Chapter 8

BRANCH-AND-BOUND

8.1 THE METHOD

This chapter makes extensive use of terminology defined in Section 7.1. The
reader is urged to review this section before proceeding.

The term branch-and-bound refers to all state space search methods in
which all children of the E-node are generated before any other live node
can become the E-node. We have already seen (in Section 7.1) two graph
search strategies, BFS and D-search, in which the exploration of a new
node cannot begin until the node currently being explored is fully explored.
Both of these generalize to branch-and-bound strategies. In branch-and-
bound terminology, a BFS-like state space search will be called FIFO (First
In First Out) search as the list of live nodes is a first-in-first-out list (or
queue). A D-search-like state space search will be called LIFO (Last In
First Out) search as the list of live nodes is a last-in-first-out list (or stack).
As in the case of backtracking, bounding functions are used to help avoid
the generation of subtrees that do not contain an answer node.

Example 8.1 [4-queens] Let us see how a FIFO branch-and-bound algo-
rithm would search the state space tree (Figure 7.2) for the 4-queens prob-
lem. Initially, there is only one live node, node 1. This represents the case
in which no queen has been placed on the chessboard. This node becomes
the E-node. It is expanded and its children, nodes 2, 18, 34, and 50, are
generated. These nodes represent a chessboard with queen 1 in row 1 and
columns 1, 2, 3, and 4 respectively. The only live nodes now are nodes 2, 18,
34, and 50. If the nodes are generated in this order, then the next E-node
is node 2. It is expanded and nodes 3, 8, and 13 are generated. Node 3
is immediately killed using the bounding function of Example 7.5. Nodes
8 and 13 are added to the queue of live nodes. Node 18 becomes the next
E-node. Nodes 19, 24, and 29 are generated. Nodes 19 and 24 are killed as
a result of the bounding functions. Node 29 is added to the queue of live
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nodes. The F-node is node 34. Figure 8.1 shows the portion of the tree of
Figure 7.2 that is generated by a FIFO branch-and-bound search. Nodes
that are killed as a result of the bounding functions have a “B” under them.
Numbers inside the nodes correspond to the numbers in Figure 7.2. Num-
bers outside the nodes give the order in which the nodes are generated by
FIFO branch-and-bound. At the time the answer node, node 31, is reached,
the only live nodes remaining are nodes 38 and 54. A comparison of Figures
7.6 and 8.1 indicates that backtracking is a superior search method for this
problem. O
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Figure 8.1 Portion of 4-queens state space tree generated by FIFO branch-
and-bound

8.1.1 Least Cost (LC) Search

In both LIFO and FIFO branch-and-bound the selection rule for the next
E-node is rather rigid and in a sense blind. The selection rule for the next
E-node does not give any preference to a node that has a very good chance
of getting the search to an answer node quickly. Thus, in Example 8.1, when
node 30 is generated, it should have become obvious to the search algorithm
that this node will lead to an answer node in one move. However, the rigid
FIFO rule first requires the expansion of all live nodes generated before node
30 was expanded.
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The search for an answer node can often be speeded by using an “in-
telligent” ranking function é(-) for live nodes. The next E-node is selected
on the basis of this ranking function. If in the 4-queens example we use a
ranking function that assigns node 30 a better rank than all other live nodes,
then node 30 will become the E-node following node 29. The remaining live
nodes will never become E-nodes as the expansion of node 30 results in the
generation of an answer node (node 31).

The ideal way to assign ranks would be on the basis of the additional
computational effort (or cost) needed to reach an answer node from the live
node. For any node z, this cost could be (1) the number of nodes in the
subtree x that need to be generated before an answer node is generated
or, more simply, (2) the number of levels the nearest answer node (in the
subtree z) is from z. Using cost measure 2, the cost of the root of the tree
of Figure 8.1 is 4 (node 31 is four levels from node 1). The costs of nodes 18
and 34, 29 and 35, and 30 and 38 are respectively 3, 2, and 1. The costs of
all remaining nodes on levels 2, 3, and 4 are respectively greater than 3, 2,
and 1. Using these costs as a basis to select the next E-node, the E-nodes
are nodes 1, 18, 29, and 30 (in that order). The only other nodes to get
generated are nodes 2, 34, 50, 19, 24, 32, and 31. Tt should be easy to see
that if cost measure 1 is used, then the search would always generate the
minimum number of nodes every branch-and-bound type algorithm must
generate. If cost measure 2 is used, then the only nodes to become E-nodes
are the nodes on the path from the root to the nearest answer node. The
difficulty with using either of these ideal cost functions is that computing
the cost of a node usually involves a search of the subtree x for an answer
node. Hence, by the time the cost of a node is determined, that subtree
has been searched and there is no need to explore z again. For this reason,
search algorithms usually rank nodes only on the basis of an estimate g(-)
of their cost.

Let g(x) be an estimate of the additional effort needed to reach an answer
node from z. Node z is assigned a rank using a function ¢é(-) such that
é(z) = f(h(z)) + 9(z), where h(z) is the cost of reaching z from the root
and f(-) is any nondecreasing function. At first, we may doubt the usefulness
of using an f(-) other than f(h(z)) = 0 for all h(z). We can justify such
an f(-) on the grounds that the effort already expended in reaching the live
nodes cannot be reduced and all we are concerned with now is minimizing
the additional effort we spend to find an answer node. Hence, the effort
already expended need not be considered.

Using f(-) = 0 usually biases the search algorithm to make deep probes
into the search tree. To see this, note that we would normally expect g(y) <
g(z) for y, a child of z. Hence, following z, y will become the E-node, then
one of y’s children will become the F-node, next one of 4’s grandchildren will
become the F-node, and so on. Nodes in subtrees other than the subtree z
will not get generated until the subtree z is fully searched. This would not
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be a cause for concern if g(z) were the true cost of z. Then, we would not
wish to explore the remaining subtrees in any case (as x is guaranteed to get
us to an answer node quicker than any other existing live node). However,
g(z) is only an estimate of the true cost. So, it is quite possible that for two
nodes w and z, §(w) < g(z) and z is much closer to an answer node than
w. It is therefore desirable not to overbias the search algorithm in favor of
deep probes. By using f(-) # 0, we can force the search algorithm to favor
a node z close to the root over a node w which is many levels below z. This
would reduce the possibility of deep and fruitless searches into the tree.

A search strategy that uses a cost function é(z) = f(h(z))+g(z) to select
the next F-node would always choose for its next F-node a live node with
least ¢(+). Hence, such a search strategy is called an LC-search (Least Cost
search). It is interesting to note that BFS and D-search are special cases
of LC-search. If we use g(z) = 0 and f(h(z)) = level of node z, then a
LC-search generates nodes by levels. This is essentially the same as a BFS.
If f(h(z)) =0 and g(z) > g(y) whenever y is a child of z, then the search
is essentially a D-search. An LC-search coupled with bounding functions is
called an L.C branch-and-bound search.

In discussing LC-searches, we sometimes make reference to a cost function
¢(-) defined as follows: if z is an answer node, then c¢(z) is the cost (level,
computational difficulty, etc.) of reaching = from the root of the state space
tree. If z is not an answer node, then ¢(z) = oo providing the subtree
z contains no answer node; otherwise c¢(z) equals the cost of a minimum-
cost answer node in the subtree z. It should be easy to see that é(-) with
f(h(z)) = h{z) is an approximation to ¢(-). From now on ¢(z) is referred to
as the cost of z.

8.1.2 The 15-puzzle: An Example

The 15-puzzle (invented by Sam Loyd in 1878) consists of 15 numbered tiles
on a square frame with a capacity of 16 tiles (Figure 8.2). We are given
an initial arrangement of the tiles, and the objective is to transform this
arrangement into the goal arrangement of Figure 8.2(b) through a series
of legal moves. The only legal moves are ones in which a tile adjacent to
the empty spot (ES) is moved to ES. Thus from the initial arrangement
of Figure 8.2(a), four moves are possible. We can move any one of the
tiles numbered 2, 3, 5, or 6 to the empty spot. Following this move, other
moves can be made. Each move creates a new arrangement of the tiles.
These arrangements are called the states of the puzzle. The initial and goal
arrangements are called the initial and goal states. A state is reachable from
the initial state iff there is a sequence of legal moves from the initial state
to this state. The state space of an initial state consists of all states that
can be reached from the initial state. The most straightforward way to solve
the puzzle would be to search the state space for the goal state and use the
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path from the initial state to the goal state as the answer. It is easy to see
that there are 16! (16! ~ 20.9 x 10'?) different arrangements of the tiles on
the frame. Of these only one-half are reachable from any given initial state.
Indeed, the state space for the problem is very large. Before attempting to
search this state space for the goal state, it would be worthwhile to determine
whether the goal state is reachable from the initial state. There is a very
simple way to do this. Let us number the frame positions 1 to 16. Position i
is the frame position containing tile numbered ¢ in the goal arrangement of
Figure 8.2(b). Position 16 is the empty spot. Let position(i) be the position
number in the initial state of the tile numbered i. Then position(16) will
denote the position of the empty spot.
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Figure 8.2 15-puzzle arrangements

For any state let less(i) be the number of tiles 7 such that § < ¢ and
position(j) > position(i). For the state of Figure 8.2(a) we have, for exam-
ple, less(1) = 0, less(4) = 1, and less(12) = 6. Let z =1 if in the initial
state the empty spot is at one of the shaded positions of Figure 8.2(c) and
z = 0 if it is at one of the remaining positions. Then, we have the following
theorem:

Theorem 8.1 The goal state of Figure 8.2(b) is reachable from the initial
state iff 3°1%, less(i) + z is even.

