
16.3 Huffman codes 433

names x and y in the proof of correctness. Therefore, we find it convenient to
leave them in.

To analyze the running time of Huffman’s algorithm, we assume that Q is im-
plemented as a binary min-heap (see Chapter 6). For a set C of n characters, we
can initialize Q in line 2 in O.n/ time using the BUILD-MIN-HEAP procedure dis-
cussed in Section 6.3. The for loop in lines 3–8 executes exactly n � 1 times, and
since each heap operation requires time O.lg n/, the loop contributes O.n lg n/ to
the running time. Thus, the total running time of HUFFMAN on a set of n charac-
ters is O.n lg n/. We can reduce the running time to O.n lg lg n/ by replacing the
binary min-heap with a van Emde Boas tree (see Chapter 20).

Correctness of Huffman’s algorithm

To prove that the greedy algorithm HUFFMAN is correct, we show that the prob-
lem of determining an optimal prefix code exhibits the greedy-choice and optimal-
substructure properties. The next lemma shows that the greedy-choice property
holds.

Lemma 16.2
Let C be an alphabet in which each character c 2 C has frequency c: freq. Let
x and y be two characters in C having the lowest frequencies. Then there exists
an optimal prefix code for C in which the codewords for x and y have the same
length and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary optimal
prefix code and modify it to make a tree representing another optimal prefix code
such that the characters x and y appear as sibling leaves of maximum depth in the
new tree. If we can construct such a tree, then the codewords for x and y will have
the same length and differ only in the last bit.

Let a and b be two characters that are sibling leaves of maximum depth in T .
Without loss of generality, we assume that a: freq � b: freq and x: freq � y: freq.
Since x: freq and y: freq are the two lowest leaf frequencies, in order, and a: freq
and b: freq are two arbitrary frequencies, in order, we have x: freq � a: freq and
y: freq � b: freq.

In the remainder of the proof, it is possible that we could have x: freq D a: freq
or y: freq D b: freq. However, if we had x: freq D b: freq, then we would also have
a: freq D b: freq D x: freq D y: freq (see Exercise 16.3-1), and the lemma would
be trivially true. Thus, we will assume that x: freq ¤ b: freq, which means that
x ¤ b.

As Figure 16.6 shows, we exchange the positions in T of a and x to produce a
tree T 0, and then we exchange the positions in T 0 of b and y to produce a tree T 00

434 Chapter 16 Greedy Algorithms

x

y

a b x

y

a

b x y

a

b

T′′T T′

Figure 16.6 An illustration of the key step in the proof of Lemma 16.2. In the optimal tree T ,
leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with the
lowest frequencies; they appear in arbitrary positions in T . Assuming that x ¤ b, swapping leaves a

and x produces tree T 0, and then swapping leaves b and y produces tree T 00. Since each swap does
not increase the cost, the resulting tree T 00 is also an optimal tree.

in which x and y are sibling leaves of maximum depth. (Note that if x D b but
y ¤ a, then tree T 00 does not have x and y as sibling leaves of maximum depth.
Because we assume that x ¤ b, this situation cannot occur.) By equation (16.4),
the difference in cost between T and T 0 is

B.T / � B.T 0/

D
X
c2C

c: freq � dT .c/�
X
c2C

c: freq � dT 0.c/

D x: freq � dT .x/C a: freq � dT .a/ � x: freq � dT 0.x/ � a: freq � dT 0.a/

D x: freq � dT .x/C a: freq � dT .a/ � x: freq � dT .a/ � a: freq � dT .x/

D .a: freq � x: freq/.dT .a/ � dT .x//

� 0 ;

because both a: freq � x: freq and dT .a/ � dT .x/ are nonnegative. More specifi-
cally, a: freq � x: freq is nonnegative because x is a minimum-frequency leaf, and
dT .a/�dT .x/ is nonnegative because a is a leaf of maximum depth in T . Similarly,
exchanging y and b does not increase the cost, and so B.T 0/�B.T 00/ is nonnega-
tive. Therefore, B.T 00/ � B.T /, and since T is optimal, we have B.T / � B.T 00/,
which implies B.T 00/ D B.T /. Thus, T 00 is an optimal tree in which x and y

appear as sibling leaves of maximum depth, from which the lemma follows.

Lemma 16.2 implies that the process of building up an optimal tree by mergers
can, without loss of generality, begin with the greedy choice of merging together
those two characters of lowest frequency. Why is this a greedy choice? We can
view the cost of a single merger as being the sum of the frequencies of the two items
being merged. Exercise 16.3-4 shows that the total cost of the tree constructed
equals the sum of the costs of its mergers. Of all possible mergers at each step,
HUFFMAN chooses the one that incurs the least cost.

jcampos
Nota adhesiva
La ecuación 16.4 simplemente expresa el nº de bits requeridos para almacenar el fichero como el sumatorio de la longitud en bits del código de cada carácter (dT(c)) ponderado por su frecuencia de aparición (c.freq).

16.3 Huffman codes 435

The next lemma shows that the problem of constructing optimal prefix codes has
the optimal-substructure property.

Lemma 16.3
Let C be a given alphabet with frequency c: freq defined for each character c 2 C .
Let x and y be two characters in C with minimum frequency. Let C 0 be the
alphabet C with the characters x and y removed and a new character ´ added,
so that C 0 D C � fx; yg [f´g. Define f for C 0 as for C , except that
´: freq D x: freqC y: freq. Let T 0 be any tree representing an optimal prefix code
for the alphabet C 0. Then the tree T , obtained from T 0 by replacing the leaf node
for ´ with an internal node having x and y as children, represents an optimal prefix
code for the alphabet C .

Proof We first show how to express the cost B.T / of tree T in terms of the
cost B.T 0/ of tree T 0, by considering the component costs in equation (16.4).
For each character c 2 C � fx; yg, we have that dT .c/ D dT 0.c/, and hence
c: freq � dT .c/ D c: freq � dT 0.c/. Since dT .x/ D dT .y/ D dT 0.´/C 1, we have

x: freq � dT .x/C y: freq � dT .y/ D .x: freqC y: freq/.dT 0.´/C 1/

D ´: freq � dT 0.´/C .x: freqC y: freq/ ;

from which we conclude that

B.T / D B.T 0/C x: freqC y: freq

or, equivalently,

B.T 0/ D B.T / � x: freq� y: freq :

We now prove the lemma by contradiction. Suppose that T does not repre-
sent an optimal prefix code for C . Then there exists an optimal tree T 00 such that
B.T 00/ < B.T /. Without loss of generality (by Lemma 16.2), T 00 has x and y as
siblings. Let T 000 be the tree T 00 with the common parent of x and y replaced by a
leaf ´ with frequency ´: freq D x: freqC y: freq. Then

B.T 000/ D B.T 00/ � x: freq� y: freq

< B.T / � x: freq� y: freq

D B.T 0/ ;

yielding a contradiction to the assumption that T 0 represents an optimal prefix code
for C 0. Thus, T must represent an optimal prefix code for the alphabet C .

Theorem 16.4
Procedure HUFFMAN produces an optimal prefix code.

Proof Immediate from Lemmas 16.2 and 16.3.

