
Sec. 5.6 The Travelling Salesperson Problem 159

be the root of an optimal subtree containing c; , c, +I , ... , cj . Write also r;,, -I = i .
Prove that r;,j _i <_rj <r,+1,j for every 1 <_i j Sn.

Problem 5.5.11. Use the result of Problem 5.5.10 to show how to calculate an
optimal search tree in a time in 0(n2). (Problems 5.5.10 and 5.5.11 generalize to the
case discussed in Problem 5.5.9.)

Problem 5.5.12. There is an obvious greedy approach to the problem of con-
structing an optimal search tree : place the most probable key, Ck, say, at the root, and
construct the left- and right-hand subtrees for c i , c 2, ... , ck _ 1 and Ck + i , Ck+2 . .

c, recursively in the same way.

i. How much time does this algorithm take in the worst case, assuming the keys are
already sorted ?

ii. Show with the help of a simple, explicit example that this greedy algorithm does
not always find the optimal search tree. Give an optimal search tree for your
example, and calculate the average number of comparisons needed to find a key
for both the optimal tree and the tree found by the greedy algorithm.

5.6 THE TRAVELLING SALESPERSON PROBLEM

We have already met this problem in Section 3.4.2. Given a graph with nonnegative
lengths attached to the edges, we are required to find the shortest possible circuit that
begins and ends at the same node, after having gone exactly once through each of the
other nodes.

Let G = < N, A > be a directed graph. As usual, we take N = { 1, 2, ... , n

and the lengths of the edges are denoted by L;j , with L [i , i] = 0, L [i , j] >_ 0 if i j,
and L [i, j] = oo if the edge (i, j) does not exist.

Suppose without loss of generality that the circuit begins and ends at node 1.
It therefore consists of an edge (1, j), j # 1, followed by a path from j to 1 that passes
exactly once through each node in N \ 11, j }. If the circuit is optimal (as short as pos-
sible), then so is the path from j to 1 : the principle of optimality holds.

Consider a set of nodes S c N \ 111 and a node i EN \ S, with i =1 allowed
only if S = N \ { 1 } . Define g (i, S) as the length of the shortest path from node i to
node 1 that passes exactly once through each node in S. Using this definition,
g (1, N \ { 1 }) is the length of an optimal circuit. By the principle of optimality, we see
that

g(1,N\{1})= min(Ljj +g(j,N\{l,j})). (*)2<j<n

More generally, if i # 1, S # 0, S # N \ { 1), and i 0 S,

g(i,S)=rni (L,j +g(j,S\ { j})).
jES

160 Dynamic Programming Chap. 5

Furthermore,

g(i,0)=Li1, i =2,3..... n .

The values of g (i, S) are therefore known when S is empty. We can apply (**) to cal-
culate the function g for all the sets S that contain exactly one node (other than 1);
then we can apply (**) again to calculate g for all the sets S that contain two nodes
(other than 1), and so on. Once the value of g (j, N \ { 1, j }) is known for all the
nodes j except node 1, we can use (*) to calculate g (1, N \ { 11) and solve the
problem.

Example 5.6.1. Let G be the complete graph on four nodes given in Figure
5.6.1:

0 10 15 20
5 0 9 10

L =
6 13 0 12

8 8 9 0

We initialize

g (2, 0) = 5, g (3, 0) = 6, g (4, 0) = 8 .

6

15

Figure 5.6.1. A directed graph for the travelling salesperson problem.

Sec. 5.6 The Travelling Salesperson Problem 161

Using (**), we obtain

g(2,13 1) =L23+g(3,0)= 15

g(2,{41)=L24+g(4,0)= 18

and similarly

g(3,{2})=18, g(3,14))=20
g(4,{2})= 13, g(4,{3})= 15.

Next, using (**) for sets of two nodes, we have

g (2, { 3,4)) = min(L23 + g (3, (4)), L24 + g (4, { 3)))

= min(29,25) = 25

g (3, 1 2,4)) = min(L 32 + g (2, { 4)), L 34 + g (4, { 2 }))

= min(31,25) = 25

g (4, (2,3)) = min(L42 + g (2, { 3)), L43 + g (3,12)))

= min(23, 27) = 23

Finally we apply (*) to obtain

g (1, { 2,3,41) = min(L 12 + g (2, (3,4 }), L 13 + g (3, (2,4 1), L 14 + g (4, (2,3)))

= min(35, 40, 43) = 35

The optimal circuit in Figure 5.6.1 has length 35.

To know where this circuit goes, we need an extra function : J (i , S) is the value
of j chosen to minimize g at the moment when we apply (*) or (**) to calculate
g(i,S).

Example 5.6.2. (Continuation of Example 5.6.1.) In this example we find

J(2,{3,4)) =4
J(3,(2,4)) =4
J(4,12,31) =2
J(1, {2,3,4)) = 2

and the optimal circuit is

1 -+J(1,{2,3,4))=2
J(2,{3,4})=4

-3J(4,(31)=3
- 1

The required computation time can be calculated as follows :

162 Dynamic Programming Chap. 5

- to calculate g (j, 0) : n -1 consultations of a table;

- to calculate all the g (i , S) such that 1 :5 #S = k <- n - 2: (n -1) (n k 21 k addi-

tions in all;
- to calculate g (1, N \ (1 }) : n -1 additions.

