. To avoid an infinite size of the behaviour graph, identify those
instances of places that must be superposed, in such a way that
the relative throughput of transitions is preserved: a live and
1–bounded marked graph has been derived.

Considering general timing distributions, the original net and the
derived marked graph are not behaviourally equivalent. In fact, the
mean cycle time for the marked graph is less than or equal to the one
of the original net. Nevertheless, for deterministic timing the equality
holds and this provides the following method for computing a reachable
lower bound for the mean cycle time of live and bounded ordinary
persistent nets with general distribution timing:

Step 1. Develop the behaviour graph for the deterministic case (i.e.,
the behaviourally equivalent marked graph for deterministic tim-
ing).

Step 2. Compute the lower bound for the mean cycle time of the
marked graph using (LPP3).

The above computed value is a reachable bound for the mean cycle
time of the original net, because in the deterministic case the minimum
cycle time for the net is always obtained, and under this condition the
cycle times of the behaviour graph and of the original net are equal.

5.4.2 Upper bound for the mean cycle time

Concerning the upper bound for the mean cycle time, the “trivial”
one, given by the sum of the average service times of all the transitions
weighted by the vector of visit ratios, can be computed, as in the case
of mono-T-semiflow nets:

Γ(j) ≤
m∑
i=1

D
(j)
i =

m∑
i=1

v
(j)
i si (5.30)
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The non-trivial upper bound (dividing by the liveness bound of tran-
sitions) which is valid (and reachable) for strongly connected marked
graphs, cannot be applied to persistent nets. This can be shown us-
ing the same arguments than in section 5.1.2 for live mono-T-semiflow
nets, considering the net depicted in figure 5.4, because this net is also
persistent.

5.5 Conclusions

In this chapter, extensions of the upper and lower bounds for the mean
cycle time (or its inverse, the throughput) of transitions considered in
chapters 3 and 4 have been presented for other net subclasses. Unfortu-
nately, the computed bounds are not reachable, in general, for live and
structurally bounded FRT-nets (in fact, they are not reachable even for
live and structurally bounded mono-T-semiflow nets).

In the particular case of totally open deterministic systems of se-
quential processes, if Markovian timing is considered, exact computa-
tion of performance measures is possible in polynomial time on the net
size. The method is similar to that presented in chapter 3 for the case
of unbounded marked graphs, but now the strongly connected compo-
nents are state machines, thus their exact mean cycle time in isolation
can be efficiently computed.

Finally, bounds for live and bounded persistent nets have been
derived. The method presented here is a generalization to live and
bounded persistent nets with stochastic timing of a partial result ob-
tained by C. Ramchandani in [Ram74] for 1–bounded persistent nets
for deterministic timing. The lower bound for the mean cycle time has
been shown to be reachable.

Further wotk is needed for other behavioural extensions of nets con-
sidered here such as, for instance, “réseaux à choix non imposé” (see
chapter 2).



Chapter 6

Additional bounds and
improvements

In previous chapters we considered the computation of upper and lower
bounds for the steady-state throughput of transitions (or its inverse, the
mean cycle time). The first part of this chapter (section 6.1) gives an
idea about how to obtain bounds for other performance indexes of in-
terest, using the computed throughput bounds and some well-known
laws from queueing theory. In particular, bounds for the mean length
of queues are derived (mean marking of places, with Petri nets termi-
nology), as well as for the mean response time at places (sojourn time
of a token in a place).

In section 6.2, an improvement of the steady-state throughput up-
per bounds presented in previous chapters is achieved for the partic-
ular case of Coxian distributions (having rational Laplace transform)
for the service times of transitions. The improvement is obtained by
considering the subnets generated by P-semiflows of the net as “al-
most isolated” nets. By “almost isolated” we mean that transitions of
the isolated subnets are considered with finite server semantics with
the number of servers equal to their liveness bound in the whole net.
The method is specially useful in the case of live and bounded free
choice nets because, in this case, the P-semiflows generate subnets hav-
ing state machine structure (they can be seen as embedded queueing
networks) which cover the whole net and their mean cycle times can
be efficiently computed. In the general case of structurally live and
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structurally bounded nets, some implicit places can be added to the
net in such a way that it is covered by state machines generated by
P-semiflows.

6.1 Bounds for other performance in-

dexes

From the knowledge of upper and lower bounds for the steady-state
throughput of transitions and from well-known queueing theory laws
(such as Little’s formula) fast bounds for other performance indexes
of interest can be derived. In section 6.1.1, we compute bounds for
the mean length of queues. In section 6.1.2, bounds for the maximum
length of queues are presented. In the case of live and bounded free
choice nets, these bounds give in fact the exact maximum marking of
places. In section 6.1.3, bounds for the mean response time at places
are derived (mean sojourn time of a token in a place).

6.1.1 Bounds for the mean length of queues

In this section, a fast computation of upper and lower bounds for the
limit average marking of places (i.e., length of queues including the
customers in service) is proposed.

In section 3.1.1, the following inequality was derived from Little’s
formula for stochastic Petri nets:

Γ(j)M ≥ PRE · �D(j) (6.1)

where Γ(j) is the mean cycle time for transition tj, M is the limit
average marking of places, PRE is the pre-incidence matrix of the net,
and �D(j) is the vector with the average service demands of transitions
as components (D

(j)
i = v

(j)
i si, i = 1, . . . ,m).

For the net classes considered in this work, the average service times
of transitions si, i = 1, . . . ,m, are known and the visit ratios v

(j)
i , i =

1, . . . ,m, can be computed from the net definition. Then, a lower bound
for the average marking of places in steady-state can be computed, from
the knowledge of an upper bound for the mean cycle time of transitions.
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Theorem 6.1.1 For any net, a lower bound for the average marking
of places in steady-state is:

M ≥ M
min

=
PRE · �D(j)

Γmax
(j)

(6.2)

where �D(j) is the vector of service demands of transitions and Γmax
(j) is

an upper bound for the mean cycle time of transition tj computed in
previous chapters.

For the computation of an upper bound for the average marking
of a given place p1 in steady-state, let us consider a P-semiflow Y =
(y1, . . . , yn)

T whose support includes that place (i.e., y1 �= 0). We have:

Y T ·M0 = Y T ·M (6.3)

Therefore,

Y T ·M0 ≥ y1M(p1) + (y2, . . . , yn) · (Mmin
(p2), . . . ,M

min
(pn))

T (6.4)

Thus,

M(p1) ≤ M
min

(p1) +
1

y1

Y T · (M0 −M
min

) (6.5)

and the same condition holds for each P-semiflow including place p1.
Then, the computation of an upper bound for the average marking of
places can be formulated in terms of a linear programming problem as
follows:

M
max

(p) = minimize M
min

(p) + Y T · (M0 −M
min

)
subject to Y T · C = 0

Y T · ep = 1
Y ≥ 0

(6.6)

where ep = (0, . . . , 0,

p︷︸︸︷
1 , 0, . . . , 0)T , and the restriction Y T · ep = 1

allows us to omit the denominator yp which is assumed to be non-null.
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The bound can also be computed from a dual version of the previous
problem. For conservative nets, the dual problem is equivalent to the
following one, that admits a nice direct interpretation.

Theorem 6.1.2 For any conservative net, an upper bound for the av-
erage marking of place p in steady-state is:

M
max

(p) = maximize M(p)
subject to BT ·M = BT ·M0

M ≥ M
min

(LPP18)

where the rows of BT are a basis of the left annullers of C.

In this problem, the maximum average marking of place p is com-
puted, subject to the following restrictions: the average marking must
satisfy the place invariant equations, and it must be greater than or
equal to the lower bound computed in theorem 6.1.1.

6.1.2 Maximum capacity of queues

In practice, an interesting information for the implementation of the
correct dimension of the system is the maximum capacity of queues
that is needed for the execution of the processes from the fixed initial
state. For live and bounded free choice nets, it is possible to compute in
polynomial time on the net size, the exact maximum marking that can
be reached from the initial state in each place, solving a linear program-
ming problem. This is based on the fact that the behavioural bound of
p, B(p), is equal to the structural bound, SB(p) (cfr. theorem 2.1.12).

Because live and bounded free choice nets are conservative, the prob-
lem (LPP2) that defines SB(p) can be easily rewritten leading to the
following statement:

Theorem 6.1.3 For live and bounded free choice nets, the reachable
marking bound of places coincides with the structural marking bound
obtained solving the following linear programming problem:

SB(p) = maximize M(p)
subject to BT ·M = BT ·M0

M ≥ 0
(LPP19)
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with BT a basis of the left annullers of C.

