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Table 2.9. Execution times of sort programs with 256 elements 

 Ordered Random Inverse 

StraightInsertion 0.22 50.74 103.80 
BinaryInsertion 1.16 37.66 76.06 
StraightSelection 58.18 58.34 73.46 
BubbleSort 80.18 128.84 178.66 
ShakerSort 0.16 104.44 187.36 
ShellSort 0.80 7.08 12.34 
HeapSort 2.32 2.22 2.12 
QuickSort 0.72 1.22 0.76 
NonRecQuickSort 0.72 1.32 0.80 
StraightMerge 1.98 2.06 1.98 

Table 2.10. Execution times of sort programs with 2048 elements  

2.4.  Sorting Sequences 

2.4.1.  Straight Merging 

Unfortunately, the sorting algorithms presented in the preceding chapter are inapplicable, if the amount of 
data to be sorted does not fit into a computer's main store, but if it is, for instance, represented on a peripheral 
and sequential storage device such as a tape or a disk. In this case we describe the data as a (sequential) file 
whose characteristic is that at each moment one and only one component is directly accessible. This is a 
severe restriction compared to the possibilities offered by the array structure, and therefore different sorting 
techniques have to be used. The most important one is sorting by merging. Merging (or collating) means 
combining two (or more) ordered sequences into a single, ordered sequence by repeated selection among the 
currently accessible components. Merging is a much simpler operation than sorting, and it is used as an 
auxiliary operation in the more complex process of sequential sorting. One way of sorting on the basis of 
merging, called straight merging, is the following: 
1. Split the sequence a into two halves, called b and c. 
2. Merge b and c by combining single items into ordered pairs. 
3. Call the merged sequence a, and repeat steps 1 and 2, this time merging ordered pairs into ordered 

quadruples. 
4. Repeat the previous steps, merging quadruples into octets, and continue doing this, each time doubling the 

lengths of the merged subsequences, until the entire sequence is ordered. 

As an example, consider the sequence 

44 55 12 42 94 18 06 67 

In step 1, the split results in the sequences 

44 55 12 42 
94 18 06 67 

The merging of single components (which are ordered sequences of length 1), into ordered pairs yields 

44 94 ' 18 55 ' 06 12 ' 42 67 

Splitting again in the middle and merging ordered pairs yields 

06 12 44 94 ' 18 42 55 67 

A third split and merge operation finally produces the desired result 

06 12 18 42 44 55 67 94 

Each operation that treats the entire set of data once is called a phase, and the smallest subprocess that by 
repetition constitutes the sort process is called a pass or a stage. In the above example the sort took three 
passes, each pass consisting of a splitting phase and a merging phase. In order to perform the sort, three tapes 
are needed; the process is therefore called a three-tape merge. 
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Actually, the splitting phases do not contribute to the sort since they do in no way permute the items; in a 
sense they are unproductive, although they constitute half of all copying operations. They can be eliminated 
altogether by combining the split and the merge phase. Instead of merging into a single sequence, the output 
of the merge process is immediately redistributed onto two tapes, which constitute the sources of the 
subsequent pass. In contrast to the previous two-phase merge sort, this method is called a single-phase merge 
or a balanced merge. It is evidently superior because only half as many copying operations are necessary; the 
price for this advantage is a fourth tape. 

We shall develop a merge program in detail and initially let the data be represented as an array which, 
however, is scanned in strictly sequential fashion. A later version of merge sort will then be based on the 
sequence structure, allowing a comparison of the two programs and demonstrating the strong dependence of 
the form of a program on the underlying representation of its data. 

A single array may easily be used in place of two sequences, if it is regarded as double-ended. Instead of 
merging from two source files, we may pick items off the two ends of the array. Thus, the general form of 
the combined merge-split phase can be illustrated as shown in Fig. 2.12. The destination of the merged items 
is switched after each ordered pair in the first pass, after each ordered quadruple in the second pass, etc., thus 
evenly filling the two destination sequences, represented by the two ends of a single array. After each pass, 
the two arrays interchange their roles, the source becomes the new destination, and vice versa. 

 

Fig. 2.12. Straight merge sort with two arrays 

A further simplification of the program can be achieved by joining the two conceptually distinct arrays into a 
single array of doubled size. Thus, the data will be represented by 

a: ARRAY 2*n OF item 

and we let the indices i  and j denote the two source items, whereas k and L designate the two destinations 
(see Fig. 2.12). The initial data are, of course, the items a1 ... an. Clearly, a Boolean variable up is needed to 
denote the direction of the data flow; up shall mean that in the current pass components a0 ... an-1 will be 
moved up to the variables an ... a2n-1, whereas ~up will indicate that an ... a2n-1 will be transferred down into 
a0 ... an-1. The value of up strictly alternates between consecutive passes. And, finally, a variable p is 
introduced to denote the length of the subsequences to be merged. Its value is initially 1, and it is doubled 
before each successive pass. To simplify matters somewhat, we shall assume that n is always a power of 2. 
Thus, the first version of the straight merge program assumes the following form: 

PROCEDURE MergeSort; 
   VAR i, j, k, L, p: INTEGER;  up: BOOLEAN;  
BEGIN up := TRUE; p := 1; 
   REPEAT initialize index variables; 
      IF up THEN i := 0; j := n-1; k := n; L := 2*n-1 
      ELSE k := 0; L := n-1; i := n; j := 2*n-1 
      END ; 
      merge p-tuples from i- and j-sources to k- and L-destinations; 
      up := ~up; p := 2*p 
   UNTIL p = n 
END MergeSort 

In the next development step we further refine the statements expressed in italics. Evidently, the merge pass 
involving n items is itself a sequence of merges of sequences, i.e. of p-tuples. Between every such partial 

i j 

source 

i j 

destination 

distribute merge 
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merge the destination is switched from the lower to the upper end of the destination array, or vice versa, to 
guarantee equal distribution onto both destinations. If the destination of  the merged items is the lower end of 
the destination array, then the destination index is k, and k is incremented after each move of an item. If they 
are to be moved to the upper end of the destination array, the destination index is L, and it is decremented 
after each move. In order to simplify the actual merge statement, we choose the destination to be designated 
by k at all times, switching the values of the variables k and L after each p-tuple merge, and denote the 
increment to be used at all times by h, where h is either 1 or -1. These design discussions lead to the 
following refinement: 

h := 1; m := n;  (*m = no. of items to be merged*) 
REPEAT q := p; r := p; m := m - 2*p; 
   merge q items from i-source with r items from j-source. 
   destination index is k. increment k by h; 
   h := -h; exchange k and L 
UNTIL m = 0 

In the further refinement step the actual merge statement is to be formulated. Here we have to keep in mind 
that the tail of the one subsequence which is left non-empty after the merge has to be appended to the output 
sequence by simple copying operations. 

WHILE (q > 0) & (r > 0) DO 
   IF a[i] < a[j] THEN 
      move an item from i-source to k-destination; advance i and k;  q := q-1 
   ELSE 
      move an item from j-source to k-destination; advance j and k;  r := r-1 
   END 
END ; 
copy tail of i-sequence; copy tail of j-sequence 

After this further refinement of the tail copying operations, the program is laid out in complete detail. Before 
writing it out in full, we wish to eliminate the restriction that n be a power of 2. Which parts of the algorithm 
are affected by this relaxation of constraints? We easily convince ourselves that the best way to cope with the 
more general situation is to adhere to the old method as long as possible. In this example this means that we 
continue merging p-tuples until the remainders of the source sequences are of length less than p. The one and 
only part that is influenced are the statements that determine the values of q and r, the lengths of the 
sequences to be merged. The following four statements replace the three statements 

q := p;  r := p;  m := m -2*p 

and, as the reader should convince himself, they represent an effective implementation of the strategy 
specified above; note that m denotes the total number of items in the two source sequences that remain to be 
merged: 

IF m >= p THEN q := p ELSE q := m END ; 
m := m-q; 
IF m >= p THEN r := p ELSE r := m END ; 
m := m-r 

In addition, in order to guarantee termination of the program, the condition p=n, which controls the outer 
repetition, must be changed to p ≥ n. After these modifications, we may now proceed to describe the entire 
algorithm in terms of a procedure operating on the global array a with 2n elements. 

