Lecture 3 Matroids and Independence

Before we prove the correctness of the blue and red rules for MST, let’s first
discuss an abstract combinatorial structure called a matroid. We will show
that the MST problem is a special case of the more general problem of find-
ing a minimum-weight maximal independent set in a matroid. We will then
generalize the blue and red rules to arbitrary matroids and prove their cor-
rectness in this more general setting. We will show that every matroid has a
dual matroid, and that the blue and red rules of a matroid are the red and
blue rules, respectively, of its dual. Thus, once we establish the correctness of
the blue rule, we get the red rule for free.

We will also show that a structure is a matroid if and only if the greedy
algorithm always produces a minimum-weight maximal independent set for
any weighting.

Definition 3.1 A matroid is a pair (S,Z) where S is a finite set and Z is a
family of subsets of S such that

(i) f JeZand I C J, then I €T;
(i) if I,J € T and |I| < |J|, then there exists an £ € J — I such that

Tu{z} el
The elements of Z are called independent sets and the subsets of S not in 7
are called dependent sets. 0O

This definition is supposed to capture the notion of independence in a
general way. Here are some examples:
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14 LECTURE 3 MATROIDS AND INDEPENDENCE

1. Let V be a vector space, let S be a finite subset of V, and let T C 2° be
the family of linearly independent subsets of S. This example justifies
the term “independent”.

2. Let A be a matrix over a field, let S be the set of rows of A, and let
7 C 25 be the family of linearly independent subsets of S.

3. Let G = (V, E) be a connected undirected graph. Let S = E and let 7
be the set of forests in G. This example gives the MST problem of the
previous lecture.

4. Let G = (V, E) be a connected undirected graph. Let S = E and let
7 be the set of subsets E C E such that the graph (V,E — E') is

connected.
5. Elements ay,...,a, of a field are said to be algebraically independent
over a subfield k if there is no nontrivial polynomial p(zy,...,z,) with

coefficients in & such that p(ay,...,a,) = 0. Let S be a finite set of
elements and let Z be the set of subsets of S that are algebraically
independent over k.

Definition 3.2 A cycle (or circuit) of a matroid (S,Z) is a setwise minimal
(i.e., minimal with respect to set inclusion) dependent set. A cut (or cocircuit)
of (S,7) is a setwise minimal subset of S intersecting all maximal independent
sets. O

The terms circuit and cocircuit are standard in matroid theory, but we
will continue to use cycle and cut to maintain the intuitive connection with
the special case of MST. However, be advised that cuts in graphs as defined in
the last lecture are unions of cuts as defined here. For example, in the graph

t
>- U

sSe
the set {(s,u), (t,u)} forms a cut in the sense of MST, but not a cut in
the sense of the matroid, because it is not minimal. However, a moment’s
thought reveals that this difference is inconsequential as far as the blue rule
is concerned.

Let the elements of S be weighted. We wish to find a setwise maximal

independent set whose total weight is minimum among all setwise maximal

independent sets. In this more general setting, the blue and red rules become:

Blue Rule: Find a cut with no blue element. Pick an uncolored ele-
ment of the cut of minimum weight and color it blue.

Red Rule: Find a cycle with no red element. Pick an element of the
cycle of maximum weight and color it red.
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3.1 Matroid Duality

As the astute reader has probably noticed by now, there is some kind of duality
afoot. The similarity between the blue and red rules is just too striking to be
mere coincidence.

Definition 3.3 Let (S, Z) be a matroid. The dual matroid of (S, T) is (S,77%),
where

I* = {subsets of S disjoint from some maximal element of T |

In other words, the maximal elements of Z* are the complements in S of the
maximal elements of Z. O

The examples 3 and 4 above are duals. Note that 7** = 7. Be careful: it
is not the case that a set is independent in a matroid iff it is dependent in its
dual. For example, except in trivial cases, @ is independent in both matroids.

Theorem 3.4

1. Cuts in (S,I) are cycles in (S,I%).

2. The blue rule in (S,I) is the red rule in (S,T*) with the ordering of the
weights reversed.

3.2 Correctness of the Blue and Red Rules

Now we prove the correctness of the blue and red rules in arbitrary matroids.
A proof for the special case of MST can be found in Tarjan’s book [100,
Chapter 6]; Lawler [70] states the blue and red rules for arbitrary matroids
but omits a proof of correctness.

Definition 3.5 Let (S,7) be a matroid with dual (S,Z%). An acceptable
coloring is a pair of disjoint sets B € Z (the blue elements) and R € T* (the
red elements). An acceptable coloring B,Ris totalif BUR =8, i.e. if Bis a
maximal independent set and R is a maximal independent set in the dual. An

acceptable coloring B’, R’ extends or is an extension of an acceptable coloring
B,RifBC BandR C R. O

Lemma 3.6 Any acceptable coloring has a total acceptable extension.

Proof. Let B, R be an acceptable coloring. Let U* be a maximal element
of I* extending R, and let U = S — U*, Then U is a maximal element of
Z disjoint from R. As long as |B| < |U], select elements of I/ and add them
to B, maintaining independence. This is possible by axiom (ii) of matroids.
Let B be the resulting set. Since all maximal independent sets have the same
cardinality (Exercise 1a, Homework 1), B is a maximal element of 7 containing

B and disjoint from R. The desired total extension is B,s - B. O
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Lemma 3.7 A cut and e cycle cannot intersect in exactly one element.