The reader is invited to compare the linear programming prob-
lems in theorems 6.1.2 and 6.1.3. The first is more constrained:
M ≥ M

min ≥ 0. Therefore, as expected, M
max

(p) ≤ SB(p) = B(p).

6.1.3 Other computable bounds

Using fundamental laws of queueing theory, bounds for other perfor-
mance figures can be computed. As an example, let us consider the
computation of bounds for the mean response time at places.

The mean response time R(pi) at a place pi is the mean value of the
sojourn time of a token in this place (i.e., sum of waiting plus service
time). From the knowledge of bounds for the throughput of transitions
and for the average marking of places, and applying Little’s law, upper
and lower bounds for the response time at places can be deduced as
follows:

R
max

(pi) =
M

max
(pi)

PRE[pi] ·Xmin

R
min

(pi) =
PRE[pi] · �D(j)

PRE[pi] · �v(j)

(6.7)

where X
min

, M
max

are bounds computed in previous sections, and
�D(j) and �v(j) are the vectors of service demands and of visit ratios,
respectively, normalized for transition tj.

6.2 Improving the bounds for Coxian

timing

In this section, an improvement of the throughput upper bound of a
given transition is presented, based on the computation of the actual
(i.e., exact) cycle time of the subnets generated by the places involved
in some P-semiflows, considered in isolation. Transitions of the isolated
subnets are considered with finite server semantics with the number of
servers equal to their liveness bound in the whole net.
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Basically, we consider those P-semiflows whose support generates a
state machine. As we remarked in chapter 2, stochastic state machines
are nets that can be seen as closed monoclass queueing networks, from
the queueing theory point of view. In order to make possible the compu-
tation of such exact values, the timing of transitions must be restricted
to those distributions that assure the product form solution for closed
monoclass queueing networks. This condition is obtained if Coxian
random variables are considered for the timing of transitions. Coxian
distributions are characterized by having rational Laplace transform:

Definition 6.2.1 (Coxian distributions) Let X be a non-negative
random variable and f(t) its probability density function. X is said to
be Coxian iff the Laplace transform of f(t), f ∗(s) =

∫∞
0 e−stf(t)dt, is a

rational function.

The Coxian family is generated from exponential distributions by
convolutions (generalized Erlangs) and mixtures (hyperexponential dis-
tributions) [Cox55]. One advantage of the use of this family of distribu-
tions is that any distribution function can be approximated arbitrarily
closely, preserving mean and higher moments, by a Coxian [GP87].
Therefore, the theoretical restriction to these random variables is not
really significant. The other main profit of Coxian distributions is that
their association to service time of stations of closed monoclass queue-
ing networks with constant routing probabilities assures the product
form solution.

In what follows of this chapter, we consider stochastic Petri nets
with Coxian distributions associated with service time of transitions.
In section 6.2.1 we study the particular case of structurally live and
structurally bounded free choice nets, while non-free choice nets are
considered in section 6.2.2.

6.2.1 Free choice case

Let us recall from chapter 2 the important result in the structure theory
of free choice nets which assures that each minimal P-semiflow of a
structurally live and structurally bounded free choice net generates a
P-component (cfr. theorem 2.1.8.1). Let us recall also theorem 4.1.1
that gives a lower bound for the mean cyle time of a transition of live
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and bounded free choice nets in terms of the P-semiflows of the net, by
solving the problem (LPP12).

At this point we are able to interpret from a queueing theory point
of view the linear programming problem (LPP12) for the case of live
and bounded free choice nets:

Let Y be a minimal P-semiflow of the net and

ΓY
(j) =

Y T · PRE · �D(j)

Y T ·M0

(6.8)

its corresponding value of the objective function in the prob-
lem (LPP12). Then ΓY

(j) is the exact cycle time for sta-
tion (transition) tj if the closed monoclass queueing network
generated by Y (P-component) is considered in isolation,
with delay stations (infinite-server semantics for all tran-
sitions) and general service time distributions. Moreover,
each optimum solution Y ∗ of (LPP12) corresponds with a
slowest closed queueing network (P-component) embedded
in the net.

Let us remark that the throughput of transitions (with infinite-
server semantics) in the isolated P-component is insensible (i.e., inde-
pendent) to the distribution of service time of transitions. This is not
the case for multiple-server (but finite) semantics. For those servers,
the response time at places is due not only to service time but also to
the waiting time in queue, and the actual throughput does depend on
the number of servers at each station and on the form of the service
distributions.

As it is remarked above, the exact cycle time of isolated P-
components is computed in (LPP12) assuming infinite-server semantics.
A more realistic computation of the cycle time of P-components in the
net than that obtained from the complete isolation of these components
is considered now.

The knowledge of the liveness bound of transitions of a given net
allows to improve the throughput upper bound computed in theo-
rem 4.1.1, for Coxian distributions of service time of transitions (and
assuming first-come first-served service discipline).
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Theorem 6.2.1 Let 〈N ,M0〉 be a live and bounded free choice net with
constant routing probabilities defining the conflicts resolution policy and
Coxian distributions for service time of transitions. For each transi-
tion t, let L(t) be its liveness bound. Let Y be a feasible solution of
the problem (LPP12) and ΓY∞

(j) the corresponding value of the objective

function. Let ΓYL

(j) be the exact mean cycle time of tj computed for the
isolated P-component generated by Y , with L(t)–server semantics for
each involved transition t. Then:

Γ(j) ≥ ΓYL

(j) ≥ ΓY∞
(j) (6.9)

where Γ(j) is the exact cycle time of tj in the whole net. More-

over, ΓYL

(j) = ΓY∞
(j) if and only if the considered P-component contains

min{L(t) | t ∈ P-component} tokens.

We remark that the above theorem holds also for non-free choice
nets if ΓYL

(j) denotes the exact cycle time of tj computed for the iso-
lated subnet (instead of P-component) generated by Y . We restrict
ourselves to live and bounded free choice nets because for such nets the
subnets generated by minimal P-semiflows are P-components (cfr. theo-
rem 2.1.8.1), and this means that efficient computation of exact values
ΓYL

(j) is possible for them (because P-components have state machine
structure).

As an example, let us consider the live and bounded free choice net
depicted in figure 6.1. Assume that routing rates are equal to 1/3 for t1,
t2, and t3, and that t7, t8, t9, t10, t11, t12 have exponentially distributed
service times with mean values s7 = s8 = s9 = 10, s10 = s11 = s12 = 1.
The P-semiflows of the net are:

Y1 = (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)T

Y2 = (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)T

Y3 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0)T

Y4 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1)T

(6.10)

Then, if the initial marking of p11, p12, and p13 is 1 token, and the
initial marking of p1 is N tokens, the lower bound for the mean cycle
time derived from (LPP12) is:

Γ
(LPP12)
(1) = max{30/N, 11, 11, 11} (6.11)
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Figure 6.1: A live and bounded free choice net.

For N = 1, the previous bound, obtained from Y1, gives the value
30, while the exact mean cycle time is 31.0626. For N = 2, the bound is
15 and it is derived also from Y1 (mean cycle time of the P-component
generated by Y1, considered in isolation with infinite server semantics
for transitions). This bound does not take into account the queueing
time at places due to synchronizations (t4, t5, and t6), and the exact
cycle time of t1 is Γ(1) = 21.0513. For larger values of N , the bound
obtained from (LPP12) is equal to 11 (and is given by P-semiflows Y2,
Y3 and Y4). Thist bound can be improved if the P-component generated
by Y1 is considered with liveness bounds of transitions t4, t5, t6, t7, t8,
and t9 reduced to 1 (which is the liveness bound of these transitions
in the whole net). The results obtained for different values of N are
collected in table 6.1.

Since the statement of the theorem 6.2.1 holds for every feasible
solution Y of (LPP12), it holds for each optimum solution Y ∗ and
the bound computed in theorem 4.1.1 can be eventually improved for
Coxian distributions as follows:

Corollary 6.2.1 An improvement of lower bound for the mean cycle

time computed in theorem 4.1.1 can be obtained computing the value Γ
Y ∗
L

(j)
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N Γ
(LPP12)
(1) ΓY1L

(1) Γ(1)

1 30 30 31.0626
2 15 20 21.0513
3 11 16.6667 17.7073
4 11 15 16.0336
5 11 14 15.0283
10 11 12 13.0161
15 11 11.3357 12.3481

Table 6.1: Bounds obtained using (LPP12), improvements derived from
theorem 6.2.1, and exact values, for different initial markings of p1 in
the net of figure 6.1.

of theorem 6.2.1 for any optimum solution Y ∗ of the problem (LPP12).
Moreover, the improvement is strict if and only if the P-component
generated by Y ∗ contains more than min{L(t) | t ∈ P-component}
tokens.