These operations can be used as a barometer. The computation time is thus in

0(2(n -1) + - (n -1)k In
k 21) = 19(n22") since k (k1 = r 2r-1

k=1 k1
This is considerably better than having a time in SZ(n !), as would be the case if we
simply tried all the possible circuits, but it is still far from offering a practical algo-
rithm. What is more ...

Problem 5.6.1. Verify that the space required to hold the values of g and J is
in Q(n 2"), which is not very practical either. 13

TABLE 5.6.1. SOLVING THE TRAVELLING SALESPERSON PROBLEM.

n
Time:

Direct method
Time:

Dynamic programming
Space:

Dynamic programming
n! n22" n 2"

5 120 800 160

10 3,628,800 102,400 10,240

15 1.31 x 1012 7,372,800 491,520
20 2.43x1018 419,430,400 20,971,520

Problem 5.6.2. The preceding analysis assumes that we can find in constant
time a value of g (j , S) that has already been calculated. Since S is a set, which data
structure do you suggest to hold the values of g ? With your suggested structure, how
much time is needed to access one of the values of g ?

Table 5.6.1 illustrates the dramatic increase in the time and space necessary as n
goes up. For instance, 202220 microseconds is less than 7 minutes, whereas 20!
microseconds exceeds 77 thousand years.

5.7 MEMORY FUNCTIONS

If we want to implement the method of Section 5.6 on a computer, it is easy to write a
function that calculates g recursively. For example, consider

Sec. 5.7 Memory Functions

function g (i, S)
if S = 0 then return L [i ,1]
ans <- oo
for each j E S do

distviaj F- L [i, j] + g (j, S \ { j })
if distviaj < ans then ans - distviaj

return ans .

163

Unfortunately, if we calculate g in this top-down way, we come up once more against
the problem outlined at the beginning of this chapter : most values of g are recalcu-
lated many times and the program is very inefficient. (In fact, it ends up back in
S2((n - 1)!).)

So how can we calculate g in the bottom-up way that characterizes dynamic pro-
gramming ? We need an auxiliary program that generates first the empty set, then all
the sets containing just one element from N \ { I), then all the sets containing two ele-
ments from N \ { 1), and so on. Although it is maybe not too hard to write such a gen-
erator, it is not immediately obvious how to set about it.

One easy way to take advantage of the simplicity of a recursive formulation
without losing the efficiency offered by dynamic programming is to use a memory
function. To the recursive function we add a table of the necessary size. Initially, all
the entries in this table hold a special value to indicate that they have not yet been cal-
culated. Thereafter, whenever we call the function, we first look in the table to see
whether it has already been evaluated with the same set of parameters. If so, we return
the value held in the table. If not, we go ahead and calculate the function. Before
returning the calculated value, however, we save it at the appropriate place in the table.
In this way it is never necessary to calculate the function twice for the same values of
its parameters.

For the algorithm of Section 5.6 let gtab be a table all of whose entries are ini-
tialized to -1 (since a distance cannot be negative). Formulated in the following way :

function g (i, S)
if S = 0 then return L [i ,1]
if gtab [i, S] > 0 then return gtab [i, S]
ans F oo
for each j E S do

distviaj - L [i, j] + g (j, S \ { j })

if distviaj < ans then ans - distviaj
gtab [i, S] - ans
return ans ,

the function g combines the clarity obtained from a recursive formulation and the
efficiency of dynamic programming.

164 Dynamic Programming Chap. 5

Problem 5.7.1. Show how to calculate (i) a binomial coefficient and (ii) the
function series (n , p) of Section 5.2 using a memory function.

We sometimes have to pay a price for using this technique. We saw in Section
5.1, for instance, that we can calculate a binomial coefficient (k] using a time in 0 (nk)
and space in 0(k). Implemented using a memory function, the calculation takes the
same amount of time but needs space in Si(nk).

* Problem 5.7.2. If we are willing to use a little more space (the space needed
is only multiplied by a constant factor, however), it is possible to avoid the initializa-
tion time needed to set all the entries of the table to some special value. This is partic-
ularly desirable when in fact only a few values of the function are to be calculated, but
we do not know in advance which ones. (For an example, see Section 6.6.2.) Show
how an array T [1 .. n] can be virtually initialized with the help of two auxiliary arrays
B [1 .. n] and P [1 .. n] and a few pointers. You should write three algorithms.

procedure init
{ virtually initializes T [1 .. n] }

procedure store (i , v)

{ sets T [i] to the value v }

function val (i)
{ returns the last value given to T [i], if any ;
returns a default value (such as -1) otherwise }

A call on any of these procedures or functions (including a call on init !) should take
constant time in the worst case.

5.8 SUPPLEMENTARY PROBLEMS

* Problem 5.8.1. Let u and v be two strings of characters. We want to
transform u into v with the smallest possible number of operations of the following
types :

delete a character,
add a character,

change a character.

For instance, we can transform abbac into abcbc in three stages.

abbac -* abac (delete b)
ababc (add b)

abcbc (change a into c).

Show that this transformation is not optimal.

