
Data Structures and Algorithms: CHAPTER 7: Undirected Graphs

7.2 Minimum-Cost Spanning Trees

Suppose G = (V, E) is a connected graph in which each edge (u, v) in E has a cost c(u,
v) attached to it. A spanning tree for G is a free tree that connects all the vertices in V.
The cost of a spanning tree is the sum of the costs of the edges in the tree. In this
section we shall show how to find a minimum-cost spanning tree for G.

Example 7.4. Figure 7.4 shows a weighted graph and its minimum-cost spanning
tree.

 A typical application for minimum-cost spanning trees occurs in the design of
communications networks. The vertices of a graph represent cities and the edges
possible communications links between the cities. The cost associated with an edge
represents the cost of selecting that link for the network. A minimum-cost spanning
tree represents a communications network that connects all the cities at minimal cost.

Fig. 7.4. A graph and spanning tree.

The MST Property

There are several different ways to construct a minimum-cost spanning tree. Many of
these methods use the following property of minimum-cost spanning trees, which we
call the MST property. Let G = (V, E) be a connected graph with a cost function
defined on the edges. Let U be some proper subset of the set of vertices V. If (u, v) is
an edge of lowest cost such that u ∈ U and v ∈ V-U, then there is a minimum-cost
spanning tree that includes (u, v) as an edge.

 The proof that every minimum-cost spanning tree satisfies the MST property is
not hard. Suppose to the contrary that there is no minimum-cost spanning tree for G
that includes (u, v). Let T be any minimum-cost spanning tree for G. Adding (u, v) to
T must introduce a cycle, since T is a free tree and therefore satisfies property (2) for
free trees. This cycle involves edge (u, v). Thus, there must be another edge (u', v') in
T such that u' ∈ U and v' ∈ V-U, as illustrated in Fig. 7.5. If not, there would be no
way for the cycle to get from u to v without following the edge (u, v) a second time.

 Deleting the edge (u', v') breaks the cycle and yields a spanning tree T' whose

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1207.htm (4 of 22) [1.7.2001 19:15:36]

Data Structures and Algorithms: CHAPTER 7: Undirected Graphs

cost is certainly no higher than the cost of T since by assumption c(u, v) ≤ c(u', v').
Thus, T' contradicts our assumption that there is no minimum-cost spanning tree that
includes (u, v).

Prim's Algorithm

There are two popular techniques that exploit the MST property to construct a
minimum-cost spanning tree from a weighted graph G = (V, E). One such method is
known as Prim's algorithm. Suppose V = {1, 2, . . . , n}. Prim's algorithm begins with
a set U initialized to {1}. It then "grows" a spanning tree, one edge at a time. At each
step, it finds a shortest edge (u, v) that connects U and V-U and then adds v, the vertex
in V-U, to U. It repeats this

Fig. 7.5. Resulting cycle.

step until U = V. The algorithm is summarized in Fig. 7.6 and the sequence of edges
added to T for the graph of Fig. 7.4(a) is shown in Fig. 7.7.

 procedure Prim (G: graph; var T: set of edges);
 { Prim constructs a minimum-cost spanning tree T for G }
 var
 U: set of vertices;
 u, v: vertex;
 begin
 T:= Ø;
 U := {1};
 while U ≠ V do begin
 let (u, v) be a lowest cost edge such that
 u is in U and v is in V-U;
 T := T ∪ {(u, v)};
 U := U ∪ {v}
 end
 end; { Prim }

Fig. 7.6. Sketch of Prim's algorithm.

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1207.htm (5 of 22) [1.7.2001 19:15:36]