Let us remark that the reason to constraint the service time distribu-
tions to Coxian lies in the fact that, in this case, the exact cycle time for
the isolated P-component with L(t)–server semantics of transitions can
be efficiently computed (for instance, mean value analysis algorithm
[BB80] can be applied, and it has O(A2B) worst case time complexity,
where A = Y ∗ · M0 is the number of tokens at the P-component and
B = Y T · PRE · 11 is the number of involved transitions). We remark
also that any other technique for the computation of a lower bound for
the mean cycle time of a product form queueing network can be ap-
plied to the P-component generated by Y ∗. In particular, hierarchies
of bounds have been developed for product form queueing networks
that guarantee any level of accuracy (including the exact solution), by
investing the necessary computational effort [ES83,Sur84,ES86,Sri87].
This provides also a hierarchy of bounds for the mean cycle time of a
live and bounded free choice net.

We give now an interpretation of this improvement, from a queueing
theory point of view:
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Both the bound presented in chapter 4 and the presented
in this section are based on the computation of the exact
mean cycle time of P-components considered in isolation. In
the first case, since infinite-server semantics is considered
for the isolated subnet, the real (unknown) response time at
places is lowerly bounded by the service time of transitions,
but waiting time due to synchronizations is not considered
at all. Now, the bound for the response time at places is
improved taking into account not only the service time but
also a part of the queueing time due to synchronizations:
that obtained assuming that L(t) severs are always available
at each transition t.

Taking into account that the number of optimum solutions
of (LPP12) can be theoretically exponential on the net size, the next
question that can be considered is: Which optimum solution(s) of prob-
lem (LPP12) should be considered in order to obtain a greater improve-
ment with the application of corollary 6.2.1?

We present now an algorithm for the computation of an improve-
ment of bound given by problem (LPP12), based on a possible heuristic
for the selection of some optimum solutions of this problem. Later we
justify this heuristic.

Step 0. Compute L(t) for each t, solving the problem (LPP1) of chap-
ter 1.

Step 1. Solve the problem (LPP12). Let ΓPS
(j) be its optimum value.

Step 2. For k := 1 to K solve the linear programming problem
(LPPk):

maximize Y T · PRE ·Gk
(j)

subject to Y T · PRE · �D(j) = ΓPS
(j)

Y T · C = 0
Y T ·M0 = 1
Y ≥ 0

where Gk
(j) is a vector with dimension equal to the number of
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transitions and

Gk
(j)(ti) =

v
(j)
i si

1 + k(L(ti) − 1)/K

Let Yk be one optimum solution of (LPPk), k = 1, . . . , K.

Step 3. For k := 1 to K solve the exact cycle time Γk
(j) of the isolated

P-component associated with Yk assuming L(t)–server semantics
for each transition t, using (for instance) the mean value analysis
algorithm.

Step 4. max{Γk
(j) | k = 1, . . . , K} ≥ ΓPS

(j) .

The following considerations can be made about the previous algo-
rithm:

a) Step 2 is a heuristic for the selection of a subset of at most K
different optimum solutions of (LPP12) (and K can be freely
selected). This is because all the feasible solutions of the prob-
lems (LPPk) are optimum solutions of (LPP12) (this fact is im-
posed with the constraints of (LPPk), for which the previous com-
putation of ΓPS

(j) is necessary, thus it has been done at Step 1).

b) Step 3 is just the application of corollary 6.2.1 to the previously
selected optimum solutions. The previous computation of the
liveness bounds of transitions is necessary, thus it has been done
at Step 0.

c) In Step 4, the “best” of the selected solutions is computed (i.e.,
the one which gives greater cycle time).

d) The heuristic for the selection of optimum solutions given by
Step 2 is based on the computation of the exact cycle time of
the isolated P-components, for infinite-server semantics, but with
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service time associated with ti:

si
1 + (L(ti) − 1)/K

, for k = 1

si
1 + 2(L(ti) − 1)/K

, for k = 2

. . .

si
L(ti)

, for k = K

The last case would correspond with saturated P-components,
i.e., all transitions t always working with their L(t) servers. The
other cases (k < K) are intermediate situations.

e) Let us remark that, in the particular case in which the liveness
bounds of all transitions were equal, the problems (LPPk) would
not select any “better” solution, because all the objective func-
tions would be the same but divided by a different constant. In
this case the heuristic used by the above algorithm is not good.
Fortunately, this case is easy to detect (at Step 0), and there exists
an alternative heuristic for the selection of an optimum solution
of (LPP12):

minimize Y T ·M0

subject to Y T · (PRE · �D(j) − ΓPS
(j)M0) = 0

Y T · C = 0
Y ≥ 0

That is, since all P-components include transitions with the same
maximum number of servers, we can expect that the slowest P-
component is that with minimum number of tokens, and thus
with minimum use of the servers at transitions.

Last but not least, let us remark that the structure-based improve-
ment derived in section 4.1.2 can be taken into account before the
application of the algorithm presented above. In other words, the ad-
dition of implicit places can generate new slower P-components in the
net, that must be considered as feasible solutions for problems (LPPk)
of the algorithm.
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Figure 6.2: Net initially non-covered by P-components, which is covered
by four P-components after the addition of three implicit places.

6.2.2 Non-free choice case

For other subclasses of nets (e.g., FRT-nets), P-semiflows do not cor-
respond in general with P-components of the net. In this case, the
subnets generated by the support of the P-semiflows have not product
form solution and cannot be analysed using the mean value analysis
algorithm. In order to solve this problem, a technique consisting of
the addition of some implicit places can be used. In fact, for struc-
turally live and structurally bounded nets, a set of implicit places can
be added to the net such that it can be covered by P-components, and
the algorithm presented in the previous section can be applied to the
P-semiflows corresponding with those P-components.

We refer the reader to [CS89c]. Figure 6.2.a has been taken from
that paper, and shows a live and bounded FRT-net (which is not a
state machine) with a unique minimal P-semiflow which covers all the
places:

Y0 = (2, 1, 1, 1, 1)T (6.12)
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Therefore, it does not generate a P-component. However, three
implicit places can be added (figure 6.2.b) in such a way that four new
P-semiflows are created:

Y1 = (1, 0, 1, 1, 0, 1, 0, 0)T

Y2 = (1, 1, 0, 1, 0, 0, 0, 1)T

Y3 = (1, 0, 0, 0, 1, 0, 1, 0)T

Y4 = (1, 0, 0, 1, 0, 1, 1, 1)T

(6.13)

that generate four P-components which cover the whole net. The ap-
proach presented in the previous section can be applied to the resulting
net.

6.3 Conclusions

Two different objectives have been considered in this chapter. First,
the computation of steady-state bounds for other performance indexes,
different from throughput. Second, the improvement of the derived
bounds under some assumptions on probability density functions that
are usual in queueing theory (rational Laplace transform).

Concerning the first objective, upper and lower bounds for the
steady-state mean marking of places (or average length of queues) and
for the steady-state mean sojourn time of a token in a place (or av-
erage response time) have been algebraically derived, using the upper
and lower throughput bounds and Little’s law. For live and bounded
free choice nets, a reachable upper bound for the maximum capacity of
queues has been presented, based on the efficient (structural) compu-
tation of the marking bound of places for these nets.

Related to the second objective, an improvement of the lower bound
for the mean cycle time has been achieved for Coxian distributed ser-
vice time of transitions. The improvement is based on considering the
cycle time of the subnets generated by P-semiflows of the net, with
multiple server semantics for transitions (number of servers equal to
the liveness bounds of transitions in the whole net). In the case of live
and bounded free choice nets, since all minimal P-semiflows generate P-
components (i.e., state machine structure subnets), classical techniques
from product form queueing networks can be applied: computation of
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hierarchies of lower bounds for the steady-state cycle time or, by invest-
ing the necessary computational effort, the computation of the exact
mean cycle time using, for instance, the mean value analysis. For more
general net subclasses, minimal P-semiflows do not generate subnets
with state machine structure. Nevertheless, for structurally live and
structurally bounded nets, a set of implicit places can be added such
that the resulting net is covered by P-components generated by minimal
P-semiflows.

