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Linear programming

What is it?  Problem-solving model for optimal allocation of scarce 

resources, among a number of competing activities that encompasses:

・Shortest paths, maxflow, MST, matching, assignment, ...

・A x = b, 2-person zero-sum games, ...

Why significant?

・Fast commercial solvers available.

・Widely applicable problem-solving model.

・Key subroutine for integer programming solvers.

Ex:  Delta claims that LP
saves $100 million per year.

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480
subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints
35A + 20B ≤ 1190

    A ,     B ≥ 0

can take an entire
course on LP

3

Applications

Agriculture.  Diet problem.

Computer science.  Compiler register allocation, data mining.

Electrical engineering.  VLSI design, optimal clocking. 

Energy.  Blending petroleum products.

Economics.  Equilibrium theory, two-person zero-sum games.

Environment.  Water quality management. 

Finance.  Portfolio optimization.

Logistics.  Supply-chain management.

Management.  Hotel yield management.

Marketing.  Direct mail advertising. 

Manufacturing.  Production line balancing, cutting stock.

Medicine.  Radioactive seed placement in cancer treatment.

Operations research.  Airline crew assignment, vehicle routing.

Physics.  Ground states of 3-D Ising spin glasses.

Telecommunication.  Network design, Internet routing.

Sports.  Scheduling ACC basketball, handicapping horse races.
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Small brewery produces ale and beer.

・Production limited by scarce resources:  corn, hops, barley malt.

・Recipes for ale and beer require different proportions of resources.
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Toy LP example:  brewer’s problem

$13 profit per barrel $23 profit per barrel

corn (480 lbs) hops (160 oz) malt (1190 lbs)

Brewer’s problem: choose product mix to maximize profits.

ale beer corn hops malt profit

34 0 179 136 1190 $442

0 32 480 128 640 $736

19.5 20.5 405 160 1092.5 $725

12 28 480 160 980 $800

? ? > $800 ?
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Toy LP example:  brewer’s problem

34 barrels × 35 lbs malt  = 1190 lbs
[ amount of available malt ]

corn (480 lbs) hops (160 oz) malt (1190 lbs) $13 profit per barrel $23 profit per barrel

goods are
divisible

Linear programming formulation.

・Let A be the number of barrels of ale.

・Let B be the number of barrels of beer.

7

Brewer’s problem:  linear programming formulation   

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480
subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints
35A + 20B ≤ 1190

    A ,     B ≥ 0

ale beer

corn

hops

malt

profits

Inequalities define halfplanes; feasible region is a convex polygon.
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Brewer’s problem:  feasible region

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0) ale

beer
corn

5A + 15B ≤ 480

hops
4A + 4B ≤ 160

malt
35A + 20B ≤ 1190



(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  objective function

higher profit?

7

ale

beer

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442

Optimal solution occurs at an extreme point.

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  geometry

extreme point

7

ale

beer

intersection of 2 constraints in 2d
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Standard form linear program

Goal.  Maximize linear objective function of n nonnegative variables,

subject to m linear equations.

・Input: real numbers  aij, cj, bi.

・Output: real numbers  xj.

Caveat.  No widely agreed notion of "standard form."

maximize      cT x  

subject

to the 
constraints

A x  =  bsubject

to the 
constraints    x  ≥  0

matrix versionprimal problem (P)

linear means no x2, xy, arccos(x),  etc.

maximize c1 x1 + c2 x2 +  …  + cn xn

subject
to the 

constraints

  a11 x1 +   a12 x2 +  …  +   a1n xn = b1

subject
to the 

constraints

  a21 x1 +   a22 x2 +  …  +   a2n xn = b2
subject
to the 

constraints       ⋮        ⋮  ⋮        ⋮     ⋮  

subject
to the 

constraints
  am1 x1 +   am2 x2 +  …  +   amn xn = bm

  x1 ,   x2 ,  …  ,    xn ≥ 0
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Converting the brewer’s problem to the standard form

Original formulation.

Standard form.

・Add variable Z and equation corresponding to objective function.

・Add slack variable to convert each inequality to an equality.

・Now a 6-dimensional problem.

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480
subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints
35A + 20B ≤ 1190

    A ,     B ≥ 0

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SCSC = 480subject
to the 

constraints   4A +   4B + SHSHSH = 160

subject
to the 

constraints

35A + 20B ++ SMSM = 1190

    A ,     B , SCSC , SCSCSC ,, SMSM ≥ 0



Inequalities define halfspaces; feasible region is a convex polyhedron.