PROCEDURE StraightMerge; 
   VAR i, j, k, L, t: INTEGER;   (*index range of a is 0 .. 2*n-1 *) 
      h, m, p, q, r: INTEGER; up: BOOLEAN; 
BEGIN up := TRUE; p := 1; 
   REPEAT h := 1; m := n; 
      IF up THEN i := 0; j := n-1; k := n; L := 2*n-1 
      ELSE k := 0; L := n-1; i := n; j := 2*n-1 
      END ; 
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      REPEAT (*merge a run from i- and j-sources to k-destination*) 
         IF m >= p THEN q := p ELSE q := m END ; 
         m := m-q; 
         IF m >= p THEN r := p ELSE r := m END ; 
         m := m-r; 
         WHILE (q > 0) & (r > 0) DO 
            IF a[i] < a[j] THEN  
               a[k] := a[i]; k := k+h; i := i+1; q := q-1 
            ELSE 
               a[k] := a[j]; k := k+h; j := j-1; r := r-1 
            END 
         END ; 
         WHILE r > 0 DO 
            a[k] := a[j]; k := k+h; j := j-1; r := r-1 
         END ; 
         WHILE q > 0 DO 
            a[k] := a[i]; k := k+h; i := i+1; q := q-1 
         END ; 
         h := -h; t := k; k := L; L := t 
      UNTIL m = 0; 
      up := ~up; p := 2*p 
   UNTIL p >= n; 
   IF ~up THEN 
      FOR i := 1 TO n DO a[i] := a[i+n] END 
   END 
END StraightMerge 

Analysis of Mergesort. Since each pass doubles p, and since the sort is terminated as soon as p > n, it 
involves ilog nj passes. Each pass, by definition, copies the entire set of n items exactly once. As a 
consequence, the total number of moves is exactly 

M  =  n × log(n) 

The number C of key comparisons is even less than M since no comparisons are involved in the tail copying 
operations. However, since the mergesort technique is usually applied in connection with the use of 
peripheral storage devices, the computational effort involved in the move operations dominates the effort of 
comparisons often by several orders of magnitude. The detailed analysis of the number of comparisons is 
therefore of little practical interest. 

The merge sort algorithm apparently compares well with even the advanced sorting techniques discussed in 
the previous chapter. However, the administrative overhead for the manipulation of indices is relatively high, 
and the decisive disadvantage is the need for storage of 2n items. This is the reason sorting by merging is 
rarely used on arrays, i.e., on data located in main store. Figures comparing the real time behavior of this 
Mergesort algorithm appear in the last line of Table 2.9. They compare favorably with Heapsort but 
unfavorably with Quicksort. 

2.4.2. Natural Merging 

In straight merging no advantage is gained when the data are initially already partially sorted. The length of 
all merged subsequences in the k th pass is less than or equal to 2k, independent of whether longer 
subsequences are already ordered and could as well be merged. In fact, any two ordered subsequences of 
lengths m and n might be merged directly into a single sequence of m+n items. A mergesort that at any time 
merges the two longest possible subsequences is called a natural merge sort. 

An ordered subsequence is often called a string. However, since the word string is even more frequently used 
to describe sequences of characters, we will follow Knuth in our terminology and use the word run instead of 
string when referring to ordered subsequences. We call a subsequence ai ... aj such that 

(ai-1 > ai) & (Ak : i ≤ k < j : ak ≤ ak+1) & (aj > aj+1) 
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a maximal run or, for short, a run. A natural merge sort, therefore, merges (maximal) runs instead of 
sequences of fixed, predetermined length. Runs have the property that if two sequences of n runs are merged, 
a single sequence of exactly n runs emerges. Therefore, the total number of runs is halved in each pass, and 
the number of required moves of items is in the worst case n*log(n), but in the average case it is even less. 
The expected number of comparisons, however, is much larger because in addition to the comparisons 
necessary for the selection of items, further comparisons are needed between consecutive items of each file 
in order to determine the end of each run. 

Our next programming exercise develops a natural merge algorithm in the same stepwise fashion that was 
used to explain the straight merging algorithm. It employs the sequence structure (represented by files, see 
Sect. 1.8) instead of the array, and it represents an unbalanced, two-phase, three-tape merge sort. We assume 
that the file variable c represents the initial sequence of items. (Naturally, in actual data processing 
application, the initial data are first copied from the original source to c for reasons of safety.)  a and b are 
two auxiliary file variables. Each pass consists of a distribution phase that distributes runs equally from c to a 
and b, and a merge phase that merges runs from a and b to c. This process is illustrated in Fig. 2.13. 

 

Fig. 2.13. Sort phases and passes 

17 31' 05 59' 13 41 43 67' 11 23 29 47' 03 07 71' 02 19 57' 37 61 
05 17 31 59' 11 13 23 29 41 43 47 67' 02 03 07 19 57 71' 37 61 
05 11 13 17 23 29 31 41 43 47 59 67' 02 03 07 19 37 57 61 71 
02 03 05 07 11 13 17 19 23 29 31 37 41 43 47 57 59 61 67 71 

Table 2.11.  Example of a Natural Mergesort. 

As an example, Table 2.11 shows the file c in its original state (line1) and after each pass (lines 2-4) in a 
natural merge sort involving 20 numbers. Note that only three passes are needed. The sort terminates as soon 
as the number of runs on c is 1. (We assume that there exists at least one non-empty run on the initial 
sequence). We therefore let a variable L be used for counting the number of runs merged onto c. By making 
use of the type Rider defined in Sect. 1.8.1, the program can be formulated as follows: 

VAR L: INTEGER; 
   r0, r1, r2: Files.Rider;  (*see 1.8.1*) 

REPEAT Files.Set(r0, a, 0); Files.Set(r1, b, 0); Files.Set(r2, c, 0);  
   distribute(r2, r0, r1);  (*c to a and b*) 
   Files.Set(r0, a, 0); Files.Set(r1, b, 0); Files.Set(r2, c, 0); 
   L := 0; merge(r0, r1, r2)  (*a and b into c*) 
UNTIL L = 1 

The two phases clearly emerge as two distinct statements. They are now to be refined, i.e., expressed in more 
detail. The refined descriptions of distribute (from rider r2 to riders r0 and r1) and merge (from riders r0 and 
r1 to rider r2) follow: 

b 

a a 

c c 

b 

a 

b 

c c c 

merge phase 
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1st run 2nd run nth run 
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REPEAT copyrun(r2, r0); 
   IF ~r2.eof THEN copyrun(r2, r1) END 
UNTIL r2.eof 

REPEAT mergerun(r0, r1, r2); INC(L) 
UNTIL r1.eof;  
IF ~r0.eof THEN copyrun(r0, r2); INC(L) END 

This method of distribution supposedly results in either equal numbers of runs in both a and b, or in sequence 
a containing one run more than b. Since corresponding pairs of runs are merged, a leftover run may still be 
on file a, which simply has to be copied. The statements merge and distribute are formulated in terms of a 
refined statement mergerun and a subordinate procedure copyrun with obvious tasks. When attempting to do 
so, one runs into a serious difficulty: In order to determine the end of a run, two consecutive keys must be 
compared. However, files are such that only a single element is immediately accessible. We evidently cannot 
avoid to look ahead, i.e to associate a buffer with every sequence. The buffer is to contain the first element of 
the file still to be read and constitutes something like a window sliding over the file. 

Instead of programming this mechanism explicitly into our program, we prefer to define yet another level of 
abstraction. It is represented by a new module Runs. It can be regarded as an extension of module Files of 
Sect. 1.8, introducing a new type Rider, which we may consider as an extension of type Files.Rider. This 
new type will not only accept all operations available on Riders and indicate the end of a file, but also 
indicate the end of a run and the first element of the remaining part of the file. The new type as well as its 
operators are presented by the following definition. 