Further work must be done in order to improve the throughput lower
bound presented in previous chapters for the case of Coxian distributed
service times.



Chapter 7

Applications to distributed
systems

In previous chapters, we have derive upper and lower bounds for the
steady-state performance of stations (transitions) of different classes
of synchronized queueing networks, using the formalism of stochastic
Petri nets (or for the inverse of the throughput, that we call cycle time
of the transition).

Now, we present some application examples, taken from the liter-
ature, in the fields of distributed computing systems (section 7.1) and
manufacturing systems (section 7.2). By taking some already existing
examples developed without consideration of the structural restrictions
posed by the techniques proposed in this work, we hope to convince
the reader that “in nature” there exist some interesting and non-trivial
problems that satisfy such restrictions. Many other interesting exam-
ples can be shown in the fields of computer architecture, communica-
tions, and manufacturing systems.

7.1 Distributed computing systems

In this section, we analise some examples taken from the literature,
in the field of distributed computing system. The first of them is
the alternating bit communication protocol, that can be modelled by
means of a strongly connected marked graph. The second one is taken
from software applications: an Ada tasking system is modelled with a

203
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Figure 7.1: The alternating bit protocol.

mono-T-semiflow net. The third is an example of application of marked
graphs for the performance evaluation of a complex multiprocessor com-
puter system: the PADMAVATI machine. Finally, a dataflow graph is
analised using a free choice net isomorphic representation.

7.1.1 The alternating bit protocol

Let us consider first a very simple communication protocol, the alter-
nating bit protocol, modelled by means of a strongly connected marked
graph in [DA84]. Two processes, the sender and the receiver, exchange
messages. Data are sent by the sender together with a control bit, 0 or
1. The transfer is divided into two phases. In the first one, the sender
sends data together with the 0. Then, it wait for an acknowledgement.
During the second phase, the same behaviour occurs with the control
bit set to 1. The representation of the behaviour of the protocol is
depicted in figure 7.1 using a strongly connected marked graph.

In order to compute performance bounds of the model and to eval-
uate their accuracy, let us consider that the dimension of data packages
is 1 Kbyte, while acknowledgement messages consist of 32 byte. The
communication channel speed is 64 Kbit per second. Therefore, sending
data and acknowledgement takes 0.125 and 2−8 seconds, respectively.
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transition service time
sendD0,D1 0.125
sendA0,A1 2−8

receiveD0,D1 10−4

receiveA0,A1 10−4

propagationD0,D1 0.25
propagationA0,A1 0.25

Table 7.1: Average service times (in seconds) for transitions in the
alternating bit protocol.

Receiving time for data or acknowledgement is the same, it takes 10−4

seconds. The propagation speed is 2.5 ·108 metres per second. We eval-
uate the performance of communication for different values of distance
between the two processes, ranging from 104 to 107 metres. Therefore,
the propagation time ranges from 2.5 · 10−4 to 0.25 seconds. Average
service times of transitions are collected in table 7.1.

The net in figure 7.1 has a P-semiflow (circuit)

Y1 = (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0)T (7.1)

whose pre-incidence function covers all the transitions. Therefore, the
upper and the lower bounds computed in chapter 3 for the through-
put of strongly connected marked graphs have the same value. This
means that both bounds give the exact throughput, independently of
the probability distribution functions associated with service time of
transitions. The throughput and the mean cycle time of the system are
detailed in table 7.2, for different values of distance between the two
processes.

7.1.2 A software example

In this section, we take an example from software applications. In
the thesis of G. Ciardo [Cia89], the effect of different policies on the
throughput of an Ada tasking system consisting of Np producer tasks,
Nc consumer tasks, and one buffer task, is studied. For simplicity, it
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distance (metres) throughput cycle time (seconds)
104 3.857839 0.259212
105 3.728387 0.268213
106 2.791639 0.358212
107 0.794778 1.258213

Table 7.2: Performance of communication process for different values
of distance.

is assumed that each task resides on a different processor. The Ada
system is the following:

task PRODUCER;

task CONSUMER;

task BUFFER is

entry DEPOSIT(X : MESSAGE);

entry REMOVE(X : out MESSAGE);

end BUFFER;

task body PRODUCER is

begin

loop

-- P 1 instructions

BUFFER.DEPOSIT(X);

-- P 2 instructions

end loop;

end PRODUCER;

task body CONSUMER is

begin

loop

-- C 1 instructions

BUFFER.REMOVE(X);

-- C 2 instructions

end loop;

end CONSUMER;

task body BUFFER is

EMPTY : NATURAL := K;
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Figure 7.2: Petri net model for the Ada tasking system.

begin

loop

select

when EMPTY > 0 => --‘‘not full’’

accept DEPOSIT(X : MESSAGE) do

-- B 1 instructions (store X)

end DEPOSIT;

EMPTY := EMPTY - 1; -- B 2 instruction

or

when EMPTY < K => --‘‘not empty’’

accept REMOVE(X : out MESSAGE) do

-- B 3 instructions (copy X)

end REMOVE;

EMPTY := EMPTY + 1; -- B 4 instruction

end select;

end loop;

end BUFFER;

The mono-T-semiflow Petri net model for the above system is de-
picted in figure 7.2. The data flows from the producer tasks to the
buffer task and from there to the consumer tasks. Each producer task
executes locally (place pP1) and occasionally makes an entry call to
the buffer task (place pPw); after a “rendez-vous” with the buffer task,
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transition service time
tP1 1
tP2 1/5
tC1 1
tC2 1/3
tB1 1/50
tB2 1/30
tB3 1/50
tB4 1/30

Table 7.3: Average service times for timed transitions in the Ada task-
ing system.

it performs some other local actions (place pP2), then restarts the cy-
cle. The behaviour of the consumer tasks is analogous. The buffer task
uses a vector with K positions to store data items. The tokens in places
pEMPTY and pFULL represent the number of empty and full positions,
respectively. An empty call from a producer (consumer) task can be
accepted only when there are empty (full) positions. Guards “when
EMPTY > 0” and “when EMPTY < K” enforce this constraint. If the vec-
tor is neither full nor empty (0 < M(pEMPTY ) = K −M(pFULL) < K)
and both producer and consumer tasks are waiting to “rendez-vous”
(M(pPw) > 0 and M(pCw) > 0), when the buffer task becomes ready to
accept an entry call (M(pBw) = 1) both guardes are satisfied and the
buffer task may “rendez-vous” with either a producer or a consumer
task. The Ada language does not specify a criterion for this choice, but
leaves the decision to the implementation.

In [Cia89], the effect of enforcing different policies for the choice
between producer and consumer tasks is investigated. Here, we do not
have to chose one particular policy because the net is mono-T-semiflow,
thus the vector of visit ratios is independent of decisions (in this case
it is the unity vector; see section 2.1.2). The bounds that we compute
are independent of the arbitrary conflict resolution policy and are valid
for all of them. In other words, we compute bounds for the purely
non-deterministic Ada tasking system.
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Figure 7.3: Throughput bounds and exact values for policies π1 and π2

as a function of K, for Np = 5 and Nc = 1.

Average service times of timed transitions are collected in table 7.3.
Transitions tPw and tCw are immediate.

In figures 7.3, 7.4, 7.5, and 7.6 the throughput bounds obtained us-
ing the results of section 5.1 are summarized, in comparison with exact
throughputs for exponentially distributed service times of transitions,
for different values of Np, Nc, and K. Two different policies taken from
[Cia89] have been used for the computation of exact values:

π1: It gives absolute priority to the producer tasks when a conflict
is reached, so it is optimal when the producer tasks are the bot-
tleneck, since the average throughput of the system is decreased
whenever the bottleneck waits.

π2: It gives absolute priority to the consumer tasks when a conflict is
reached, so it is optimal when the consumer tasks are the bottle-
neck.

The exact values for exponential timing have been computed using
the GreatSPN software package [Chi87] for the analysis and solution of
GSPN models.
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Figure 7.4: Throughput bounds and exact values for policies π1 and π2

as a function of K, for Np = 1 and Nc = 5.

Figure 7.5: Throughput bounds and exact values for policies π1 and π2

as a function of K, for Np = 5 and Nc = 3.
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Figure 7.6: Throughput bounds and exact values for policies π1 and π2

as a function of K, for Np = 3 and Nc = 5.