A set is convex if for any two points a and b in the set, so is ½ (a + b).

An extreme point of a set is a point in the set that can't be written as

½ (a + b), where a and b are two distinct points in the set.

Warning.  Don't always trust intuition in higher dimensions.
13

Geometry

convexnot convex

extreme 
point

Extreme point property.  If there exists an optimal solution to (P),
then there exists one that is an extreme point.

・Good news: number of extreme points to consider is finite.

・Bad news :  number of extreme points can be exponential!

Greedy property.  Extreme point optimal iff no better adjacent extreme point.
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Geometry (continued)

local optima are global optima
(follows because objective function is linear

and feasible region is convex)
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Simplex algorithm

Simplex algorithm.  [George Dantzig, 1947] 

・Developed shortly after WWII in response to logistical problems,

including Berlin airlift.

・Ranked as one of top 10 scientific algorithms of 20th century. 

Generic algorithm.

・Start at some extreme point.

・Pivot from one extreme point to an adjacent one.

・Repeat until optimal.

How to implement?  Linear algebra.

never decreasing objective function

A basis is a subset of m of the n variables.

Basic feasible solution (BFS).

・Set n – m nonbasic variables to 0, solve for remaining m variables.

・Solve m equations in m unknowns.

・If unique and feasible  ⇒  BFS.

・BFS  ⇔  extreme point.

{B, SH, SM }

(0, 32)

{SH, SM, SC }

(0, 0)

{A, SH, SC }

(34, 0)

{A, B, SC }

(26, 14)

18

Simplex algorithm: basis

ale

beer

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A +   4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0

{A, B, SM }

(12, 28)

basic feasible
solution

{A, B, SH }

(19.41, 25.53)

basic infeasible
solution

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A + 4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0
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Simplex algorithm: initialization

Initial basic feasible solution.  

・Start with slack variables { SC , SH , SM } as the basis.

・Set non-basic variables A and B to 0.

・3 equations in 3 unknowns yields SC = 480, SH = 160, SM = 1190.

no algebra needed

basis = { SC, SH, SM }

A = B = 0
Z = 0

SC = 480 

SH = 160 

SM = 1190

one basic variable per row

basis = { SC, SH, SM }

A = B = 0
Z = 0

SC = 480 

SH = 160 

SM = 1190
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Simplex algorithm: pivot 1

substitute  B = (1/15) (480 – 5A – SC) and add B into the basis
 (rewrite 2nd equation, eliminate B in 1st, 3rd, and 4th equations)

basis = { B, SH, SM }

A = SC = 0

Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

 (16/3) A   − (23/15) SC − Z = -736

subject
to the 

constraints

   (1/3) A + B + (1/15) SC = 32subject
to the 

constraints    (8/3) A   − (4/15) SC + SH = 32

subject
to the 

constraints

 (85/3) A   −  (4/3) SC + SM = 550

           A , B ,           SC , SH , SM ≥ 0

which basic variable
does B replace?

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A + 4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0

pivot
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Simplex algorithm: pivot 1

Q.  Why pivot on column 2 (corresponding to variable B)?

・Its objective function coefficient is positive.

(each unit increase in B from 0 increases objective value by $23)

・Pivoting on column 1 (corresponding to A) also OK.

Q.  Why pivot on row 2?

・Preserves feasibility by ensuring RHS  ≥  0.

・Minimum ratio rule:  min { 480/15,  160/4,  1190/20 }.

basis = { SC, SH, SM }

A = B = 0
Z = 0

SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A + 4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0

pivot

positive coefficient

basis = { B, SH, SM }

A = SC = 0

Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

(16/3) A − (23/15) SC − Z = -736

subject
to the 

constraints

  (1/3) A + B +  (1/15) SC = 32subject
to the 

constraints   (8/3) A   − (4/15) SC + SH = 32

subject
to the 

constraints

(85/3) A   −  (4/3) SC + SM = 550

          A , B ,           SC , SH , SM ≥ 0
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Simplex algorithm: pivot 2

basis = { A, B, SM }

SC = SH = 0

Z = 800
B = 28 
A = 12 

SM = 110

maximize Z

subject
to the 

constraints

−            SC −         2 SH − Z = -800

subject
to the 

constraints

 B +  (1/10) SC +   (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +   (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A , B ,           SC ,           SH , SM ≥ 0

pivot

substitute A = (3/8) (32 + (4/15) SC – SH ) and add A into the basis
 (rewrite 3rd equation, eliminate A in 1st, 2nd, and 4th equations)

which basic variable
does A replace?

