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16.3-9
Show that no compression scheme can expect to compress a file of randomly cho-
sen 8-bit characters by even a single bit. (Hint: Compare the number of possible
files with the number of possible encoded files.)

? 16.4 Matroids and greedy methods

In this section, we sketch a beautiful theory about greedy algorithms. This theory
describes many situations in which the greedy method yields optimal solutions. It
involves combinatorial structures known as “matroids.” Although this theory does
not cover all cases for which a greedy method applies (for example, it does not
cover the activity-selection problem of Section 16.1 or the Huffman-coding prob-
lem of Section 16.3), it does cover many cases of practical interest. Furthermore,
this theory has been extended to cover many applications; see the notes at the end
of this chapter for references.

Matroids

A matroid is an ordered pair M D .S; � / satisfying the following conditions.

1. S is a finite set.

2. � is a nonempty family of subsets of S , called the independent subsets of S ,
such that if B 2 � and A � B , then A 2 � . We say that � is hereditary if it
satisfies this property. Note that the empty set ; is necessarily a member of � .

3. If A 2 � , B 2 � , and jAj < jBj, then there exists some element x 2 B � A

such that A [ fxg 2 � . We say that M satisfies the exchange property.

The word “matroid” is due to Hassler Whitney. He was studying matric ma-
troids, in which the elements of S are the rows of a given matrix and a set of rows is
independent if they are linearly independent in the usual sense. As Exercise 16.4-2
asks you to show, this structure defines a matroid.

As another example of matroids, consider the graphic matroid MG D .SG; �G/

defined in terms of a given undirected graph G D .V; E/ as follows:

� The set SG is defined to be E, the set of edges of G.

� If A is a subset of E, then A 2 �G if and only if A is acyclic. That is, a set of
edges A is independent if and only if the subgraph GA D .V; A/ forms a forest.

The graphic matroid MG is closely related to the minimum-spanning-tree problem,
which Chapter 23 covers in detail.
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Theorem 16.5
If G D .V; E/ is an undirected graph, then MG D .SG; �G/ is a matroid.

Proof Clearly, SG D E is a finite set. Furthermore, �G is hereditary, since a
subset of a forest is a forest. Putting it another way, removing edges from an
acyclic set of edges cannot create cycles.

Thus, it remains to show that MG satisfies the exchange property. Suppose that
GA D .V; A/ and GB D .V; B/ are forests of G and that jBj > jAj. That is, A

and B are acyclic sets of edges, and B contains more edges than A does.
We claim that a forest F D .VF ; EF / contains exactly jVF j � jEF j trees. To

see why, suppose that F consists of t trees, where the i th tree contains �i vertices
and ei edges. Then, we have

jEF j D
tX

iD1

ei

D
tX

iD1

.�i � 1/ (by Theorem B.2)

D
tX

iD1

�i � t

D jVF j � t ;

which implies that t D jVF j � jEF j. Thus, forest GA contains jV j � jAj trees, and
forest GB contains jV j � jBj trees.

Since forest GB has fewer trees than forest GA does, forest GB must contain
some tree T whose vertices are in two different trees in forest GA. Moreover,
since T is connected, it must contain an edge .u; �/ such that vertices u and �

are in different trees in forest GA. Since the edge .u; �/ connects vertices in two
different trees in forest GA, we can add the edge .u; �/ to forest GA without creating
a cycle. Therefore, MG satisfies the exchange property, completing the proof that
MG is a matroid.

Given a matroid M D .S; � /, we call an element x … A an extension of A 2 �

if we can add x to A while preserving independence; that is, x is an extension
of A if A [ fxg 2 � . As an example, consider a graphic matroid MG . If A is an
independent set of edges, then edge e is an extension of A if and only if e is not
in A and the addition of e to A does not create a cycle.

If A is an independent subset in a matroid M , we say that A is maximal if it has
no extensions. That is, A is maximal if it is not contained in any larger independent
subset of M . The following property is often useful.
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Theorem 16.6
All maximal independent subsets in a matroid have the same size.

Proof Suppose to the contrary that A is a maximal independent subset of M

and there exists another larger maximal independent subset B of M . Then, the
exchange property implies that for some x 2 B � A, we can extend A to a larger
independent set A[ fxg, contradicting the assumption that A is maximal.

As an illustration of this theorem, consider a graphic matroid MG for a con-
nected, undirected graph G. Every maximal independent subset of MG must be a
free tree with exactly jV j � 1 edges that connects all the vertices of G. Such a tree
is called a spanning tree of G.

