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Short description and motivation

A complementary approach to exact or approximation techniques for the analysis of timed
or stochastic Petri net models is the computation of bounds for their performance measures.
Performance bounds are useful in the preliminary phases of the design of a system, in which
many parameters are not known accurately. Several alternatives for those parameters should
be quickly evaluated, and rejected those that are clearly bad. Exact (and even approximate)
solutions would be computationally very expensive. Bounds become useful in these instances
since they usually require much less computation effort.

In this tutorial, net-driven techniques for the computation of bounds for the main per-
formance indices of timed Petri net models are considered. Special attention is given to the
intimate relationship between qualitative and quantitative aspects of Petri nets. In particular,
the intensive use of structure theory of net models allows to obtain very efficient computation
techniques.

The contents of the tutorial are the following: (1) Preliminary comments; (2) Introducing
the ideas: Marked Graphs case; (3) Generalization: use of visit ratios; (4) Improvements of the
bounds; (5) A general linear programming statement.
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Preliminary comments (1)

• Interest of bounding techniques
– preliminary phases of design

• many parameters
are not known
accurately

• quick evaluation and
rejection of those
clearly bad

complexity

accuracy

bounds

exact
solution
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Preliminary comments (2)

• Net-driven solution technique
– stressing the intimate relationship between

qualitative and quantitative aspects of PN’s
– structure theory of net models

efficient computation techniques



Properties and Bounds on P/T Nets  Javier Campos
Tutorial of PNPM’99 – PAPM’99 – NSMC’99, Zaragoza (Spain), Sep. 6-10, 1999 p. 4

Outline

• Introducing the ideas: Marked Graphs case
• Generalization: use of visit ratios
• Improvements of the bounds
• A general linear programming statement
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Introducing ideas: MG’s case (1)

p1
p2

p3

p4

p5

t1

t2

t3

t4 generally distributed service times 
(random variables Xi with mean           )

we assume infinite-server semantics

exact cycle time (random variable):
average cycle time: 

but (non-negative variables):

therefore:

    X = X1 + max{X2, X3} + X4  

      Γ= s [t1] + E[max{X2, X3}] + s [t4]  

    X2, X3 ≤max{X2, X3} ≤X2 + X3  

      s [t1] + max{s [t2], s [t3]} + s [t4] ≤Γ ≤s [t1] + s [t2] + s [t3] + s [t4]  

      
s [t j]  
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Introducing ideas: MG’s case (2)

Thus, the lower bound for the average cycle time is
computed looking for the slowest circuit

Interpretation:
an MG may be built synchronising circuits,
so we look for the bottleneck

      

Γ≥ max
C∈{circuits
of the net}

s [ti]
ti∈C
∑

# tokens in C

 

 

 
 

 

 

 
 
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Introducing ideas: MG’s case (3)

• Computation:
(    is the vector of
average service times)

(the proof of this comes later for a more general case)

solving a linear programming problem 
(polynomial complexity on the net size)

    

Γ≥ maximum y⋅Pre⋅s 
subject to y⋅C = 0

y⋅m0 = 1
y ≥ 0

 
  s 
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Introducing ideas: MG’s case (4)

• Even if naïf, the bounds are tight!
• Lower bound for the average cycle time

– it is exact for deterministic timing
– it cannot be improved using only mean values

of r.v. (it is reached in a limit case for a family
of random variables with arbitrary means and
variances)

      max{s [t2], s [t3]} ≤E[max{X2, X3}]  
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Introducing ideas: MG’s case (5)

they behave “as deterministic”
for the ‘max’ and ‘+’ operators
in the limit (α→ 1)

    

Xµ,σ (α) =
µα with probability 1 − ε  

µ α + 1 − α
ε

 
 
  

 
 with probability ε

 
 
 

    
ε = µ2 (1 − α )2

µ2 (1 − α )2 + σ2
 

  (0 ≤α ≤1)  

    E Xµ ,σ(α )[ ]= µ  ;   Var Xµ,σ (α )[ ]= σ2  

    
lim

α→ 1
E max Xµ,σ (α ), X ′ µ , ′ σ (α )( )[ ]= max µ, ′ µ ( ) 