As can be seen in the figures, the throughput upper bound is quite
good for exponentially distributed models, while this is not the case
for the lower bound. This is because exponential case (coefficient of
variation equal one) “is not very different” from deterministic (null
variance). On the other hand, the lower bound on throughput is better
for some assignment of distribution timing with coefficient of variation
tending to infinity (see section 3.2.3).

7.1.3 The PADMAVATI architecture

As an example of application of marked graphs for the performance
evaluation of complex multiprocessor computer systems, let us consider
a non-trivial model taken from the literature.

In particular, we consider one of the coloured Petri net models of
the base software architecture of the PADMAVATI machine (Parallel
Associative Development Machine As a Vehicle for ArTificial Intelli-
gence), presented in [AMBCC87b]. PADMAVATI is an MIMD modular
multiprocessor system based on the Transputer T424 microprocessor.
In [AMBCC87b], a class of Petri net model was derived directly from a
pseudo-code specification of the base software implementing the inter-
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Figure 7.7: CPN model of two-CPU per processor PADMAVATI archi-
tecture.

processor communication software. The models were then completed
by adding constraints representing the hardware resources.

We report here in figure 7.7 the coloured Petri net model in case of
a multiprocessor architecture in which each processor is composed of
two Transputer microprocessors, one devoted to the execution of com-
munication and memory handler processes, and the other one devoted
to the execution of “client” application tasks. The unfolding of this
coloured model yields the marked graph depicted in figure 7.8 in case
of a two-processor configuration. In [AMBCC87b] it was shown that
a “tandem” model composed of only two processors could be used to
accurately estimate the performance of a larger multiprocessor configu-
ration, so that the marked graph model in figure 7.8 can be considered
as an accurate performance model of the considered architecture inde-
pendently of the number of processors.

In the case studied in [AMBCC87b], the evaluation was made be-
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Figure 7.8: Unfolded marked graph model of two-CPU per processor
PADMAVATI tandem architecture.
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transition service time
run 0.1 ÷ 1 ms
Txt 11 μs

MH+Tx 50 μs
Rtx 5.6 μs
Atx 16.8 μs

Table 7.4: Average service times for timed transitions in the marked
graph model of PADMAVATI architecture.

fore the actual implementation of the prototype of the machine, and
the objective of the performance study was the assessment of the effec-
tiveness of multiprogramming in compensating for the large latency of
the multistage interconnection network. Only estimates of the average
delays of the components (based on their hardware characteristics) were
available; no information was instead available on the higher moments
and on the form of the probability distributions. In the original work
an exponential distribution assumption was adopted in order to apply
Markovian analysis techniques, but this choice was clearly arbitrary.

This example represents a classical case in which the computation
of performance bounds based on the assumption that only mean values
are known is a better answer to the questions posed by the system
designers: the “true” value computed by exact numerical solution of
a Markov chain is neither needed nor particularly meaningful in this
case.

The obtained results for exponentially distributed timing of tran-
sitions of the model of figure 7.8 with average service times collected
in table 7.4 are summarized in figure 7.9. The exact values, the up-
per and the lower bounds for the throughput of this marked graph are
superposed, for different values of the average service time of transi-
tion “run”, and for different number of tasks (T ). It must be pointed
out that, while the bounds can be computed practically in zero time
independently of the number of tasks, the computation of the exact
values increases exponentially with T . See table 7.5 for the CPU time
measured on a SUN 3/60 workstation using GreatSPN [Chi87].
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Figure 7.9: Exact values, upper and lower bounds for the through-
put of the marked graph model of PADMAVATI architecture, for dif-
ferent service time of transition “run”, and different number of tasks
(T = 1, 2, 3, 8).

T markings CPU (sec.)
1 25 < 1
2 196 2.1
3 900 11
4 3025 47
8 81225 2540

Table 7.5: Number of reachable markings and CPU time for the com-
putation of the exact values (in seconds, for a SUN 3/60 workstation),
for different number of tasks.
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Related with the accuracy of the bounds, in the case of only one
task (T = 1) the lower and the upper bound are equal (thus equal to the
exact value). Assuming average service time of transition “run” equal
to 10−4 and T = 2, the exact value of the throughput is 7690, while the
lower and the upper bounds are 5807 and 9009, respectively, i.e., the
exact value is not very close to none of the bounds. For a number of
tasks greater than or equal to 8, the exact value coincides with the upper
bound (both curves are superposed in the figure 7.9). This means that
for higher token populations (i.e., under satutarion conditions), that
are the cases in which the Markovian analysis is practically intractable,
the upper bound becomes a perfect approximation of the exact value.

7.1.4 A dataflow graph

In [KBB86], dataflow graph model is defined as a generalized model
of computation. It can be seen as a language for the representation
of parallel algorithms, with potential to represent any computational
structure, including computer structures (of parallel processors). The
chief advantages of dataflow graphs as a computational schema are their
compactness and amenability to direct interpretation. Unfortunately,
the analysis techniques for dataflow graphs are not yet well-developed.

In [KBB87], performance analysis of computer architectures repre-
sented as dataflow graphs via timed Petri nets is proposed. In partic-
ular, uninterpreted dataflow graphs are considered. This means that
the semantics of the data tokens are removed. The introduced non-
determinism is represented by the assignment of routing probabilities at
decision points. Uninterpreted dataflow graphs with non-determinism
resolved via probabilities are shown to be isomorphic to extended free
choice nets.

As an example, the structurally live and structurally bounded free
choice net isomorphic to the uninterpreted dataflow graph of figure 7.10
is depicted in figure 7.11. In [KBB87], this net is analysed for the initial
marking M(p1) = M(p2) = 1 and M(pi) = 0 if i > 2. Deterministic
timing is considered as follows: sji = �i/3� and si = �i/3� are the service
times associated with transitions tji and ti, respectively. Concerning the
conflicts, routing rates r1

k = 1/k and r2
k = 1 − 1/k are associated with

each pair of transitions in conflict t1k and t2k, respectively.
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Figure 7.10: An uninterpreted dataflow graph.
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Figure 7.11: A net isomorphic to the uninterpreted dataflow graph.
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The vector of visit ratios for transitions can be computed according
to theorem 2.1.2, and the upper and lower bounds for the throughput
of transition t1 presented in theorems 4.1.1 and 4.2.1 give the values
0.06667 and 0.032316, respectively. In this case, the obtained through-
put upper bound is reached for a deterministic conflicts resolution pol-
icy and deterministic timing of transitions (it can be checked after the
computation of the reachable bound derived in theorem 4.1.7 from the
expanded net).

For this net, if probabilistic routing and exponentially distributed
service time of transitions (with the above specified mean values) is
assumed, the exact throughput of transition t1 is 0.05256, which is not
very close to none of the bounds.

7.2 Manufacturing systems

Steady-state performance evaluation of some repetitive automated
manufacturing systems [CCS90c] modelled by means of stochastic Petri
nets is considered in this section. Linear programming problems de-
rived in previous chapters are used to compute tight upper and lower
bounds for the performance measures of job-shop systems and decision-
free kanban systems in polynomial time on the net size. The results
can be extended to other models in which some decisions are allowed,
such as producer-consumer systems with mutual exclusion.

7.2.1 A job-shop system

In a job-shop system, a production route through a sequence of ma-
chines is carried on for each job. The set of different products as well
as the sequences of visits to machines must be completely defined.

In [HP89], performance evaluation of such systems modelled with
marked graphs is studied under a deterministic assumption of the time
spent by the jobs on the machines. Using the results presented in
this work, the deterministic assumption can be relaxed and reachable
bounds for the performance of stochastic models can be computed in
polynomial time, from the knowledge of the mean values of the duration
of jobs.
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Figure 7.12: A job-shop system modelled with a marked graph.

Let us consider, for instance, the model depicted in figure 7.12. A
job-shop system with three machines and four jobs is considered (see
[HP89]). The routings of jobs through the machines are modelled with
the following horizontal circuits:

Job 1: p10, t10, p11, t11, p12, t12, p13, t13, p10;

Job 2: p20, t20, p23, t23, p22, t22, p20;

Job 3: p30, t30, p31, t31, p33, t33, p30;

Job 4: p40, t40, p41, t41, p43, t43, p40.

Since each machine is assumed to process only one job at a time,
other circuits are added which determine the sequencing of the jobs on
the corresponding machines:

Machine 1: m11, t11, m13, t31, m14, t41, m11;

Machine 2: m21, t12, m22, t22, m21;
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Machine 3: m31, t13, m32, t23, m33, t33, m34, t43, m31.