DEFINITION Runs; 
 IMPORT Files, Texts; 
    TYPE Rider = RECORD (Files.Rider) first: INTEGER; eor: BOOLEAN END ; 

PROCEDURE OpenRandomSeq(f: Files.File; length, seed: INTEGER); 
PROCEDURE Set (VAR r: Rider; VAR f: Files.File); 
PROCEDURE copy(VAR source, destination: Rider); 
PROCEDURE ListSeq(VAR W: Texts.Writer; f: Files.File); 

END Runs. 

A few additional explanations for the choice of the procedures are necessary. As we shall see, the sorting 
algorithms discussed here and later are based on copying elements from one file to another. A procedure 
copy therefore takes the place of separate read and write operations. 

For convenience of testing the following examples, we also introduce a procedure ListSeq, converting a file 
of integers into a text. Also for convenience an additional procedure is included: OpenRandomSeq initializes 
a file with numbers in random order. These two procedures will serve to test the algorithms to be discussed 
below. The values of the fields eof and eor are defined as results of copy in analogy to eof  having been 
defined as result of a read operation. 

MODULE Runs; 
IMPORT Files, Texts; 

 TYPE Rider* = RECORD (Files.Rider) first: INTEGER; eor: BOOLEAN END ; 

PROCEDURE OpenRandomSeq*( f: Files.File; length, seed: INTEGER); 
      VAR i: INTEGER; w: Files.Rider; 
BEGIN Files.Set(w, f, 0); 
      FOR i := 0 TO length-1 DO 
         Files.WriteInt(w, seed); seed := (31*seed) MOD 997 + 5 
      END ; 
      Close(f) 
END OpenRandomSeq; 

PROCEDURE Set*(VAR r: Rider; f: Files.File); 
BEGIN Files.Set(r, f, 0); Files.Read (r, r.first); r.eor := r.eof  
END Set; 
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PROCEDURE copy*(VAR src, dest: Rider); 
BEGIN dest.first := src.first; 
      Files.Write(dest, dest.first); Files.Read(src, src.first); 
      src.eor := src.eof OR (src.first < dest.first) 
END copy; 

PROCEDURE ListSeq*(VAR W: Texts; f: Files.File;); 
      VAR x, y, k, n: INTEGER; r: Files.Rider; 
BEGIN k := 0; n := 0; Files.Set(r, f, 0); Files.ReadInt(r, x);  
      WHILE ~r.eof DO 
         Texts.WriteInt(W, x, 6); INC(k); Files.Read(r, y); 
         IF y < x THEN (*run ends*) Texts.Write(W, “|”); INC(n) END ; 
         x := y 
      END ; 
      Texts.Write(W, “$”); Texts.WriteInt(W, k, 5); Texts.WriteInt(W, n, 5); 
      Texts.WriteLn(W)  
END ListSeq; 

END Runs. 

We now return to the process of successive refinement of the process of natural merging. Procedure copyrun 
and the statement merge are now conveniently expressible as shown below. Note that we refer to the 
sequences (files) indirectly via the riders attached to them. In passing, we also note that the rider’s field first 
represents the next key on a sequence being read, and the last key of a sequence being written. 

PROCEDURE copyrun(VAR x, y: Runs.Rider); 
BEGIN (*copy from x to y*) 
   REPEAT Runs.copy(x, y) UNTIL x.eor 
END copyrun 

(*merge from r0 and r1 to r2*) 
REPEAT 
   IF r0.first < r1.first THEN 
      Runs.copy(r0, r2); 
      IF r0.eor THEN copyrun(r1, r2) END 
   ELSE Runs.copy(r1, r2); 
      IF r1.eor THEN copyrun(r0, r2) END 
   END 
UNTIL r0.eor OR r1.eor 

The comparison and selection process of keys in merging a run terminates as soon as one of the two runs is 
exhausted. After this, the other run (which is not exhausted yet) has to be transferred to the resulting run by 
merely copying its tail. This is done by a call of procedure copyrun. 

This should supposedly terminate the development of the natural merging sort procedure. Regrettably, the 
program is incorrect, as the very careful reader may have noticed. The program is incorrect in the sense that 
it does not sort properly in some cases. Consider, for example, the following sequence of input data: 

03 02 05 11 07 13 19 17 23 31 29 37 43 41 47 59 57 61 71 67 

By distributing consecutive runs alternately to a and b, we obtain 

a =  03 ' 07 13 19 ' 29 37 43 ' 57 61 71' 
b =  02 05 11 ' 17 23 31 ' 41 47 59 ' 67 

These sequences are readily merged into a single run, whereafter the sort terminates successfully. The 
example, although it does not lead to an erroneous behaviour of the program, makes us aware that mere 
distribution of runs to serveral files may result in a number of output runs that is less than the number of 
input runs. This is because the first item of the i+2nd run may be larger than the last item of the i-th run, 
thereby causing the two runs to merge automatically into a single run. 
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Although procedure distribute supposedly outputs runs in equal numbers to the two files, the important 
consequence is that the actual number of resulting runs on a and b may differ significantly. Our merge 
procedure, however, only merges pairs of runs and terminates as soon as b is read, thereby losing the tail of 
one of the sequences. Consider the following input data that are sorted (and truncated) in two subsequent 
passes: 

17  19  13  57  23  29  11  59  31  37  07  61  41  43  05  67  47  71  02  03 
13  17  19  23  29  31  37  41  43  47  57  71  11  59 
11  13  17  19  23  29  31  37  41  43  47  57  59  71 

Table 2.12  Incorrect Result of Mergesort Program. 

The example of this programming mistake is typical for many programming situations. The mistake is 
caused by an oversight of one of the possible consequences of a presumably simple operation. It is also 
typical in the sense that serval ways of correcting the mistake are open and that one of them has to be chosen. 
Often there exist two possibilities that differ in a very important, fundamental way: 

1. We recognize that the operation of distribution is incorrectly programmed and does not satisfy the 
requirement that the number of runs differ by at most 1. We stick to the original scheme of operation and 
correct the faulty procedure accordingly. 

2. We recognize that the correction of the faulty part involves far-reaching modifications, and we try to find 
ways in which other parts of the algorithm may be changed to accommodate the currently incorrect part. 

In general, the first path seems to be the safer, cleaner one, the more honest way, providing a fair degree of 
immunity from later consequences of overlooked, intricate side effects. It is, therefore, the way toward a 
solution that is generally recommended. 

It is to be pointed out, however, that the  second possibility should sometimes not be entirely ignored. It is 
for this reason that we further elaborate on this example and illustrate a fix by modification of the merge 
procedure rather than the distribution procedure, which is primarily at fault. 

This implies that we leave the distribution scheme untouched and renounce the condition that runs be equally 
distributed. This may result in a less than optimal performance. However, the worst-case performance 
remains unchanged, and moreover, the case of highly unequal distribution is statistically very unlikely. 
Efficiency considerations are therefore no serious argument against this solution. 