    E Xµ ,σ(α ) + X ′ µ , ′ σ (α )[ ]= µ + ′ µ ,  ∀  0 ≤α <1 
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Introducing ideas: MG’s case (6)

• Upper bound for the average cycle time

– it cannot be improved for 1–live MG’s using
only mean values of r.v. (it is reached in a limit
case for a family of random variables with
arbitrary means)

      
Γ ≤ s [t]

t∈T
∑  
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Introducing ideas: MG’s case (7)

    

Xµ
i (ε) =

0 with probability 1 − εi  
µ
εi

with probability εi

 
 
 

  

  (0 < ε <1)  

    
E Xµ

i (ε) 
 

 
 = µ  ;   E Xµ

i (ε)2 
 

 
 =

µ2

εi
 

      

If X j = X s [t j]
j − 1 (ε ),  ∀ t j ∈T ,  then for varying (decreasing) values of ε: 

E[max( Xi, X j )] = s [ti] + s [t j] + o(ε)
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Generalization: visit ratios (1)

• Visit ratios = relative throughput
(number of visits to ti per each visit to t1)

average interfiring time of t1

      
v[t] = χ[t]

χ[t1]
= Γ[t1]  χ[t]  
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Generalization: visit ratios (2)

• For some net classes v can be computed as:

p3

p 7

p 10

p12

p 9

p 8

p11

t 1
t 2 t 3 t 4

t 5

p 1 p2

p4
p5

t 6

p 6

t 7

t 8 t 9

t 10 t 11

      

C⋅v = 0;
r1v[t2] = r2v[t1];
r3v[t4] = r4v[t3 ];  

v[t1] = 1
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Generalization: visit ratios (3)

• Little’s law (L=λW) applied to a place p:

Assume that timed transitions are never in conflict (conflicts are
modelled with immediate transitions), then either all output
transitions of p are immediate or p has a unique output transition,
say t1, and t1 is timed, thus:

      µ [ p] = (Pre[p,T ]⋅χ)  r [ p]  

      

µ [ p] = (Pre[p,T ]⋅χ)  r [ p] = Pre[p, t1]  χ[t1]  r [p]

≥ Pre[p, t1]  χ[t1]  s [t1] = Pre[p, t j ]  χ[t j ]  s [t j]
j=1

m
∑  
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Generalization: visit ratios (4)

Then:

Hence:                                   where

Premultiplying by a P–semiflow y

      
Γ[t1]  µ [ p] ≥ Pre[ p, t j]  Γ[t1]  χ[t j]  s [t j ]

j=1

m
∑ = Pre[p, t j]  v[t j ]  s [t j]

j=1

m
∑  

      Γ[t1]  µ ≥ Pre ⋅D        D [t] = s [t]v[t]   is the average service demand of  t  

    (y ⋅C = 0,  y ≥ 0,  thus y⋅µ = y ⋅m0 ), 

      

Γ[t1] ≥ maximum y ⋅Pre ⋅D 
y ⋅m0

 

subject to y ⋅C = 0
1⋅y > 0
y ≥ 0

      

Γ[t1] ≥ maximum
y ⋅Pre ⋅D 

q
 

subject to y ⋅C = 0
1⋅y > 0
q = y ⋅m0
y ≥ 0
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Generalization: visit ratios (5)

Since  y·m0 > 0  (live system), we change  y/q  to y  and we obtain
(1·y > 0  is removed because  y·m0 = 1  implies 1·y > 0):

again, a linear programming problem 
(polynomial complexity on the net size)

      

Γ[t1] ≥ maximum y ⋅Pre ⋅D 
subject to y ⋅C = 0

y ⋅m0 = 1
y ≥ 0
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Generalization: visit ratios (6)
Interpretation: slowest subsystem generated by P–semiflows, in isolation

minimal P–semiflows
y1 = (1,0,1,1,0,0,1,0,1,0,0,0)
y2 = (0,1,0,0,1,1,0,1,0.1,0,0)
y3 = (0,0,0,0,0,0,0,0,1,1,1,0)
y4 = (0,0,0,0,0,0,0,0,0,0,0,1)

p3

p 7

p 9

t 1
t 2

t 5

p 1

p4

t 6

t 8

t 10

p 10

p 8

t 3 t 4

p2

p5

t 6

p 6

t 7

t 9

t 11

p12 t 5

p 10
p 9 p11

t 8 t 9

t 10 t 11

N 4

N 1 N 2

N 3

      