Proof: Left as an exercise. O

Theorem 8.1 can be used to determine whether the goal state is in the
state space of the initial state. If it is, then we can proceed to determine a
sequence of moves leading to the goal state. To carry out this search, the
state space can be organized into a tree. The children of each node z in
this tree represent the states reachable from state z by one legal move. It
is convenient to think of a move as involving a move of the empty space
rather than a move of a tile. The empty space, on each move, moves either
up, right, down, or left. Figure 8.3 shows the first three levels of the state
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space tree of the 15-puzzle beginning with the initial state shown in the root.
Parts of levels 4 and 5 of the tree are also shown. The tree has been pruned
a little. No node p has a child state that is the same as p’s parent. The
subtree eliminated in this way is already present in the tree and has root
parent(p). As can be seen, there is an answer node at level 4.
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Figure 8.3 Part of the state space tree for the 15-puzzle

A depth first state space tree generation will result in the subtree of
Figure 8.4 when the next moves are attempted in the order: move the empty
space up, right, down, and left. Successive board configurations reveal that
each move gets us farther from the goal rather than closer. The search of
the state space tree is blind. It will take the leftmost path from the root
regardless of the starting configuration. As a result, an answer node may
never be found (unless the leftmost path ends in such a node). In a FIFO
search of the tree of Figure 8.3, the nodes will be generated in the order
numbered. A breadth first search will always find a goal node nearest to the
root. However, such a search is also blind in the sense that no matter what
the initial configuration, the algorithm attempts to make the same sequence
of moves. A FIFO search always generates the state space tree by levels.
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Figure 8.4 First ten steps in a depth first search

What we would like, is a more “intelligent” search method, one that seeks
out an answer node and adapts the path it takes through the state space
tree to the specific problem instance being solved. We can associate a cost
¢(z) with each node z in the state space tree. The cost ¢(z) is the length of
a path from the root to a nearest goal node (if any) in the subtree with root
z. Thus, in Figure 8.3, ¢(1) = ¢(4) = ¢(10) = ¢(23) = 3. When such a cost
function is available, a very efficient search can be carried out. We begin with
the root as the E-node and generate a child node with ¢()-value the same
as the root. Thus children nodes 2, 3, and 5 are eliminated and only node
4 becomes a live node. This becomes the next F-node. Its first child, node
10, has ¢(10) = ¢(4) = 3. The remaining children are not generated. Node
4 dies and node 10 becomes the E-node. In generating node 10’s children,
node 22 is killed immediately as ¢(22) > 3. Node 23 is generated next. It
is a goal node and the search terminates. In this search strategy, the only
nodes to become E-nodes are nodes on the path from the root to a nearest
goal node. Unfortunately, this is an impractical strategy as it is not possible
to easily compute the function ¢(-) specified above.

We can arrive at an easy to compute estimate é(z) of ¢(z). We can write
éz) = f(z)+ g(z), where f(z) is the length of the path from the root to
node z and g(z) is an estimate of the length of a shortest path from z to a
goal node in the subtree with root z. One possible choice for g(z) is

g(z) = number of nonblank tiles not in their goal position

Clearly, at least g(z) moves have to be made to transform state z to a
goal state. More than §(z) moves may be needed to achieve this. To see
this, examine the problem state of Figure 8.5. There g(z) = 1 as only tile 7
is not in its final spot (the count for g(z) excludes the blank tile). However,
the number of moves needed to reach the goal state is many more than §(x).
So é(x) is a lower bound on the value of ¢(x).
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An LC-search of Figure 8.3 using é(z) will begin by using node 1 as the
E-node. All its children are generated. Node 1 dies and leaves behind the
live nodes 2, 3, 4, and 5. The next node to become the E-node is a live node
with least é(z). Then é(2) = 1+4, é(3) = 144, é(4) = 1+2, and é(5) = 1+4.
Node 4 becomes the E-node. Its children are generated. The live nodes at
this time are 2, 3, 5, 10, 11, and 12. So ¢(10) = 2+ 1, é(11) = 2+ 3, and
¢(12) = 2 4+ 3. The live node with least ¢ is node 10. This becomes the next
FE-node. Nodes 22 and 23 are generated next. Node 23 is determined to be
a goal node and the search terminates. In this case LC-search was almost
as efficient as using the exact function ¢(). It should be noted that with a
suitable choice for ¢é(), an LC-search will be far more selective than any of
the other search methods we have discussed.
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Figure 8.5 Problem state

8.1.3 Control Abstractions for LC-Search

Let ¢ be a state space tree and ¢() a cost function for the nodes int. If z is a
node in ¢, then ¢(z) is the minimum cost of any answer node in the subtree
with root . Thus, ¢(t) is the cost of a minimum-cost answer node in ¢.
As remarked earlier, it is usually not possible to find an easily computable
function ¢() as defined above. Instead, a heuristic ¢ that estimates ¢() is used.
This heuristic should be easy to compute and generally has the property
that if z is either an answer node or a leaf node, then ¢(z) = é(x). LCSearch
(Algorithm 8.1) uses ¢ to find an answer node. The algorithm uses two
functions Least() and Add(x) to delete and add a live node from or to the
list of live nodes, respectively. Least() finds a live node with least &(). This
node is deleted from the list of live nodes and returned. Add(x) adds the
new live node z to the list of live nodes. The list of live nodes will usually
be implemented as a min-heap (Section 2.4). Algorithm LCSearch outputs
the path from the answer node it finds to the root node ¢. This is easy to
do if with each node x that becomes live, we associate a field parent which
gives the parent of node z. When an answer node g is found, the path from
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g to t can be determined by following a sequence of parent values starting
from the current E-node (which is the parent of g) and ending at node ¢.

listnode = record {

}

Nalie SN e B CNRIUN

listnode *next, x parent; float cost;

Algorithm LCSearch(t)
// Search t for an answer node.

if *f is an answer node then output *¢ and return;
E :=t; // E-node.

Initialize the list of live nodes to be empty;

repeat

for each child z of F do
{

if z is an answer node then output the path
from z to t and return;

Add(xz); // z is a new live node.

(z — parent) := E; // Pointer for path to root.

if there are no more live nodes then

{

write ("No answer node"); return;

}
E := Least();
} until (false);

Algorithm 8.1 LC-search

The correctness of algorithm LCSearch is easy to establish. Variable E
always points to the current E-node. By the definition of LC-search, the
root node is the first E-node (line 5). Line 6 initializes the list of live nodes.
At any time during the execution of LCSearch, this list contains all live nodes
except the E-node. Thus, initially this list should be empty (line 6). The
for loop of line 9 examines all the children of the E-node. If one of the
children is an answer node, then the algorithm outputs the path from z to ¢
and terminates. If a child of £ is not an answer node, then it becomes a live
node. It is added to the list of live nodes (line 13) and its parent field set to
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E (line 14). When all the children of E have been generated, E becomes a
dead node and line 16 is reached. This happens only if none of E’s children
is an answer node. So, the search must continue further. If there are no live
nodes left, then the entire state space tree has been searched and no answer
nodes found. The algorithm terminates in line 18. Otherwise, Least(), by
definition, correctly chooses the next E-node and the search continues from
here.

From the preceding discussion, it is clear that LCSearch terminates only
when either an answer node is found or the entire state space tree has been
generated and searched. Thus, termination is guaranteed only for finite state
space trees. Termination can also be guaranteed for infinite state space trees
that have at least one answer node provided a “proper” choice for the cost
function ¢é() is made. This is the case, for example, when é(z) > é(y) for
every pair of nodes z and y such that the level number of z is “sufficiently”
higher than that of y. For infinite state space trees with no answer nodes,
LCSearch will not terminate. Thus, it is advisable to restrict the search to
find answer nodes with a cost no more than a given bound C.