If the condition of equal distribution of runs no longer exists, then the merge procedure has to be changed so 
that, after reaching the end of one file, the entire tail of the remaining file is copied instead of at most one 
run. This change is straightforward and is very simple in comparison with any change in the distribution 
scheme. (The reader is urged to convince himself of the truth of this claim). The revised version of the merge 
algorithm is shown below in the form of a function procedure: 

PROCEDURE NaturalMerge(src: Files.File): Files.File; 
 VAR L: INTEGER;  (*no. of runs merged*) 
  f0, f1, f2: Files.File; 
  r0, r1, r2: Runs.Rider; 

 PROCEDURE copyrun(VAR x, y: Runs.Rider); 
 BEGIN (*from x to y*) 
  REPEAT Runs.copy(x, y) UNTIL x.eor 
 END copyrun; 

BEGIN Runs.Set(r2, src); 
 REPEAT f0 := Files.New("test0"); Files.Set(r0, f0, 0); 
  f1 := Files.New("test1"); Files.Set (r1, f1, 0); 
  (*distribute from r2 to r0 and r1*)  
  REPEAT copyrun(r2, r0); 
   IF ~r2.eof THEN copyrun(r2, r1) END 
  UNTIL r2.eof; 
  Runs.Set(r0, f0); Runs.Set(r1, f1); 
  f2 := Files.New(""); Files.Set(r2, f2, 0); L := 0; 
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  (*merge from r0 and r1 to r2*) 
  REPEAT 
   REPEAT 
    IF r0.first < r1.first THEN 
     Runs.copy(r0, r2); 
     IF r0.eor THEN copyrun(r1, r2) END 
    ELSE Runs.copy(r1, r2); 
     IF r1.eor THEN copyrun(r0, r2) END 
    END 
   UNTIL r0.eor OR r1.eor; 
   INC(L) 
  UNTIL r0.eof OR r1.eof; 
  WHILE ~r0.eof DO copyrun(r0, r2); INC(L) END ; 
  WHILE ~r1.eof DO copyrun(r1, r2); INC(L) END ; 
  Runs.Set(r2, f2) 
 UNTIL L = 1; 
 RETURN f2 
END NaturalMerge; 

2.4.3. Balanced Multiway Merging 

The effort involved in a sequential sort is proportional to the number of required passes since, by definition, 
every pass involves the copying of the entire set of data. One way to reduce this number is to distribute runs 
onto more than two files. Merging r runs that are equally distributed on N files results in a sequence of r/N 
runs. A second pass reduces their number to r/N2, a third pass to r/N3, and after k passes there are r/Nk runs 
left. The total number of passes required to sort n items by N-way merging is therefore  k = logN(n). Since 
each pass requires n copy operations, the total number of copy operations is in the worst case  M = n×logN(n) 

As the next programming exercise, we will develop a sort program based on multiway merging. In order to 
further contrast the program from the previous natural two-phase merging procedure, we  shall formulate the 
multiway merge as a single phase, balanced mergesort. This implies that in each pass there are an equal 
number of input and output files onto which consecutive runs are alternately distributed. Using 2N files, the 
algorithm will therefore be based on N-way merging. Following the previously adopted strategy, we will not 
bother to detect the automatic merging of two consecutive runs distributed onto the same file. Consequently, 
we are forced to design the merge program whithout assuming strictly equal numbers of runs on the input 
files. 

In this program we encounter for the first time a natural application of a data structure consisting of arrays of 
files. As a matter of fact, it is surprising how strongly the following program differs from the previous one 
because of the change from two-way to multiway merging. The change is primarily a result of the 
circumstance that the merge process can no longer simply be terminated after one of the input runs is 
exhausted. Instead, a list of inputs that are still active, i.e., not yet exhausted, must be kept. Another 
complication stems from the need to switch the groups of input and output files after each pass. Here the 
indirection of access to files via riders comes in handy. In each pass, data may be copied from the same 
riders r to the same riders w. At the end of each pass we merely need to reset the input and output files to 
different riders. 

Obviously, file numbers are used to index the array of files. Let us then assume that the initial file is the 
parameter src, and that for the sorting process 2N files are available: 

f, g: ARRAY N OF Files.File; 
r, w: ARRAY N OF Runs.Rider 

The algorithm can now be sketched as follows: 

PROCEDURE BalancedMerge(src: Files.File): Files.File; 
   VAR i, j: INTEGER; 
      L: INTEGER; (*no. of runs distributed*) 
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      R: Runs.Rider; 
BEGIN Runs.Set(R, src);  (*distribute initial runs from R to w[0] ... w[N-1]*)  
   j := 0; L := 0; 
   position riders w on files g;  
   REPEAT 
      copy one run from R to w[j]; 
      INC(j); INC(L); 
      IF j = N THEN j := 0 END 
   UNTIL R.eof; 

   REPEAT (*merge from riders r to riders w*) 
      switch files g to riders r; 
      L := 0; j := 0;  (*j = index of output file*) 
      REPEAT INC(L); 
         merge one run from inputs to w[j]; 
         IF j < N THEN INC(j) ELSE j := 0 END 
      UNTIL all inputs exhausted; 
   UNTIL L = 1 
   (*sorted file is with w[0]*) 
END BalancedMerge. 

Having associated a rider R with the source file, we now refine the statement for the initial distribution of 
runs. Using the definition of copy, we replace copy one run from R to w[j] by: 

REPEAT Runs.copy(R, w[j]) UNTIL R.eor 

Copying a run terminates when either the first item of the next run is encountered or when the end of the 
entire input file is reached. 

In the actual sort algorithm, the following statements remain to be specified in more detail: 

1. Position riders w on files g 
2. Merge one run from inputs to wj 
3. Switch files g to riders r 
4. All inputs exhausted 

First, we must accurately identify the current input sequences. Notably, the number of active inputs may be 
less than N. Obviously, there can be at most as many sources as there are runs; the sort terminates as soon as 
there is one single sequence left. This leaves open the possibility that at the initiation of the last sort pass 
there are fewer than N runs. We therefore introduce a variable, say k1, to denote the actual number of inputs 
used. We incorporate the initialization of k1 in the statement switch files as follows: 

IF L < N THEN k1 := L ELSE k1 := N END ; 
FOR i := 0 TO k1-1 DO Runs.Set(r[i], g[i]) END 

Naturally, statement (2) is to decrement k1 whenever an input source ceases. Hence, predicate (4) may easily 
be expressed by the relation  k1 = 0. Statement (2), however, is more difficult to refine; it consists of the 
repeated selection of the least key among the available sources and its subsequent transport to the 
destination, i.e., the current output sequence. The process is further complicated by the necessity of 
determining the end of each run. The end of a run may be reached because (1) the subsequent key is less than 
the current key or (2) the end of the source is reached. In the latter case the source is eliminated by 
decrementing k1; in the former case the run is closed by excluding the sequence from further selection of 
items, but only until the creation of the current output run is completed. This makes it obvious that a second 
variable, say k2, is needed to denote the number of sources actually available for the selection of the next 
item. This value is initially set equal to k1 and is decremented whenever a run teminates because of condition 
(1). 

Unfortunately, the introduction of k2 is not sufficient. We need to know not only the number of files, but also 
which files are still in actual use. An obvious solution is to use an array with Boolean components indicating 
the availability of the files. We choose, however, a different method that leads to a more efficient selection 
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procedure which, after all, is the most frequently repeated part of the entire algorithm. Instead of using a 
Boolean array, a file index map, say t, is introduced. This map is used  so that t0 ... tk2-1 are the indices of the 
available sequences. Thus statement (2) can be formulated as follows: 

k2 := k1; 
REPEAT select the minimal key, let t[m] be the sequence number on which it occurs; 
   Runs.copy(r[t[m]], w[j]);  
   IF r[t[m]].eof THEN eliminate sequence 
   ELSIF r[t[m]].eor THEN close run 
   END 
UNTIL k2 = 0 

Since the number of sequences will be fairly small for any practical purpose, the selection algorithm to be 
specified in further detail in the next refinement step may as well be a straightforward linear search. The 
statement eliminate sequence implies a decrease of k1 as well as k2 and also a reassignment of indices in the 
map t. The statement close run merely decrements k2 and rearranges components of t accordingly. The 
details are shown in the following procedure, being the last refinement. The statement switch sequences is 
elaborated according to explanations given earlier. 