Γ[t1] ≥  max { (s [t5 ] + s [t6] + s [t10 ]) / 3,
(s [t6 ] + s [t7] + s [t11]) / 2,
s [t10] + s [t11],
s [t5]  }
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Generalization: visit ratios (7)

• Upper bound for the average interfiring time

remember the marked graphs case (v = 1): 

      
Γ[t1] ≤ v[t]  s [t]

t∈T
∑ = D [t]

t∈T
∑  

      
Γ≤ s [t]

t∈T
∑  
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Improvements of the bounds

• Structural improvements
bounds still based only on the mean values (not
on higher moments of r.v., insensitive bounds)

• lower bound for the average interfiring time:
use of implicit places to increase the number of
minimal P–semiflows

• upper bound for the average interfiring time:
use of liveness bound of transitions to improve the
bound for some net subclasses
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Use of implicit places (1)

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q

      Γ[t5] = qs [t3 ] + (1− q)s [t4]  

      

Γ[t1] ≥ maximum y ⋅Pre ⋅D 
subject to y ⋅C = 0

y ⋅m0 = 1
y ≥ 0

 

      Γ[t5] ≥ max qs [t3],(1 − q)s [t4 ]{ } 
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Use of implicit places (2)

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q
t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q

p6

in this case, we get the exact value!

      

Γ[t1] ≥ maximum y ⋅Pre ⋅D 
subject to y ⋅C = 0

y ⋅m0 = 1
y ≥ 0

 

      Γ[t5] = qs [t3 ] + (1− q)s [t4]  
      Γ[t5] ≥ max  qs [t3 ],  (1 − q)s [t4 ],  qs [t3] + (1 − q)s [t4 ]  { } 
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Use of implicit places (3)

in general…

t 1 t 2

t 3 t 4

t5

p1

p2 p3

p4 p5

q 1-q

t 7

p6 p7

t6

      

Γ[t1] ≥ maximum y ⋅Pre ⋅D 
subject to y ⋅C = 0

y ⋅m0 = 1
y ≥ 0

 

      

Γ[t7] ≥ max { qs [t3] + s [t6 ] + s [t7],

(1− q)s [t4 ] + s [t5 ] + s [t7]  }
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Use of implicit places (4)

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q

t 7

p6 p7

t 6
p8

in general, the bound is non-reachable

(deterministic
timing)

      

Γ[t7] ≥ max { qs [t3] + s [t6 ] + s [t7],

(1− q)s [t4 ] + s [t5 ] + s [t7],

qs [t3] + (1 − q)s [t4 ] + s [t7]  }

 

      

Γ[t7] = qmax{s [t5], s [t3] + s [t6 ]} + (1− q)max{s [t4] + s [t5 ], s [t6 ]} + s [t7]  
= max { qs [t3] + s [t6 ] + s [t7],

(1 − q)s [t4 ] + s [t5] + s [t7],

qs [t3] + (1 − q)s [t4] + (1 − q)s [t5 ] + qs [t6] + s [t7 ],

qs [t5] + (1 − q)s [t6] + s [t7]  }



Properties and Bounds on P/T Nets  Javier Campos
Tutorial of PNPM’99 – PAPM’99 – NSMC’99, Zaragoza (Spain), Sep. 6-10, 1999 p. 24

Use of liveness bounds (1)

• upper bound for the average interfiring time:

reachable for 1-live marked graphs, but…

p1
p2

p3

p4

p5

t1

t2

t3

t4

      
Γ≤ s [t]

t∈T
∑  
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Use of liveness bounds (2)

p1
p2

p3

p4

p5

t1

t2

t3

t4

it can be improved for k–live marked graphs

liveness bound of t2

      
Γ≤s [t1] + s [t2 ]

2
+ s [t3] + s [t4 ]  
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Use of liveness bounds (3)

• Definitions of enabling degree, enabling bound, structural
enabling bound, and liveness bound