They are marked with a token that represents the availability of the
machine to process a job.

Let us suppose that only average values of the processing times
associated with the machines have been estimated, as follows: s11 = 1;
s12 = 3; s13 = 3; s23 = 1; s22 = 2; s31 = 2; s33 = 1; s41 = 2; s43 = 1.
Transitions t10, t20, t30, and t40 are immediate (time duration equal to
zero), since they account for the loading of the job into the system.

The bounds presented in chapter 3 can be computed for this model.
The lower bound for the mean cycle time is the optimum value of the
problem (LPP3), Γmin = 9, which is the cycle time for the slowest
elementary circuit: m21, t12, p13, t13, m32, t23, p22, t22, m21.

The upper bound for the mean cycle time which follows from the-
orem 3.2.2 is Γmax = 16 (in this case, the sum of the average service
times, because L(t) = 1 for all transition t).

The lower bound for the mean cycle time can be reached, for ex-
ample, if deterministic timing is assumed (null coefficient of variation
for the random variables which define the timing of transitions). On
the other hand, the mean cycle time tends to the value of the upper
bound if random variables with variances tending to infinity are con-
veniently selected (as in the proof of theorem 3.2.2) for the timing of
transitions. If exponentially distributed random variables (coefficients
of variation equal one) are associated with transitions, the actual value
for the mean cycle time is Γ = 9.985, which is quite close to the lower
bound (reached with coefficients of variation equal zero).

7.2.2 A kanban system

The just-in-time philosophy for the control of manufacturing systems
consists of producing just the needed parts at each production stage
and at just the right time. Kanban control is a way to implement a
just-in-time manufacturing system.

A kanban is a ticket that accompanies a part through the several
stages of the production system (see figure 7.13.a). When a part of a
given stage is consumed by the succeeding stage, the ticket is sent back
to trigger the production of a new part. The inventory of a given stage
is controlled by the number of kanban tickets at this stage.
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Figure 7.13: A kanban system and its marked graph representation.
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In [DMFDD89], Petri nets have been shown to be well-adapted to
provide a unified modelling of kanban systems. Most models encoun-
tered in literature can be easily represented by marked graph models.

The steady-state performance results presented in chapter 3 can
be applied for analysing quantitatively these models. Without any
assumption on the probability distributions associated with transitions,
just using their mean values, reachable bounds for the measures of
interest can be computed in polynomial time on the net structure.

Let us consider, as an example, the kanban system modelled with a
marked graph of figure 7.13.b. We are interested on the computation
of the average processing time of a whole part in steady-state, provided
that both demands and materials exist for the continual production.
In other words, we consider the computation of the mean cycle time
of the subsystem in which places m and d have been deleted. Assume
that mean values of random variables associated with transitions are:
s(tp1) = 2; s(tp2) = 5; s(tp3) = 3. Transitions tw0, tw1, tw2, and tw3 are
immediate. Infinite-server semantics is assumed for transitions, and
this means that each one of the machines modelled with transitions
tp1, tp2, and tp3 can process two parts simultaneously (if markings of
places c1, c2, and c3 equals 2).

For the initial marking depicted in figure 7.13.b, the lower bound for
the cycle time (which is reached for deterministic timing) is Γmin = 2.5,
which is the inverse of the throughput of transition tp2. This transition
models the bottleneck machine of the system, and the utilization of this
machine is 1 (always busy).

The problem of minimizing the resources in a given manufacturing
system for obtaining the same upper bound on throughput of produc-
tivity can also be studied. Let us consider the dual problem of (LPP3):

Γmin = minimize γ
subject to C · z + γM0 ≥ PRE · �s (LPP20)

Then, for a given cost function w for the amount of resources (e.g.,
the marking weighted with a cost vector W ), the initial cost w(M0)
can be minimized without increasing the lower bound Γmin of the mean
cycle time by solving the following problem:
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minimize w(M ′
0) = W T ·M ′

0

subject to C · z + ΓminM ′
0 ≥ PRE · �s

M ′
0 ≤ M0

M ′
0 ≥ 0

(LPP21)

The restriction M ′
0 ≤ M0 is introduced because, otherwise, a reach-

able marking from M0 (with less number of tokens that M0) could have
been obtained as optimum solution, when, in fact the amount of re-
sources is the same for all reachable markings (and the bounds do not
change considering any of them as initial marking, see property 3.1.2).
This restriction can be deleted if consistency of W is assumed (i.e.,
W T · C = 0, then w(M) = w(M0), for all M reachable from M0). In
general, the optimum solution for this problem is non-integer, therefore
classical techniques for finding the optimum integer solution could be
applied [GN72]. In any case, the optimum value of the objective func-
tion (in the non-integer case) is a lower bound for the cost of resources
for which a given throughput is obtained.

The problem of minimizing initial cost without increasing the upper
bound Γmax of the mean cycle time derived in theorem 3.2.2, can be also
considered. In this case, due to the non-linear expression of this bound,
only a partial minimization can be expressed in terms of a single linear
programming problem. Taking into account (see property 2.1.14) that
for strongly connected marked graphs the computation of L(tj) can be
formulated in terms of the problem:

L(tj) = maximize k
subject to M0 + C · �σ ≥ kPRE[tj]

(LPP22)

We can consider the problem of minimizing the initial cost without
decreasing none of the values of L(tj), as follows:

minimize w(M ′
0) = W T ·M ′

0

subject to M ′
0 + C · �σ ≥ L(tj)PRE[tj], ∀tj ∈ T

(LPP23)

As for the problem (LPP21), integer programming techniques could
be applied for assuring the integrality of the solutions.
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Comming back to the net depicted in figure 7.13.b, for the same
number of kanban tickets at each stage, the problem of minimizing
resources at places c1, c2, and c3 (capacity of machines), preserving
Γmin, can be considered using (LPP21). The result is that the number
of tokens at place c1 can be reduced to 1 without modifying the bound
for the mean cycle time.

On the other hand, if the optimization cost criterion consists of
reducing as much tokens as possible (i.e., both kanban tickets and ca-
pacity of machines), the resolution of problem (LPP21) gives that the
capacity of machine 1 (marking of place c1) can be reduced to 1, and
the number of kanbans at stages 1 and 2, can be reduced to 1 and 2,
respectively (instead of 2 and 3, as is depicted in figure 7.13.b), without
changing the bound for the mean cycle time. In fact the optimum real
solution of the problem (LPP21) for W = �1, says that both the capac-
ity of machine 1 and the number of kanbans at the first stage can be
reduced to 0.8 units. For the capacity of machine 3 and for the number
of kanbans at the third stage, the optimum value is 1.2. In this case,
the optimum integer solution is just the excess round of the optimum
real solution.

It can be pointed out that for the deterministic timing case the pre-
vious minimization of resources preserves the actual mean cycle time.
This is not the case for general distribution timing (with non-null coef-
ficient of variation). For example, for exponentially distributed timing
of transitions, the actual mean cycle time for the initial marking de-
picted in figure 7.13.b) is Γ = 2.674. However, considering as initial
marking the one which minimizes the resources (both capacities and
kanbans) the actual mean cycle time is Γ′ = 3.290 (i.e., greater than
Γ). The result, Γ = 2.674 < Γ′ = 3.290, is easily explained by the un-
certainty introduced by the stochastic assumption (non-null coefficients
of variation).

7.2.3 A producer-consumer system

Let us consider the problem of modelling and evaluating a producer-
consumer system composed by two machines and a buffer storage, as
depicted in figure 7.14.a [Sil85]. The machine M1 produces parts that
are placed at the buffer. The maximum capacity of the buffer is four
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Figure 7.14: A producer-consumer system and its mono-T-semiflow net
representation.
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parts. The machine M2 picks parts from the buffer for processing them.
The control system for the production and consumption of parts is
depicted in figure 7.14.b by means of a Petri net. Machines M1 and M2

cannot operate simultaneously with the buffer, i.e., the pick and place
operations are in mutual exclusion (modelled with place sr).

Obviously, the net in figure 7.14.b is not a marked graph. Tran-
sitions Bplace and Bpick can be in an effective conflict. The net is
mono-T-semiflow (the unique minimal T-semiflow is the vector with
all components equal 1), and the results presented in section 5.1 can
be applied. They allow to compute in polynomial time on the net size,
performance bounds for the throughput of transitions in steady-state.