PROCEDURE BalancedMerge(src: Files.File): Files.File; 
 VAR i, j, m, tx: INTEGER; 
  L, k1, k2: INTEGER; 
  min, x: INTEGER; 
  t: ARRAY N OF INTEGER;  (*index map*) 
  R: Runs.Rider;  (*source*) 
  f, g:  ARRAY N OF Files.File; 
  r, w: ARRAY N OF Runs.Rider; 

BEGIN Runs.Set(R, src); 
 FOR i := 0 TO N-1 DO g[i] := Files.New(""); Files.Set(w[i], g[i], 0) END ; 
 (*distribute initial runs from src to g[0] ... g[N-1]*) 
 j := 0; L := 0;  
 REPEAT 
  REPEAT Runs.copy(R, w[j]) UNTIL R.eor; 
  INC(L); INC(j); 
  IF j = N THEN j := 0 END 
 UNTIL R.eof; 

 FOR i := 0 TO N-1 DO t[i] := i END ; 
 REPEAT 
  IF L < N THEN k1 := L ELSE k1 := N END ; 
  FOR i := 0 TO k1-1 DO Runs.Set(r[i], g[i]) END ;  (*set input riders*) 
  FOR i := 0 TO k1-1 DO g[i] := Files.New(""); Files.Set(w[i], g[i], 0) END ;  (*set output riders*) 
  (*merge from r[0] ... r[N-1] to w[0] ... w[N-1]*) 
  FOR i := 0 TO N-1 DO t[i] := i END ; 

  L := 0;      (*nof runs merged*) 
  j := 0; 
  REPEAT (*merge one run from inputs to w[j]*) 
   INC(L); k2 := k1; 
   REPEAT (*select the minimal key*) 
    m := 0; min := r[t[0]].first; i := 1; 
    WHILE i < k2 DO 
     x := r[t[i]].first; 
     IF x < min THEN min := x; m := i END ; 
     INC(i) 
    END ; 
    Runs.copy(r[t[m]], w[j]); 
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    IF r[t[m]].eof THEN (*eliminate this sequence*) 
     DEC(k1); DEC(k2); t[m] := t[k2]; t[k2] := t[k1] 
    ELSIF r[t[m]].eor THEN (*close run*) 
     DEC(k2); tx := t[m]; t[m] := t[k2]; t[k2] := tx 
    END 
   UNTIL k2 = 0; 
   INC(j); 
   IF j = N THEN j := 0 END 
  UNTIL k1 = 0 
 UNTIL L = 1; 
 RETURN Files.Base(w[t[0]]) 
END BalancedMerge 

2.4.4.  Polyphase Sort 

We have now discussed the necessary techniques and have acquired the proper background to investigate and 
program yet another sorting algorithm whose performance is superior to the balanced sort. We have seen that 
balanced merging eliminates the pure copying operations necessary when the distribution and the merging 
operations are united into a single phase. The question arises whether or not the given sequences could be 
processed even more efficiently. This is indeed the case; the key to this next improvement lies in abandoning 
the rigid notion of strict passes, i.e., to use the sequences in a more sophisticated way than by always having 
N/2 sources and as many destinations and exchanging sources and destinations at the end of each distinct 
pass. Instead, the notion of a pass becomes diffuse. The method was invented by R.L. Gilstad [2-3] and called 
Polyphase Sort. 

It is first illustrated by an example using three sequences. At any time, items are merged from two sources 
into a third sequence variable. Whenever one of the source sequences is exhausted, it immediately becomes 
the destination of the merge operations of data from the non-exhausted source and the previous destination 
sequence. 

As we know that n runs on each input are transformed into n runs on the output, we need to list only the 
number of runs present on each sequence (instead of specifying actual keys). In Fig. 2.14 we assume that 
initially the two input sequences f1 and f2 contain 13 and 8 runs, respectively. Thus, in the first pass 8 runs 
are merged from f1 and f2 to f3, in the second pass the remaining 5 runs are merged from f3 and f1 onto f2, 
etc. In the end, f1 is the sorted sequence. 

 

Fig. 2.14. Polyphase mergesort of 21 runs with 3 sequences 

f1 f2 f3 

13 8 

5 0 8 

0 5 3 

3 2 0 

1 0 2 

0 1 1 

1 0 0 
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A second example shows the Polyphase method with 6 sequences. Let there initially be 16 runs on f1, 15 on 
f2, 14 on f3, 12 on f4, and 8 on f5. In the first partial pass, 8 runs are merged onto f6; In the end, f2 contains 
the sorted set of items (see Fig. 2.15). 

 

Fig. 2.15. Polyphase mergesort of 65 runs with 6 sequences 

Polyphase is more efficient than balanced merge because, given N sequences, it always operates with an N-1-
way merge instead of an N/2-way merge. As the number of required passes is approximately logN n, n being 
the number of items to be sorted and N being the degree of the merge operations, Polyphase promises a 
significant improvement over balanced merging. 

Of course, the distribution of initial runs was carefully chosen in the above examples. In order to find out 
which initial distributions of runs lead to a proper functioning, we work backward, starting with the final 
distribution (last line in Fig. 2.15). Rewriting the tables of the two examples and rotating each row by one 
position with respect to the prior row yields Tables 2.13 and 2.14 for six passes and for three and six 
sequences, respectively. 

L a1(L) a2(L) Sum ai(L) 

0 1 0 1 
1 1 1 2 
2 2 1 3 
3 3 2 5 
4 5 3 8 
5 8 5 13 
6 13 8 21 

Table 2.13  Perfect distribution of runs on two sequences. 

L a1(L) a2(L) a3(L) a4(L) a5(L) Sum ai(L) 

0 1 0 0 0 0 1 
1 1 1 1 1 1 5 
2 2 2 2 2 1 9 
3 4 4 4 3 2 17 
4 8 8 7 6 4 33 
5 16 15 14 12 8 65 

Table 2.14  Perfect distribution of runs on five sequences. 

From Table 2.13 we can deduce for L > 0 the relations 

a2(L+1)  =  a1(L)  
a1(L+1)  =  a1(L) + a2(L) 

f1 f2 f3 

16 15 

f4 f5 f6 

14 12 8 

8 7 6 4 0 8 

4 3 2 0 4 4 

2 1 0 2 2 2 

1 0 1 1 1 1 

0 1 0 0 0 0 
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and a1(0) = 1, a2(0) = 0. Defining fi+1 = a1(i), we obtain for i > 0 

fi+1  =  fi + fi-1,  f1 = 1,  f0 = 0 

These are the recursive rules (or recurrence relations) defining the Fibonacci numbers: 

f  =  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,  ... 

Each Fibonacci number is the sum of its two predecessors. As a consequence, the numbers of initial runs on 
the two input sequences must be two consecutive Fibonacci numbers in order to make Polyphase work 
properly with three sequences. 

How about the second example (Table 2.14) with six sequences?  The formation rules are easily derived as 

a5(L+1)  =  a1(L)  
a4(L+1)  =  a1(L) + a5(L)  =  a1(L) +  a1(L-1) 
a3(L+1)  =  a1(L) + a4(L)  =  a1(L) +  a1(L-1) + a1(L-2) 
a2(L+1)  =  a1(L) + a3(L)  =  a1(L) +  a1(L-1) + a1(L-2) + a1(L-3) 
a1(L+1)  =  a1(L) + a2(L)  =  a1(L) +  a1(L-1) + a1(L-2) + a1(L-3) + a1(L-4) 

Substituting fi for a1(i) yields 

fi+1 =  fi + fi-1 + fi-2 + fi-3 + fi-4     for i > 4 
f4 =  1 
fi =  0    for i < 4 

These numbers are the Fibonacci numbers of order 4. In general, the Fibonacci numbers of order p are 
defined as follows: 

fi+1(p) =  fi(p) + fi-1(p) + ... + fi-p(p)   for i > p 
fp(p) =  1 
fi(p) =  0   for  0 < i < p 

Note that the ordinary Fibonacci numbers are those of order 1. 

We have now seen that the initial numbers of runs for a perfect Polyphase Sort with N sequences are the sums 
of any N-1, N-2, ... , 1 (see Table 2.15) consecutive Fibonacci numbers of order N-2. This apparently implies 
that this method is only applicable to inputs whose number of runs is the sum of N-1 such Fibonacci sums. 
The important question thus arises: What is to be done when the number of initial runs is not such an ideal 
sum?  The answer is simple (and typical for such situations): we simulate the existence of hypothetical empty 
runs, such that the sum of real and hypothetical runs is a perfect sum. The empty runs are called dummy runs. 