Proof. Let C be a cut and D a cycle. Suppose that C N D = {z}. Then
D—{«z} is independent and C' — {z} is independent in the dual. Color D— {z}
blue and C—{z} red; by Lemma 3.6, this coloring extends to a total acceptable
coloring. But depending on the color of z, either C is all red or D is all blue;
this is impossible in an acceptable coloring, since D is dependent and C' is

dependent in the dual. O

Suppose B is independent and BU{z} is dependent. Then BU {:r} contains
a minimal dependent subset or cycle C, called the fundamental cycle! of r and
B. The cycle C must contain z, because C — {z} is contained in B and is
therefore independent.

Lemma 3.8 (Exchange Lemma) Let B, R be a total acceptable coloring.

(i) Let x € R and let y lie on the fundamental cycle of x and B. If the
colors of z and y are exchanged, the resulting coloring is acceptable.

(it) Let y € B and let x lie on the fundamental cut of y and R (the funda-
mental cut of y and R is the fundamental cycle of y and R in the dual
matroid). If the colors of x and y are exchanged, the resulting coloring
is acceptable.

Proof. By duality, we need only prove (i). Let C be the fundamental cycle

of z and B and let y lie on C. If y = z, there is nothing to prove. Otherwise

y € B. Theset C—{y}is mdependent smce C is minimal. Extend C' —{y} by
a.dding elements of | B| as in the proof of Lemma 3.6 until achieving a maximal
independent set B’. Then B' = (B — {y}) U {z}, and the total acceptable
coloring B', S — B' is obtained from B, R by switching the colors of z and y.

O

A total acceptable coloring B, R is called optimal if B is of minimum weight
among all maximal independent sets; equivalently, if R is of maximum weight
among all maximal independent sets in the dual matroid.

Lemma 3.9 If an acceptable coloring has an optimal total ertension before
execution of the blue or red Tule, then so has the resulting coloring afterwards.

Proof. We prove the case of the blue rule; the red rule follows by duality.
Let B, R be an acceptable coloring with optimal total extension B,R. Let A
be a cut containing no blue elements, and let = be an uncolored element of
A of minimum weight. If z € B, we are done, so assume that z € R. Let C
be the fundamental cycle of x a.nd B. By Lemma 3.7, A N C must contain

1We say “the” because it is unique (Exercise 1b, Homework 1), although we do not need
to know this for our argument.
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another element besides z, say y. Then y € B, and y & B because there are
no blue elements of A. By Lemma 3.8, the colors of z and y in B, R can be
exchanged to obtain a total acceptable coloring B', R/ extending B U {z}, R.
Moreover, B’ is of minimum weight, because the weight of z is no more than
that of y. O

We also need to know

Lemma 3.10 If an acceptable coloring is not total, then either the blue or red
rule applies.

Proof. Let B, R be an acceptable coloring with uncolored element z. By
Lemma 3.6, B, R has a total extension E’, R. By duality, assume without loss
of generality that z € B. Let C be the fundamental cut of z and R. Since all
elements of C besides z are in R, none of them are blue in B. Thus the blye
rule applies. O

Combining Lemmas 3.9 and 3.10, we have

Theorem 3.11 If we start with an uncolored weighted matroid and apply the
blue or red rules in any order until neither applies, then the resulting coloring
is an optimal total acceptable coloring.

What is really going on here is that all the subsets of the maximal inde-
pendent sets of minimal weight form a submatroid of (5,7), and the blue rule
gives a method for implementing axiom (ii) for this matroid; see Miscellaneous
Exercise 1.

3.3 Matroids and the Greedy Algorithm

We have shown that if (S, Z ) is a matroid, then the greedy algorithm produces
a maximal independent set of minimum weight. Here we show the converse:
if (5,Z) is not a matroid, then the greedy algorithm fails for some choice of
integer weights. Thus the abstract concept of matroid captures exactly when
the greedy algorithm works.

Theorem 3.12 ([32); see also [70]) A system (S,T) satisfying aziom (i) of
matroids is a matroid (i.e., it satisfies (t1)) if and only if for all weight as-
signments w : S — N, the greedy algorithm gives a minimum-weight mazimal
independent set.

Proof. The direction (—) has already been shown. For (<), let (S,7)
satisfy (i) but not (ii). There must be A, B such that A,B € T, |4| < | B|,
butforno:r:EB—AisAU{:r}EI.

Assume without loss of generality that B is a mazimal independent set.
If it is not, we can add elements to B maintaining the independence of B; for
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any element that we add to B that can also be added to A while preserving
the independence of A, we do so. This process never changes the fact that
|A| < |B| and fornor € B— Ais Au{z} € T.

Now we assign weights w : S — N. Let a = |[A — B| and b = |B — A|.
Then a < b. Let & be a huge number, A > a,b. (Actually ~ > b* will do.)

Case 1 If A is a maximal independent set, assign

0 forre ANB
=h forr g AUB .

Thus

w(Ad) = a(b+1) = ab+a
w(B) = bla+1l) = ab+b.

This weight assignment forces the greedy algorithm to choose B when in fact
A is a maximal independent set of smaller weight.

Case 2 If A is not a maximal independent set, assign

w(z)=0 forze A
w(r)=b forxre B—A
w(r)=h forz g AUB .

All the elements of A will be chosen first, and then a huge element outside of

A 0 T Y IR, SR, P B A fo U . N 1 I 1
A U B must be chosen, since A is not maximal. Thus the minimum-weight

maximal independent set B was not chosen. O