We say that a matroid M D .S; � / is weighted if it is associated with a weight
function w that assigns a strictly positive weight w.x/ to each element x 2 S . The
weight function w extends to subsets of S by summation:

w.A/ D
X
x2A

w.x/

for any A � S . For example, if we let w.e/ denote the weight of an edge e in a
graphic matroid MG , then w.A/ is the total weight of the edges in edge set A.

Greedy algorithms on a weighted matroid

Many problems for which a greedy approach provides optimal solutions can be for-
mulated in terms of finding a maximum-weight independent subset in a weighted
matroid. That is, we are given a weighted matroid M D .S; � /, and we wish to
find an independent set A 2 � such that w.A/ is maximized. We call such a sub-
set that is independent and has maximum possible weight an optimal subset of the
matroid. Because the weight w.x/ of any element x 2 S is positive, an optimal
subset is always a maximal independent subset—it always helps to make A as large
as possible.

For example, in theminimum-spanning-tree problem, we are given a connected
undirected graph G D .V; E/ and a length function w such that w.e/ is the (posi-
tive) length of edge e. (We use the term “length” here to refer to the original edge
weights for the graph, reserving the term “weight” to refer to the weights in the
associated matroid.) We wish to find a subset of the edges that connects all of
the vertices together and has minimum total length. To view this as a problem of
finding an optimal subset of a matroid, consider the weighted matroid MG with
weight function w0, where w0.e/ D w0 �w.e/ and w0 is larger than the maximum
length of any edge. In this weighted matroid, all weights are positive and an opti-
mal subset is a spanning tree of minimum total length in the original graph. More
specifically, each maximal independent subset A corresponds to a spanning tree
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with jV j � 1 edges, and since

w0.A/ D
X
e2A

w0.e/

D
X
e2A

.w0 � w.e//

D .jV j � 1/w0 �
X
e2A

w.e/

D .jV j � 1/w0 � w.A/

for any maximal independent subset A, an independent subset that maximizes the
quantity w0.A/ must minimize w.A/. Thus, any algorithm that can find an optimal
subset A in an arbitrary matroid can solve the minimum-spanning-tree problem.

Chapter 23 gives algorithms for the minimum-spanning-tree problem, but here
we give a greedy algorithm that works for any weighted matroid. The algorithm
takes as input a weighted matroid M D .S; � / with an associated positive weight
function w, and it returns an optimal subset A. In our pseudocode, we denote the
components of M by M:S and M:� and the weight function by w. The algorithm
is greedy because it considers in turn each element x 2 S , in order of monotoni-
cally decreasing weight, and immediately adds it to the set A being accumulated if
A [ fxg is independent.

GREEDY.M; w/

1 A D ;
2 sort M:S into monotonically decreasing order by weight w

3 for each x 2M:S, taken in monotonically decreasing order by weight w.x/

4 if A [ fxg 2M:�

5 A D A [ fxg
6 return A

Line 4 checks whether adding each element x to A would maintain A as an inde-
pendent set. If A would remain independent, then line 5 adds x to A. Otherwise, x

is discarded. Since the empty set is independent, and since each iteration of the for
loop maintains A’s independence, the subset A is always independent, by induc-
tion. Therefore, GREEDY always returns an independent subset A. We shall see in
a moment that A is a subset of maximum possible weight, so that A is an optimal
subset.

The running time of GREEDY is easy to analyze. Let n denote jS j. The sorting
phase of GREEDY takes time O.n lg n/. Line 4 executes exactly n times, once for
each element of S . Each execution of line 4 requires a check on whether or not
the set A [ fxg is independent. If each such check takes time O.f .n//, the entire
algorithm runs in time O.n lg nC nf .n//.
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We now prove that GREEDY returns an optimal subset.

Lemma 16.7 (Matroids exhibit the greedy-choice property)
Suppose that M D .S; � / is a weighted matroid with weight function w and that S

is sorted into monotonically decreasing order by weight. Let x be the first element
of S such that fxg is independent, if any such x exists. If x exists, then there exists
an optimal subset A of S that contains x.

Proof If no such x exists, then the only independent subset is the empty set and
the lemma is vacuously true. Otherwise, let B be any nonempty optimal subset.
Assume that x … B; otherwise, letting A D B gives an optimal subset of S that
contains x.

No element of B has weight greater than w.x/. To see why, observe that y 2 B

implies that fyg is independent, since B 2 � and � is hereditary. Our choice of x

therefore ensures that w.x/ � w.y/ for any y 2 B .
Construct the set A as follows. Begin with A D fxg. By the choice of x, set A is

independent. Using the exchange property, repeatedly find a new element of B that
we can add to A until jAj D jBj, while preserving the independence of A. At that
point, A and B are the same except that A has x and B has some other element y.
That is, A D B � fyg [ fxg for some y 2 B , and so

w.A/ D w.B/� w.y/Cw.x/

� w.B/ :

Because set B is optimal, set A, which contains x, must also be optimal.