But this is not really a satisfactory answer because it immediately raises the further and more difficult 
question:  How do we recognize dummy runs during merging? Before answering this question we must first 
investigate the prior problem of initial run distribution and decide upon a rule for the distribution of actual 
and dummy runs onto the N-1 tapes. 

 1     2     3     4     5     6     7 
 2     3     5     7     9    11    13 
 3     5     9    13    17    21    25 
 4     8    17    25    33    41    49 
 5    13    31    49    65    81    97 
 6    21    57    94   129   161   193 
 7    34   105   181   253   321   385 
 8    55   193   349   497   636   769 
 9    89   355   673   977  1261  1531 
10   144   653  1297  1921  2501  3049 
11   233  1201  2500  3777  4961  6073 
12   377  2209  4819  7425  9841 12097 
13   610  4063  9289 14597 19521 24097 
14   987  7473 17905 28697 38721 48001 

Table 2.15  Numbers of runs allowing for perfect distribution. 
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In order to find an appropriate rule for distribution, however, we must know how actual and dummy runs are 
merged. Clearly, the selection of a dummy run from sequence i means precisely that sequence i is ignored 
during this merge. resulting in a  merge from fewer than N-1 sources. Merging of a dummy run from all N-1 
sources implies no actual merge operation, but instead the recording of the resulting dummy run on the output 
sequence. From this we conclude that dummy runs should be distributed to the n-1 sequences as uniformly as 
possible, since we are interested in active merges from as many sources as possible. 

Let us forget dummy runs for a moment and consider the problem of distributing an unknown number of runs 
onto N-1 sequences. It is plain that the Fibonacci numbers of order N-2 specifying the desired numbers of 
runs on each source can be generated while the distribution progresses. Assuming, for example, N = 6 and 
referring to Table 2.14, we start by distributing runs as indicated by the row with index L = 1 (1, 1, 1, 1, 1); if 
there are more runs available, we proceed to the second row (2, 2, 2, 2, 1); if the source is still not exhausted, 
the distribution proceeds according to the third row (4, 4, 4, 3, 2), and so on. We shall call the row index 
level. Evidently, the larger the number of runs, the higher is the level of Fibonacci numbers which, 
incidentally, is equal to the number of merge passes or switchings necessary for the subsequent sort. The 
distribution algorithm can now be formulated in a first version as follows: 

1. Let the distribution goal be the Fibonacci numbers of order N-2, level 1. 
2. Distribute according to the set goal. 
3. If the goal is reached, compute the next level of Fibonacci numbers; the difference between them and those 

on the former level constitutes the new distribution goal. Return to step 2. If the goal cannot be reached 
because the source is exhausted, terminate the distribution process. 

The rules for calculating the next level of Fibonacci numbers are contained in their definition. We can thus 
concentrate our attention on step 2, where, with a given goal, the subsequent runs are to be distributed one 
after the other onto the N-1 output sequences. It is here where the dummy runs have to reappear in our 
considerations.  

Let us assume that when raising the level, we record the next goal by the differences di for i = 1 ... N-1, where 
di denotes the number of runs to be put onto sequence i in this step. We can now assume that we immediately 
put di dummy runs onto sequence i and then regard the subsequent distribution as the replacement of dummy 
runs by actual runs, each time recording a replacement by subtracting 1 from the count di. Thus, the di 
indicates the number of dummy runs on sequence i when the source becomes empty. 

It is not known which algorithm yields the optimal distribution, but the following has proved to be a very 
good method. It is called horizontal distribution (cf. Knuth, Vol 3. p. 270), a term that can be understood by 
imagining the runs as being piled up in the form of silos, as shown in Fig. 2.16 for N = 6, level 5 (cf. Table 
2.14). In order to reach an equal distribution of remaining dummy runs as quickly as possible, their 
replacement by actual runs reduces the size of the piles by picking off dummy runs on horizontal levels 
proceeding from left to right. In this way, the runs are distributed onto the sequences as indicated by their 
numbers as shown in Fig. 2.16. 

 

Fig. 2.16. Horizontal distribution of runs 
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We are now in a position to describe the algorithm in the form of a procedure called select, which is activated 
each time a run has been copied and a new source is selected for the next run. We assume the existence of a 
variable j denoting the index of the current destination sequence. ai and di denote the ideal and dummy 
distribution numbers for sequence i. 

j, level: INTEGER;  
a, d: ARRAY N OF INTEGER; 

These variables are initialized with the following values: 

ai = 1, di = 1 for i = 0 ... N-2 
aN-1 = 0, dN-1 = 0 dummy 
j = 0, level = 0 

Note that select is to compute the next row of Table 2.14, i.e., the values a1(L) ... aN-1(L) each time that the 
level is increased. The next goal, i.e., the differences di = ai(L) - ai(L-1) are also computed at that time. The 
indicated algorithm relies on the fact that the resulting di decrease with increasing index (descending stair in 
Fig. 2.16). Note that the exception is the transition from level 0 to level 1; this algorithm must therefore be 
used starting at level 1. Select ends by decrementing dj by 1; this operation stands for the replacement of a 
dummy run on sequence j by an actual run. 

   PROCEDURE select; 
      VAR i, z: INTEGER;  
   BEGIN  
      IF d[j] < d[j+1] THEN INC(j) 
      ELSE 
         IF d[j] = 0 THEN 
            INC(level); z := a[0]; 
            FOR i := 0 TO N-2 DO 
               d[i] := z + a[i+1] - a[i]; a[i] := z + a[i+1] 
            END 
         END ; 
         j := 0 
      END ; 
      DEC(d[j]) 
   END select 

Assuming the availability of a routine to copy a run from the source src woth rider R onto fj with rider r j, we 
can formulate the initial distribution phase as follows (assuming that the source contains at least one run): 

REPEAT select; copyrun 
UNTIL R.eof 

Here, however, we must pause for a moment to recall the effect encountered in distributing runs in the 
previously discussed natural merge algorithm: The fact that two runs consecutively arriving at the same 
destination may merge into a single run, causes the assumed numbers of runs to be incorrect. By devising the 
sort algorithm such that its correctness does not depend on the number of runs, this side effect can safely be 
ignored. In the Polyphase Sort, however, we are particularly concerned about keeping track of the exact 
number of runs on each file. Consequently, we cannot afford to overlook the effect of such a coincidental 
merge. An additional complication of the distribution algorithm therefore cannot be avoided. It becomes 
necessary to retain the keys of the last item of the last run on each sequence. Fortunately, our implementation 
of Runs does exactly this. In the case of output sequences, f.first represents the item last written. A next 
attempt to describe the distribution algorithm could therefore be 

REPEAT select;  
   IF f[j].first <= f0.first THEN continue old run END ; 
   copyrun 
UNTIL R.eof 
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The obvious mistake here lies in forgetting that f[j].first  has only obtained a value after copying the first run. 
A correct solution must therefore first distribute one run onto each of the N-1 destination sequences without 
inspection of first. The remaining runs are distributed as follows: 

WHILE ~R.eof DO 
   select; 
   IF r[j].first <= R.first THEN 
      copyrun; 
      IF R.eof THEN INC(d[j]) ELSE copyrun END 
   ELSE copyrun 
   END 
END 

Now we are finally in a position to tackle the main polyphase merge sort algorithm. Its principal structure is 
similar to the main part of the N-way merge program: An outer loop whose body merges runs until the 
sources are exhausted, an inner loop whose body merges a single run from each source, and an innermost 
loop whose body selects the initial key and transmits the involved item to the target file. The principal 
differences to balanced merging are the following: 

1. Instead of  N, there is only one output sequence in each pass. 
2. Instead of switching N input and N output sequences after each pass, the sequences are rotated. This is 

achieved by using a sequence index map t. 
3. The number of input sequences varies from run to run; at the start of each run, it is determined from the 

counts di of dummy runs. If di > 0 for all i, then N-1 dummy runs are pseudo-merged into a single dummy 
run by merely incrementing the count dN of the output sequence. Otherwise, one run is merged from all 
sources with di = 0, and di is decremented for all other sequences, indicating that one dummy run was taken 
off. We denote the number of input sequences involved in a merge by k. 

