7.2 Minimum-Cost Spanning Trees

Suppose G = (V, E) is a connected graph in which each edge (u, v) in E has a cost c(u, v) attached to it. A *spanning tree* for G is a free tree that connects all the vertices in V. The *cost* of a spanning tree is the sum of the costs of the edges in the tree. In this section we shall show how to find a minimum-cost spanning tree for G.

Example 7.4. Figure 7.4 shows a weighted graph and its minimum-cost spanning tree.

A typical application for minimum-cost spanning trees occurs in the design of communications networks. The vertices of a graph represent cities and the edges possible communications links between the cities. The cost associated with an edge represents the cost of selecting that link for the network. A minimum-cost spanning tree represents a communications network that connects all the cities at minimal cost.

Fig. 7.4. A graph and spanning tree.

The MST Property

There are several different ways to construct a minimum-cost spanning tree. Many of these methods use the following property of minimum-cost spanning trees, which we call the *MST property*. Let G = (V, E) be a connected graph with a cost function defined on the edges. Let U be some proper subset of the set of vertices V. If (u, v) is an edge of lowest cost such that $u \in U$ and $v \in V-U$, then there is a minimum-cost spanning tree that includes (u, v) as an edge.

The proof that every minimum-cost spanning tree satisfies the MST property is not hard. Suppose to the contrary that there is no minimum-cost spanning tree for G that includes (u, v). Let T be any minimum-cost spanning tree for G. Adding (u, v) to T must introduce a cycle, since T is a free tree and therefore satisfies property (2) for free trees. This cycle involves edge (u, v). Thus, there must be another edge (u', v') in T such that $u' \in U$ and $v' \in V-U$, as illustrated in Fig. 7.5. If not, there would be no way for the cycle to get from u to v without following the edge (u, v) a second time.

Deleting the edge (u', v') breaks the cycle and yields a spanning tree T' whose

cost is certainly no higher than the cost of T since by assumption $c(u, v) \le c(u', v')$. Thus, T' contradicts our assumption that there is no minimum-cost spanning tree that includes (u, v).

Prim's Algorithm

There are two popular techniques that exploit the MST property to construct a minimum-cost spanning tree from a weighted graph G = (V, E). One such method is known as Prim's algorithm. Suppose $V = \{1, 2, ..., n\}$. Prim's algorithm begins with a set U initialized to $\{1\}$. It then "grows" a spanning tree, one edge at a time. At each step, it finds a shortest edge (u, v) that connects U and V-U and then adds v, the vertex in V-U, to U. It repeats this

Fig. 7.5. Resulting cycle.

step until U = V. The algorithm is summarized in Fig. 7.6 and the sequence of edges added to T for the graph of Fig. 7.4(a) is shown in Fig. 7.7.

```
procedure Prim ( G: graph; var T: set of edges );

{ Prim constructs a minimum-cost spanning tree T for G }

var

U: set of vertices;

u, v: vertex;

begin

T:=\emptyset;

U:=\{1\};

while U \neq V do begin

let (u, v) be a lowest cost edge such that

u is in U and v is in V-U;

T:=T \cup \{(u, v)\};

U:=U \cup \{v\}

end

end; { Prim }
```

Fig. 7.6. Sketch of Prim's algorithm.