23

Simplex algorithm: optimality

Q.  When to stop pivoting?

A.  When no objective function coefficient is positive.

Q.  Why is resulting solution optimal?

A.  Any feasible solution satisfies current system of equations.

・In particular:  Z = 800 – SC – 2 SH

・Thus, optimal objective value Z*  ≤  800 since  SC ,  SH   ≥  0.

・Current BFS has value 800  ⇒  optimal.

basis = { A, B, SM }

SC = SH = 0

Z = 800
B = 28 
A = 12 

SM = 110

maximize Z

subject
to the 

constraints

−            SC −         2 SH − Z = -800

subject
to the 

constraints

 B +  (1/10) SC +   (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +   (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A , B ,           SC ,           SH , SM ≥ 0
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Encode standard form LP in a single Java 2D array.

Simplex tableau

26

m

1

n m 1

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A +   4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

   A ,    B , SC , SH , SM ≥ 0

initial simplex tableaux

5 15 1 0 0 480

4 4 0 1 0 160

35 20 0 0 1 1190

13 23 0 0 0 0

A I b

c 0 0

Simplex algorithm transforms initial 2D array into solution.

Simplex tableau

27

maximize Z

subject
to the 

constraints

−            SC −       2 SH − Z = -800

subject
to the 

constraints

 B + (1/10) SC +  (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +  (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A , B ,           SC ,           SH , SM ≥ 0

0 1 1/10 1/8 0 28

1 0 -1/10 3/8 0 12

0 0 -25/6 -85/8 1 110

0 0 -1 -2 0 -800

m

1

n m 1

x*

≤ 0 ≤ 0 -Z*

final simplex tableaux

28

Simplex algorithm: initial simplex tableaux

Construct the initial simplex tableau.

public class Simplex
{
   private double[][] a;   // simplex tableaux
   private int m, n;       // M constraints, N variables

   public Simplex(double[][] A, double[] b, double[] c)
   {
      m = b.length;
      n = c.length;
      a = new double[m+1][m+n+1];
      for (int i = 0; i < m; i++)
         for (int j = 0; j < n; j++)
            a[i][j] = A[i][j];
      for (int j = n; j < m + n; j++) a[j-n][j] = 1.0;
      for (int j = 0; j < n;     j++) a[m][j]   = c[j];
      for (int i = 0; i < m;     i++) a[i][m+n] = b[i];
   }

put A[][] into tableau

put I[][] into tableau

put c[] into tableau

put b[] into tableau

constructor

m

1

n m 1

A I b

c 0 0



Find entering column q using Bland's rule:

index of first column whose objective function

coefficient is positive.

private int bland()
{   
   for (int q = 0; q < m + n; q++)
      if (a[M][q] > 0) return q;

   return -1;
}

29

Simplex algorithm: Bland's rule

q

entering column q has positive 
objective function coefficient

optimal

m

m+n

0
0

+

+p

Find leaving row p using min ratio rule.

(Bland's rule: if a tie, choose first such row)

private int minRatioRule(int q)
{   
   int p = -1;
   for (int i = 0; i < m; i++)
   {
      if (a[i][q] <= 0) continue;
      else if (p == -1) p = i;
      else if (a[i][m+n] / a[i][q] < a[p][m+n] / a[p][q])
         p = i;
   }
   return p;
}

30

Simplex algorithm: min-ratio rule

leaving row

consider only 
positive entries

row p has min 
ratio so far

p

q

m

m+n

0
0

+

+

Pivot on element row p, column q.

public void pivot(int p, int q)
{
   for (int i = 0; i <= m; i++)
      for (int j = 0; j <= m+n; j++)
         if (i != p && j != q)
            a[i][j] -= a[p][j] * a[i][q] / a[p][q];
 
   for (int i = 0; i <= m; i++)
      if (i != p) a[i][q] = 0.0;

   for (int j = 0; j <= m+n; j++) 
      if (j != q) a[p][j] /= a[p][q];
   a[p][q] = 1.0;
}

31

Simplex algorithm: pivot

scale all entries but
row p and column q

zero out column q

scale row p

q

m

m+n

0
0

+

+p

Execute the simplex algorithm.

public void solve()
{
   while (true)
   {
      int q = bland();
      if (q == -1) break;

      int p = minRatioRule(q);
      if (p == -1) ...
      
      pivot(p, q);
   }
}

32

Simplex algorithm: bare-bones implementation

pivot on row p, column q

leaving row p (unbounded if -1)

entering column q (optimal if -1)

q

m

m+n

0
0

+

+p



Remarkable property.  In typical practical applications, simplex algorithm 

terminates after at most 2 (m + n) pivots.