One should note the similarity between algorithm LCSearch and algo-
rithms for a breadth first search and D-search of a state space tree. If the
list of live nodes is implemented as a queue with Least() and Add(z) being
algorithms to delete an element from and add an element to the queue, then
LCSearch will be transformed to a FIFO search schema. If the list of live
nodes is implemented as a stack with Least() and Add(z) being algorithms
to delete and add elements to the stack, then LCSearch will carry out a LIFO
search of the state space tree. Thus, the algorithms for LC, FIFO, and LIFO
search are essentially the same. The only difference is in the implementation
of the list of live nodes. This is to be expected as the three search methods
differ only in the selection rule used to obtain the next E-node.

8.1.4 Bounding

A branch-and-bound method searches a state space tree using any search
mechanism in which all the children of the E-node are generated before
another node becomes the F-node. We assume that each answer node z has
a cost ¢(x) associated with it and that a minimum-cost answer node is to be
found. Three common search strategies are FIFO, LIFO, and LC. (Another
method, heuristic search, is discussed in the exercises.) A cost function é(-)
such that é(x) < ¢(z) is used to provide lower bounds on solutions obtainable
from any node z. If upper is an upper bound on the cost of a minimum-cost
solution, then all live nodes = with é(x) > upper may be killed as all answer
nodes reachable from z have cost ¢(z) > ¢é(z) > upper. The starting value
for upper can be obtained by some heuristic or can be set to oc. Clearly, so
long as the initial value for upper is no less than the cost of a minimum-cost
answer node, the above rules to kill live nodes will not result in the killing of
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a live node that can reach a minimum-cost answer node. Each time a new
answer node is found, the value of upper can be updated.

Let us see how these ideas can be used to arrive at branch-and-bound
algorithms for optimization problems. In this section we deal directly only
with minimization problems. A maximization problem is easily converted to
a minimization problem by changing the sign of the objective function. We
need to be able to formulate the search for an optimal solution as a search
for a least-cost answer node in a state space tree. To do this, it is necessary
to define the cost function ¢(-) such that ¢(z) is minimum for all nodes
representing an optimal solution. The easiest way to do this is to use the
objective function itself for ¢(-). For nodes representing feasible solutions,
¢(x) is the value of the objective function for that feasible solution. For nodes
representing infeasible solutions, ¢(z) = co. For nodes representing partial
solutions, ¢(z) is the cost of the minimum-cost node in the subtree with root
z. Since ¢(x) is in general as hard to compute as the original optimization
problem is to solve, the branch-and-bound algorithm will use an estimate
¢é(x) such that é(z) < ¢(z) for all z. In general then, the é(-) function used
in a branch-and-bound solution to optimization functions will estimate the
objective function value and not the computational difficulty of reaching
an answer node. In addition, to be consistent with the terminology used
in connection with the 15-puzzle, any node representing a feasible solution
(a solution node) will be an answer node. However, only minimum-cost
answer nodes will correspond to an optimal solution. Thus, answer nodes
and solution nodes are indistinguishable.

As an example optimization problem, consider the job sequencing with
deadlines problem introduced in Section 4.4. We generalize this problem
to allow jobs with different processing times. We are given n jobs and one
processor. Each job i has associated with it a three tuple (p;,d;, ;). Job ¢
requires t; units of processing time. If its processing is not completed by the
deadline d;, then a penalty p; is incurred. The objective is to select a subset
J of the n jobs such that all jobs in J can be completed by their deadlines.
Hence, a penalty can be incurred only on those jobs not in J. The subset
J should be such that the penalty incurred is minimum among all possible
subsets J. Such a J is optimal.

Consider the following instance: n = 4, (p1,d(,t1) = (5,1,1), (p2,da, t2) =
(10,3,2), (ps,ds,ts) = (6, 2, 1), and (pa,ds,ts) = (3, 1, 1). The solution
space for this instance consists of all possible subsets of the job index set
{1,2,3,4}. The solution space can be organized into a tree by means of
either of the two formulations used for the sum of subsets problem (Exam-
ple 7.2). Figure 8.6 corresponds to the variable tuple size formulation while
Figure 8.7 corresponds to the fixed tuple size formulation. In both figures
square nodes represent infeasible subsets. In Figure 8.6 all nonsquare nodes
are answer nodes. Node 9 represents an optimal solution and is the only
minimum-cost answer node. For this node J = {2,3} and the penalty (cost)
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is 8. In Figure 8.7 only nonsquare leaf nodes are answer nodes. Node 25
represents the optimal solution and is also a minimum-cost answer node.
This node corresponds to J = {2,3} and a penalty of 8. The costs of the
answer nodes of Figure 8.7 are given below the nodes.

Figure 8.6 State space tree corresponding to variable tuple size formulation

We can define a cost function ¢() for the state space formulations of
Figures 8.6 and 8.7. For any circular node z, ¢(z) is the minimum penalty
corresponding to any node in the subtree with root z. The value of ¢(z) = oo
for a square node. In the tree of Figure 8.6, ¢(3) = 8, ¢(2) = 9, and ¢(1) = 8.
In the tree of Figure 8.7, ¢(1) = 8, ¢(2) =9, ¢(5) = 13, and ¢(6) = 8. Clearly,
¢(1) is the penalty corresponding to an optimal selection J.

A bound é(z) such that é(z) < ¢(z) for all z is easy to obtain. Let S,
be the subset of jobs selected for J at node z. If m = max {i|i € S;}, then
&(z) = 3 i<m p; i1s an estimate for ¢(z) with the property é(z) < ¢(z). For

12 x
each circular node z in Figures 8.6 and 8.7, the value of é(z) is the number
outside node z. For a square node, é(xz) = oo. For example, in Figure 8.6

for node 6, S = {1,2} and hence m = 2. Also, }_ ;> p; = 0. For node
25,
7, S7 = {1,3} and m = 3. Therefore, Y ;o p; = po = 10. And so on. In
¢S

¢Sy
Figure 8.7, node 12 corresponds to the omission of job 1 and hence a penalty
of 5; node 13 corresponds to the omission of jobs 1 and 3 and hence a penalty
of 11; and so on.

A simple upper bound u(z) on the cost of a minimum-cost answer node
in the subtree z is u(z) = 3,45, pi- Note that u(z) is the cost of the solution
Sz corresponding to node .
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Figure 8.7 State space tree corresponding to fixed tuple size formulation

8.1.5 FIFO Branch-and-Bound

A FIFO branch-and-bound algorithm for the job sequencing problem can
begin with upper = oo (or upper = ¥, <,<, Pi) as an upper bound on the
cost of a minimum-cost answer node. Starting with node 1 as the E-node
and using the variable tuple size formulation of Figure 8.6, nodes 2, 3, 4,
and 5 are generated (in that order). Then u(2) =19, u(3) = 14, u(4) = 18,
and u(5) = 21. For example, node 2 corresponds to the inclusion of job
1. Thus u(2) is obtained by summing the penalties of all the other jobs.
The variable upper is updated to 14 when node 3 is generated. Since ¢(4)
and ¢é(5) are greater than upper, nodes 4 and 5 get killed (or bounded).
Only nodes 2 and 3 remain alive. Node 2 becomes the next E-node. Its
children, nodes 6, 7, and 8 are generated. Then u(6) = 9 and so upper is
updated to 9. The cost ¢(7) = 10 > upper and node 7 gets killed. Node 8
is infeasible and so it is killed. Next, node 3 becomes the E-node. Nodes
9 and 10 are now generated. Then u(9) = 8 and so upper becomes 8. The
cost ¢(10) = 11 > upper, and this node is killed. The next E-node is node 6.
Both its children are infeasible. Node 9’s only child is also infeasible. The
minimum-cost answer node is node 9. It has a cost of 8.

When implementing a FIFO branch-and-bound algorithm, it is not eco-
nomical to kill live nodes with é(z) > upper each time upper is updated.
This is so because live nodes are in the queue in the order in which they
were generated. Hence, nodes with ¢(z) > upper are distributed in some



392 CHAPTER 8. BRANCH-AND-BOUND

random way in the queue. Instead, live nodes with é(x) > upper can be
killed when they are about to become E-nodes.

From here on we shall refer to the FIFO-based branch-and-bound algo-
rithm with an appropriate ¢(.) and u(.) as FIFOBB.

8.1.6 LC Branch-and-Bound

An LC branch-and-bound search of the tree of Figure 8.6 will begin with
upper = oo and node 1 as the first F-node. When node 1 is expanded,
nodes 2, 3, 4, and 5 are generated in that order. As in the case of FIFOBB,
upper is updated to 14 when node 3 is generated and nodes 4 and 5 are killed
as é(4) > upper and é(5) > upper. Node 2 is the next E-node as ¢(2) = 0
and é(3) = 5. Nodes 6, 7, and 8 are generated and upper is updated to 9
when node 6 is generated. So, node 7 is killed as é(7) = 10 > upper. Node 8
is infeasible and so killed. The only live nodes now are nodes 3 and 6. Node 6
is the next E-node as ¢(6) = 0 < &(3). Both its children are infeasible. Node
3 becomes the next E-node. When node 9 is generated, upper is updated to
8 as u(9) = 8. So, node 10 with ¢(10) = 11 is killed on generation. Node 9
becomes the next E-node. Its only child is infeasible. No live nodes remain.
The search terminates with node 9 representing the minimum-cost answer
node.

