658

Chapter 24 Single-Source Shortest Paths

24.2-4
Give an efficient algorithm to count the total number of paths in a directed acyclic
graph. Analyze your algorithm.

24.3 Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted,
directed graph G = (V, E) for the case in which all edge weights are nonnegative.
In this section, therefore, we assume that w(u, v) > 0 for each edge (u,v) € E. As
we shall see, with a good implementation, the running time of Dijkstra’s algorithm
is lower than that of the Bellman-Ford algorithm.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path
weights from the source s have already been determined. The algorithm repeat-
edly selects the vertex u € V' —§ with the minimum shortest-path estimate, adds u
to S, and relaxes all edges leaving u. In the following implementation, we use a
min-priority queue Q of vertices, keyed by their d values.

DUKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S=0

3 0=G.V

4 while Q # 0

5 u = EXTRACT-MIN(Q)

6 S = S U{u}

7 for each vertex v € G.Adj[u]

8 RELAX (u,v, w)

Dijkstra’s algorithm relaxes edges as shown in Figure 24.6. Line 1 initializes
the d and 7 values in the usual way, and line 2 initializes the set S to the empty
set. The algorithm maintains the invariant that Q = V — § at the start of each
iteration of the while loop of lines 4-8. Line 3 initializes the min-priority queue Q
to contain all the vertices in V'; since S = @ at that time, the invariant is true after
line 3. Each time through the while loop of lines 4-8, line 5 extracts a vertex u from
Q =V — S and line 6 adds it to set S, thereby maintaining the invariant. (The first
time through this loop, u = s.) Vertex u, therefore, has the smallest shortest-path
estimate of any vertex in V' — §. Then, lines 7-8 relax each edge (u, v) leaving u,
thus updating the estimate v.d and the predecessor v.m if we can improve the
shortest path to v found so far by going through u. Observe that the algorithm
never inserts vertices into Q after line 3 and that each vertex is extracted from Q

24.3 Dijkstra’s algorithm 659

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S, and white vertices are in the min-priority queue Q = V' — §. (a) The
situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)—(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4-8 iterates exactly | V|
times.

Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex
in V' — S to add to set S, we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S, we have u.d = 6(s, u).

Theorem 24.6 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm, run on a weighted, directed graph G = (V, E') with non-
negative weight function w and source s, terminates with u.d = §(s,u) for all
vertices u € V.

660

Chapter 24 Single-Source Shortest Paths

Figure 24.7 The proof of Theorem 24.6. Set S is nonempty just before vertex u is added to it. We

decompose a shortest path p from source s to vertex u into s 2y > y 23 u, where y is the first

vertex on the path that is not in S and x € S immediately precedes y. Vertices x and y are distinct,
but we may have s = x or y = u. Path p» may or may not reenter set S.

Proof We use the following loop invariant:

At the start of each iteration of the while loop of lines 4-8, v.d = §(s,v)
for each vertex v € S.

It suffices to show for each vertex u € V', we have u.d = (s, u) at the time when u
is added to set S. Once we show that u.d = §(s,u), we rely on the upper-bound
property to show that the equality holds at all times thereafter.

Initialization: Initially, S = @, and so the invariant is trivially true.

Maintenance: We wish to show that in each iteration, u.d = §(s, u) for the vertex
added to set S. For the purpose of contradiction, let u be the first vertex for
which u.d # §(s,u) when it is added to set S. We shall focus our attention
on the situation at the beginning of the iteration of the while loop in which u
is added to S and derive the contradiction that u.d = §(s,u) at that time by
examining a shortest path from s to u. We must have u # s because s is the
first vertex added to set S and s.d = §(s,s) = 0 at that time. Because u # s,
we also have that S # @ just before u is added to S. There must be some
path from s to u, for otherwise u.d = §(s,u) = oo by the no-path property,
which would violate our assumption that u.d # &(s,u). Because there is at
least one path, there is a shortest path p from s to u. Prior to adding u to S,
path p connects a vertex in S, namely s, to a vertex in V' — S, namely u. Let us
consider the first vertex y along p suchthat y € V — §,and let x € S be y’s
predecessor along p. Thus, as Figure 24.7 illustrates, we can decompose path p

into s & x — y A3 u. (Either of paths p; or p, may have no edges.)
We claim that y.d = §(s, y) when u is added to S. To prove this claim, ob-

serve that x € S. Then, because we chose u as the first vertex for which
u.d # 6(s,u) when it is added to S, we had x.d = (s, x) when x was added

24.3 Dijkstra’s algorithm 661

to . Edge (x,y) was relaxed at that time, and the claim follows from the
convergence property.

