
Data Structures and Algorithms: CHAPTER 7: Undirected Graphs

7.2 Minimum-Cost Spanning Trees

Suppose G = (V, E) is a connected graph in which each edge (u, v) in E has a cost c(u, 
v) attached to it. A spanning tree for G is a free tree that connects all the vertices in V. 
The cost of a spanning tree is the sum of the costs of the edges in the tree. In this 
section we shall show how to find a minimum-cost spanning tree for G.

Example 7.4. Figure 7.4 shows a weighted graph and its minimum-cost spanning 
tree.

       A typical application for minimum-cost spanning trees occurs in the design of 
communications networks. The vertices of a graph represent cities and the edges 
possible communications links between the cities. The cost associated with an edge 
represents the cost of selecting that link for the network. A minimum-cost spanning 
tree represents a communications network that connects all the cities at minimal cost.

 

Fig. 7.4. A graph and spanning tree.

The MST Property

There are several different ways to construct a minimum-cost spanning tree. Many of 
these methods use the following property of minimum-cost spanning trees, which we 
call the MST property. Let G = (V, E) be a connected graph with a cost function 
defined on the edges. Let U be some proper subset of the set of vertices V. If (u, v) is 
an edge of lowest cost such that u ∈ U and v ∈ V-U, then there is a minimum-cost 
spanning tree that includes (u, v) as an edge.

       The proof that every minimum-cost spanning tree satisfies the MST property is 
not hard. Suppose to the contrary that there is no minimum-cost spanning tree for G 
that includes (u, v). Let T be any minimum-cost spanning tree for G. Adding (u, v) to 
T must introduce a cycle, since T is a free tree and therefore satisfies property (2) for 
free trees. This cycle involves edge (u, v). Thus, there must be another edge (u', v') in 
T such that u' ∈ U and v' ∈ V-U, as illustrated in Fig. 7.5. If not, there would be no 
way for the cycle to get from u to v without following the edge (u, v) a second time.

       Deleting the edge (u', v') breaks the cycle and yields a spanning tree T' whose 
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cost is certainly no higher than the cost of T since by assumption c(u, v) ≤ c(u', v'). 
Thus, T' contradicts our assumption that there is no minimum-cost spanning tree that 
includes (u, v).

Prim's Algorithm

There are two popular techniques that exploit the MST property to construct a 
minimum-cost spanning tree from a weighted graph G = (V, E). One such method is 
known as Prim's algorithm. Suppose V = {1, 2, . . . , n}. Prim's algorithm begins with 
a set U initialized to {1}. It then "grows" a spanning tree, one edge at a time. At each 
step, it finds a shortest edge (u, v) that connects U and V-U and then adds v, the vertex 
in V-U, to U. It repeats this

 

Fig. 7.5. Resulting cycle.

step until U = V. The algorithm is summarized in Fig. 7.6 and the sequence of edges 
added to T for the graph of Fig. 7.4(a) is shown in Fig. 7.7.

 
        procedure Prim ( G: graph; var T: set of edges ); 
           { Prim constructs a minimum-cost spanning tree T for G } 
           var 
                U: set of vertices; 
                u, v: vertex; 
           begin 
               T:= Ø; 
               U := {1}; 
               while U ≠ V do begin 
                     let (u, v) be a lowest cost edge such that 
                          u is in U and v is in V-U; 
                  T := T ∪ {(u, v)}; 
                  U := U ∪ {v} 
               end 
          end; { Prim } 
 

Fig. 7.6. Sketch of Prim's algorithm.
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