From here on we refer to the LC(LIFO)-based branch-and-bound algo-
rithm with an appropriate ¢(.) and «(.) as LCBB (LIFOBB).

EXERCISES

1. Prove Theorem 8.1.

2. Present an algorithm schema FifoBB for a FIFO branch-and-bound
search for a least-cost answer node.

3. Give an algorithm schema LcBB for a LC branch-and-bound search for
a least-cost answer node.

4. Write an algorithm schema LifoBB, for a LIFO branch-and-bound
search for a least-cost answer node.

5. Draw the portion of the state space tree generated by FIFOBB, LCBB,
and LIFOBB for the job sequencing with deadlines instance n = 5,
(P17P27~--7P5) = (67 37 47 87 5)7 (tla t?a"-at'f)) = (27 ]-7 27 ]-7 1)7 and
(di,da, ...,ds) = (3, 1, 4, 2, 4). What is the penalty corresponding
to an optimal solution? Use a variable tuple size formulation and é&(-)
and u(-) as in Section 8.1.
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6. Write a branch-and-bound algorithm for the job sequencing with dead-
lines problem. Use the fixed tuple size formulation.

7. (a) Write a branch-and-bound algorithm for the job sequencing with
deadlines problem using a dominance rule (see Section 5.7). Your
algorithm should work with a fixed tuple size formulation and
should generate nodes by levels. Nodes on each level should be
kept in an order permitting easy use of your dominance rule.

(b) Convert your algorithm into a program and, using randomly gen-
erated problem instances, determine the worth of the dominance
rule as well as the bounding functions. To do this, you will have
to run four versions of your program: ProgA--- bounding func-
tions and dominance rules are removed, ProgB- -- dominance rule
is removed, ProgC- - - bounding function is removed, and ProgD- - -
bounding functions and dominance rules are included. Determine
computing time figures as well as the number of nodes generated.

8.2 0/1 KNAPSACK PROBLEM

To use the branch-and-bound technique to solve any problem, it is first nec-
essary to conceive of a state space tree for the problem. We have already seen
two possible state space tree organizations for the knapsack problem (Section
7.6). Still, we cannot directly apply the techniques of Section 8.1 since these
were discussed with respect to minimization problems whereas the knapsack
problem is a maximization problem. This difficulty is easily overcome by
replacing the objective function > p;z; by the function — 3" p;z;. Clearly,
3" pix; is maximized iff — Y p;x; is minimized. This modified knapsack prob-
lem is stated as (8.1).

n
minimize — E PiT;
i=1

n
subject to Zwimi <m (8.1)

i=1
z;=0o0rl, 1<i<n

We continue the discussion agsuming a fixed tuple size formulation for the
solution space. The discussion is easily extended to the variable tuple size
formulation. Every leaf node in the state space tree representing an assign-
ment for which Y, ;. wiz; < m is an answer (or solution) node. All other
leaf nodes are infeasible. For a minimum-cost answer node to correspond
to any optimal solution, we need to define ¢(z) = — 3, , pix; for every
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answer node r. The cost ¢(z) = oo for infeasible leaf nodes. For nonleaf
nodes, ¢(z) is recursively defined to be min {c({child(z)), c(rchild(z))}.

We now need two functions é(z) and u(z) such that é(z) < ¢(z) < u(z)
for every node z. The cost ¢(-) and u(-) satisfying this requirement may be
obtained as follows. Let x be a node at level j, 1 < j < n+ 1. At node z
assignments have already been made to z;, 1 <4 < j. The cost of these as-
signments is — 3 <;; PiTi- S0, ¢(z) < — 37 <j; Pi¥; and we may use u(z) =
— Yi<i<j Pi%i- g = — 31 <;; piwi, then an improved upper bound function
u(z) is u(z) = UBound(q, 31 <;«; wiTi,j — 1,m), where UBound is defined in
Algorithm 8.2. As for ¢(z), it is clear that Bound(—g, Pi<icy Wii J — 1) <
¢(z), where Bound is as given in Algorithm 7.11.

1  Algorithm UBound(cp, cw, k, m)

2 // ep,cw,k, and m have the same meanings as in
3 // Algorithm 7.11. wli] and pli] are respectively
4 // the weight and profit of the ith object.

5

6 b:=cp; ¢c:= cwy

7 for i:=k+1tondo

8 {

9 if (¢ + w[i] <m) then

10 {

11 c:=c+ wli]; b:=b— p[il;

12 }

13

14 return b;

15 }

Algorithm 8.2 Function u(-) for knapsack problem

8.2.1 LC Branch-and-Bound Solution

Example 8.2 [LCBB] Consider the knapsack instance n = 4, (p1,p2, p3, p4)
= (10, 10, 12, 18), (w1, w2, ws, ws) = (2, 4, 6, 9), and m = 15. Let us trace
the working of an LC branch-and-bound search using ¢é(-) and u(-) as defined
previously. We continue to use the fixed tuple size formulation. The search
begins with the root as the E-node. For this node, node 1 of Figure 8.8, we
have é(1) = —38 and u(l) = —32.
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Figure 8.8 LC branch-and-bound tree for Example 8.2
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The computation of u(1) and é(1) is done as follows. The bound u(1) has a
value UBound(0,0,0,15). UBound scans through the objects from left to right
starting from 7; it adds these objects into the knapsack until the first object
that doesn’t fit is encountered. At this time, the negation of the total profit
of all the objects in the knapsack plus cw is returned. In Function UBound,
¢ and b start with a value of zero. For ¢+ = 1,2, and 3, ¢ gets incremented
by 2,4, and 6, respectively. The variable b also gets decremented by 10,10,
and 12, respectively. When ¢ = 4, the test (¢ + w[¢] < m) fails and hence
the value returned is —32. Function Bound is similar to UBound, except that
it also considers a fraction of the first object that doesn’t fit the knapsack.
For example, in computing ¢(1), the first object that doesn’t fit is 4 whose
weight is 9. The total weight of the objects 1, 2, and 3 is 12. So, Bound
considers a fraction % of the object 4 and hence returns —32 — % *x18 = —38.

Since node 1 is not a solution node, LCBB sets ans = 0 and upper = —32
(ans being a variable to store intermediate answer nodes). The E-node is
expanded and its two children, nodes 2 and 3, generated. The cost ¢(2) =
—38, ¢(3) = —32, u(2) = —32, and u(3) = —27. Both nodes are put onto
the list of live nodes. Node 2 is the next F-node. It is expanded and nodes
4 and 5 generated. Both nodes get added to the list of live nodes. Node
4 is the live node with least ¢ value and becomes the next E-node. Nodes
6 and 7 are generated. Assuming node 6 is generated first, it is added to
the list of live nodes. Next, node 7 joins this list and upper is updated to
—38. The next E-node will be one of nodes 6 and 7. Let us assume it is
node 7. Its two children are nodes 8 and 9. Node 8 is a solution node.
Then upper is updated to —38 and node 8 is put onto the live nodes list.
Node 9 has é(9) > upper and is killed immediately. Nodes 6 and 8 are
two live nodes with least ¢. Regardless of which becomes the next E-node,
¢(FE) > upper and the search terminates with node 8 the answer node. At
this time, the value —38 together with the path 8, 7, 4, 2, 1 is printed out
and the algorithm terminates. From the path one cannot figure out the
assignment of values to the z;’s such that > p;x; = upper. Hence, a proper
implementation of LCBB has to keep additional information from which the
values of the z;’s can be extracted. One way is to associate with each node a
one bit field, tag. The sequence of tag bits from the answer node to the root
give the z; values. Thus, we have tag(2) = tag(4) = tag(6) = tag(8) =1
and tag(3) = tag(5) = tag(7) = tag(9) = 0. The tag sequence for the path
8 7,4,2,1is1011landsoxs=1,23=0,2o=1,and z; = 1. O

To use LCBB to solve the knapsack problem, we need to specify (1) the
structure of nodes in the state space tree being searched, (2) how to generate
the children of a given node, (3) how to recognize a solution node, and (4)
a representation of the list of live nodes and a mechanism for adding a node
into the list as well as identifying the least-cost node. The node structure
needed depends on which of the two formulations for the state space tree is
being used. Let us continue with a fixed size tuple formulation. Each node
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z that is generated and put onto the list of live nodes must have a parent
field. In addition, as noted in Example 8.2, each node should have a one bit
tag field. This field is needed to output the z; values corresponding to an
optimal solution. To generate x’s children, we need to know the level of node
z in the state space tree. For this we shall use a field level. The left child of
z is chosen by setting Tjepei(;) = 1 and the right child by setting .41y = 0.
To determine the feasibility of the left child, we need to know the amount
of knapsack space available at node x. This can be determined either by
following the path from node z to the root or by explicitly retaining this
value in the node. Say we choose to retain this value in a field cu (capacity
unused). The evaluation of é(z) and u(x) requires knowledge of the profit
>1<i<level(x) Pi%i €arned by the filling corresponding to node z. This can be
computed by following the path from z to the root. Alternatively, this value
can be explicitly retained in a field pe. Finally, in order to determine the live
node with least ¢ value or to insert nodes properly into the list of live nodes,
we need to know é(z). Again, we have a choice. The value é¢(z) may be
stored explicitly in a field ub or may be computed when needed. Assuming
all information is kept explicitly, we need nodes with six fields each: parent,
level, tag, cu, pe, and ub.