33

Simplex algorithm: running time

“ Yes. Most of the time it solved problems with m equations in 2m or 3m steps—

    that was truly amazing. I certainly did not anticipate that it would turn out to

    be so terrific. I had had no experience at the time with problems in higher

    dimensions, and I didn't trust my geometrical intuition. For example, my

    intuition told me that the procedure would require too many steps wandering

    from one adjacent vertex to the next. In practice it takes few steps. In brief,

    one's intuition in higher dimensional space is not worth a damn! Only now,

    almost forty years from the time when the simplex method was first proposed,

    are people beginning to get some insight into why it works as well as it does. ”

           —   George Dantzig 1984

Remarkable property.  In typical practical applications, simplex algorithm 

terminates after at most 2 (m + n) pivots.

Pivoting rules.  Carefully balance the cost of finding an entering variable 

with  the number of pivots needed.

・No pivot rule is known that is guaranteed to be polynomial.

・Most pivot rules are known to be exponential (or worse) in worst-case.

34

Simplex algorithm: running time

Smoothed Analysis of Algorithms: Why the Simplex
Algorithm Usually Takes Polynomial Time

Daniel A. Spielman
Department of Mathematics

M.I.T.
Cambridge, MA 02139

spielman@mit.edu

Shang-Hua Teng
Akamai Technologies Inc. and

Department of Computer Science
University of Illinois at Urbana-Champaign

steng@cs.uiuc.edu

ABSTRACT

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ... 5.00.

1.1 Background

296
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Simplex algorithm: degeneracy

Degeneracy.  New basis, same extreme point.

Cycling.  Get stuck by cycling through different bases that all correspond

to same extreme point.

・Doesn't occur in the wild.

・Bland's rule guarantees finite # of pivots.

"stalling" is common in practice

choose lowest valid index for
entering and leaving columns

To improve the bare-bones implementation.

・Avoid stalling.

・Maintain sparsity.

・Numerical stability.

・Detect infeasibility.

・Detect unboundedness.

Best practice.  Don't implement it yourself!

Basic implementations.  Available in many programming environments.

Industrial-strength solvers.  Routinely solve LPs with millions of variables.

Modeling languages.  Simplify task of modeling problem as LP.

36

Simplex algorithm: implementation issues

requires fancy data structures

requires advanced math

run "phase I" simplex algorithm

no leaving row

requires artful engineering
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LP solvers: industrial strength

“  a benchmark production planning model solved using linear programming would have

    taken 82 years to solve in 1988, using the computers and the linear programming

    algorithms of the day. Fifteen years later—in 2003—this same model could be solved

    in roughly 1 minute, an improvement by a factor of roughly 43 million. Of this, a factor

    of roughly 1,000 was due to increased processor speed, whereas a factor of roughly

    43,000 was due to improvements in algorithms! ”

           —   Designing a Digital Future

                 ( Report to the President and Congress, 2010 )

38

Brief history

1939.  Production, planning.  [Kantorovich]

1947.  Simplex algorithm.  [Dantzig]

1947.  Duality.  [von Neumann, Dantzig, Gale-Kuhn-Tucker]

1947.  Equilibrium theory.  [Koopmans]

1948.  Berlin airlift.  [Dantzig]

1975.  Nobel Prize in Economics. [Kantorovich and Koopmans]

1979.  Ellipsoid algorithm.  [Khachiyan]

1984.  Projective-scaling algorithm.  [Karmarkar]

1990.  Interior-point methods. [Nesterov-Nemirovskii, Mehorta, ...]

George Dantzig von Neumann Khachiyan KarmarkarKantorovich Koopmans
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Reductions to standard form

Minimization problem.  Replace min 13A + 15B  with  max – 13A – 15B.