– instantaneous enabling degree of a transition at a given marking

e[t](m) = 2
2
t 

      
e[t](m ) = sup k ∈ Ν :  ∀ p  ∈ •t,  m[ p] ≥ k  Pre[p, t]{ } 
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Use of liveness bounds (4)

– enabling bound of a transition in a given system:
maximum among the instantaneous enabling degree at all
reachable markings

eb[t2] = 2
p1

p2

p3

p4

p5

t1

t2

t3

t4

      
eb[t] = sup k ∈ Ν :  ∃m0

σ  →    m,  ∀ p∈•t,  m[p] ≥ k  Pre[p, t]   
   
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Use of liveness bounds (5)

– liveness bound of a transition in a given system:
number of servers available in t in steady state

t

2

p1 1 t 2

t 3

p2

p3
lb[t1] = 1 < 2 = eb[t1]

      
lb[t] = sup k ∈ Ν :  ∀ ′ m , m0

σ  →    ′ m ,∃m, ′ m ′ σ   →      m ∧ ∀ p∈•t, m[p] ≥ k  Pre[p, t]   
   
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Use of liveness bounds (6)

– structural enabling bound of a transition in a given system:
structural counterpart of the enabling bound
(substitute reachability condition by  m = m0 + C ·  σ; m,σ • 0)

Property: For any net system  seb[t] ≥ eb[t] ≥ lb[t], for all t.
Property: For live and bounded free choice systems,

seb[t] = eb[t] = lb[t], for all t.

      

seb[t] = maximum k
subject to m0 [p] + C[p,T ]⋅σ≥ k  Pre[p, t],  ∀ p ∈ P

σ≥ 0
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Use of liveness bounds (7)

improvement of the bound for live and bounded free
choice systems:

this bound cannot be improved for marked graphs
(using only the mean values of service times)

      
Γ[t1] ≤ v[t]  s [t]

seb[t]t∈T
∑ = D [t]

seb[t]
 

t∈T
∑
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A general LP statement (1)

• The idea

linear operational laws

a linear function

    

maximize [or minimize]   f (µ , χ)

subject to any linear constraint that we are able to state
for µ ,  χ,  and other needed additional variables
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A general LP statement (2)

• A set of linear constraints:

… …

(state equation)

(flow balance equation)

      

µ = m0 + C⋅σ

χ[t]  Post[p, t]

t∈•p
∑ ≥ χ[t]  Pre[p, t],  

t∈ p•
∑ ∀ p ∈ P

χ[t]  Post[p, t]

t∈•p
∑ = χ[t]  Pre[ p, t],  

t∈ p•
∑ ∀ p ∈ P  bounded

χ[ti]
ri

=
χ[t j ]

rj
,  

∀ ti, t j ∈T :  behavioural free choice

(e.g. Pre[P, ti] = Pre[P, t j])
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A general LP statement (3)

(minimum throughput law)

(maximum throughput law)

      

χ[t]  s [t] ≤ µ [p]
Pre[ p, t]

,  ∀ t ∈T ,  ∀ p∈•t

χ[t]  s [t] ≥ µ [p] − Pre[ p, t] + 1
Pre[p, t]

,  
∀ t ∈T  persistent,  age memory or

immediate : •t = {p}

… …

µ ,  χ,  σ≥ 0

 



Properties and Bounds on P/T Nets  Javier Campos
Tutorial of PNPM’99 – PAPM’99 – NSMC’99, Zaragoza (Spain), Sep. 6-10, 1999 p. 34

A general LP statement (4)

• It can be improved using second order
moments

• It can be extended to well-formed coloured
nets
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A general LP statement (5)

• It is implemented in GreatSPN
– select place (transition) object            (       )
– click right mouse button and select “show”
– click again right mouse button and select

“Average M.B.” (“LP Throughput Bounds”)
– click left mouse button for upper bound
– click middle mouse button for lower bound
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Properties and Bounds on P/T Nets

look at the bibliography

More technical details



Properties and Bounds on P/T Nets:
An Example of Application∗

Javier Campos
Universidad de Zaragoza, Spain

Let us present an example of application for the computation of bounds in the case of the
Timed Well-Formed Coloured Net (TWN) model of a shared-memory multiprocessor depicted
in Figure 1. The architecture comprises a set of processing modules interconnected by a common
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OwnMemAcc