Using this six-field node structure, the children of any live node x can be
easily determined. The left child y is feasible iff cu(z) > wieper(z)- In this
case, parent(y) = z, level(y) = level(z) + 1, cu(y) = cu(T) — Wieyei(x), PE(Y)
= pe(T) + Prevei(z), tag(y) = 1, and ub(y) = ub(z). The right child can be
generated similarly. Solution nodes are easily recognized too. Node z is a
solution node iff level(z) =n + 1.

We are now left with the task of specifying the represeuntation of the list
of live nodes. The functions we wish to perform on this list are (1) test if
the list is empty, (2) add nodes, and (3) delete a node with least ub. We
have seen a data structure that allows us to perform these three functions
efficiently: a min-heap. If there are m live nodes, then function (1) can be
carried out in ©(1) time, whereas functions (2) and (3) require only O(log m)
time.

8.2.2 FIFO Branch-and-Bound Solution

Example 8.3 Now, let us trace through the FIFOBB algorithm using the
same knapsack instance as in Example 8.2, Initially the root node, node 1
of Figure 8.9, is the F-node and the queue of live nodes is empty. Since this
is not a solution node, upper is initialized to u(l) = —32.

We assume the children of a node are generated left to right. Nodes 2
and 3 are generated and added to the queue (in that order). The value of
upper remains unchanged. Node 2 becomes the next E-node. Its children,
nodes 4 and 5, are generated and added to the queue. Node 3, the next
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Figure 8.9 FIFO branch-and-bound tree for Example 8.3
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E-node, is expanded. Its children nodes are generated. Node 6 gets added
to the queue. Node 7 is immediately killed as ¢(7) > upper. Node 4 is
expanded next. Nodes 8 and 9 are generated and added to the queue. Then
upper is updated to u(9) = —38. Nodes 5 and 6 are the next two nodes
to become E-nodes. Neither is expanded as for each, é() > upper. Node 8
is the next F-node. Nodes 10 and 11 are generated. Node 10 is infeasible
and so killed. Node 11 has ¢(11) > upper and so is also killed. Node 9 is
expanded next. When node 12 is generated, upper and ans are updated to
—38 and 12 respectively. Node 12 joins the queue of live nodes. Node 13
is killed before it can get onto the queue of live nodes as ¢(13) > upper.
The only remaining live node is node 12. It has no children and the search
terminates. The value of upper and the path from node 12 to the root is
output. As in the case of Example 8.2, additional information is needed to
determine the x; values on this path. O

At first we may be tempted to discard FIFOBB in favor of LCBB in
solving knapsack. Our intuition leads us to believe that LCBB will examine
fewer nodes in its quest for an optimal solution. However, we should keep in
mind that insertions into and deletions form a heap are far more expensive
(proportional to the logarithm of the heap size) than the corresponding
operations on a queue (O(1)). Consequently, the work done for each E-
node is more in LCBB than in FIFOBB. Unless LCBB uses far fewer E-nodes
than FIFOBB, FIFOBB will outperform (in terms of real computation time)
LCBB.

We have now seen four different approaches to solving the knapsack
problem: dynamic programming, backtracking, LCBB, and FIFOBB. If we
compare the dynamic programming algorithm DKnap (Algorithm 5.7) and
FIFOBB, we see that there is a correspondence between generating the S(9’s
and generating nodes by levels. S contains all pairs (P, W) corresponding
to nodes on level i +1, 0 < i < n. Hence, both algorithms generate the state
space tree by levels. The dynamic programming algorithm, however, keeps
the nodes on each level ordered by their profit earned (P) and capacity used
(W) values. No two tuples have the same P or W value. In FIFOBB we
may have many nodes on the same level with the same P or W value. It
is not easy to implement the dominance rule of Section 5.7 into FIFOBB
as nodes on a level are not ordered by their P or W values. However, the
bounding rules can easily be incorporated into DKnap. Toward the end of
Section 5.7 we discussed some simple heuristics to determine whether a pair
(P, W) € S® should be killed. These heuristics are readily seen to be
bounding functions of the type discussed here. Let the algorithm result-
ing from the inclusion of the bounding functions into DKnap be DKnapl.
DKnapl is expected to be superior to FIFOBB as it uses the dominance rule
in addition to the bounding functions. In addition, the overhead incurred
each time a node is generated is less.
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To determine which of the knapsack algorithms is best, it is necessary
to program them and obtain real computing times for different data sets.
Since the effectiveness of the bounding functions and the dominance rule is
highly data dependent, we expect a wide variation in the computing time
for different problem instances having the same number of objects n. To get
representative times, it is necessary to generate many problem instances for
a fixed n and obtain computing times for these instances. The generation
of these data sets and the problem of conducting the tests is discussed in a
programming project at the end of this section. The results of some tests
can be found in the references to this chapter.

Before closing our discussion of the knapsack problem, we briefly discuss
a very effective heuristic to reduce a knapsack instance with large n to an
equivalent one with smaller n. This heuristic, Reduce, uses some of the
ideas developed for the branch-and-bound algorithm. It classifies the objects
{1,2,...,n} into one of three categories I1,12, and I3. I1 is a set of objects
for which z; must be 1 in every optimal solution. 12 is a set for which z;
must be 0. I3 is {1,2,...,n} — Il — I2. Once Il, I2, and I3 have been
determined, we need to solve only the reduced knapsack instance

maximize E PiT;

iel3
subject to Z wix; < m — Z WL (8.2)
i1€13 i€ell
z;=0o0r1l

From the solution to (8.2) an optimal solution to the original knapsack in-
stance is obtained by setting z; = 1if ¢ € Il and z; = 0 if i € I2.

Function Reduce (Algorithm 8.3) makes use of two functions Ubb and Lbb.
The bound Ubb(71, I2) is an upper bound on the value of an optimal solution
to the given knapsack instance with added constraints z; = 1 if: € Il and z;
= 01if ¢ € I2. The bound Lbb(I1, I2) is a lower bound under the constraints
of I1 and I2. Algorithm Reduce needs no further explanation. It should be
clear that I1 and I2 are such that from an optimal solution to (8.2), we can
easily obtain an optimal solution to the original knapsack problem.

The time complexity of Reduce is O(n?). Because the reduction procedure
is very much like the heuristics used in DKnapl and the knapsack algorithms
of this chapter, the use of Reduce does not decrease the overall computing
time by as much as may be expected by the reduction in the number of
objects. These algorithms do dynamically what Reduce does. The exercises
explore the value of Reduce further.
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1 Algorithm Reduce(p,w,n,m,I1,12)

2 // Variables are as described in the discussion.

3 {/ plil/wli] 2 pli + 1/wli + 1], 1 <i <n.

4

5 I1:=I2 = 0

6 q := Lbb(0,0);

7 k := largest j such that w[l] + -+ + w[j] < m;

8 for i:=1to k do

9 {

10 if (Ubb(®,{:}) < ¢) then I1:=I1U {i};

11 else if (Lbb(0, {i}) > ¢) then g := Lbb(0, {i});
12

13 for i:=k+1ton do

14 {

15 if (Ubb({:},0) < ¢) then I2:=I2U {i};

16 else if (Lbb({i},0) > ¢) then ¢ := Lbb({:},0);
17

18 }

Algorithm 8.3 Reduction pseudocode for knapsack problem
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EXERCISES

1. Work out Example 8.2 using the variable tuple size formulation.
2. Work out Example 8.3 using the variable tuple size formulation.

3. Draw the portion of the state space tree generated by LCBB for the
following knapsack instances:

(a) n = 5, (p1,p2,-..,p5) = (10, 15, 6, 8, 4), (w1, wy,...,ws) =
(4, 6, 3, 4, 2), and m = 12.

(b) n = 57 (p17p2ap3ap4ap5) = (11)1,71)2,’11)3,71)4,'11)5) = (4a 4a 5’ 8a 9)
and m = 15.