We next show that if an element is not an option initially, then it cannot be an
option later.

Lemma 16.8
Let M D .S; � / be any matroid. If x is an element of S that is an extension of
some independent subset A of S , then x is also an extension of ;.

Proof Since x is an extension of A, we have that A[fxg is independent. Since �

is hereditary, fxg must be independent. Thus, x is an extension of ;.

Corollary 16.9
Let M D .S; � / be any matroid. If x is an element of S such that x is not an
extension of ;, then x is not an extension of any independent subset A of S .

Proof This corollary is simply the contrapositive of Lemma 16.8.
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Corollary 16.9 says that any element that cannot be used immediately can never
be used. Therefore, GREEDY cannot make an error by passing over any initial
elements in S that are not an extension of ;, since they can never be used.

Lemma 16.10 (Matroids exhibit the optimal-substructure property)
Let x be the first element of S chosen by GREEDY for the weighted matroid
M D .S; � /. The remaining problem of finding a maximum-weight indepen-
dent subset containing x reduces to finding a maximum-weight independent subset
of the weighted matroid M 0 D .S 0; �

0/, where

S 0 D fy 2 S W fx; yg 2 � g ;

�
0 D fB � S � fxg W B [ fxg 2 � g ;

and the weight function for M 0 is the weight function for M , restricted to S 0. (We
call M 0 the contraction of M by the element x.)

Proof If A is any maximum-weight independent subset of M containing x, then
A0 D A � fxg is an independent subset of M 0. Conversely, any independent sub-
set A0 of M 0 yields an independent subset A D A0 [ fxg of M . Since we have in
both cases that w.A/ D w.A0/Cw.x/, a maximum-weight solution in M contain-
ing x yields a maximum-weight solution in M 0, and vice versa.

Theorem 16.11 (Correctness of the greedy algorithm on matroids)
If M D .S; � / is a weighted matroid with weight function w, then GREEDY.M; w/

returns an optimal subset.

Proof By Corollary 16.9, any elements that GREEDY passes over initially be-
cause they are not extensions of ; can be forgotten about, since they can never
be useful. Once GREEDY selects the first element x, Lemma 16.7 implies that
the algorithm does not err by adding x to A, since there exists an optimal subset
containing x. Finally, Lemma 16.10 implies that the remaining problem is one of
finding an optimal subset in the matroid M 0 that is the contraction of M by x.
After the procedure GREEDY sets A to fxg, we can interpret all of its remaining
steps as acting in the matroid M 0 D .S 0; �

0/, because B is independent in M 0 if
and only if B [fxg is independent in M , for all sets B 2 �

0. Thus, the subsequent
operation of GREEDY will find a maximum-weight independent subset for M 0, and
the overall operation of GREEDY will find a maximum-weight independent subset
for M .
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Exercises

16.4-1
Show that .S; �k/ is a matroid, where S is any finite set and �k is the set of all
subsets of S of size at most k, where k � jS j.
16.4-2 ?

Given an m 	 n matrix T over some field (such as the reals), show that .S; � / is a
matroid, where S is the set of columns of T and A 2 � if and only if the columns
in A are linearly independent.

16.4-3 ?

Show that if .S; � / is a matroid, then .S; �
0/ is a matroid, where

�
0 D fA0 W S � A0 contains some maximal A 2 � g :

That is, the maximal independent sets of .S; �
0/ are just the complements of the

maximal independent sets of .S; � /.

16.4-4 ?

Let S be a finite set and let S1; S2; : : : ; Sk be a partition of S into nonempty disjoint
subsets. Define the structure .S; � / by the condition that � D fA W jA \ Si j � 1

for i D 1; 2; : : : ; kg. Show that .S; � / is a matroid. That is, the set of all sets A

that contain at most one member of each subset in the partition determines the
independent sets of a matroid.

16.4-5
Show how to transform the weight function of a weighted matroid problem, where
the desired optimal solution is a minimum-weight maximal independent subset, to
make it a standard weighted-matroid problem. Argue carefully that your transfor-
mation is correct.

? 16.5 A task-scheduling problem as a matroid

An interesting problem that we can solve using matroids is the problem of op-
timally scheduling unit-time tasks on a single processor, where each task has a
deadline, along with a penalty paid if the task misses its deadline. The problem
looks complicated, but we can solve it in a surprisingly simple manner by casting
it as a matroid and using a greedy algorithm.

A unit-time task is a job, such as a program to be run on a computer, that requires
exactly one unit of time to complete. Given a finite set S of unit-time tasks, a