Let us suppose that transitions th, tp, Bplace, and Bpick are immedi-
ate and that the mean values of random variables associated with the
rest of transitions are: s(Eplace) = 2; s(Epick) = 3; s(Eprod) = 4; and
s(Econs) = 2.

Problem (LPP15) of theorem 5.1.1 gives the following lower bound
for the mean cycle time of the net:

Γmin = max { s(Eplace) + s(Epick),
(s(Eplace) + s(Epick))/4,
s(Eplace) + s(Eprod),
s(Epick) + s(Econs) } =

= 6

(7.2)

As it is remarked in section 5.1, this bound is non-reachable, in
general. However, in this case, the lower bound is equal to the ac-
tual cycle time for deterministic timing. In fact, if deterministic tim-
ing is considered, the buffer storage capacity (initial number of tokens
at place parts) can be reduced to 1, without modifying the actual
mean cycle time. This is because, in this particular case, there exist
two different P-semiflows Y1 and Y2 (with ||Y1|| = {sr, place, pick} and
||Y2|| = {holes, parts, w1, w2, sr, place, pick}) involving the same set of
timed transitions (Eplace and Epick). Since Y T

1 ·M0 = 1, then the num-
ber of tokens at place parts can be reduced to 1, and the same optimum
value in problem (LPP15) is preserved.

As for the marked graph case, the minimization of tokens preserving
the lower bound for the mean cycle time does not preserves the actual
mean cycle time for general (non-deterministic) timing. For example,
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Figure 7.15: Mean cycle time for different storage capacities, under
exponentially distributed timing.

considering exponentially distributed timing for the net in figure 7.14.b,
the actual mean cycle time decreases if the initial number of tokens at
place parts (capacity of the storage) increases. In fact, the increase of
the cycle time is stopped when the capacity of storage makes insignif-
icant the portion of time during which the machines are waiting for a
hole at the buffer or for a part (see figure 7.15).



Conclusions

Timed and stochastic Petri nets have been proposed as a unified model
including several extensions of queueing networks with synchronization
primitives that have appeared in the literature. This work is a starting
point for an efficient performance evaluation of timed and stochastic
large Petri net models.

From among the original basic concepts that have been introduced
in this work, we remark the definition of weak ergodicity, that allows
the estimation of long run performance also in the case of determin-
istic models. Other interesting original concepts in the framework of
Petri nets wich generalize the classical ones of enabling and liveness
of transitions are the enabling and liveness bounds. They have shown
their significance in the computation of bounds for the steady-state
performance of the model. Therefore, they provide a good example of
possible interleaving between qualitative and quantitative analysis for
timed and stochastic Petri nets. The structural counterpart of enabling
bound allows an efficient computation of liveness bound of transitions
for some net subclasses such as marked graphs and live and bounded
free choice nets.

The intimate relationship between qualitative and quantitative as-
pects of Petri nets is stressed in this text by the introduction of a
new mixed classification criterion. The computability of visit ratios for
transitions (a classic performance analysis concept) from different net
parameters, such as the structure, the routing rates at conflicts, the
initial marking, and the timing of transitions, has propitiated the defi-
nition of new interesting net subclasses as well as the identification of
other well-known families.

One of our primary goals was to try to deeply bridge two active
fields: qualitative theory of Petri nets and stochastic models (stochas-
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tic nets and extensions of queueing networks) theory. The benefits have
been for both the qualitative and quantitative understanding of such
models. From the qualitative point of view, some fundamental new re-
sults have been obtained. We remark the appearance of original results
about the rank of the incidence matrix of structually live and struc-
turally bounded nets and, in particular, of free choice nets. Several
key results in the structure theory of these nets appear as corollaries
of the rank theorem. As a by-product of the proof of that theorem, an
interesting property about the preservation of structural liveness and
structural boundedness of a net after the addition of some particular
local schedulers has been shown. We remark also the derivation of in-
teresting qualitative results for totally open deterministic systems of
sequential processes such as, for instance, a reversibility characteriza-
tion.

From the quantitative (performance analysis) point of view, fast
algorithms (of polynomial complexity) allow to compute bounds for
the throughput of several important classes of synchronized queue-
ing networks. The upper bound on throughput for strongly connected
marked graphs was first proposed by Ramchandani in 1974, and then
re-discovered and/or re-interpreted by many others, in the framework
of the study of the exact performance of timed Petri nets with deter-
ministic timing. The contributions given here in this sense are three: an
alternative reformulation in terms of linear programming problems; the
proof that deterministic case represents an upper bound in performance
independently of the probability distribution also in the framework of
stochastic Petri nets; the proof that the upper bound is reachable not
only by deterministic but also by stochastic models, with arbitrary val-
ues of coefficients of variation.

The presented lower bounds on throughput are new results. The
lower bound on throughput consisting of the inverse of the sum of
the average service times of all transitions divided by their respective
liveness bounds reduces to the trivial sequentialization of all transitions
in the case of 1–bounded nets, but has been shown to be reachable
for strongly connected marked graphs with some service probability
distribution when the coefficient of variation increases.

Some interesting performance monotonicity and reversibility prop-
erties, as well as a polynomial complexity liveness characterization of
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marked graphs have been derived.

The extension to the case of non-strongly connected marked graphs,
which has been considered in the literature of deterministically timed
nets as straightforward, is less trivial than one can perceive at first
glance. We have derived an algorithm for the computation of exact
measures for the performance of non-strongly connected marked graphs,
from the knowledge of the throughput of their isolated strongly con-
nected components.

Good results have been also obtained for live and bounded free
choice nets. A direct application of the same algebraic techniques than
for strongly connected marked graphs does not lead in this case to so
accurate throughput upper bounds. Nevertheless, with the introduction
of more information from the structure and, in particular, using the
multisets of circuits of the net (extension from a graph theory point
of view of the techniques used for strongly connected marked graphs),
reachable upper bounds for the throughput of transitions have been
derived, in the case of 1–bounded nets. The lower bounds for the
throughput introduced for strongly connected marked graphs have been
shown to be also reachable for live and bounded free choice nets.

Concerning the extensions to other nets, the results vary from one
class to another. In the case of mono-T-semiflow nets, which are
structurally characterized, it has not been possible to derive reach-
able throughput bounds. On the other hand, for bounded ordinary
persistent nets, which are behaviourally characterized, reachable up-
per bounds for the throughput of transitions have been obtained using
an extension of a technique originally proposed by Ramchandani for
1–bounded persistent nets. Specially satisfactory are the results ob-
tained for totally open deterministic systems of Markovian sequential
processes. For these nets, both the ergodicity characterization and
the computation of exact steady-state performance measures can be
achieved in polynomial time on the net size.

Other performance measures, different from throughput, are inter-
esting for the quantitative analysis of distributed systems. As an ex-
ample, we derive bounds for the queue lengths at stations and for the
average response times, from throughput bounds using some informa-
tion from the net structure and classical fundamental queueing theory
laws.
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New ideas for the improvement of bounds using some more informa-
tion from the form of the distribution functions defining the service of
transitions have been presented. If Coxian timing is assumed, the ex-
act performance of the “almost isolated” P-components or “embedded
queueing networks” (with limited server semantics) of a structurally
live and structurally bounded net (which can be computed efficiently
because those components are product form queueing networks) can be
used in order to improve the throughput upper bounds.

The derived results have been applied for the performance evalua-
tion of several examples taken from literature in the fields of distributed
computing systems and manufacturing systems. We have tried to con-
vince the reader that “in nature” there exist some interesting and non-
trivial examples that satisfy the restrictions that we have imposed in
this work.

In what concerns the future work, related with qualitative aspects
of Petri nets, we should mention that a new structurally defined sub-
class, that of nets with freely related T-semiflows, or FRT-nets, has
been introduced in this work whose behavioural properties must be
more deeply studied. These nets, that from a performance analysis
point of view stand out by the efficient computability of their visit ra-
tios, include the interesting class of free choice nets with the addition
of monitors non-disturbing decisions, with a huge panorama of appli-
cations in the fields of distributed computer systems, communications,
and manufacturing.

Further work must be done in the computation of tight bounds
for Coxian timing of transitions. A first step has been taken in this
direction concerning the upper bound on throughput, mainly for live
and bounded free choice nets. Work is in progress for the improvement
of the throughput lower bounds presented here.

Once an efficient computation of performance measures has been
obtained, a next step is the solution of optimization problems. Some
ideas have been introduced in this text, for the kanban system example,
about the utilization of mathematical programming techniques for the
achievement of minimization of resources preserving the performance
bounds. In any case, more effort should be dedicated to this field.