4. It is impossible to derive termination of a phase by the end-of status of the N-1'st sequence, because more 
merges might be necessary involving dummy runs from that source. Instead, the theoretically necessary 
number of runs is determined from the coefficients ai. The coefficients ai were computed during the 
distribution phase; they can now be recomputed backward. 

The main part of the Polyphase Sort can now be formulated according to these rules, assuming that all N-1 
sequences with initial runs are set to be read, and that the tape map is initially set to ti = i. 

REPEAT (*merge from t[0] ... t[N-2] to t[N-1]*)  
   z := a[N-2]; d[N-1] := 0;  
   REPEAT k := 0;  (*merge one run*) 
      (*determine no. of active input sequences*) 
      FOR i := 0 TO N-2 DO 
         IF d[i] > 0 THEN DEC(d[i]) ELSE ta[k] := t[i]; INC(k) END 
      END ; 
      IF k = 0 THEN INC(d[N-1]) 
      ELSE merge one real run from t[0] ... t[k-1] to t[N-1] 
      END ; 
      DEC(z) 
   UNTIL z = 0; 
   Runs.Set(r[t[N-1]], f[t[N-1]]); 
   rotate sequences in map t; compute a[i] for next level; 
   DEC(level) 
UNTIL level = 0 
(*sorted output is f[t[0]]*) 

The actual merge operation is almost identical with that of the N-way merge sort, the only difference being 
that the sequence elimination algorithm is somewhat simpler. The rotation of the sequence index map and the 
corresponding counts di (and the down-level recomputation of the coefficients ai) is  straightforward and can 
be inspected in detail from Program 2.16, which represents the Polyphase algorithm in its entirety. 
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PROCEDURE Polyphase(src: Files.File): Files.File; 
 VAR i, j, mx, tn: INTEGER; 
  k, dn, z, level: INTEGER; 
  x, min: INTEGER; 
  a, d:  ARRAY N OF INTEGER; 
  t, ta:  ARRAY N OF INTEGER;  (*index maps*) 
  R: Runs.Rider;  (*source*) 
  f: ARRAY N OF Files.File; 
  r: ARRAY N OF Runs.Rider; 
 
 PROCEDURE select; 
  VAR i, z: INTEGER; 
 BEGIN  
  IF d[j] < d[j+1] THEN INC(j) 
  ELSE 
   IF d[j] = 0 THEN 
    INC(level); z := a[0]; 
    FOR i := 0 TO N-2 DO 
     d[i] := z + a[i+1] - a[i]; a[i] := z + a[i+1] 
    END 
   END ; 
   j := 0 
  END ; 
  DEC(d[j]) 
 END select; 
 
 PROCEDURE copyrun;  (*from src to f[j]*) 
 BEGIN 
  REPEAT Runs.copy(R, r[j]) UNTIL R.eor 
 END copyrun; 
 
BEGIN Runs.Set(R, src); 
 FOR i := 0 TO N-2 DO 
  a[i] := 1; d[i] := 1; f[i] := Files.New(""); Files.Set(r[i], f[i], 0) 
 END ; 
 (*distribute initial runs*) 
 level := 1; j := 0; a[N-1] := 0; d[N-1] := 0;  
 REPEAT select; copyrun UNTIL R.eof OR (j = N-2); 
 WHILE ~R.eof DO 
  select;  (*r[j].first = last item written on f[j]*) 
  IF r[j].first <= R.first THEN 
   copyrun; 
   IF R.eof THEN INC(d[j]) ELSE copyrun END 
  ELSE copyrun 
  END 
 END ; 
 
 FOR i := 0 TO N-2 DO t[i] := i; Runs.Set(r[i], f[i]) END ; 
 t[N-1] := N-1; 
 REPEAT (*merge from t[0] ... t[N-2] to t[N-1]*) 
  z := a[N-2]; d[N-1] := 0; 
  f[t[N-1]] := Files.New(""); Files.Set(r[t[N-1]], f[t[N-1]], 0); 
  REPEAT k := 0;  (*merge one run*) 
   FOR i := 0 TO N-2 DO 
    IF d[i] > 0 THEN DEC(d[i]) ELSE ta[k] := t[i]; INC(k) END 
   END ; 
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   IF k = 0 THEN INC(d[N-1]) 
   ELSE (*merge one real run from t[0] ... t[k-1] to t[N-1]*) 
    REPEAT mx := 0; min := r[ta[0]].first; i := 1; 
     WHILE i < k DO 
      x := r[ta[i]].first; 
      IF x < min THEN min := x; mx := i END ; 
      INC(i) 
     END ; 
     Runs.copy(r[ta[mx]], r[t[N-1]]); 
     IF r[ta[mx]].eor THEN ta[mx] := ta[k-1]; DEC(k) END 
    UNTIL k = 0 
   END ; 
   DEC(z) 
  UNTIL z = 0; 
  Runs.Set(r[t[N-1]], f[t[N-1]]);   (*rotate sequences*) 
  tn := t[N-1]; dn := d[N-1]; z := a[N-2]; 
  FOR i := N-1 TO 1 BY -1 DO 
   t[i] := t[i-1]; d[i] := d[i-1]; a[i] := a[i-1] - z 
  END ; 
  t[0] := tn; d[0] := dn; a[0] := z; DEC(level) 
 UNTIL level = 0 ; 
 RETURN f[t[0]] 
END Polyphase 

2.4.5.  Distribution of Initial Runs 

We were led to the sophisticated sequential sorting programs, because the simpler methods operating on 
arrays rely on the availability of a random access store sufficiently large to hold the entire set of data to be 
sorted. Often such a store is unavailable; instead, sufficiently large sequential storage devices such as tapes or 
disks must be used. We know that the sequential sorting methods developed so far need practically no 
primary store whatsoever, except for the file buffers and, of course, the program itself. However, it is a fact 
that even small computers include a random access, primary store that is almost always larger than what is 
needed by the programs developed here. Failing to make optimal use of it cannot be justified. 

The solution lies in combining array and sequence sorting techniques. In particular, an adapted array sort may 
be used in the distribution phase of initial runs with the effect that these runs do already have a length L of 
approximately the size of the available primary data store. It is plain that in the subsequent merge passes no 
additional array sorts could improve the performance because the runs involved are steadily growing in 
length, and thus they always remain larger than the available main store. As a result, we may fortunately 
concentrate our attention on improving the algorithm that generates initial runs. 

Naturally, we immediately concentrate our search on the logarithmic array sorting methods. The most 
suitable of them is the tree sort or Heapsort method (see Sect. 2.2.5). The heap may be regarded as a funnel 
through which all items must pass, some quicker and some more slowly. The least key is readily picked off 
the top of the heap, and its replacement is a very efficient process. The action of funnelling a component from 
the input sequence src (rider r0) through a full heap H onto an output sequence dest (rider r1) may be 
described simply as follows: 

Write(r1, H[0]); Read(r0, H[0]); sift(0, n-1) 

Sift is the process described in Sect. 2.2.5 for sifting the newly inserted component H0 down into its proper 
place. Note that H0 is the least item on the heap. An example is shown in Fig. 2.17. The program eventually 
becomes considerably more complex for the following reasons: 

1. The heap H is initially empty and must first be filled. 
2. Toward the end, the heap is only partially filled, and it ultimately becomes empty. 
3. We must keep track of the beginning of new runs in order to change the output index j at the right time. 
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Fig. 2.17. Sifting a key through a heap 

Before proceeding, let us formally declare the variables that are evidently involved in the process: 

VAR L, R, x: INTEGER; 
    src, dest: Files.File; 
    r, w: Files.Rider; 
    H: ARRAY M OF INTEGER;  (*heap*)  

M is the size of the heap H. We use the constant mh to denote M/2; L and R are indices delimiting the heap. 
The funnelling process can then be divided into five distinct parts. 

1. Read the first mh keys from src (r) and put them into the upper half of the heap where no ordering among 
the keys is prescribed. 