We can now obtain a contradiction to prove that u.d = §(s,u). Because y
appears before u on a shortest path from s to u and all edge weights are non-
negative (notably those on path p,), we have (s, y) < (s, u), and thus

y.d 8(s, y)
8(s,u) (24.2)
u.d (by the upper-bound property) .

=
=

But because both vertices ¥ and y were in V' — § when u was chosen in line 5,
we have u.d < y.d. Thus, the two inequalities in (24.2) are in fact equalities,
giving

v.d=46(s,y) =08(s,u) =u.d.

Consequently, u.d = §(s, u), which contradicts our choice of u. We conclude
that u.d = §(s, u) when u is added to S, and that this equality is maintained at
all times thereafter.

Termination: At termination, Q = @ which, along with our earlier invariant that
Q0 =V -8, implies that S = V. Thus, u.d = (s, u) for all verticesu € V. m

Corollary 24.7

If we run Dijkstra’s algorithm on a weighted, directed graph G = (V, E) with
nonnegative weight function w and source s, then at termination, the predecessor
subgraph G, is a shortest-paths tree rooted at s.

Proof Immediate from Theorem 24.6 and the predecessor-subgraph property. m

Analysis

How fast is Dijkstra’s algorithm? It maintains the min-priority queue Q by call-
ing three priority-queue operations: INSERT (implicit in line 3), EXTRACT-MIN
(line 5), and DECREASE-KEY (implicit in RELAX, which is called in line 8). The
algorithm calls both INSERT and EXTRACT-MIN once per vertex. Because each
vertex u € V is added to set S exactly once, each edge in the adjacency list Adj[u]
is examined in the for loop of lines 7-8 exactly once during the course of the al-
gorithm. Since the total number of edges in all the adjacency lists is | E|, this for
loop iterates a total of | E| times, and thus the algorithm calls DECREASE-KEY at
most | E| times overall. (Observe once again that we are using aggregate analysis.)

The running time of Dijkstra’s algorithm depends on how we implement the
min-priority queue. Consider first the case in which we maintain the min-priority

662

Chapter 24 Single-Source Shortest Paths

queue by taking advantage of the vertices being numbered 1 to |V|. We simply
store v.d in the vth entry of an array. Each INSERT and DECREASE-KEY operation
takes O(1) time, and each EXTRACT-MIN operation takes O(V') time (since we
have to search through the entire array), for a total time of O(V? + E) = O(V?).

If the graph is sufficiently sparse—in particular, £ = o(V?/1gV)—we can
improve the algorithm by implementing the min-priority queue with a binary min-
heap. (As discussed in Section 6.5, the implementation should make sure that
vertices and corresponding heap elements maintain handles to each other.) Each
EXTRACT-MIN operation then takes time O(Ig V). As before, there are |V | such
operations. The time to build the binary min-heap is O (V). Each DECREASE-KEY
operation takes time O(lg V'), and there are still at most | £| such operations. The
total running time is therefore O((V + E)1g V'), which is O(E 1g V) if all vertices
are reachable from the source. This running time improves upon the straightfor-
ward O(V'?)-time implementation if £ = o(V?/1gV).

We can in fact achieve a running time of O(V lg V' + E) by implementing the
min-priority queue with a Fibonacci heap (see Chapter 19). The amortized cost
of each of the |V | EXTRACT-MIN operations is O(lg V'), and each DECREASE-
KEY call, of which there are at most | E|, takes only O(1) amortized time. His-
torically, the development of Fibonacci heaps was motivated by the observation
that Dijkstra’s algorithm typically makes many more DECREASE-KEY calls than
EXTRACT-MIN calls, so that any method of reducing the amortized time of each
DECREASE-KEY operation to o(lg V') without increasing the amortized time of
EXTRACT-MIN would yield an asymptotically faster implementation than with bi-
nary heaps.

Dijkstra’s algorithm resembles both breadth-first search (see Section 22.2) and
Prim’s algorithm for computing minimum spanning trees (see Section 23.2). It is
like breadth-first search in that set S corresponds to the set of black vertices in a
breadth-first search; just as vertices in S have their final shortest-path weights, so
do black vertices in a breadth-first search have their correct breadth-first distances.
Dijkstra’s algorithm is like Prim’s algorithm in that both algorithms use a min-
priority queue to find the “lightest” vertex outside a given set (the set S in Dijkstra’s
algorithm and the tree being grown in Prim’s algorithm), add this vertex into the
set, and adjust the weights of the remaining vertices outside the set accordingly.

Exercises

24.3-1

Run Dijkstra’s algorithm on the directed graph of Figure 24.2, first using vertex s
as the source and then using vertex z as the source. In the style of Figure 24.6,
show the d and 7 values and the vertices in set S after each iteration of the while
loop.