4. Do Exercise 3 using LCBB on a dynamic state space tree (see Section
7.6). Use the fixed tuple size formulation.

5. Write a LCBB algorithm for the knapsack problem using the ideas
given in Example 8.2.

6. Write a LCBB algorithm for the knapsack problem using the fixed
tuple size formulation and the dynamic state space tree of Section 7.6.

7. [Programming project] Program the algorithms DKnap (Algorithm 5.7),
DKnap1 (page 399), LCBB for knapsack, and Bknap (Algorithm 7.12).
Compare these programs empirically using randomly generated data
as below:

(a) Random w; and p;, w; € [1,100], p; € [1,100], and m = 37 w; /2.
(b) Random w; and p;, w; € [1,100], p; € [1,100], and m = 2 max {w;}.
(c) Random w;, w; € [1,100], p; = w; + 10, and m = 3 T w;/2.

(d) Same as (c) except m = 2 max {w;}.

(e) Random p;, p; € [1,100], w; = p; + 10, and m = 37 w;/2.

(f) Same as (e) except m = 2 max {w;}.

Obtain computing times for n = 5,10, 20, 30,40, .... For each n, gen-
erate (say) ten problem instances from each of the above data sets.
Report average and worst-case computing times for each of the above
data sets. From these times can you say anything about the expected
behavior of these algorithms?

Now, generate problem instances withp; = w;, 1 <¢ < n,m = > w;/2,
and > w;x; # m for any 0, 1 assignment to the x;’s. Obtain computing
times for your four programs for n = 10, 20, and 30. Now study the
effect of changing the range to [1, 1000] in data sets (a) through (f).
In sets (c) to (f) replace p; = w; +10 by p; = w; + 100 and w; = p; + 10
by w; = p; + 100.
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8. [Programming project]

(a) Program the reduction heuristic Reduce of Section 8.2. Generate
several problem instances from the data sets of Exercise 7 and
determine the size of the reduced problem instances. Use n =

100, 200, 500, and 1000.

(b) Program DKnap and the backtracking algorithm Bknap for the
knapsack problem. Compare the effectiveness of Reduce by run-
ning several problem instances (as in Exercise 7). Obtain average
and worst-case computing times for DKnap and Bknap for the
generated problem instances and also for the reduced instances.
To the times for the reduced problem instances, add the time
required by Reduce. What conclusion can you draw from your
experiments?

8.3 TRAVELING SALESPERSON (x)

An O(n?2") dynamic programming algorithm for the traveling salesperson
problem was arrived at in Section 5.9. We now investigate branch-and-
bound algorithms for this problem. Although the worst-case complexity
of these algorithms will not be any better than O(n?2"), the use of good
bounding functions will enable these branch-and-bound algorithms to solve
some problem instances in much less time than required by the dynamic
programming algorithm.

Let G = (V, E) be a directed graph defining an instance of the traveling
salesperson problem. Let ¢;; equal the cost of edge (3, j), ¢;; = 00 if (i, j) € E,
and let |V| = n. Without loss of generality, we can assume that every tour
starts and ends at vertex 1. So, the solution space S is given by S = {1, 7, 1|«
is a permutation of (2,3,...,n)}. Then |S| = (n— 1)!. The size of S can be
reduced by restricting S so that (1,41,%2,...,4,—1,1) € S iff (i;,i;11) € E,
0<j<n-—1,and ig = ¢, = 1. S can be organized into a state space tree
similar to that for the n-queens problem (see Figure 7.2). Figure 8.10 shows
the tree organization for the case of a complete graph with |V| = 4. Each
leaf node I is a solution node and represents the tour defined by the path
from the root to L. Node 14 represents the tour ig = 1,4; = 3,40 = 4,i3 = 2,
and i4 = 1.

To use LCBB to search the traveling salesperson state space tree, we need
to define a cost function ¢(-) and two other functions é(-) and u(-) such that
é(r) < e(r) < u(r) for all nodes r. The cost ¢(-) is such that the solution
node with least ¢(-) corresponds to a shortest tour in . One choice for c(-) is

A length of tour defined by the path from the root to A, if A is a leaf
c(4) = cost of a minimumn-cost leaf in the subtree A, if A is not a leaf
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Figure 8.10 State space tree for the traveling salesperson problem with
n=4andig=1i4=1

A simple é(-) such that ¢(A4) < ¢(A) for all A is obtained by defining é(A)
to be the length of the path defined at node A. For example, the path defined
at node 6 of Figure 8.10 is ig,41,i2 = 1,2,4. It consists of the edges (1,2)
and (2,4). A better é(-) can be obtained by using the reduced cost matrix
corresponding to G. A row (column) is said to be reduced iff it contains at
least one zero and all remaining entries are non-negative. A matrix is reduced
iff every row and column is reduced. As an example of how to reduce the
cost matrix of a given graph G, consider the matrix of Figure 8.11(a). This
corresponds to a graph with five vertices. Since every tour on this graph
includes exactly one edge (i,7) withi =k, 1 <k <5, and exactly one edge
(i,7) with j = k, 1 < k < 5, subtracting a constant ¢ from every entry in
one column or one row of the cost matrix reduces the length of every tour
by exactly ¢. A minimum-cost tour remains a minimum-cost tour following
this subtraction operation. If ¢ is chosen to be the minimum entry in row ¢
(column j), then subtracting it from all entries in row 4 (column 5) introduces
a zero into row i (column j). Repeating this as often as needed, the cost
matrix can be reduced. The total amount subtracted from the columns and
rows is a lower bound on the length of a minimum-cost tour and can be used
as the ¢ value for the root of the state space tree. Subtracting 10, 2, 2, 3, 4,
1, and 3 from rows 1, 2, 3, 4, and 5 and columns 1 and 3 respectively of the
matrix of Figure 8.11(a) yields the reduced matrix of Figure 8.11(b). The
total amount subtracted is 25. Hence, all tours in the original graph have a
length at least 25.

We can associate a reduced cost matrix with every node in the traveling

salesperson state space tree. Let A be the reduced cost matrix for node R.
Let S be a child of R such that the tree edge (R, S) corresponds to including
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edge (i, 7) in the tour. If S is not a leaf, then the reduced cost matrix for
S may be obtained as follows: (1) Change all entries in row ¢ and column
j of A to oo. This prevents the use of any more edges leaving vertex ¢ or
entering vertex j. (2) Set A(4, 1) to oo. This prevents the use of edge (j, 1).
(3) Reduce all rows and columns in the resulting matrix except for rows and
columns containing only oco. Let the resulting matrix be B. Steps (1) and
(2) are valid as no tour in the subtree s can contain edges of the type (i, k)
or (k,j) or (j,1) (except for edge (i, j)). If r is the total amount subtracted
in step (3) then ¢(S) = é(R) + A(4, j) + r. For leaf nodes, ¢(+) = ¢() is easily
computed as each leaf defines a unique tour. For the upper bound function
u, we can use u(R) = oo for all nodes R.

oo 20 30 10 11 oco 10 17 0 1
15 oo 16 4 2 12 oo 11 2 0
3 5 o 2 4 0 3 oo 0 2
19 6 18 oo 3 15 3 12 o O
16 4 7 16 11 0 0 12 x
(a) Cost matrix {(b) Reduced cost
matrix
L=25

Figure 8.11 An example

Let us now trace the progress of the LCBB algorithm on the problem
instance of Figure 8.11(a). We use ¢ and u as above. The initial reduced
matrix is that of Figure 8.11(b) and upper = oo. The portion of the state
space tree that gets generated is shown in Figure 8.12. Starting with the
root node as the E-node, nodes 2, 3, 4, and 5 are generated (in that order).
The reduced matrices corresponding to these nodes are shown in Figure 8.13.
The matrix of Figure 8.13(b) is obtained from that of 8.11(b) by (1) setting
all entries in row 1 and column 3 to oo, (2) setting the element at position
(3, 1) to oo, and (3) reducing column 1 by subtracting by 11. The ¢ for node
3 is therefore 25 + 17 (the cost of edge (1,3) in the reduced matrix) + 11
= 53. The matrices and ¢ value for nodes 2, 4, and 5 are obtained similarly.
The value of upper is unchanged and node 4 becomes the next E-node. Its
children 6, 7, and 8 are generated. The live nodes at this time are nodes 2,
3, 5,6, 7, and 8. Node 6 has least ¢ value and becomes the next FE-node.
Nodes 9 and 10 are generated. Node 10 is the next F-node. The solution
node, node 11, is generated. The tour length for this node is ¢(11) = 28 and
upper is updated to 28. For the next E-node, node 5, é(5) = 31 > upper.
Hence, LCBB terminates with 1, 4, 2, 5, 3, 1 as the shortest length tour.

