
Chapter ��

Performance Bounds

A complementary approach to exact or approximation techniques for the analy�
sis of queueing network models is the computation of bounds for their perfor�
mance measures� Performance bounds are useful in the preliminary phases of
the design of a system� in which many parameters are not known accurately�
Several alternatives for those parameters should be quickly evaluated� and re�
jected those that are clearly bad� Exact �and even approximate� solutions would
be computationally very expensive� Bounds become useful in these instances
since they usually require much less computation e�ort�

In this chapter� we concentrate in net�driven techniques for the computa�
tion of bounds for the main performance indices of timed Petri net models�
Previous works on bounds computation for classical queueing networks are not
included here and the interested reader is referred to the bibliographic remarks
in Section ���	� The presented techniques are characterized by their interest in
stressing the intimate relationship between qualitative and quantitative aspects
of Petri nets� In particular� the intensive use of structure theory of net models
allows to obtain very e�cient computation techniques�

The organization of the chapter is the following� In Section ����� a gen�
eral approach for the computation of upper and lower bounds for arbitrary
linear functions of average marking of places and throughput of transitions of
both timed Place
Transition nets and timed Well�Formed Coloured nets is pre�
sented� Section ���� includes a more intuitive approach for the computation
of throughput upper bounds� even if it is valid only for restricted Petri net
subclasses� The relation of this technique with the general approach and the
attainability of the bound for a particular subclass of nets is included� In Sec�
tion ����� two possible improvements of upper and lower throughput bounds are
presented using implicit places and liveness bounds of transitions� respectively�
All the bounds computed in Sections ����� ���� and ���� are insensitive to the
timing probability distributions since they are based only on the knowledge of
the average service times� Section ���
 includes a brief overview of three ad�
ditional techniques for the improvement of the bounds� Since some additional
assumptions on the form of the probability distribution functions associated

�
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to the service of transitions or on the con�ict resolution policies are done� the
obtained bounds are non�insensitive� Finally� some bibliographic remarks are
included in Section ���	�

���� Insensitive Performance Bounds

In this section� we present a general approach for the computation of bounds
for performance indices of both timed Place�Transition nets and timed Well�
Formed Coloured nets� The bounds are computed from the solution of proper
linear programming problems� therefore they can be obtained in polynomial time
on the size of the net model� and they depend only on the mean values of service
time associated to the �ring of transitions and the routing rates associated with
transitions in con�ict and not on the higher moments of the probability distrib�
ution functions of the random variables that describe the timing of the system�
This notion of independence of the computed mean measures on the form of
the probability distribution functions is known as the insensitivity property in
queueing networks literature� The independence of the probability distribu�
tion can be viewed as a practical estimation of the performance results� since
higher moments of the delays are usually unknown for real cases� and di�cult
to estimate and assess�

Unless otherwise explicitly stated� in this chapter we assume an in�nite�
server semantics for timed transitions� in other words� a transition t enabled K
times in a marking m �i�e�� K � maxfk j m � kPre��� t�g� works at speed K
times that it would work in the case it was enabled only once� Of course� an
in�nite�server transition can always be constrained to a �k�server� behaviour
by adding one place that is both input and output �self�loop with multiplicity
one� for that transition and marking it with k tokens� Other kinds of marking
or time dependency of service times are forbidden�

������ General Statement Based on Linear Programming

In Chapter � �cfr� Section ������ several linear operational laws that relate the
average marking of places and the throughput of transitions were derived from
the de�nition of these performance measures� Those equations and inequalities
can be used to compute upper and lower bounds for the throughput of tran�
sitions or for the average marking of places for general timed Petri nets using
linear programming techniques� The idea is to compute vectors � and � that
maximize or minimize the throughput of a transition or the average marking of
a place among those verifying the operational laws and other linear constraints
that can be easily derived from the net structure�

A �rst set of linear equality constraints can be derived from the fact that
the average marking vector � is an average weight of reachable markings�

� �
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Since for each reachable marking�

mr � m� �C ��r

we obtain that also the average marking must satisfy the same linear equation�

� �m� �C ��

where

� �
X

mr�RS�m��

�r�r

The following set of linear inequalities imposes that for each place the token
�ow out is less than or equal to the token �ow in�

X
t��p

��t� Post�p� t� �
X
t�p�

��t� Pre�p� t�� �p � P

If place p is known to be bounded� then the above inequality becomes an
equality which represents the classical �ow balance equation�

C�p� �� �� � �

On the other hand� for each pair of transitions ti� tj in �behavioural� free
con�ict �i�e�� such that they are always simultaneously enabled or disabled the
following equation is veri�ed�

��ti�

ri
�
��tj �

rj

where ri� rj are the routing rates that de�ne the resolution of the con�ict be�
tween ti and tj �

Additionally� most of the operational inequality laws that were derived in
Chapter � linearly relate the average marking of places with the throughput of
their output transitions� Hence they can be considered as constraints for the
following linear programming problem�
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maximize �or minimize� f����� with f a linear function of ���
subject to

�c�� � � m� �C ���

�c��
X
t��p

��t� Post�p� t� �
X
t�p�

��t� Pre�p� t�� �p � P �

�c�
�
�
X
t��p

��t� Post�p� t� �
X
t�p�

��t� Pre�p� t�� �p � P bounded�

�c��
��ti�

ri
�
��tj �

rj
� �ti� tj � T 	 behav
 free choice �e
g


Pre�p� ti� � Pre�p� tj ���p � P ��

�c�� ��t� s�t� �
��p�

Pre�p� t�
� �t � T��p � �t�

�c�� ��t� s�t� �
��p��Pre�p� t� � �

Pre�p� t�
� �t � T persistent� age memory or

immediate �p
a�m
i�	 �t � fpg�

�c�
�
� ��t� s�t� � k

��p�� k Pre�p� t� � �

b�p�� k Pre�p� t� � �
� �t � T p
a�m
i	 �t � fpg � k �

IN 	 k Pre�p� t� � b�p� � �k �
��Pre�p� t��

�c�� ��t� s�t� Pre�p�� t� ���p���Pre�p�� t� � �

�b�p�� �

�
��

��p���Pre�p�� t� � �

b�p���Pre�p�� t� � �

�
� �t � T p
a�m
i	 �t �

fp�� p�g�b�p�� � b�p���
�c�� ��t� s�t� Pre�p�� t� ���p���Pre�p�� t� � �

�b�p�� max
��j�k

�
��

��pj��Pre�pj� t� � �

b�pj��Pre�pj� t� � �

�
� �t � T p
a�m
i	 �t �
fp�� � � � � pkg�b�p�� � b�pj ��

�c�� ����� � �

������

As we remarked before� constraint �c�� becomes an equality for bounded
places �c���� Constraints �c�� to �c�� correspond to the operational inequality
laws that were derived in Chapter �� The equality sign also holds true in �c��
if
P

p��tPre�p� t� � � since in this case it may be combined with the opposite
inequality �c��� The constraint labelled with �c�� can be improved if the input
place to t is bounded� by introducing the additional constraint �c��� �where b�p�
is the marking bound of p��

The above linear programming problem provides a general method to com�
pute upper and lower bounds for arbitrary linear functions of average marking
of places and throughput of transitions� For instance� if f����� � ��t�� then
the problem can be used to compute an upper or a lower bound �depending on
the selection of �max� or �min� optimization for the objective function� for the
throughput of transition t� In an analogous way� upper or lower bounds for the
average marking of a given place p can be derived by solving the above linear
programming problem for the objective function f����� � ��p�� The bounds
are insensitive to the timing probability distributions since they are based only
on the knowledge of the average service times�
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The reader should notice also that most equalities and inequalities contain
coe�cients that depend only on the net structure and on the �known� average
transition �ring times �or probabilities in case of free choice immediate con�icts��
The only coe�cients that may be unknown at the time of the formulation of
the model are the actual bounds for places b�p�� If the modeller has no more a
priori precise knowledge of these bounds� notice that an upper bound for them
that can be used in the linear programming problem in ������ may be computed
from a simpli�ed linear programming problem that contains only constraint �c��
�structural marking bound��

An improvement of the proposed bounds can be obtained if additional con�
straints that improve the linear characterization of the average marking in terms
of the equation � � m� �C � � are considered� For instance� if a trap � �i�e��
� � P��� � ��� is not a P �semi�ow� the net is live� and we are interested only
in the steady state performance� then we can add the constraint�X

p�	

��p� � �

Similarly� if a siphon � �i�e�� � � P� �� � ��� is not a P �semi�ow and the
net is live� then we can add the constraint�X

p�


��p� � �

A systematic method for the improvement of linear characterization of reach�
able markings ���� based on the addition of implicit places can be also applied
and will be presented later in Section �������

We remark that linear programming problems can be solved in polynomial
time ����� therefore the above presented method for the computation of �upper
and lower� bounds for the throughput and for the average marking of general
timed nets has a polynomial complexity on the number of nodes of the net�
Moreover� the well�known simplex method for the resolution of linear program�
ming problems proceeds in linear time in most cases even if it has a theoretically
exponential complexity�

������ Extension to Timed Well�Formed Coloured Nets

For Timed Well�Formed Coloured Nets �TWN�s� it is possible to derive� directly
from the inequalities developed in Chapter �� operational relations allowing an
e�cient computation of performance bounds� Given a TWN� the basic idea is
to consider the corresponding unfolded net and to apply the relations previously
developed� The relations for the TWN are then obtained combining the partial
results for the unfolded one�

A fundamental property that TWN�s must have in order to be able to com�
bine the results for the unfolded one is the symmetry� meaning that in the un�
folded nets obtained from the Well�Formed ones all colour instances of a given
place and of a given transition must be equivalent� To be more precise� if a
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transition t has average service time s�t�� then all of its instances have the same
average service time� Moreover if a place p is bounded� then we assume that the
maximum number of tokens that each of its instances can contain is the same�

In the following paragraphs we show� as an example� the derivation of Min�
imum Throughput Law for single input arc for TWN�s�

Firstly� we recall some basic notations used in the derivations of relations
for TWN�s� A generic function is f �

Pk
j�� Fj � where Fj is the jth tuple and

its arity l is given by the number of colour classes composing the colour domain
of the place� This de�nition of function is slightly di�erent from the classical
one� since here we allow linear combinations only outside the tuples �i�e�� each
tuple is composed only by elementary functions�� For example the function
F � hS � x� yi is written as F � � hS� yi � hx� yi�

The cardinality of a function is de�ned as jf j �
Pk

j�� jFj j� where jFj j �

�j �
Ql

i�� j�Fj�ij is the cardinality of the jth tuple� The coe�cient �j denotes
the product of the coe�cients of the elementary functions composing the tuple
and �Fj�i is the i

th function of the jth tuple� For example if Fj � h�x� �yi� then
�j � ��

Each tuple Fj of a function f identi�es a set of arcs� or family of arcs� �with

weight �j�� whose cardinality is A�Fj� �
Ql

i�� j�Fj�hj� The global number of

arcs corresponding to function f is A�f� �
Pk

j�� A�Fj�� where each A�Fj� has
the sign of the corresponding tuple Fj � When A�f� � �� then we denote as �f
the weights associated to the unique family of arcs corresponding to f �

If t is an input transition of place p �with function f�� then IN �p� t� �
jcd�t�j
jcd�p�jA�f� is the number of input instances of t for each instance of p� Similarly

if t is an output transition of place p� then OUT �p� t� � jcd�t�j
jcd�p�jA�f� is the number

of output instances of t for each instance of p�
To apply the Minimum Throughput Law for single input arc to an unfolded

net� the conditions for its applicability must be met for all transition instances�
This means that each instance ti of a coloured transition t must have only one
input place� This condition is met if the function f labelling the arc contains
only projection and successor elementary functions �that is A�f� � ���

Property ���� �Minimum Throughput Law for single input arc� For
all transition t � T with �t � fpg� Pre�p� t� � f � and A�f� � �	

�f��t� s�t� � OUT �p� t���p�� jcd�t�j��f � ��

Proof�
Assume to have a portion of a TWN containing transition t and its input place
p and that jcd�t�j � n and jcd �p�j � m� Considering the n instances of t we can
write the following set of inequalities

�i � f�� � � � � ng �f��ti� s�ti� � ��pti �� �f � �

where pti is the unique input place of transition instance ti� Summing the
left�hand sides and the right�hand sides of the above inequalities we obtain�
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�c�� ��p� � m��p� �
X
ti�
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X
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�c��
��ti�
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�
��tj �

rj
� �ti� tj � T 	 behav
 free choice�

�c�� jf j ��t� s�t� � OUT�p� t� ��p�� �t � T��p � �t 	 Pre�p� t� � f �

�c�� �f ��t� s�t� � OUT�p� t� ��p�� jcd�t�j��f � ��� �t � T persistent� age memory or
immediate	 �t � fpg� Pre�p� t� �
f � A�f� � ��

�c�
�
� ��t� s�t� � k

OUT�p� t���p� � jcd�t�j�� � k�f �

OUT�p� t� � jcd�t�j�� � k�f �
� �t � T persistent� age memory or

immediate	 �t � fpg� Pre�p� t� �
f � A�f� � �� � k � IN 	 k�f �
b�p� � �k � ���f �

�c�� �f��t� s�t� � OUT�p� t���p� � jcd�t�j�� � �f �
�OUT�p� t�b�p�fq�

where fq � jcd�t�j �
OUT�q�t���q��jcd�t�j����g�

OUT�q�t�b�q��jcd�t�j����g�
� �t � T persistent� age memory or

immediate	 �t � fp� qg� b�p� �
b�q�� Pre�p� t� � f�Pre�q� t� �
g� A�f� � A�g� � ��

�c�� ����t� s�t� � OUT�p�� t���p��� jcd�t�j���� � ��
�OUT�p�� t�b�p�� max

��j�n
fj �

where fj � ��
OUT�pj �t���pj ��jcd�pj�j����j�

b�pj ��jcd�pj�j��j��
� �t � T persistent� age mem�

ory or immediate	 �t �
fp�� � � � � png�b�p�� � b�pj �� j �
f�� � � � � ng� Pre�pi� t� � fi�
A�f�� � ��

�c�� ����� � �

Table ����� Constraints for a linear programming problem for TWN�s�
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Figure ����� TWN model of a shared�memory multiprocessor�

�f��t� s�t� �

�
nX
i��

��pti �� jcd�t�j��f � ��

�
������

Since each instance of p appears exactly OUT �p� t� times in the summation
of the above expression we can rewrite inequality ������ as

�f��t� s�t� �

�
OUT �p� t�

mX
i��

��pi�� jcd�t�j��f � ��

�

and the result follows� 	

In a similar way it is possible to derive� for TWN�s� the equivalent of relations
devised for timed Petri nets� Therefore� performance bounds for TWN�s can be
computed solving linear programming problems with constraints included in
Table ���� and any linear function of � and � as objective function�

The average marking equation is written here in explicit form� but it could
be written also in matricial form� Moreover relation �c�� has been derived for
TWN�s under the hypothesis of strong symmetries� In particular we assumed
that� for each input place of transition t in inequality �c��� the weights of the
arcs belonging to the families corresponding to the function labelling the arc
are the same� Obviously the uncoloured version of �c�� has no such restriction�

As we remarked in the case of timed Petri nets� also for TWN�s constraint
�c�� becomes an equality for bounded places �c���� The equality sign also holds
true in �c�� if �f � � �i�e�� the unique family of arcs corresponding to function f
have weight �� since in this case it may be combined with the opposite inequality
�c��� The constraint labelled with �c�� can be improved if the input place to ti
is bounded� by introducing the additional constraint �c����
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�c�� ��Active� � 
 � ��e e a� � ��e o a�� ��r e a�� ��b o a�!
��Memory� � 
 � ��e e a�� ��b e a�!
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b
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�
��ExtBus�� b�ExtBus�

�
��

��Memory�

b�Memory�

��

 �!




�
��ExtBus�� b�ExtBus�

�
��

��Queue�

b�Queue�

��

 �!

Table ����� Constraints for the model in Figure �����

������ An Example of Application

Let us present an example of application for the computation of bounds in
the case of the TWN model of a shared�memory multiprocessor depicted in
Figure ����� The architecture comprises a set of processing modules intercon�
nected by a common bus called the �external bus�� A processor can access its
own memory module directly from its private bus through one port� or it can
access non�local shared�memory modules by means of the external bus� In case
of contention for the access to one shared�memory module� preemptive priority
is given to external access through the external bus with respect to the accesses
from the local processor� The experiments on the shared�memory model have
been carried out assuming to have 
 processors and that the average service
time of all the transitions are equal to ��	�

According to the arguments presented in the previous sections� bounds can
be computed solving linear programming problems with constraints included in
Table ����� where the �rst letters of each transition name have been used for
reasons of space� The solution for the linear programming problems leads to
upper and lower bounds� for the throughput of transitions� given by
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�

��

 ��e e a� 
 �

while the �exact� solution with exponential distribution is

��e e a� � ����   

An improvement in the lower bound can be obtained observing that when
a token arrives in place Choice transition choose m is enabled at least for one
transition instance� This implies that the average marking of place Choice is
equal to � �transition choose m is immediate�� so

��Choice� � �! b�Choice� � �

�only tangible markings are considered� can be added to the set of constraints�
Moreover place Memory is implicit with respect to the enabling of transition
b ext acc� so we can consider this transition as having only two input places� so
constraint �c�� can be applied instead of constraint �c��� Finally�

b�Queue� � �

can be added since the output transition of place Queue is immediate� and from
the behaviour of the model it is clear that at most � processors can be waiting
in the queue� The relations �c�� in the above linear programming problem can
thus be replaced with the new constraint�




�
��ExtBus� �

b�ExtBus�

b�Queue�
��Queue�� b�ExtBus�

�

 �

where b�Queue� � �� Solving this reduced linear programming problem the
values obtained for the upper and lower bounds are�

� 
 ��e e a� 
 �

���� Reinterpretation of the Insensitive Bounds

for Net Subclasses

This section includes a more intuitive approach for the computation of through�
put upper bounds for particular net classes than the general technique pre�
sented above� It makes use of an implicit decomposition of the net model into
P �semi�ows� The details of the technique are presented in Section ������� Sec�
tion ������ addresses the relationship between the general technique and this
more intuitive approach� Section ������ shows that the bound is tight for marked
graphs�
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������ Little�s Law and P �Semi�ows

Three of the most signi�cant performance measures for a closed region of a
network in the analysis of queueing systems are related by Little�s formula� the
average number of customers� the output �or input� rate �throughput�� and the
average time spent by a customer within the region� For the case of timed
Petri nets� if the involved limit average performance indices exist� then Little�s
formula can be applied� in particular� to each place of the system as follows �cfr�
Chapter ���

��p� � �Pre�p� �� ���r�p�

where Pre�p� �� is the row of the pre�incidence matrix of the underlying Petri
net corresponding to place p� thus Pre�p� �� �� is the output rate of place p� and
r�p� is the limit average token residence time at p�

In the study of computer systems� Little�s law is frequently used when two of
the related quantities are known and the third one is needed� This is not exactly
the case here� In this case� r�p� and ��p� are unknown� while partial information
about � can be easily computed only for some �interesting� net subclasses� Let
us recall the de�nition of the relative throughput vector or vector of visit ratios
to transitions �cfr� Chapter ���

v�t� �
��t�

��t��
� "�t�� ��t�

where "�ti� � ����ti� represents the average inter�ring time of transition ti �i�e��
the inverse of its throughput�� Here we consider live and bounded timed net sys�
tems whose vector of visit ratios to transitions can be computed in polynomial
time from the net structure N and from the relative frequency of con�ict resolu�
tions R �i�e�� the routing rates associated with decisions�� In Chapter �� a class
of net models for which such computation is possible was presented� as well as
some interesting subclasses were identi�ed� As an example� let us consider the
net system depicted in Figure ����� For this net� the vector of visit ratios for
transitions can be computed by solving the following linear system of equations�

C � v � �!
r�v�t�� � r�v�t��!
r�v�t�� � r�v�t��!
v�t�� � �

������

where r� and r� �r� and r�� are the routing rates used for the resolution of the
con�ict between t� and t� �respectively� t� and t��� The �rst set of equations
�implying that v is a T�semi�ow� are the �ow balance equations written for each
place �input and output �ows of tokens are equal� provided that the places are
bounded�� The second �third� equation is directly derived from the fact that
con�ict between t� and t� �respectively� t� and t�� is free and rates r� and r�
�respectively� r� and r�� are �xed� The fourth equation is the normalization for
transition t��
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Figure ����� A live and bounded stochastic Petri net system�

In Chapter �� equations like ������ have been shown to characterize the
vector of visit ratios for important net subclasses such as� for instance� live
and bounded mono�T�semi�ow systems and live and bounded free choice sys�
tems� Unfortunately� for other subclasses like simple net systems� the relative
throughput vector also depends on the initial marking and on the service times
of transitions�

In the sequel of this chapter �unless otherwise explicitly stated�� we assume
that timed transitions may never be in con�ict� For the modelling of con�icts
we use immediate transitions with the addition of �marking and time indepen�
dent� routing rates R� In other words� for the subset of immediate transitions
ft�� � � � � tkg � T being in con�ict at each reachable marking� we suppose that
the constants r�� � � � � rk � IR� are explicitly de�ned in the system interpreta�
tion in such a way that when t�� � � � � tk are simultaneously enabled� transition
ti �i � �� � � � � k� �res with relative rate ri��

Pk
j�� rj�� In this way� routing is

completely decoupled from duration of activities� The only restriction that this
decoupling imposes to the system is that preemption cannot be modelled with
two timed transitions �in con�ict� competing for the tokens �i�e�� race policy
cannot be modelled! this constraint is equivalent to the use of a preselection
policy for the resolution of con�icts among timed transitions��

If timed transitions are never in con�ict� either all output transitions of a
place p are immediate or p has a unique output transition� say t�� and t� is
timed� Then� in the later case�

��p� � �Pre�p� �� ���r�p� � Pre�p� t����t��r�p�

� Pre�p� t����t��s�t�� �

mX
j��

Pre�p� tj ���tj �s�tj �

The inequality follows from the fact that the residence time r�p� of a token
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at place p with only one output transition is greater than or equal to the service
time s�t�� of that transition� So that�

"�t����p� �
mX
j��

Pre�p� tj �"�t����tj �s�tj � �

mX
j��

Pre�p� tj �v�tj �s�tj �

hence�

"�t��� � Pre �D ����
�

where D is the vector of average service demands of transitions� with compo�
nents�

D�t� � s�t�v�t� ����	�

If all output transitions of place p are immediate� then ��p� � Pre�p� �� �D �
�� thus inequality ����
� holds for all place p�

P�semi�ows y are non�negative left annullers of the incidence matrix C �i�e��
y �C � ��� thus �m� � y �m � y �m� for all reachable marking m� Therefore�
y �� � y �m�� Now� premultiplying by y the relation ����
�� the following lower
bound for the average inter�ring time of transition t� can be derived�

"�t�� � max
y�fP�semi�owg

y �Pre �D

y �m�

������

Of course� un upper bound for the throughput of t� can be computed taken
the inverse� From that bound and from the knowledge of the vector of visit
ratios� upper bounds for the throughput of the other transitions can be derived�

Let us formulate the previous lower bound for the average inter�ring time
of t� in terms of a particular class of optimization problems called fractional
programming problems �����

"�t�� � maximum
y �Pre �D

y �m�

subject to y �C � �
� � y � �
y � �

������

where � is a vector with all entries equal to one� The above problem can be
rewritten as follows�

"�t�� � maximum
y �Pre �D

q
subject to y �C � �

� � y � �
q � y �m�

y � �

������
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Then� because y �m� � � �guaranteed for live systems�� we can change y�q
to y and obtain the linear programming formulation stated in the next theorem
�in which � � y � � is removed because y �m� � � �� � � y � ���

Theorem ���	 For any live and bounded system� a lower bound for the average
inter�ring time "�t�� of transition t� can be computed by the following linear
programming problem	

"�t�� � maximum y �Pre �D
subject to y �C � �

y �m� � �
y � �

���� �

If the solution of the above problem is unbounded and since it is a lower
bound for the average inter�ring time of transition t�� the non�liveness can
be assured �in�nite inter�ring time�� If the visit ratios of all transitions are
non�null �i�e�� v � ��� the unboundedness of the above problem implies that
a total deadlock is reached by the net system� Anyhow� the unboundedness
of the solution of ���� � means that there exists an unmarked P �semi�ow� and
obviously the net system is non�live� if y � C � � and y �m� � �� then �m
�p � kyk� m�p� � �� and the input and output transitions of p are never �rable�

The basic advantage of Theorem ���� lies� again� in the fact that the simplex
method for the solution of a linear programming problem has almost linear
complexity in practice� even if it has exponential worst case complexity� In any
case� algorithms of polynomial worst case complexity can be found in �����

In order to interpret Theorem ����� let us consider again the net sys�
tem of Figure ����� Assuming� for instance� that all routing rates associ�
ated with output transitions at con�icts in p� and p� are equal to one� then
the system ������ gives v � �� Therefore� according to ����	�� the vec�
tor of average service demands for transitions �normalized for t�� is D �
��� �� �� �� s�t��� s�t��� s�t��� �� �� s�t���� s�t����� because transitions t�� t�� t�� t�� t��
and t� are assumed to be immediate�

The minimal P �semi�ows �minimal support solutions of y � C � ��y � ��
of this net are�

y� � ��� �� �� �� �� �� �� �� �� �� �� ��
y� � ��� �� �� �� �� �� �� �� �� �� �� ��
y� � ��� �� �� �� �� �� �� �� �� �� �� ��
y� � ��� �� �� �� �� �� �� �� �� �� �� ��

�������

and the application of ���� � gives�

"�t�� � maxf �s�t�� � s�t�� � s�t�������
�s�t�� � s�t�� � s�t�������
s�t��� � s�t����
s�t�� g

�������
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Figure ����� Embedded queueing networks of the net in Figure ���� generated
by minimal P �semi�ows�

Now� let us consider the P �semi�ow decomposed view of the net� the four
subnets generated by y�� y�� y�� and y� are depicted in isolation in Figure �����
Formally speaking� if yi is a minimal P �semi�ow of a net N � hP� T�Pre�Posti�
the subnet generated by yi is Ni � hPi� Ti�Prei�Postii where Pi � kyik �the
support of the P �semi�ow�� Ti �

�Pi 
 Pi
� �i�e�� the subset of input or output

transitions of places belonging to Pi�� and Prei� Posti are the functions Pre�
Post restricted to Pi � Ti�

The quantities under the max operator in ������� represent� for this partic�
ular case� the average inter�ring time of a transition of each of the four subnets
�embedded queueing networks� assuming that all the nodes are delay stations
�in�nite�server semantics�� Therefore� the lower bound for the average inter�r�
ing time of t� in the original net system given by ������� is computed looking at
the 
slowest subsystem� generated by the P �semi�ows� considered in isolation
�with delay nodes��

We remark that in this case� since v � �� the throughput of all transitions is
equal and it is not necessary to weight the average inter�ring time of transitions
computed in isolated subnets in order to get a bound for transition t��

������ Equivalence with the General Statement

In this section� we study the relation between the general technique for the
computation of bounds presented in Section ������ and the particular technique
presented in the previous section �cfr� Theorem ������ More precisely� we show
that the bound given by Theorem ���� never improves the bound given by the
general technique presented in Section �������

Let us consider live systems built on structurally live and structurally
bounded nets� With respect to the timing interpretation� we are still consider�
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ing in�nite�server semantics for transitions and� as in the previous section� we
assume that timed transitions may never be in con�ict �con�icts resolution is
quanti�ed with routing rates associated to immediate transitions��

If N is a structurally live and structurally bounded net and S � hN �m�i
is a live system� Theorem ���� gives the following lower bound for the average
inter�ring time "�t�� �i�e�� the inverse of the throughput� "�t�� � ����t��� of
transition t��

"min� � maximum y �Pre �D
subject to y �C � �! y �m� � �! y � �

�������

where D is the vector of average service demands of transitions� with compo�
nents D�t� � s�t�v�t�� and v is the vector of visit ratios to transitions� with

components v�t� � �
t�
�
t��

� "�t����t��

Since the net is structurally live� in particular� it is structurally repetitive
�i�e�� �x � � � C � x � ��� thus by Minkowski�Farkas lemma �����

� �y � � � y �C 
 � � y �C �� �

Then� the solution of ������� is the same as that of�

"min� � maximum y �Pre �D
subject to y �C 
 �! y �m� � �! y � �

�������

Since the system is live�

y �� � � y �C � � �� y �m� � �

Then� the solution of ������� is the same as that of�

"min� � maximum y �Pre �D
subject to y �C 
 �! y �m� 
 �! y � �

�����
�

Let us consider the dual linear programming problem� ���� of �����
��

�� � minimum �

subject to �m� �C � � � Pre �D! � � ��� � �
�����	�

The Strong Duality Theorem of linear programming ���� states that if "min�

or �� is �nite� then both �����
� and �����	� have �nite optimal value and
"min� � ���

On the other hand� let us consider the general statement presented in Sec�
tion ������ applied for the computation of a lower bound for the average inter�
�ring time "�t�� of transition t�� If we consider only constraints c�� c

�
�� c�� and

c�� the following system is obtained�

�The dual problem of maxfc � x 	 A � x � b� x � �g is minfy � b 	 y �A � c� y � �g
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�� � minimum
�

��t��
subject to � � m� �C � �X

t��p

��t� Post�p� t� �
X
t�p�

��t� Pre�p� t�� �p � P

��ti�

ri
�
��tj �

rj
� �ti� tj � T � Pre�p� ti� � Pre�p� tj ���p � P

��t� s�t� 

��p�

Pre�p� t�
� �p � �t� �t � T

����� � �
�������

The �rst and the fourth sets of constraints in the above problem can be
combined to eliminate variables �� leading to�

�� � minimum
�

��t��

subject to
X
t��p

��t� Post�p� t� �
X
t�p�

��t� Pre�p� t�� �p � P

��ti�

ri
�
��tj �

rj
� �ti� tj � T � Pre�p� ti� � Pre�p� tj ���p � P

m��p� �C�p� T � � � � Pre�p� t� ��t� s�t�� �p � �t� �t � T
��� � �

�������
Now� the �rst and the second sets of constraints in the above problem state

that vector � is proportional to the visit ratios vector� i�e�� � � v�� �with
v�t�� � ��� then the vector of variables � can be reduced to a single variable ��
and by de�nition of D� we get�

�� � minimum �
subject to �m��p� �C�p� T � �� � Pre�p� t� D�t�� �p � �t� �t � T

� � ��� � �
�������

Since we are assuming that timed transitions may never be in con�ict� the
above problem is equivalent to �����	�� Therefore� the bound ������� derived
from Theorem ���� can be obtained also from the general approach �������
presented in Section �������

������ Reachability of the Throughput Upper Bound for

Marked Graphs

A particular interesting case of nets whose vector of visit ratios is �xed by the
structure is that of marked graphs �MG�s� �cfr� Chapter ��� Since MG�s are
consistent nets and their unique minimal P �semi�ow is �� their vector of visit
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ratios is also �! therefore� "�t� � "��t � T � " is called the average cycle time
of the MG and it can be bounded �assuming the net is strongly connected thus
structurally bounded� by solving the following linear programming problem�

" � maximum y �Pre � s
subject to y �C � �

y �m� � �
y � �

����� �

For deterministically timed nets� the attainability of this bound was shown
by C� Ramchandani in his Ph�D� dissertation� meaning that the value computed
in ����� � is in fact the actual average cycle time of the MG� Even more� the
next result shows that the previous bound cannot be improved only on the basis
of the knowledge of the coe�cients of variation for transition service times�

Theorem ���
 For live strongly�connected MG�s with arbitrary values of mean
and variance for transition service times� the bound for the average cycle time
obtained from 
������ cannot be improved�

Proof�
We know from Ramchandani�s work ���� that for deterministic timing the bound
is reached� Only �max� and sum operators are needed to compute the average
cycle time in case of MG�s� Therefore� let us construct a family of random vari�
ables with arbitrary means and variances behaving in the limit like deterministic
timing for both operators �max and sum��

This is the case for the following family of random variables� for varying
values of the parameter � �� 
 � 
 ���

X������ �

�
	� with probability �� 

	
�
�� ���

�

�
with probability 


�������

where


 �
	���� ���

	���� ��� � ��
�������

These variables are such that

E�X������� � 	! Var�X������� � ��

and they satisfy�

lim
���

E�max�X������� X���������� � max�	� 	�� �������

and� of course�

� � 
 � � � � E�X������ �X��������� � 	� 	�

Then� if random variables Xs
t���t��� are associated with transitions t � T �
taking � closer to �� the average cycle time tends to the bound given by ����� ��
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Figure ���
� �a� A live and safe Free Choice net and �b� its behaviourally
equivalent safe marked graph for deterministic resolution of con�ict and q � ����

We remark that the signi�cance of the above theorem is the attainability of
the bound for any given means and variances of involved random variables� In
other words� even with the knowledge of second order moments� it is not possible
to improve the bound given by ����� �� computed only with mean values�

���� Structural Improvements of the Insensitive

Bounds

This section includes two approaches for improving the throughput bounds pre�
sented above� The �rst of them makes use of implicit places to improve the
throughput upper bound presented in Section ������� The basic idea is that the
addition of implicit places may increment the number of minimal P �semi�ows
of the net� Therefore� the computed bound �basically obtained by searching
the slowest subsystem among those de�ned by the minimal P �semi�ows� can be
improved� The second technique allows to get a tight throughput lower bound
for marked graphs� using the structural liveness bound of transitions�

������ The Role of Implicit Places

For strongly connected marked graphs� the bound derived in Theorem ���� has
been shown to be reachable for arbitrary mean values and coe�cients of varia�
tion associated with transition service times �cfr� Theorem ������ Unfortunately�
this is not the case for more general net subclasses� Let us consider� for in�
stance� the live and safe ���bounded� Free Choice net in Figure ���
�a� Let s�t��
and s�t�� be the average service times associated with t� and t�� respectively�
Let t�� t�� and t� be immediate transitions �i�e�� they �re in zero time�� Let
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q� � � q � ��� �� be the probabilities de�ning the resolution of con�ict between
t� and t�� The relative �to t�� i�e�� such that v�t�� � �� throughput vector is
v � �q� �� q� q� �� q� ��� The elementary P �semi�ows are y� � ��� �� �� �� �� and
y� � ��� �� �� �� ��� Then� applying the linear programming problem in ���� � to
this net� the following lower bound for the average inter�ring time of transition
t� is obtained�

"�t�� � maxfqs�t��� ��� q�s�t��g

while the actual inter�ring time for this transition is

"�t�� � qs�t�� � ��� q�s�t��

independently of the higher moments of the probability distribution functions
associated with transitions t� and t�� Therefore the bound given by Theo�
rem ���� is non�reachable for the net in Figure ���
�a�

As was announced in Section ������� an improvement of the bound can be
obtained if additional constraints that improve the linear characterization of the
average marking are considered� Now� we exploit the linear information that
can be obtained from traps of the net and later we reinterpretate the obtained
improvement of the bound in terms of implicit places�

A trap in a Petri net N is a subset of places � such that �� � ��� A
well�known property of these structural elements is recalled now�

Property ���� Let S be a Petri net system and � � P a trap� If � is initially
marked� then � is marked throughout the net�s evolution�

This property can be expressed in algebraic terms considering the vector y�
associated with a given trap �� and de�ned as

y��p� �

�
�� if p � �
�� otherwise

�i�e�� the characteristic function of the set ��� The next inductive invariant is
true� if y� �m� � � then y� �m � � for all reachable marking m�

Let us consider the vector y� associated with a trap � of a net� and a P �
semi�ow y such that y � y� � � �it always exists for conservative nets�� The
following linear relations can be derived for all reachable markingm and for the
average marking vector ��

�y � y�� �m 
 y �m� � �

�y � y�� �� 
 y �m� � �

Premultiplying inequality ����
� by y�y�� a lower bound for "�t�� is derived�
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Theorem ���� For any net N and for any trap � of N � a lower bound for the
average inter�ring time "�t�� of transition t� is given by	

"�t�� � maximum
�y � y�� �Pre �D

y �m� � �
subject to y �C � �

y � y� � �
y��p� � if p � � then � else �

�������

Going back to the net in Figure ���
�a� the unique minimal trap di�erent
from the P �semi�ows is � � fp�� p�� p�g� Considering the P �semi�ow y �
��� �� �� �� ��� we have y � y� � ��� �� �� �� ��� and Theorem ���	 can be applied�

"�t�� � qs�t�� � ��� q�s�t�� �����
�

Therefore the bound obtained in Section ������ using only P �semi�ows has
been improved �in fact the bound computed now coincides with the actual in�
ter�ring time for this particular example��

In order to explain in an intuitive way �with the example� the reason of
the previous improvement� let us derive a behaviourally equivalent safe marked
graph �Figure ���
�b� for the safe Free Choice net of Figure ���
�a� assuming for
the sake of simplicity that the resolution of con�ict at place p� is deterministic
with q � ��� �i�e�� transitions t� and t� �re once each one� alternatively�� The
lower bound for the average cycle time of this MG based on Theorem ���� �i�e��
using the P �semi�ows� is

"MG � s�t�� � s�t��

�in fact it is reached� and corresponds to the circuit hp�� p�� p�� p��� p�� p
�
�i� Since

transition t� appears instantiated twice in the MG� the obtained bound for the
inter�ring time of this transition is

"�t�� � �s�t�� � s�t�����

In the original Free Choice net there does not exist any minimal P �semi�ow
including both p� and p� in its support� thus the previous bound is not obtained�

Now� we reinterpretate the linear marking relations derived from traps using
implicit places �cfr� Chapter ��� Let us consider again the net in Figure ���
�a
and its behaviourally equivalent �for q � ���� marked graph depicted in Fig�
ure ���
�b� The elementary circuits �P �semi�ows� of this MG are

c� � hp�� p�� p�� p
�
�� p

�
�i

c� � hp�� p�� p
�
�� p�� p

�
�i

c� � hp�� p�� p�� p
�
�� p�� p

�
�i

c� � hp�� p�� p
�
�� p

�
�i
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Figure ���	� The same systems �a� and �b� of Figure ���
 with the addition of
implicit places �a� p� and �b� p� and p��� respectively�

The circuits c� and c� correspond to the elementary P �semi�ows of the orig�
inal net y� and y�� respectively� Thus� these circuits cannot contribute to
the improvement of the bound computed for the original net based on the P �
semi�ows� This is not the case for the circuits c� and c�� These circuits add
linear information which is not re�ected by P �semi�ows in the original net� The
circuit c� does not include any timed transition and must not be considered�
On the other hand� the circuit c� re�ects the sequentialization of transitions t�
and t�� and it gives the actual cycle time of the net system�

A given elementary circuit of the derived MG does not correspond to any
elementary P �semi�ow of the original Free Choice net when it includes several
instances of a unique transition and each instance has as input �or output� places
which are instances of di�erent original places� This is the case� for example�
for the circuit c� of the MG of Figure ���
�b� It includes instances t� and t�� of
a unique transition� and the input places of these transitions in circuit c� are p�
and p��� respectively� which are instances of di�erent original places�

Now� let us increment the number of circuits of the MG of Figure ���
�b�
by adding the places p� and p��� as depicted in Figure ���	�b� Places p� and p��
are replicas of places p� and p��� respectively �thus they are implicit�� and can
be supposed to be di�erent instances of a new �implicit� place in the original
net �place p� of the net in Figure ���	�a�� The addition of this place generates
a new elementary P �semi�ow y� � ��� �� �� �� �� ��� With this P �semi�ow� the
lower bound for the inter�ring time computed with the linear programming
problem in ���� � is

"�t�� � qs�t�� � ��� q�s�t��

which is the same obtained in �����
�� using relations derived from trap struc�
tures stated in Theorem ���	�
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Let us remark that the relation between the implicit place p� of the net in
Figure ���	�a and the trap � � fp�� p�� p�g considered previously is straightfor�
ward� C�p�� �� � y� �C� that is� the incidence vector of p� is the sum of those
of places p�� p�� and p��

The following linear relation can be derived from the trap � �and the P �
semi�ow y � y� � y���

�y � y�� �m �m�p�� �m�p�� �m�p�� 
 ���m � RS�N �m�� �����	�

While this one follows from the new P �semi�ow y� that includes the implicit
place p��

y� �m � m�p�� �m�p�� �m�p�� �m�p�� � ���m � RS�N �m�� �������

It can be pointed out that the information given by relation �����	� is
included in that given by the new P �semi�ow �equation ��������� because
m�p�� � ��

Now� technical details related with the addition of implicit places which
improve the throughput upper bound computed by means of P �semi�ows and
traps are considered�

Let us consider an initially marked trap � of a given netN � and its associated
vector y� de�ned as in previous paragraphs� The following result� which follows
from Property ����� in Chapter �� assures that a structurally implicit place p	
associated with �� can be added to N �

Property ���
 Let � be an initially marked trap of N � y��p� � if p �
� then � else �� y� �m� � �� and N p	 the net resulting from the addition of
place p	 with incidence vector C�p	� �� � y� �C to N � Then p	 is structurally
implicit in N p	 �

The importance of the previous structural implicit place lies on the fact that�
if a marking makes it implicit �e�g�� the marking given by Property ����� in
Chapter ��� then the lower bound for the average inter�ring time of a transition
computed using P �semi�ows of the augmented net can improve the bounds
based on P �semi�ows of the original net �Theorem ����� and on the trap �
�Theorem ���	�� Before to state this result we �rstly present a technical lemma�

Lemma ���� Let � be an initially marked trap of N and y��p� � if p �
� then � else �� Let p	 be a place de�ned as C�p	� �� � y� �C� Then the pair
composed by y� and 		 � �� is a feasible solution of the linear programming
problem of Property ����� in Chapter �� and m��p	� 
 y� �m�� 		 
place p	
is assumed to be pure� i�e�� sel�oop�free��

Proof�
y� � C � C�p	� �� � �t � �p	 � y� � Post��� t� � y� � Pre��� t� � �Pre�p	� t��
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Taking into account that y� is the characteristic function of a trap we have in
the last equality that y� �Pre��� t� � � if and only if y� �Post��� t� � �� Therefore�
�t � �p	� y� �Pre��� t� � Pre�p	� t� and from the linear programming problem
of Property ����� in Chapter � we conclude that y� and 		 � �� is a feasible
solution� From the same linear programming problem we also conclude directly
that m��p	� 
 y� �m� � 		 because y� �m� � �� 	