Finally, we want to stress the fact that the theoretical results pre-
sented in this text, being easier not only to compute but also to under-
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stand and to interpret than classical “exact” ones, can have a substan-
tial impact on the application of performance evaluation techniques in
the early design phases of complex distributed systems.



234 CONCLUSIONS



Bibliography

[AMBB+89] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chi-
ola, G. Conte, and A. Cumani. The effect of execu-
tion policies on the semantics and analysis of stochastic
Petri nets. IEEE Transactions on Software Engineering,
15(7):832–846, July 1989.

[AMBC84] M. Ajmone Marsan, G. Balbo, and G. Conte. A class
of generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems. ACM Transac-
tions on Computer Systems, 2(2):93–122, May 1984.

[AMBC86] M. Ajmone Marsan, G. Balbo, and G. Conte. Perfor-
mance Models of Multiprocessor Systems. MIT Press,
Cambridge, USA, 1986.

[AMBCC87a] M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte.
Generalized stochastic Petri nets revisited: Random
switches and priorities. In Proceedings of the Interna-
tional Workshop on Petri Nets and Performance Models,
pages 44–53, Madison, WI, USA, August 1987. IEEE-CS
Press.

[AMBCC87b] M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte.
Modeling the software architecture of a prototype paral-
lel machine. In Proceedings of the 1987 SIGMETRICS
Conference, Banff, Alberta, Canada, May 1987. ACM.

[AMBCD86] M. Ajmone Marsan, G. Balbo, G. Chiola, and S. Do-
natelli. On the product-form solution of a class of

235



236 BIBLIOGRAPHY

multiple-bus multiprocessor system models. Journal of
Systems and Software, 6(1,2):117–124, May 1986.

[BB80] S. C. Bruell and G. Balbo. Computational Algorithms
for Closed Queueing Networks. Elsevier Science Pub-
lishers B.V. (North Holland), New York, 1980.

[BBW89] F. Baccelli, N. Bambos, and J. Walrand. Flow analysis
of stochastic marked graphs. In Proceedings of the IEEE
Conference on Decision and Control, 1989.

[BCMP75] F. Baskett, K. M. Chandy, R. R. Muntz, and F. Palacios.
Open, closed, and mixed networks of queues with differ-
ent classes of customers. Journal of the ACM, 22(2):248–
260, April 1975.

[Bes87] E. Best. Structure theory of Petri nets: The free choice
hiatus. In W. Brawer, W. Reisig, and G. Rozenberg,
editors, Advances in Petri Nets’86 - Part I, volume 254
of LNCS, pages 168–205. Springer-Verlag, Bad Honnef,
Germany, February 1987.

[BG85] S. C. Bruell and S. Ghanta. Throughput bounds for gen-
eralized stochastic Petri net models. In Proceedings of
the International Workshop on Timed Petri Nets, pages
250–261, Torino, Italy, July 1985. IEEE-CS Press.

[BM89] F. Baccelli and A. Makowski. Queueing models for sys-
tems with synchronization constraints. Proceedings of
the IEEE, 77(1):138–161, January 1989.
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Eléctrica e Informática, Universidad de Zaragoza, Spain,
June 1990.



238 BIBLIOGRAPHY

[CCS90c] J. Campos, J. M. Colom, and M. Silva. Performance
evaluation of repetitive automated manufacturing sys-
tems. In Proceedings of the Rensselaer’s Second Interna-
tional Conference on Computer Integrated Manufactur-
ing, pages 74–81, Rensselaer Polytechnic Institute, Troy,
New York, May 1990. IEEE-CS Press.

[CCS90d] J. M. Colom, J. Campos, and M. Silva. On liveness anal-
ysis through linear algebraic techniques. In Proceedings
of Design Methods Based on Nets, ESPRIT Basic Re-
search Action 3148, W.G.3, Paris, France, June 1990.
Deliverables covering the period June 1989 to June 1990.

[CCS91] J. Campos, G. Chiola, and M. Silva. Ergodicity and
throughput bounds of Petri nets with unique consistent
firing count vector. IEEE Transactions on Software En-
gineering, February 1991. To appear.

[Cha72] K. M. Chandy. The analysis and solutions for general
queueing networks. In Proceedings of the Sixth Anual
Princeton Conference on Information Sciences and Sys-
tems, pages 224–228, Princeton, NJ, USA, March 1972.

[CHEP71] F. Commoner, A. Holt, S. Even, and A. Pnueli. Marked
directed graphs. Journal of Computer and System Sci-
ence, 5(5):511–523, October 1971.

[Chi87] G. Chiola. A graphical Petri net tool for performance
analysis. In Proceedings of the 3rd International Work-
shop on Modeling Techniques and Performance Evalua-
tion, Paris, France, March 1987. AFCET.

[CHW75] K. M. Chandy, U. Herzog, and L. S. Woo. Paramet-
ric analysis of queueing networks. IBM Journal of Res.
Develop, 19(1):36–42, January 1975.

[Cia89] G. Ciardo. Analysis of Large Stochastic Petri Net Mod-
els. PhD thesis, Department of Computer Science, Duke
University, Durham, NC, 1989.



BIBLIOGRAPHY 239

[CMQV89] G. Cohen, P. Moller, J. P. Quadrat, and M. Viot. Al-
gebraic tools for the performance evaluation of discrete
event systems. Proceedings of the IEEE, 77(1):39–58,
January 1989.

[Cou77] P. J. Courtois. Decomposability: Queueing and Com-
puter System Applications. Academic Press, New York,
1977.

[Cox55] D. R. Cox. A use of complex probabilities in the theory
of stochastic processes. Proceedings of the Cambridge
Philosophical Society, 51(2):313–319, April 1955.

[CS89a] J. Campos and M. Silva. Steady-state performance eval-
uation of totally open systems of Markovian sequential
processes. In M. Cosnard and C. Girault, editors, De-
centralized Systems, pages 427–438. North-Holland, Am-
sterdam, 1990.

[CS89b] J. M. Colom and M. Silva. Convex geometry and semi-
flows in P/T nets. A comparative study of algorithms
for computation of minimal p-semiflows. In Proceedings
of the 10th International Conference on Application and
Theory of Petri Nets, pages 74–95, Bonn, Germany, June
1989.

[CS89c] J. M. Colom and M. Silva. Improving the linearly based
characterization of P/T nets. In Proceedings of the 10th

International Conference on Application and Theory of
Petri Nets, pages 52–73, Bonn, Germany, June 1989.

[DA84] M. Diaz and P. Azema. Petri net based models for the
specification and validation of protocols. In G. Rozen-
berg, H. Genrich, and G. Roucairol, editors, Advances in
Petri Nets 1984, volume 188 of LNCS, pages 101–121.
Springer-Verlag, Berlin, Germany, 1984.

[DB78] P. J. Denning and J. P. Buzen. The operational analysis
of queueing network models. ACM Computing Surveys,
10(3):225–261, September 1978.



240 BIBLIOGRAPHY

[Deo74] N. Deo. Graph Theory with Applications to Engineering
and Computer Science. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1974.

[DLT90] Y. Dallery, Z. Liu, and D. Towsley. Equivalence, re-
versibility and symmetry properties in fork/join queue-
ing networks with blocking. Technical report, MASI 90-
32, University Paris 6, 4 Place Jussieu, Paris, France,
June 1990.

[DMFDD89] M. Di Mascolo, M. Y. Frein, Y. Dallery, and R. David.
Modeling of kanban systems using Petri nets. In
K. Stecke and R. Suri, editors, Proceedings of the
3rd ORSA/TIMS Conference on Flexible Manufactur-
ing Systems, pages 307–312. Elsevier Science Publishers
B.V. (North Holland), 1989.

[Erl09] A. K. Erlang. The theory of probabilities and tele-
phone conversations. Nyt Tidsskrift Matematik, 20:33–
39, 1909.

[ES83] D. L. Eager and K. C. Sevcik. Performance bound hi-
erarchies for queueing networks. ACM Transactions on
Computer Systems, 1(2):99–115, May 1983.

[ES86] D. L. Eager and K. C. Sevcik. Bound hierarchies for
multiple-class queueing networks. Journal of the ACM,
33(1):179–206, January 1986.

[ES90] J. Esparza and M. Silva. On analysis and synthesis of
free choice systems. Technical report, GISI-RR-90-10,
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