2. Read another mh keys and put them into the lower half of the heap, sifting each item into its appropriate 
position (build heap). 

3. Set L to M and repeat the following step for all remaining items on src: Feed H0 to the appropriate output 
sequence. If its key is less or equal to the key of the next item on the input sequence, then this next item 
belongs to the same run and can be sifted into its proper position. Otherwise, reduce the size of the heap 
and place the new item into a second, upper heap that is built up to contain the next run. We indicate the 
borderline between the two heaps with the index L. Thus, the lower (current) heap consists of the items H0 
... HL-1, the upper (next) heap of HL ... HM-1. If L = 0, then switch the output and reset L to M. 

4. Now the source is exhausted. First, set R to M; then flush the lower part terminating the current run, and at 
the same time build up the upper part and gradually relocate it into positions HL ... HR-1. 

5. The last run is generated from the remaining items in the heap. 

We are now in a position to describe the five stages in detail as a complete program, calling a procedure 
switch whenever the end of a run is detected and some action to alter the index of the output sequence has to 
be invoked. In Program 2.17 a dummy routine is used instead, and all runs are written onto sequence dest. 

If we now try to integrate this program with, for instance, Polyphase Sort, we encounter a serious difficulty. It 
arises from the following circumstances:  The sort program consists in its initial part of a fairly complicated 
routine for switching between sequence variables, and relies on the availability of a procedure copyrun that 
delivers exactly one run to the selected destination. The Heapsort program, on the other hand, is a complex 
routine relying on the availability of a closed procedure select which simply selects a new destination. There 
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would be no problem, if in one (or both) of the programs the required procedure would be called at a single 
place only; but instead, they are called at several places in both programs. 

This situation is best reflected by the use of a coroutine (thread); it is suitable in those cases in which several 
processes coexist. The most typical representative is the combination of a process that produces a stream of 
information in distinct entities and a process that consumes this stream. This producer-consumer relationship 
can be expressed in terms of two coroutines; one of them may well be the main program itself. The coroutine 
may be considered as a process that contains one or more breakpoints. If such a breakpoint is encountered, 
then control returns to the program that had activated the coroutine. Whenever the coroutine is called again, 
execution is resumed at that breakpoint. In our example, we might consider Polyphase Sort as the main 
program, calling upon copyrun, which is formulated as a coroutine. It consists of the main body of Program 
2.17 in which each call of switch now represents a breakpoint. The test for end of file would then have to be 
replaced systematically by a test of whether or not the coroutine had reached its endpoint. 

PROCEDURE Distribute(src: Files.File): Files.File;  
 CONST M = 16; mh = M DIV 2;  (*heap size*) 
 VAR L, R: INTEGER; 
  x: INTEGER; 
  dest: Files.File; 
  r, w: Files.Rider; 
  H: ARRAY M OF INTEGER;  (*heap*) 

 PROCEDURE sift(L, R: INTEGER); 
  VAR i, j, x: INTEGER; 
 BEGIN i := L; j := 2*L+1; x := H[i]; 
  IF (j < R) & (H[j] > H[j+1]) THEN INC(j) END ; 
  WHILE (j <= R) & (x > H[j]) DO 
   H[i] := H[j]; i := j; j := 2*j+1; 
   IF (j < R) & (H[j] > H[j+1]) THEN INC(j) END 
  END ; 
  H[i] := x 
 END sift; 

BEGIN Files.Set(r, src, 0); dest := Files.New(""); Files.Set(w, dest, 0); 
(*step 1: fill upper half of heap*) 
 L := M; 
 REPEAT DEC(L); Files.ReadInt(r, H[L]) UNTIL L = mh; 
(*step 2: fill lower half of heap*) 
 REPEAT DEC(L); Files.ReadInt(r, H[L]); sift(L, M-1) UNTIL L = 0; 
(*step 3: pass elements through heap*) 
 L := M; Files.ReadInt(r, x); 
 WHILE ~r.eof DO 
  Files.WriteInt(w, H[0]); 
  IF H[0] <= x THEN 
   (*x belongs to same run*) H[0] := x; sift(0, L-1) 
  ELSE (*start next run*) 
   DEC(L); H[0] := H[L]; sift(0, L-1); H[L] := x; 
   IF L < mh THEN sift(L, M-1) END ; 
   IF L = 0 THEN (*heap full; start new run*) L := M END 
  END ; 
  Files.ReadInt(r, x) 
 END ; 
(*step 4: flush lower half of heap*) 
 R := M; 
 REPEAT DEC(L); Files.WriteInt(w, H[0]); 
  H[0] := H[L]; sift(0, L-1); DEC(R); H[L] := H[R]; 
  IF L < mh THEN sift(L, R-1) END 
 UNTIL L = 0; 
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(*step 5: flush upper half of heap, start new run*) 
 WHILE R > 0 DO 
  Files.WriteInt(w, H[0]); H[0] := H[R]; DEC(R); sift(0, R) 
 END ; 
 RETURN dest 
END Distribute 

Analysis and conclusions.  What performance can be expected from a Polyphase Sort with initial distribution 
of runs by a Heapsort?  We first discuss the improvement to be expected by introducing the heap. 

In a sequence with randomly distributed keys the expected average length of runs is 2. What is this length 
after the sequence has been funnelled through a heap of size m ?  One is inclined to say m, but, fortunately, 
the actual result of probabilistic analysis is much better, namely 2m (see Knuth, vol. 3, p. 254). Therefore, the 
expected improvement factor is m. 

An estimate of the performance of Polyphase can be gathered from Table 2.15, indicating the maximal 
number of initial runs that can be sorted in a given number of partial passes (levels) with a given number N of 
sequences. As an example, with six sequences and a heap of size m = 100, a file with up to 165’680’100 
initial runs can be sorted within 10 partial passes. This is a  remarkable performance. 

Reviewing again the combination of Polyphase Sort and Heapsort, one cannot help but be amazed at the 
complexity of this program. After all, it performs the same easily defined task of permuting a set of items as 
is done by any of the short programs based on the straight array sorting principles. The moral of the entire 
chapter may be taken as an exhibition of the following: 

1. The intimate connection between algorithm and underlying data structure, and in particular the influence of 
the latter on the former. 

2. The sophistication by which the performance of a program can be improved, even when the available 
structure for its data (sequence instead of array) is rather ill-suited for the task.  

Exercises 

2.1. Which of the algorithms given for straight insertion, binary insertion, straight selection, bubble sort, 
shakersort, shellsort, heapsort, quicksort, and straight mergesort are stable sorting methods? 

2.2. Would the algorithm for binary insertion still work correctly if L < R were replaced by L < R in the 
while clause?  Would it still be correct if the statement L := m+1 were simplified to L := m?  If not, 
find sets of values a1 ... an upon which the altered program would fail. 

2.3. Program and measure the execution time of the three straight sorting methods on your computer, and 
find coefficients by which the factors C and M have to be multiplied to yield real time estimates. 

2.4. Specifty invariants for the repetitions in the three straight sorting algorithms. 

2.5. Consider the following "obvious" version of the procedure Partition and find sets of values a0 ... an-1 
for which this version fails: 

i := 0; j := n-1; x := a[n DIV 2]; 
REPEAT 
   WHILE a[i] < x DO i := i+1 END ; 
   WHILE x < a[j] DO j := j-1 END ; 
   w := a[i]; a[i] := a[j]; a[j] := w 
UNTIL i > j 

2.6. Write a procedure that combines the Quicksort and Bubblesort algorithms as follows: Use Quicksort 
to obtain (unsorted) partitions of length m (1 < m < n); then use Bubblesort to complete the task. Note 
that the latter may sweep over the entire array of n elements, hence, minimizing the bookkeeping 
effort. Find that value of m which minimizes the total sort time. Note: Clearly, the optimum value of 
m will be quite small. It may therefore pay to let the Bubblesort sweep exactly m-1 times over the 
array instead of including a last pass establishing the fact that no further exchange is necessary. 