An exercise examines the implementation considerations for the LCBB
algorithm. A different LCBB algorithm can be arrived at by considering
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Numbers outside the node are ¢ values

Figure 8.12 State space tree generated by procedure LCBB
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a different tree organization for the solution space. This organization is
reached by regarding a tour as a collection of n edges. If G = (V, E) has e
edges, then every tour contains exactly n of the e edges. However, for each
i,1 < i < n, there is exactly one edge of the form (7, j) and one of the form
(k,i) in every tour. A possible organization for the state space is a binary
tree in which a left branch represents the inclusion of a particular edge while
the right branch represents the exclusion of that edge. Figure 8.14(b) and
(c) represents the first two levels of two possible state space trees for the
three vertex graph of Figure 8.14(a). As is true of all problems, many state
space trees are possible for a given problem formulation. Different trees
differ in the order in which decisions are made. Thus, in Figure 8.14(c) we
first decide the fate of edge (1,2). Rather than use a static state space tree,
we now consider a dynamic state space tree (see Section 7.1). This is also
a binary tree. However, the order in which edges are considered depends
on the particular problem instance being solved. We compute ¢ in the same
way as we did using the earlier state space tree formulation.

00 00 00 00 00 00 0 00 00 00 0O 0 00 0 o0
© oo 11 2 0 1 © o 2 0 12 © 11 o 0
0 0 0o 0 2 © 3 oo 0 2 0 3 © o 2
15 o 12 oo 0 4 3 o o 0 oo 3 12 o 0

L 11 oo 0 12 ~ L 0 0 oo 12 o~ 11 0 0 o ™
(a) Path 1,2; node 2 (b) Path 1,3; node 3 (c) Path 1,4; node 4
oo o0 o0 o0 o0 o0 o0 X0 o0 o0 o000 X X
10 o 9 0 o© © oo 11 oo 0 1 oo o oo 0
0 3 0o 0 0 0 o0 o 2 o 1 oo oo 0

12 0 9 oo 00 00 0 00 00 o0 00 00 00 00
Lo 0 0 12 L 11 oo 0 oo o™ 0 0 © o ™
(d) Path 1,5; node 5 (e) Path 1,4,2; node 6 (f) Path 1,4,3; node 7
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1 o 0 oo o o0 00 00 00 00 0O 00 00 00 o0

0 3 0o o ™ © oo oo oo 0 0 c0o o o o

0O 0O 0O 00 00 0O 0O 00 00 00 0O 0 0 00 o0
o 0 0 oo o 0 0o © o o © oo 0 oo o

(g) Path 1,4,5; node 8 (h) Path 1,4,2,3; node 9 (i) Path 1,4,2,5; node 10

Figure 8.13 Reduced cost matrices corresponding to nodes in Figure 8.12

As an example of how LCBB would work on the dynamic binary tree
formulation, consider the cost matrix of Figure 8.11(a). Since a total of 25
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include exclude

. include exclude
12(ilgcie exclude <1.2> <1.0>
(a) Graph
(b) Part of a state space tree
include
include exclude
<3,1> <2,3>

(c) Part of a state space tree

Figure 8.14 An example

needs to be subtracted form the rows and columns of this matrix to obtain
the reduced matrix of Figure 8.11(b), all tours have a length at least 25.
This fact is represented by the root of the state space tree of Figure 8.15.
Now, we must decide which edge to use to partition the solution space into
two subsets. If edge (¢, j) is used, then the left subtree of the root represents
all tours including edge (i, j) and the right subtree represents all tours that
do not include edge (i, j). If an optimal tour is included in the left subtree,
then only n — 1 edges remain to be selected. If all optimal tours lie in the
right subtree, then we have still to select n edges. Since the left subtree
selects fewer edges, it should be easier to find an optimal solution in it than
to find one in the right subtree. Consequently, we would like to choose as
the partitioning edge an edge (i, j) that has the highest probability of being
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25

include exclude
<3,1> <3,1>

25 (2 36

include . exclude
<5.3> N\ <5,3>

28 ES> 36

include exclude
<1,4> / <1,4>

28 @ (7) 37

Figure 8.15 State space tree for Figure 8.11(a)

in an optimal tour. Several heuristics for determining such an edge can be
formulated. A selection rule that is commonly used is select that edge which
results in a right subtree that has highest ¢ value. The logic behind this is
that we soon have right subtrees (perhaps at lower levels) for which the ¢
value is higher than the length of an optimal tour. Another possibility is to
choose an edge such that the difference in the ¢ values for the left and right
subtrees is maximum. Other selection rules are also possible.

When LCBB is used with the first of the two selection rules stated above
and the cost matrix of Figure 8.11(a), the tree of Figure 8.15 is generated.
At the root node, we have to determine an edge (¢,5) that will maximize
the ¢ value of the right subtree. If we select an edge (i,j) whose cost in
the reduced matrix (Figure 8.11(b)) is positive, then the ¢ value of the right
subtree will remain 25. This is so as the reduced matrix for the right subtree
will have B(i,j) = oo and all other entries will be identical to those in
Figure 8.11(b). Hence B will be reduced and ¢ cannot increase. So, we must
choose an edge with reduced cost 0. If we choose (1,4), then B(1,4) = oo
and we need to subtract 1 from row 1 to obtain a reduced matrix. In this
case ¢ will be 26. If (3,1) is selected, then 11 needs to be subtracted from
column 1 to obtain the reduced matrix for the right subtree. So, ¢ will be
36. If A is the reduced cost matrix for node R, then the selection of edge
(7,7) (A(¢,§) = 0) as the next partitioning edge will increase the ¢ of the
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oo 10 co 0 1 oo 10 17 0 1 o 7T o 0
oo oo 11 2 0 1 oo 11 2 0 © oo oo 2 0
00 0 00 00 00 ©x 3 oo 0 2 00 0 0 00 X
© 3 12 o 0 4 3 12 oo 0 © 0 oo o 0
o 0 0 12 0 0 0 12 00 0 0 00 X
(a) Node 2 (b) Node 3 (c) Node 4
oo 10 o 0 1 o000 00 0 0 ©x 0 oo o o
o oo 0 2 0 o oo oo oo 0 o oo oo 0 0
00 00 00 0 00 o0 00 00 00 0 o0 00 00 00 00
© 3 1 o 0 o 0 oo o o © 0 oo oo 0
oo 0 oo 12 00 00 0 00 X 0 00 00 00 o0
(d) Node 5 (e) Node 6 (f) Node 7

Figure 8.16 Reduced cost matrices for Figure 8.15

right subtree by A = m1nk¢]{A i, k)} +m1nk¢l{A ,7)} as this much needs
to be subtracted from row ¢ and column j to introduce a zero into both.
For edges (1,4), (2,5), (3,1) (3,4), (4,5), (5,2), and (5,3),A = 1, 2, 11, 0, 3,
3, and 11 respectively. So, either of the edges (3,1) or (5,3) can be "used.
Let us assume that LCBB selects edge (3,1). The ¢(2) (Figure 8.15) can be
computed in a manner similar to that for the state space tree of Figure 8.12.
In the corresponding reduced cost matrix all entries in row 3 and column 1
will be co. Moreover the entry (1, 3) will also be oo as inclusion of this edge
will result in a cycle. The reduced matrices corresponding to nodes 2 and 3
are given in Figure 8.16(a) and (b). The ¢ values for nodes 2 and 3 (as well
as for all other nodes) appear outside the respective nodes.

Node 2 is the next E-node. For edges (1,4), (2, 5), (4, 5), (5,2), and (5, 3),
A =3,2,3,3, and 11 respectively. Edge (5,3) is selected and nodes 4 and 5
generated. The corresponding reduced matrices are given in Figure 8.16(c)
and (d). Then ¢(4) becomes 28 as we need to subtract 3 from column 2
to reduce this column. Note that entry (1, 5) has been set to oo in Fig-
ure 8.16(c). This is necessary as the inclusion of edge (1,5) to the collection
{(3,1),(5,3)} will result in a cycle. In addition, entries in column 3 and
row 5 are set to oo. Node 4 is the next E-node. The A values correspond-
ing to edges (1,4),(2,5), and (4,2) are 9, 2, and O respectively. Edge (1,4)
is selected and nodes 6 and 7 generated. The edge selection at node 6 is
{(3,1),(5,3),(1,4)}. This corresponds to the path 5, 3, 1, 4. So, entry (4,
5) is set to oo in Figure 8.16(e). In general if edge (i, j) is selected, then the
entries in row ¢ and column j are set to oo in the left subtree. In addition,
one more entry needs to be set to oco. This is an entry whose inclusion in
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the set of edges would create a cycle (Exercise 4 examines how to deter-
mine this). The next E-node is node 6. At this time three of the five edges
have already been selected. The remaining two may be selected directly.
The only possibility is {(4,2),(2,5)}. This gives the path 5,3,1,4,2,5 with
length 28. So wupper is updated to 28. Node 3 is the next E-node. Now
LCBB terminates as ¢(3) = 36 > upper.