Theorem ���� Let hN �m�i be a net system� � an initially marked trap of N �
y��p� � if p � � then � else �� and hN p	 �m�

p	i the net system resulting
from the addition to the original net of the structural implicit place p	 with
incidence vector C�p	� �� � y� �C and with m�

p	 �p	� given by Property �����
in Chapter ��

�� A lower bound "p	 �t�� for the average inter�ring time "�t�� of transi�
tion t� in hN �m�i can be computed applying Theorem ���� to the system
hN p	 �m�

p	i�

�� If "PS �t�� and "	�t�� are the lower bounds of "�t�� derived from the direct
application of Theorems ���� and ����� respectively� to the original system�
then "p	 �t�� � "PS �t�� and "p	 �t�� � "	�t���

Proof�
"p	 �t�� is a lower bound for the average inter�ring time of t� in hN p	 �m�

p	i
by Theorem ����� Since p	 is implicit� t� has the same average inter�ring time
in hN �m�i and in hN p	 �m�

p	i� Then� "p	 �t�� is a lower bound for the average
inter�ring time of t� in hN �m�i�

"p	 �t�� � "PS �t�� because if y is a P �semi�ow of N � then z � �y j �� is a
P �semi�ow of N p	 �

Finally� we prove that "p	 �t�� � "	�t��� Let y be a P �semi�ow of N such
that y � y� � �� Then z � ��y � y�� j �� is a P �semi�ow of N p	 � Now�
applying equation ������ for "p	 �t���

"p	 �t�� �
��y � y�� j �� �Prep	 �D

y �m� � y� �m� �m�
p	 �p	�

�

�
�y � y�� �Pre �D

y �m� � y� �m� �m�
p	 �p	�

�
Pre�p	� �� �D

y �m� � y� �m� �m�
p	 �p	�

�������

And this value is greater than or equal to that given by equation ������� in
Theorem ���	 because the second term of the above sum is non negative and the
�rst term in the above sum is greater than or equal to that given by equation
������� in Theorem ���	 �take into account that m�

p	 �p	� 
 y� �m� � �� by
Lemma ����� and that the denominator is less than or equal to y �m�� ��� 	

Theorem ������ tells that the addition of implicit places allows to obtain
better bounds than those computed using traps or the P �semi�ows of the original
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net� The problems that remain are how to add implicit places �i�e�� which ones
allow to improve the bounds� and when no more improvements are possible with
the technique�

Previously� the net system of Figure ���
�a has been considered as an example
in which the bound computed using the trap � � fp�� p�� p�g is tight because it
reaches the actual value of the average inter�ring time� It is also shown that the
same value can be derived� after the addition� in Figure ���	�a� of the associated
implicit place p�� considering the new P �semi�ow ��� �� �� �� �� ���

Let us consider the same net system of Figure ���
�a� but assuming now
that transition t� is not immediate but timed� with average service time equal
to s�t��� If the linear programming problem in ���� � is applied to the net� the
following bound is obtained�

"PS �t�� � maxfqs�t�� � s�t��� ��� q�s�t�� � s�t��g

If trap � � fp�� p�� p�g and P �semi�ow y � ��� �� �� �� �� are considered�
inequality ������� gives the bound�

"	�t�� � qs�t�� � ��� q�s�t��

If the implicit place associated with � is added to the net� Theorem ����
gives the bound�

"p	 �t�� � qs�t�� � ��� q�s�t�� � s�t��

�for the P �semi�ow ��� �� �� �� �� ���� which improves both "PS �t�� and "	�t���
and� in fact� it gives the actual inter�ring time of transition t� �i�e�� it is tight��
Note that� in this case� the improvement is due to the non�null second term of
the expression ��������

������ The Role of Liveness Bounds of Transitions

In a classical product�form QN� the number of servers at each station is explic�
itly given as a modelling choice �e�g�� it can be said that a certain station has
two servers�� Stations may vary between single server and delay node �in�nite
server�� In the second case� the maximum number of servers that can be working
at such delay node is exactly the number of customers in the whole net system�

Since in this chapter we assume in�nite server semantics for transitions�
several instances of a same transition can work in parallel at a given marking�
Howmany of them# The answer is given by the degree of enabling of a transition�
t� at a given marking� m� de�ned in Chapter � as�

e�t��m� � supfk � IN � �p � �t�m�p� � k Pre�p� t�g

Therefore it can be said that at m� in transition t� e�t��m� servers work
in parallel� This value can be eventually reduced by a design choice adding a
self�loop place around t with q tokens� it is obvious that in this case e�t��m� 
 q�
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The maximum number of servers working in parallel clearly in�uences the
performance of the system� This value� in net systems terms� has been called
the enabling bound of a transition�

De�nition ���� Let S � hN �m�i be a net system� The enabling bound of a
given transition t of S is

eb�t� � supfk � IN � � m�
�
��m��p � �t�m�p� � k Pre�p� t�g �������

The enabling bound is a quantitative generalization of the basic concept of
enabling� and is closely related to the concept of marking bound of a place �see
Chapter ���

Since we are interested in the steady�state performance of a model� one can
ask the following question� how many servers can be available in transitions in
any possible steady�state condition# The answer is given by the de�nition of
the liveness bound concept�

De�nition ����� Let S � hN �m�i be a net system� The liveness bound of a
given transition t of S is

lb�t� � supfk � IN � �m��m�
�
��m�� �m�m� ��

��m� �p � �t�m�p� � k Pre�p� t�g
����� �

The above de�nition generalizes the classical concept of liveness of a transition�
In particular� a transition t is live if and only if lb�t� � �� i�e�� if there is at
least one working server associated with it in any steady�state condition� The
following is also obvious from the de�nitions�

Property ����� Let S � hN �m�i be a net system� For any transition t in S�
eb�t� � lb�t��

The de�nition of enabling bound refers to a behavioural property� Since
we are looking for computational techniques at the structural level� we de�ne
also the structural counterpart of the enabling bound concept� Essentially� the
reachability condition is substituted by the �in general� weaker �linear� con�
straint that markings satisfy the net state equation� m � m� � C � �� with
m�� � ��

De�nition ����	 Let S � hN �m�i be a net system� The structural enabling
bound� seb�t�� of a given transition t of S is

seb�t� � maximum k
subject to m��p� �C�p� T � � � � k Pre�p� t�� �p � P

� � �
�������
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Note that the de�nition of structural enabling bound reduces to the for�
mulation of a linear programming problem� that can be solved in polynomial
time�

Now let us remark the relation between behavioural and structural enabling
bound concepts that follows from the implication �m�

�
��m � m � m��C �

� � � � ���

Property ����
 Let S � hN �m�i be a net system� For any transition t in S�
seb�t� � eb�t��

As we remarked before� the concept of enabling bound of transitions is closely
related to the marking bound of places� In an analogous way� the structural
enabling bound is closely related to the structural marking bound of places �see
Chapter ���

For the particular case of live and bounded free choice systems �thus� in
particular� for live and bounded marked graphs�� the following result holds�

Theorem ����� Let S � hN �m�i be a live and bounded free choice system�
For any transition t in S� seb�t� � eb�t� � lb�t��

A �trivial� lower bound in steady�state performance for a live net system
with a given vector of visit ratios for transitions is of course given by the inverse
of the sum of the services times of all the transitions weighted by the vector
of visit ratios� Since the net system is live� all transitions must be �rable�
and the sum of all service times multiplied by the number of occurrences of
each transition in the average cycle of the model corresponds to any complete
sequentialization of all the transition �rings�

Theorem ����� For any live and bounded system� an upper bound for the av�
erage inter�ring time "�t�� of transition t� can be computed as follows	

"�t�� 

X
t�T

v�t�s�t� �
X
t�T

D�t� �������

This pessimistic behaviour is always reached in a marked graph consisting
on a single loop of transitions and containing a single token in one of the places�
independently of the higher moments of the probability distribution functions
�this observation can be trivially con�rmed by the computation of the lower
bound given by ����� �� which in this case gives the same value��

Before trying to improve this trivial bound let us �rst consider the case of ��
live �i�e�� all its transitions have a liveness bound equal to �� strongly�connected
MG�s� If we specify only the mean values of the transition service times and not
the higher moments� we may always �nd an stochastic model whose steady�state
throughput is arbitrarily close to the trivial lower bound� independently of the
topology of the MG �only provided that it is ��live�� The formal proof of this
�somewhat counter�intuitive� result stated in the next theorem is based on the
de�nition of the family of random variables�
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X i
��
� �

�
�� with probability �� 
i

	�
i� with probability 
i
�������

for 	 � �! � � 
 
 �! i � IN� It is straightforward to see that

E
	
X i
��
�



� 	 and E

h
X i
��
�

�
i
� 	��
i

This implies that the coe�cient of variation is � for 
 � �� and that it tends to
� as 
� � provided that i � �� Then� the proof derives from considering that
each transition tj in the MG has Xj��

s
tj �
�
� as random service time distribution�

Theorem ����
 For any ��live strongly�connected MG with a given speci�ca�
tion of the average service times s�tj � for each tj � T � it is possible to assign
probability distribution functions to the transition service times such that the
average cycle time is " �

P
j s�tj � � O�
�� �
 � � � 
 
 �� independently of the

topology of the net 
and thus independently of the potential maximum degree of
parallelism intrinsic in the MG� ��

Proof�
By construction� we will show that the association of the family of random
variables Xj��

s
tj �
�
�� de�ned in �������� with each transition tj � T yields exactly

the cycle time " claimed by the theorem� To give the proof� we will consider a
sequence of models ordered by the index of transitions� in which the qth model
of the sequence has transitions t�� t�� � � � � tq timed with the random variables

Xj��
s
tj �

�
�� and all other transitions immediate ��ring in zero time�! the jT jth

model in the sequence represents an example of attainability of the lower bound
on throughput �upper bound for the average cycle time�� independent of the net
topology� Now we will prove by induction that the qth model in the sequence
has a cycle time "q �

Pq
j�� s�tj ��O�
��

Base �q � ��� trivial since the repetitive cycle that constitutes the steady�
state behaviour of the MG contains only one �single�server� deterministic tran�
sition with average service time "� � s�t���

Induction step �q � ��� taking the limit 
� �� the newly timed transition tq
will �re most of the time with time zero� thus normally not contributing to the
computation of the cycle time� that will be just "q�� �

Pq��
j�� s�tj ��O�
� �as in

the case of model q��� with probability ��
q��� On the other hand� the newly
timed transition has a �very small� probability 
q�� of delaying its �ring by a
time s�tq ��


q��� which is at least of order ��
 bigger than any other service time
in the circuit� so that in this case all other transitions will wait for the �ring of
tq � after having completed their possible current service in a time which is O�
�
lower than the service time of tq itself �i�e�� s�tq ��


q�� � "q���O�
��� Therefore

we obtain that "q � ���
q���"q���
q���
s
tq �
�q�� �O�
�� �

Pq
j�� s�tj ��O�
�� 	

�We use here the notation O�f�x�� to indicate any function g�x� such that limx��
g�x�
f�x�

�

k � IR
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In the previous result� the upper bound for the average cycle time �thus
lower bound on throughput� is reached in a limit case �
 � �� in which the
random variables associated with transitions have in�nite coe�cient of variation�
This is a way to obtain the minimum throughput if service times associated
with transitions are assumed mutually uncorrelated� It can be shown that it
is also possible to reach the lower bound in performance for �nite coe�cient of
variation if a maximum negative correlation is assumed among the service times
of transitions�

Until now� we have shown that the trivial sum of the average service times
of all transitions in the system constitutes a tight �attainable� lower bound for
the performance of a live and safe MG �or more generally of a ��live strongly�
connected MG� but otherwise independently of the topology� in which only the
mean values and neither the probability distribution functions nor the higher
moments are speci�ed for the transition service times� Let us now extend this
result to the more general case of k�live strongly�connected MG�s�

An intuitive idea is to derive a lower bound on throughput for an MG
containing transitions with liveness bound k � � �remember that� for MG�s�
lb � seb� by taking the method used for the computation of the throughput
upper bound in Section ������� and substitute in it the �max� operator for the
sum of the service times of all transitions involved� After some manipulation to
avoid counting more than once the contribution of the same transition� one can
arrive at the formulation of the following value for the maximum cycle time�

" 

X
t�T

s�t�

seb�t�
�������

The proof of this result requires the following Lemma�

Lemma ����� Any strongly�connected MG with arbitrary initial marking can
be constrained to contain a main circuit including all transitions� without chang�
ing their liveness bound� This main circuit 
which� in general� is not unique�
contains a number of tokens equal to the maximum of the liveness bounds among
all transitions� In addition there are other minor circuits that preserve the live�
ness bounds for transitions with bound lower than the maximum�

Proof�
To construct an MG of the desired form we can apply the following iterative
procedure that interleaves two non�disjoint circuits into a single one� Since the
MG is strongly�connected each node belongs to at least one circuit! moreover�
since the original MG is �nite and each circuit cannot contain the same node
more than once� this circuit interleaving procedure must terminate after a �nite
number of iterations� To reduce the number of circuits� implicit places created
after each iteration can be removed� The iteration step is the following�

�� Take two arbitrary non�disjoint circuits �unless the MG already contains a
main circuit including all nodes� there always exists such a pair of circuits
because the MG is strongly�connected��
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Figure ����� Example of structural sequentialization�

�� Combine them in a single circuit in such a way that the partial order
among transitions given by the two original circuits is substituted by a
compatible but otherwise arbitrary total order� This combination can be
obtained by adding new places that are connected as input for a transition
of one circuit and output for a transition of the other circuit that we decide
must follow in the sequence determined by the new circuit we are creating�

�� Mark the new added places in such a way that the new circuit contains
the same number of tokens as the maximum of the number of tokens in
the two original circuits�

The above procedure is applied iteratively until all transitions are con�
strained into a single main circuit� At this point� we can identify and elimi�
nate the implicit places that have been created during the circuits interleaving
procedure� We obtain then an MG composed of one main circuit containing
c � maxt�T seb�t� tokens that connects all transitions� and a certain number of
minor circuits containing less tokens than c that maintain the liveness bound of
the other transitions� 	

The idea behind this constraint is to introduce a structural sequentialization
among all transitions� thus potentially reducing the degree of concurrency be�
tween the activities modeled by the transitions� In other words� from the partial
order given by the initial MG structure� we try to derive a total order without
changing the liveness bound�

An example of application of the Lemma follows� in order to clarify the pro�
cedure� Consider the system depicted in Figure �����a� This system contains
only two circuits� namely ht�� t�� t�i� and ht�� t�� t�i! we can then add either the
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circuit ht�� t�� t�� t�i or ht�� t�� t�� t�i! Figure �����b depicts the resulting system
in case we choose to add the second circuit� In this case only place p� �from t� to
t�� needs to be added to obtain the longer circuit� and it should be marked with
one token� so that the new circuit comprising places hp�� p�� p�� p�i contains
two tokens� as the original circuit hp�� p�� p�i �while the other original circuit
hp�� p�� p�i contained only one�� In our example� we need not iterate the proce�
dure since we have already obtained a circuit containing all transitions of the
MG� At this point we can identify and eliminate the implicit places that have
been created during the circuits interleaving procedure� In the present example�
we can easily see that place p� becomes implicit in Figure �����b� so that it can
be eliminated� �nally leading ourselves to the MG depicted in Figure �����c�

It should be evident that the MG transformed by applying the above Lemma
has an average cycle time which is greater than or equal to the average cycle time
of the original one� since some additional constraints have been added to the
enabling of transitions� hence the average cycle time of the transformed MG is a
lower bound for the performance of the original one� Now if c � maxt�T seb�t� �
� in the above Lemma� we re��nd the lower bound of Theorem ������ In the case
of c � �� we can show that the average cycle time of the transformed system
cannot exceed

P
t�T s�t��seb�t��

Theorem ����� For any live and bounded marked graph� an upper bound for
the average cycle time " can be computed as follows	

" 

X
t�T

s�t�

seb�t�
�����
�

Moreover� this upper bound for the average cycle time is reachable for any MG
topology and for some assignment of probability distribution functions to the
service time of transitions 
i�e�� the bound cannot be improved��

Proof�
Without loss of generality� assume that transitions in the system resulting from
the application of Lemma ����� are partitioned in two classes S� and S�� with
liveness bounds K� � c � � and K� � c �where c � maxt�T seb�t��� respectively
�the proof is easily extended to the case of more than two classes�� Construct
a new model containing only K� tokens in the main circuit! at this point all
transitions behave as K��servers� so that the cycle time is given by the sum of
the service times of all transitions� divided by the total number of customers
in the main loop K�! moreover� the delay time for the transitions belonging to
class S� is simply given by D� �

P
t�S�

s�t�� Now if we increase the number of
tokens in the main loop from K� to K�� the delay time of S� cannot increase�
so that the contribution of S� to the cycle time cannot exceed D� for each of
the �rst K� tokens� Under the hypothesis that the throughput of the system
��t�� is given by the inverse of

P
t�T s�t��seb�t�� the average number of tokens

of the main loop computed using Little�s formula cannot exceed N� � ��t��D��
therefore the average number of tokens available to �re transitions in S� cannot
be lower than
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N� � K� �N� � K�

K��K�

K�

P
t�S�

s�t� �
P

t�S�
s�t�P

t�S�
s�t� � K�

K�

P
t�S�

s�t�

On the other hand� we need only

N� � ��t��D� � K�
D�P

t�S�
s�t� � K�

K�

P
t�S�

s�t�

tokens to sustain throughput ��t�� in subnet S�� so that we are assuming a delay
in S��

D� 

K� �K�

K�

X
t�S�

s�t� �
X
t�S�

s�t�

Now we claim that this is the actual maximum delay because the �rst K�

tokens can proceed at the maximum speed in the whole system� thus experienc�
ing only delay

P
t�S�

s�t� in subnet S�� while the remaining K��K� tokens can
also queue up for traveling through S�� thus experiencing an additional delay of
�
K�

P
t�S�

s�t� each�
With respect to the reachability of the bound� we proceed by construction�

in a way very similar to that of Theorem ������ The only technical di�erence
is that now� without any loss of generality� we assume �rst of all to enumerate
transitions in non�increasing order of liveness bound �or� equivalently� of struc�
tural enabling bound� i�e�� rename the transitions in such a way that �ti� tj � T �
i � j �� seb�ti� 
 seb�tj �� Then� as in the case of Theorem ������ we can

show that the association of the family of random variables Xj��
s
tj �

�
� with each

transition tj � T yields exactly the bound for the cycle time claimed by the
theorem� To give the proof we consider a sequence of models ordered by the
index of transitions� in which the qth model of the sequence has transitions
t�� t�� � � � � tq timed with the random variables Xj��

s
tj �
�
�� and all other transitions

immediate ��ring in zero time�! the jT jth model in the sequence represents the
resulting model that is expected to provide the example of attainability of the
lower bound� By induction we prove that the qth model in the sequence has a
cycle time�

"q �

qX
j��

s�tj �

seb�tj �
�O�
�

Base �q � ��� trivial since the repetitive cycle that constitute the steady�
state behavior of the MG contains only one �seb�t���server� deterministic tran�
sition with average service time "� � s�t���seb�t���

Induction step �q � ��� taking the limit 
 � �� each server of the newly
timed transition tq will �re most of the times with time zero� thus normally not
disturbing the behavior of the other timed transitions� and not contributing to
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the computation of the cycle time� that will be just "q �
Pq��

j��
s
tj �
seb
tj �

�O�
� �as

in the case of model q � �� with probability �� 
q��� On the other hand� each
of the servers of the newly timed transition has a �very small� probability 
q��

of delaying its �ring of a time s�tq ��

q��� which is at least order of ��
 bigger

than any other service time in the circuit� Now if seb�tq � � �� then the proof is
completed� since also �j � q� seb�tj � � � by hypothesis� and we reduce to the
induction step of the proof of Theorem ������ Instead if seb�tq� � � then we
can consider seb�tq � consecutive �rings of tq � and compute the average service
time as the total time to �re seb�tq � times the transition� divided by seb�tq ��
Now if we consider m consecutive �rings of instances of transition tq� we obtain
an average delay�

m��X
j��

��� 
q���
j

�q����m�j�

�m� j�s�tq �


�q���
� s�tq ��� �O�
��

Therefore� the average cycle time of the qth model will be�

"q � ���O�
q����"q�� �
s�tq �

seb�tq �
�� �O�
�� �

qX
j��

s�tj �

seb�tj �
�O�
��

	

The same idea for the improvement of the lower bound based on liveness
bounds of transitions that has been presented for marked graphs can be applied
for live and bounded Free Choice systems in order to improve the trivial bound
of Theorem ����	�

Theorem ����� For any live and bounded Free Choice system� an upper bound
for the average inter�ring time "�t�� of transition t� can be computed as follows	

"�t�� 

X
t�T

v�t�s�t�

seb�t�
�
X
t�T

D�t�

seb�t�
�����	�

Proof�
Let us consider a deterministic con�icts resolution policy� A strongly connected
MG with the same relative throughput vector can be constructed as follows
�in fact� since for the MG v � �� what can appear are several instances of
transitions to get the v of the original net��

�� Steady�state markings must be home states� Let mh be one of the home
states �there always exist some for live and bounded free choice systems�
and substitute it to the initial marking �i�e�� hN �mhi is reversible��

�� From the live and bounded free choice system� a safe marking can be
derived preserving liveness� removing tokens from mh�
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Figure ����� �Non�trivial� upper bound for the average inter�ring time cannot
be applied�

�� Develop the process� resolving the con�icts with the deterministic given
policy� until cyclicity appears and the relative �ring frequency holds� A
safe MG is obtained in which transitions appear according to their relative
�ring frequencies�


� The rest of tokens at each place in mh in the original live and bounded
free choice system can be added now in the corresponding place of the
MG�

The actual inter�ring time of the original free choice system �with determin�
istic con�icts resolution policy� is less than or equal to the one of the derived
MG because the behaviour of the system has been constrained� Now� apply the
bound obtained in Theorem ������ Di�erent instances of a given transition are
considered in the relative rate of the corresponding component in the relative
�ring frequency vector� Thus� the bound obtained for the derived MG applying
Theorem ����� coincides with the bound obtained for the original system using
the formula stated in this theorem� The theorem follows because lb � seb for
live and bounded free choice systems� 	

Concerning non�free choice systems� only the trivial bound� given by the
sum of the average service times of all transitions weighted by the vector of visit
ratios� can be computed�

An example showing that the bound presented in Theorem ���� is not valid
for non�free choice systems is depicted in Figure ����� where s�t��� s�t��� s�t�� are
the average service times of transitions t�� t�� t�� respectively� For this system�
the vector of visit ratios normalized for transition t� �i�e�� such that v�t�� � ��
is v � ��� �� �� and the liveness bounds of transitions are given by lb�t�� � ��
lb�t�� � �� and lb�t�� � �� Thus� the Theorem ���� would give the bound�

"�t�� 
 s�t�� � s�t�� � s�t�� �������

If exponentially distributed random variables �with means s�t��� s�t��� s�t��!
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s�t�� �� s�t��� are associated with transitions� the average inter�ring time for
transition t� is

"�t�� � s�t�� � s�t�� � s�t�� �
s�t��

�

��s�t�� � s�t���
�������

which is greater than the value obtained from the Theorem ���� � thus the
�non�trivial� bound does not hold in general�

���� Additional Improvements� Non�Insensitive

Bounds

A brief overview of three additional techniques for the improvement of the
bounds presented before are included in this section� The common factor to
these new techniques is that all of them need additional assumptions on the
form of the probability distribution functions associated to the service of tran�
sitions or on the con�ict resolution policies� In this sense� the obtained bounds
are non�insensitive�

���	�� Linear Relations between Second Order Moments

In this section� some linear equations are derived between second order moments
of marking of places for the particular case of Exponential Petri Nets �EPN��
In this context� EPN are timed PN such that�

� all the transitions have �independent� exponential service time �in partic�
ular� immediate transitions are not allowed�!

� a single�server semantics is assumed for transitions �or� an in�nite�server
semantics but with the assumption that every transition of the net has a
self�loop place with multiplicity one and initially marked with one token�!

� a race policy is assumed for the �ring of transitions�

The obtained linear equations can be added as new constraints to the linear
programming problem ������ of Section ������� therefore� the bounds for linear
functions of average marking and throughput presented there can eventually be
improved�

In order to get the new linear relations� we apply the uniformization tech�
nique ���� to the stochastic marking process f��
�g��� �a more detailed discus�
sion can be found in ��
���

Consider that each transition t � T of the EPN is continuously working
with independent and exponentially distributed service time of rate �t � ��s�t��
When a service at transition t is completed at instant 
 there are two possibili�
ties�

� either e�t��
� � �� i�e�� t is enabled at instant 
 and the completion of the
service corresponds with a �real� �ring of the transition! or
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� e�t��
� � �� i�e�� t is disabled at instant 
 therefore nothing happens and
we say that a �ctive �ring occurs�

Let f
ngn�� be the sequence of time epochs of real or �ctive service
completions in the EPN� Then f
ngn�� is a Poisson process with parameter
� �

P
t�T �t�

Denote At�n� the indicator function de�ned as�

At�n� �

�
�� if the nth real or �ctive service completion occurs at t � T
�� otherwise

Then�
P

t�T At�n� � � and� for any t � T � fAt�n�gn�� is a sequence
of independent and identically distributed random variables� independent of
f��
n�gn��� and such that PrfAt�n� � �g � �t���

If the system is in steady state then PASTA property �Poisson process see
time average� ��� holds and in order to study the limit expected value � of
f��
�g���� de�ned as�

��p� � lim
���

E ���p��
��

it is enough to analyse the process f��
n�gn���
First� notice that the evolution of f��
n�gn�� is determined by the following

equation�

��p��
n��� �

�
��p��
n�� if At�n� � � and e�t��
n� � �
��p��
n� �C�p� t�� if At�n� � � and e�t��
n� � �

�������

From this basic evolution equation� it is possible to compute linear relations
between second order moments of f��
n�gn���

For any pair of places p�� p� � P � the expectation of the product of
��p���
n��� and ��p���
n��� conditioned to Fn �where Fn is the ���eld gen�
erated by the events up to 
n� can be computed from ��������

E ���p���
n�����p���
n��� j Fn� �X
t�T

�t
�
��� e�t��
n����p���
n���p���
n� �

X
t�T

�t
�
e�t��
n� ���p���
n� �C�p�� t�� ���p���
n� �C�p�� t�� �

��p���
n���p���
n� �
X
t�T

�t
�
e�t��
n�C�p�� t�C�p�� t� �

X
t�T

�t
�
e�t��
n���p���
n�C�p�� t� �

X
t�T

�t
�
e�t��
n���p���
n�C�p�� t�
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Then� taking the expectation in the above equation and later taking the
limit n�� we obtain�X

t�T

�te�t�C�p�� t�C�p�� t� �
X
t�T

�ty�p�� t�C�p�� t� �
X
t�T

�ty�p�� t�C�p�� t� � �

where

e�t� � lim
���

E �e�t��
��

y�p� t� � lim
���

E ���p��
�e�t��
��

Now� since �te�t� � ��t� �utilization law� and changing y�p� t� to

z�p� t� � �ty�p� t�

we get�X
t�T

��t�C�p�� t�C�p�� t� �
X
t�T

z�p�� t�C�p�� t� �
X
t�T

z�p�� t�C�p�� t� � �

In the particular case that p� � p�� the above equation takes the form�X
t�T

��t�C�p� t�� � �
X
t�T

z�p� t�C�p� t� � �

In summary� the following set of linear constraints can be added to the linear
programming problem ������ of Section ������ for the computation of upper or
lower bounds for linear functions of average marking of places and throughput
of transitions�

�c
�
P

t�T
��t�C�p� t�� � �

P
t�T

z�p� t�C�p� t� � �� �p � P

�c���
P

t�T
��t�C�p�� t�C�p�� t�

�
P

t�T
z�p�� t�C�p�� t� �

P
t�T

z�p�� t�C�p�� t� � �� �p�� p� � P� p� �� p�

�c��� z � �

The reader should notice that the new variables z�p� t�� p � P� t � T have
been added also to the linear programming problem �������

���	�� Embedded PF�QN�s

Insensitive lower bounds for the average inter�ring time of transitions were
introduced in Section ������ looking for the maximum of the average inter�ring
time of transitions of isolated subsystems generated by elementary P �semi�ows�
A more realistic computation of the average inter�ring time of transitions of
these subsystems than that obtained from the analysis in complete isolation is
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considered now using� once more� the concept of liveness bound of transitions�
The number of servers at each transition t of a given system in steady state is
limited by its corresponding liveness bound lb�t� �or by its structural enabling
bound which can always be computed in an e�cient manner�� because this
bound is the maximum reentrance �or maximum self�concurrency� that the net
structure and the marking allow for the transition�

The technique we are going to brie�y present �a more detailed discussion
can be found in ��
�� is based on a decomposition of the original model in
subsystems� In particular� we look for embedded product�form closed monoclass
queueing networks� Well�known e�cient algorithms exist for the computation
of exact values or bounds for the throughput of such models ���� ��� ����

Therefore� let us concentrate in the search of such subsystems� How are
they structurally characterized# From a topological point of view� they are P�
components � strongly connected State Machines� Timing of transitions must be
done with exponentially distributed services� Moreover� conditional routing is
modelled with decisions among immediate transitions� corresponding to general�
ized free con�icts in the whole system� In other words� if t� and t� are in con�ict
in the considered P �component� they should be in generalized free con�ict in
the original net� Pre��� t�� � Pre��� t��� The reason for this constraint is that
since we are going to consider P �components as product�form closed monoclass
queueing networks with limited number of servers at stations �transitions�� the
throughput of these systems is sensitive to the con�ict resolution policy� even if
the relative �ring rates are preserved� Therefore� con�icts in the P �component
must be solved with exactly the same marking independent discrete probabil�
ity distributions as in the whole net system� in order to obtain an optimistic
bound for the throughput of the original net system� We call RP�components
the subnets verifying the previous constraints�

De�nition ���	� Let N be a net and Ni a P �component of N 
strongly con�
nected State Machine subnet�� Ni is a routing preserving P �component� RP�
component� i� for any pair of transitions� tj and tk� in con�ict in Ni� they are
in generalized free 
equal� con�ict in the whole net N 	 Pre��� tj � � Pre��� tk��

An improvement of the insensitive lower bound for the average inter�r�
ing time of a transition tj computed in Theorem ���� can be eventually ob�
tained computing the exact average inter�ring time of that transition in the
RP�component generated by a minimal P �semi�ow y� with lb�t��server seman�
tics for each involved transition t �in fact� it is not necessary that tj belongs
to the P �component! the bound for other transition can be computed and then
weighted according to the visit ratios in order to compute a bound for tj�� The
P �semi�ow y can be selected among the optimal solutions of ���� � or it can be
just a feasible near�optimal solution�

As an example� let us consider the net system depicted in Figure ����� As�
sume that routing probabilities are equal to ��� for t�� t�� and t�� and that
t�� t�� t�� t��� t��� t�� have exponentially distributed service times with mean
values s�t�� � s�t�� � s�t�� � ��� s�t��� � s�t��� � s�t��� � �� The elementary
P �semi�ows of the net are�
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Figure ����� A live and bounded Free Choice system�

y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��
y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��
y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��
y� � ��� �� �� �� �� �� �� �� �� �� �� �� ��

����� �

Then� if the initial marking of p��� p��� and p�� is � token� and the initial
marking of p� is N tokens� the lower bound for the average inter�ring time
derived from ���� � is

"�t�� � maxf���N� ��� ��� ��g ����
��

For N � �� the previous bound� obtained from y�� gives the value ��� while
the exact average inter�ring time is ������ For N � �� the bound is �	 and it
is derived also from y� �average inter�ring time of the P �component generated
by y�� considered in isolation with in�nite server semantics for transitions��
This bound does not take into account the queueing time at places due to
synchronizations �t�� t�� and t��� and the exact average inter�ring time of t�
is "�t�� � ����	� For larger values of N � the bound obtained from ���� � is
equal to �� �and is given by P �semi�ows y�� y� and y��� This bound can
be improved if the P �component generated by y� is considered with liveness
bounds of transitions t�� t�� and t� reduced to � �which is the liveness bound of
these transitions in the whole net��

The results obtained for di�erent values of N are collected in Table �����
Exact values of average inter�ring times for the P �component generated by y�
were computed using the mean value analysis algorithm ����� This algorithm
has O�A�B� worst case time complexity� where A � y �m� is the number of
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N "���	���t�� "�y��lb �t�� "�t��
� �� �� �����
� �	 �� ����	
� �� ����� �����

 �� �	 �����
	 �� �
 �	���
�� �� �� �����
�	 �� ����
 ����	

Table ����� Bounds "���	���t�� obtained using ���� �� improvements for the
bounds "�y��lb �t�� presented in this section� and the exact average inter�ring
time "�t�� of t�� for di�erent initial markings N of p� in the net system of
Figure �����

tokens at the P �component and B � y � Pre � � is the number of involved
transitions �� is a vector with all entries equal to ��� Exact computation on
the original system takes several minutes in a Sun SPARC Workstation while
bounds computation takes only a few seconds�

We also remark that other techniques for the computation of throughput up�
per bounds �instead of exact values� of closed product�form monoclass queueing
networks could be used� such as� for instance� balanced throughput upper bounds
���� or throughput upper bounds hierarchies ����� Hierarchies of bounds guaran�
tee di�erent levels of accuracy �including the exact solution�� by investing the
necessary computational e�ort� This provides also a hierarchy of bounds for the
average inter�ring time of transitions of Markovian Petri net systems�

Finally� the technique sketched in this section can be applied to the more
general case of Coxian distributions �instead of exponential� for the service time
of those transitions having either liveness bound equal to one �i�e�� single�server
stations� or liveness bound equal to the number of tokens in the RP�component
�i�e�� delay stations�� The reason is that in these cases the embedded queueing
network has also product�form solution� according to a classical theorem of
queueing theory� the BCMP theorem ����

���	�� Reduction and Transformation Techniques

The lower bounds for the throughput of transitions presented in previous sec�
tions are valid for any probability distribution function of service times but can
be very pessimistic in some cases� In this section� an improvement of such re�
sults is brie�y explained for the case of those net systems in which the following
performance monotonicity property holds� a local pessimistic transformation
leads to a slower transformed net system �i�e�� a pessimistic local transforma�
tion guarantees a pessimistic global behaviour�� Using the concept of stochastic
ordering �� �� a pessimistic transformation is� for example� to substitute the
probability distribution function of a service �or token�subnet traversing� time
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Figure ��� � �a� Elementary fork�join and �b� its reduction�

by a stochastically greater probability distribution function� Live and bounded
Free Choice is a class of systems for which the above performance monotonicity
property holds� Details about the techniques presented here can be found in
����� The basic ideas are�

�� To use local pessimistic transformation rules to obtain a net system �sim�
pler� than the original �e�g�� with smaller state space� and with equal or
less performance�

�� To evaluate the performance for the derived net system� using insensi�
tive bounds presented in previous sections� exact analysis� or any other
applicable technique�

In order to obtain better bounds �after these two steps� than the values
computed in previous sections� at least one of the transformation rules of item �
must be less pessimistic than a total sequentialization of the involved transitions�
We present �rst a rule whose application allows such strict improvement� the
fork�join rule� Secondly� a rule that does not change at all the performance
�deletion of multistep preserving places� is presented� Finally� a rule that does
not follow the above ideas is also presented� the goal of this rule �split of a
transition� is to make reapplicable the other transformation rules�

The most simple case of fork�join subnet that can be considered is depicted
in Figure ��� �a� In this case� if transitions t� and t� have exponential services
X� and X� with means s�t�� and s�t��� respectively� they are reduced to a single
transition �Figure ��� �b� with exponential service time and mean�

s�t��� � E �max�X�� X��� � s�t�� � s�t���

�
�

s�t��
�

�

s�t��

���
Therefore� even if the mean traversing time of the reduced subnet by a single

token has been preserved� it has been substituted by a stochastically greater
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Figure ������ A complete reduction process� The relative error between insen�
sitive bound and exact value diminishes from �
�$ to �	$�
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variable� A trivial extension can be applied if the fork�join subnet includes
more than two transitions in parallel�

Other transformation rules that have been presented in ���� are�

Deletion of a multistep preserving place	 allows to remove some places without
changing the exact performance indices of the stochastic net system� In
fact the places that can be deleted are those whose elimination preserves
the multisets of transitions simultaneously �rable in all reachable markings
�e�g�� place p�� in Figure ������a�� The size of the state space of the model
is preserved and also the exact throughput of transitions of the system�

Reduction of transitions in sequence	 reduces a series of exponential services to
a single exponential service with the same mean� Intuitively� this transfor�
mation makes indivisible the service time of two or more transitions rep�
resenting elementary actions which always occur one after the other and
lead to no side condition �e�g�� transitions t� and t� in Figure ������a��
Therefore� the state space of the model is reduced� The throughput of
transitions is� in general� reduced�

Split of a transition	 this is not a state space reduction rule since it increases
the state space of the transformed net system� The advantage of the rule
is that it allows to proceed further in the reduction process using again
the previous rules �e�g�� transition t� in Figure ������c��

An example of application of all above transformation rules is depicted in
Figure ����� for a strongly connected marked graph with exponential timing�
Let us assume that average service times of transitions are� s�ti� � �� i �
�� �� �� �� �� ��� ��� �
� and s�ti� � �� otherwise�

In order to compute �rstly the insensitive lower bounds on throughput in�
troduced in Section ������� it is necessary to derive the liveness bounds of tran�
sitions� In this case it is easy to see that lb�tj � � � for every transition tj �

The vector of visit ratios of an MG is the unique minimal T �semi�ow of the
net� v � �� Therefore� the insensitive upper bound �valid for any probability
distribution function of service times� of the average cycle time of the MG is
" 
 �
� This value can be reached for some distributions of service times �see
Theorem ������� Nevertheless� if services are exponential the exact average cycle
time of the MG is " � �
��	�

The quantitative results of the transformation process illustrated in Fig�
ure ����� are shown in Table ���
� We remark that the bound has been improved
in polynomial time from �
 to � ���

���	 Bibliographic Remarks

The general approach for the computation of insensitive performance bounds
presented in Section ���� was introduced in ��	��

The reinterpretation using Little�s law and P �semi�ows presented in Sec�
tion ������ is in fact historically previous to the general approach� since it was
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Fig� ������a �
 �
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Fig� ������b � ��	 $
Fig� ������c � ��	 $
Fig� ������d � �	 ��� $
Fig� ������e � �	 ��� $
Fig� ������f �
�� �	 $
Fig� ������g �
�� �	 $
Fig� ������h � �� �	 $
Fig� ������i � �� �	 $
exact value� �
��	

Table ���
� Successive improvements of the upper bound for the average cycle
time of the MG in Figure ����� and relative errors with respect to the exact
value " � �
��	�

�rstly introduced in �	� for marked graphs and in ��� for Petri nets with unique
consistent �ring count vector� Improved versions of those papers are ��� and ����
respectively� The technique was extended to Free Choice systems in � � and to
FRT�net systems �cfr� Chapter �� in �
� and �����

The relation� presented in Section ������� between the general technique of
Section ���� and the P �semi�ows based technique of Section ������ is original
from this chapter�

The results on the reachability of the throughput upper bound for marked
graphs of Section ������ have been taken from �	� ���

Concerning the improvements of the bounds� that based on implicit places
�Section ������� was published in ����! the use of liveness bounds of transitions
presented in Section ������ was introduced for marked graphs in �	� �� and later
extended to Free Choice systems in � �� The uniformization technique used to
compute linear relations between second order moments in Section ���
�� was
proposed in this framework in ��
�� The improvement of the bounds based
on the consideration of embedded product�form queueing networks presented
in Section ���
�� was published in ���� and later improved in ��
�� Finally� the
reduction and transformation techniques brie�y presented in Section ���
�� have
been taken from �����

Concerning other works that are not considered at all in this chapter� a
large number of bounding techniques have been proposed for the performance
measures of classical �synchronization�free� queueing networks� The �rst family
is that of asymptotic bound analysis ���� ���� Asymptotic bounds are obtained
by considering two extreme situations� ��� no queueing takes place at any node�
and ��� at least one station is saturated� These bounds do not require the
product form property to hold and their computation is very fast� but they
are not accurate in general� The rest of bounds that have been introduced
are tighter but do require the product form assumption� This is the case of
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balanced job bounds ���� ���� which are based on the mean value theorem �����
Finally� several schemes for the construction of hierarchies of bounds have been
developed that guarantee any level of accuracy �including the exact solution��
by investing the necessary computational e�ort� performance bound hierarchies
���� � �� successively improving bounds ����� generalized quick bounds ����� All
these techniques are derived from mean value theorem� thus they are valid only
for product form networks�

With respect to timed Petri nets� M� Molloy ��	� noted that the average
token �ows in an ordinary Markovian network at steady�state are conserved�
Therefore� a series of �ow balance equations can be written� Token �ows are
conserved in places so the sum of all �ows into a place equals the sum of all �ows
out of the place� On the other hand� all token �ows on the input and output arcs
of a transition are equal� These equations determine the average token �ows in
the cycles of the net to within a constant� This constant cannot be determined
without Markovian analysis at the reachability graph level� However� limit �ows
when the number of tokens tends to in�nity can be computed� In order to do
that� bottleneck transitions must be �rst located� Then� the actual �ow through
a bottleneck transition is �under saturation conditions� equal to its potential
�ring rate�

S� Bruell and S� Ghanta ��� developed algorithms for computing upper and
lower bounds for the throughput of a restricted subclass of generalized sto�
chastic Petri nets �with immediate and exponentially timed transitions�� The
considered nets include control tokens to model a physical restriction� such as
semaphores� which is not a design parameter� The rest of tokens of such nets�
grouped in classes� correspond to the notion of a job or customer in a monoclass
queueing network� and its number is treated as a parameter of the net� The
upper and lower bounds on throughput are computed hierarchically estimating
maximum and minimum time of the path followed by each class of jobs�

In the paper of S� Islam and H� Ammar ����� methods to compute upper
and lower bounds for the steady�state token probabilities of a subclass of gen�
eralized stochastic Petri nets were presented� The considered nets are obliged
to admit a time scale decomposition� This means that the transitions of the
net are supposed to be divided into two classes� slow and fast transitions� with
several orders of magnitude of di�erence in the duration of activities� Moreover�
the subnets obtained after removing all slow transitions with their input and
output arcs must be conservative and admit a reversible initial marking� The
computation is based on near�completely decomposability of Markov chains�
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