Queue

MemoryS

Choice

ExtMemAcc

ExtBus

e_ext_accreq_ext_acc

e_own_accb_own_acc

b_ext_acc choose_m

Figure 1: TWN model of a shared-memory multiprocessor.

bus called the “external bus”. A processor can access its own memory module directly from its
private bus through one port, or it can access non-local shared-memory modules by means of
the external bus. In case of contention for the access to one shared-memory module, preemptive
priority is given to external access through the external bus with respect to the accesses from the
local processor. The experiments on the shared-memory model have been carried out assuming
to have 4 processors and that the average service time of all the transitions are equal to 0.5.

According to the arguments presented in the Tutorial, bounds can be computed solving
linear programming problems with constraints included in Table 1, where the first letters of each

∗Tutorial of PNPM’99–PAPM’99–NSMC’99, Zaragoza (Spain), September 6-10, 1999. This text has been
extracted from the paper “Operational analysis of timed Petri nets and application to the computation of
performance bounds”, by G. Chiola, C. Anglano, J. Campos, J.M. Colom, and M. Silva, in Proceedings of the
5th International Workshop on Petri Nets and Performance Models, pp. 128-137, Toulouse, France, October
1993, IEEE Computer Society Press.
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(c1) µ[Active] = 4 + σ[e e a] + σ[e o a]− σ[r e a]− σ[b o a];
µ[Memory] = 4 + σ[e e a]− σ[b e a];
µ[OwnMemAcc] = σ[b o a]− σ[e o a];
µ[Queue] = σ[r e a]− σ[b e a];
µ[Choice] = σ[b e a]− σ[c m];
µ[ExtMemAcc] = σ[c m]− σ[e e a];
µ[ExtBus] = 1 + σ[e e a]− σ[b e a];

(c′2) χ[e e a] + χ[e o a] = χ[r e a] + χ[b o a];
χ[b e a] = χ[c m] = χ[e e a] = χ[r e a];

(c3) χ[b o a] = χ[r e a];
(c4&c5) χ[b o a] s[b o a] = µ[Active]/2;

χ[r e a] s[r e a] = µ[Active]/2;
χ[e e a] s[e e a] = µ[ExtMemAcc];

(c4) χ[e o a] s[e o a] ≤ µ[OwnMemAcc];
χ[e o a] s[e o a] ≤ µ[Memory];

(c6) χ[e o a] s[e o a] ≥ µ[OwnMemAcc] + b[OwnMemAcc]
b[Memory] µ[Memory]

−b[Memory];
(c7) 4

(

µ[ExtBus]− b[ExtBus]
(

1− µ[Memory]
b[Memory]

))

≤ 0;

4
(

µ[ExtBus]− b[ExtBus]
(

1− µ[Queue]
b[Queue]

))

≤ 0;

Table 1: Constraints for the model in Figure 1.

transition name have been used for reasons of space. The solution for the linear programming
problems leads to upper and lower bounds, for the throughput of transitions, given by

8
11
≤ χ[e e a] ≤ 2

while the “exact” solution with exponential distribution is

χ[e e a] = 1.71999

An improvement in the lower bound can be obtained observing that when a token arrives
in place Choice transition choose m is enabled at least for one transition instance. This implies
that the average marking of place Choice is equal to 0 (transition choose m is immediate), so

µ[Choice] = 0; b[Choice] = 0

(only tangible markings are considered) can be added to the set of constraints. Moreover place
Memory is implicit with respect to the enabling of transition b ext acc, so we can consider
this transition as having only two input places, so constraint (c6) can be applied instead of
constraint (c7). Finally,

b[Queue] = 3

2



can be added since the output transition of place Queue is immediate, and from the behaviour
of the model it is clear that at most 3 processors can be waiting in the queue. The relations
(c7) in the above linear programming problem can thus be replaced with the new constraint:

4
(

µ[ExtBus] +
b[ExtBus]
b[Queue]

µ[Queue]− b[ExtBus]
)

≤ 0

where b[Queue] = 3. Solving this reduced linear programming problem the values obtained for
the upper and lower bounds are:

1 ≤ χ[e e a] ≤ 2

3
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