In the preceding example, LCBB was modified slightly to handle nodes
close to a solution node differently from other nodes. Node 6 is only two
levels from a solution node. Rather than evaluate ¢ at the children of 6 and
then obtain their grandchildren, we just obtained an optimal solution for
that subtree by a complete search with no bounding. We could have done
something similar when generating the tree of Figure 8.12. Since node 6
is only two levels from the leaf nodes, we can simply skip computing ¢é for
the children and grandchildren of 6, generate all of them, and pick the best.
This works out to be quite eflicient as it is easier to generate a subtree with
a small number of nodes and evaluate all the solution nodes in it than it is
to compute ¢ for one of the children of 6. This latter statement is true of
many applications of branch-and-bound. Branch-and-bound is used on large
subtrees. Once a small subtree is reached (say one with 4 or 6 nodes in it),
then that subtree is fully evaluated without using the bounding functions.

We have now seen several branch-and-bound strategies for the traveling
salesperson problem. It is not possible to determine analytically which of
these is the best. The exercises describe computer experiments that deter-
mine empirically the relative performance of the strategies suggested.

EXERCISES

1. Consider the traveling salesperson instance defined by the cost matrix

oo 7 3 12 8
3 o0 6 14 9
5 8 oo 6 18
9 3 5 o 11
18 14 9 8

(a) Obtain the reduced cost matrix

(b) Using a state space tree formulation similar to that of Figure 8.10
and ¢ as described in Section 8.3, obtain the portion of the state
space tree that will be generated by LCBB. Label each node by
its ¢ value. Write out the reduced matrices corresponding to each
of these nodes.

(c) Do part (b) using the reduced matrix method and the dynamic
state space tree approach discussed in Section 8.3.
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2. Do Exercise 1 using the following traveling salesperson cost matrix:

oo 11 10 9 6
8 o0 7 3 4
8 4 oo 4 8
11 10 5 oo 5
6 9 5 5 o©

3. (a) Describe an efficient implementation for a LCBB traveling sales-
person algorithm using the reduced cost matrix approach and (i)
a dynamic state space tree and (ii) a static tree as in Figure 8.10.

(b) Are there any problem instances for which the LCBB will generate
fewer nodes using a static tree than using a dynamic tree? Prove
your answer.

4. Consider the LCBB traveling salesperson algorithm described using
the dynamic state space tree formulation. Let A and B be nodes. Let
B be a child of A. If the edge (A, B) represents the inclusion of edge
(i,7) in the tour, then in the reduced matrix for B all entries in row i
and column j are set to oo. In addition, one more entry is set to 0o.
Obtain an efficient way to determine this entry.

5. [Programming project] Write computer programs for the following
traveling salesperson algorithms:

(a) The dynamic programming algorithm of Chapter 5

(b) A backtracking algorithm using the static tree formulation of Sec-
tion 8.3

(c) A backtracking algorithm using the dynamic tree formulation of
Section 8.3

(d) A LCBB algorithm corresponding to (b)
(e) A LCBB algorithm corresponding to (c)

Design data sets to be used to compare the efficiency of the above
algorithms. Randomly generate problem instances from these data
sets and obtain computing times for your programs. What conclusions
can you draw from your computing times?

8.4 EFFICIENCY CONSIDERATIONS

One can pose several questions concerning the performance characteristics of
branch-and-bound algorithms that find least-cost answer nodes. We might
ask questions such as:
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1. Does the use of a better starting value for upper always decrease the
number of nodes generated?

2. Is it possible to decrease the number of nodes generated by expanding
some nodes with é() > upper?

3. Does the use of a better ¢ always result in a decrease in (or at least not
an increase in) the number of nodes generated? (A é; is better than
¢ iff ¢1(z) < éa(z) < c(z) for all nodes z.)

4. Does the use of dominance relations ever result in the generation of
more nodes than would otherwise be generated?

In this section we answer these questions. Although the answers to most
of the questions examined agree with our intuition, the answers to others
are contrary to intuition. However, even in cases in which the answer does
not agree with intuition, we can expect the performance of the algorithm to
generally agree with the intuitive expectations. All the following theorems
assume that the branch-and-bound algorithm is to find a minimum-cost
solution node. Consequently, ¢(z) = cost of minimum-cost solution node in
subtree z.

Theorem 8.2 Let ¢ be a state space tree. The number of nodes of ¢ gen-
erated by FIFO, LIFO, and LC branch-and-bound algorithms cannot be
decreased by the expansion of any node x with é(z) > upper, where upper
is the current upper bound on the cost of a minimum-cost solution node in
the tree t¢.

Proof: The theorem follows from the observation that the value of upper
cannot be decreased by expanding z (as é(x) > upper). Hence, such an
expansion cannot affect the operation of the algorithm on the remainder of
the tree. a

Theorem 8.3 Let U; and Us, Uy < Us, be two initial upper bounds on the
cost of a minimum-cost solution node in the state space tree t. Then FIFO,
LIFO, and LC branch-and-bound algorithms beginning with U; will generate
no more nodes than they would if they started with Us as the initial upper
bound.

Proof: Left as an exercise. O

Theorem 8.4 The use of a better ¢ function in conjunction with FIFO and
LIFO branch-and-bound algorithms does not increase the number of nodes
generated.
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Proof: Left as an exercise. O

Theorem 8.5 If a better ¢ function is used in a LLC branch-and-bound al-
gorithm, the number of nodes generated may increase.

Proof: Consider the state space tree of Figure 8.17. All leaf nodes are
solution nodes. The value outside each leaf is its cost. From these values it
follows that ¢(1) = ¢(3) = 3 and ¢(2) = 4. Outside each of nodes 1, 2, and 3

is a pair of numbers (£). Clearly, é is a better function than ¢;. However
p & )

if ¢ is used, node 2 can become the E-node before node 3, as é2(2) = ¢é2(3).
In this case all nine nodes of the tree will get generated. When ¢; is used,
nodes 4, 5, and 6 are not generated. a

Figure 8.17 Example tree for Theorem 8.5

Now, let us look at the effect of dominance relations. Formally, a domi-
nance relation D is given by a set of tuples, D = {(41, ¢2), (¢3,%4), (35,%), ...}
If (z,5) € D, then node i is said to dominate node j. By this we mean that
subtree i contains a solution node with cost no more than the cost of a
minimum-cost solution node in subtree j. Dominated nodes can be killed
without expansion.

Since every node dominates itself, (i,7) € D for all 1 and D. The rela-
tion (7,7) should not result in the killing of node i. In addition, it is quite
possible for D to contain tuples (i1,142), (i2,13), (43,%4), ..., (in,41). In this
case, the transitivity of D implies that each node i; dominates all nodes
i;,1 < j < n. Care should be taken to leave at least one of the i;’s alive.
A dominance relation D is said to be stronger than another dominance
relation Dy iff Dy C Ds. In the following theorems I denotes the identity
relation {(,7)|1 <7 < n}.
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Theorem 8.6 The number of nodes generated during a FIFO or LIFO
branch-and-bound search for a least-cost solution node may increase when
a stronger dominance relation is used.

Proof: Consider the state space tree of Figure 8.18. The only solution nodes
are leaf nodes. Their cost is written outside the node. For the remaining
nodes the number outside each node is its ¢ value. The two dominance
relations to use are Dy = I and Dy = T U {(5,2),(5,8)}. Clearly, Dy is
stronger than D; and fewer nodes are generated using D; rather than Ds.

O

Figure 8.18 Example tree for Theorem 8.6

Theorem 8.7 Let D; and D; be two dominance relations. Let Dy be
stronger than D; and such that (i,j) € Dg,i # j, implies ¢(i) < é(j).
An LC branch-and-bound using D; generates at least as many nodes as one
using Ds.

Proof: Left as an exercise. a

Theorem 8.8 If the condition ¢é(:) < ¢(j) in Theorem 8.7 is removed then
an LC branch-and-bound using the relation D; may generate fewer nodes
than one using Dy.

Proof: Left as an exercise. O
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EXERCISES

1. Prove Theorem 8.3.
Prove Theorem 8.4.
Prove Theorem 8.7.

Prove Theorem &.8.

Al o

[Heuristic search] Heuristic search is a generalization of FIFO, LIFO,
and LC searches. A heuristic function h(-) is used to evaluate all live
nodes. The next E-node is the live node with least h(-). Discuss
the advantages of using a heuristic function h(-) different from é(-)
in the search for a least-cost answer node. Consider the knapsack and
traveling salesperson problems as two example problems. Also consider
any other problems you wish. For these problems devise reasonable
functions h(-) (different from é(-)). Obtain problem instances on which
heuristic search performs better than LC-search.
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