≥ constraints.               Replace 4A + 4B  ≥  160 with 4A + 4B –  SH  =  160, SH  ≥  0.

Unrestricted variables.  Replace B with B  =  B0  –  B1,   B0   ≥  0 ,  B1  ≥  0.

13A + 15B

5A + 15B ≤ 480

4A + 4B ≥ 160

35A + 20B = 1190

A ≥ 0

B

−13A − 15B0 + 15B1

5A + 15B0 − 15B1 + SC = 480

4A + 4B0 − 4B1 − SH = 160

35A + 20B0 − 20B1 = 1190

A B0 B1 SC SH ≥ 0

nonstandard form

standard form

Linear “programming” (1950s term) = reduction to LP (modern term).

・Process of formulating an LP model for a problem.

・Solution to LP for a specific problem gives solution to the problem.

1. Identify variables.

2. Define constraints (inequalities and equations).

3. Define objective function.

4. Convert to standard form.

Examples.

・Maxflow. 

・Shortest paths.

・Bipartite matching.

・Assignment problem.

・2-person zero-sum games.

...

Modeling

42

software usually performs
this step automatically

43

Maxflow problem (revisited)

Input. Weighted digraph G, single source s and single sink t.
Goal.  Find maximum flow from s to t.

 

Example of reducing network flow to linear programming

LP solution

maxflow problem maxflow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

Example of reducing network flow to linear programming

LP solution

maxflow problem maxflow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

44

Modeling the maxflow problem as a linear program

Variables.  xvw = flow on edge v→w.

Constraints.  Capacity and flow conservation.

Objective function.  Net flow into t.

Example of reducing network flow to linear programming

LP solution

maxflow problem maxflow solution

LP formulation
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subject to the constraints
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x 14 =  1
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  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

Example of reducing network flow to linear programming

LP solution
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LP formulation
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1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0
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E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

Example of reducing network flow to linear programming

LP solution

maxflow problem maxflow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

flow conservation
constraints

capacity constraints



Input. Bipartite graph.

Goal. Find a matching of maximum cardinality.

Interpretation.  Mutual preference constraints.

・People to jobs.

・Students to writing seminars.

Maximum cardinality bipartite matching problem

A B C D E F

0 1 2 3 4 5

Alice
   Adobe, Apple, Google
Bob
   Adobe, Apple, Yahoo
Carol
   Google, IBM, Sun
Dave
   Adobe, Apple
Eliza
   IBM, Sun, Yahoo
Frank
   Google, Sun, Yahoo

Example: job offers

Adobe
   Alice, Bob, Dave
Apple
   Alice, Bob, Dave
Google
   Alice, Carol, Frank
IBM
   Carol, Eliza
Sun
   Carol, Eliza, Frank
Yahoo
   Bob, Eliza, Frank
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matching of cardinality 6:
A–1, B–5, C–2, D–0, E–3, F–4

set of edges with no vertex appearing twice

LP formulation. One variable per pair.

Interpretation.  xij = 1 if person i assigned to job j.

Theorem.  [Birkhoff 1946, von Neumann 1953]

All extreme points of the above polyhedron have integer (0 or 1) coordinates.

Corollary.  Can solve matching problem by solving LP.
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Maximum cardinality bipartite matching problem

maximize
xA0  +  xA1 + xA2 +

 + xD0 + xD1 +  x
A2 + xB0 

D1 +  xE3 + x
xB0  +  xB1

E3 + xE4 +
xB1 + xB5 + xC2  + xC3 

E4 + xE5 + xF2 + xF4 + x
C3  + xC4

 + xF5 

xA0  +  xA1 + xA2 ≤ 1 xA0  +  xB0 + xD0 ≤ 1

subject
xB0  +  xB1 + xB5 ≤ 1 xA1  +  xB1 + xD1 ≤ 1

subject
to the 

xC2  + xC3  + xC4 ≤ 1 xA2  + xC2  + xF2 ≤ 1
to the 

constraints
xD0 + xD1 ≤ 1 xC3 + xE3 ≤ 1

constraints
xE3 + xE4 + xE5 ≤ 1 xC4 + xE4 + xF4 ≤ 1

xF2 + xF4 + xF5 ≤ 1 xB5 + xE5 + xF5 ≤ 1

all xall xij ≥all xij  ≥  00

at most one job per person

not usually so lucky!

at most one person per job

Q.  Got an optimization problem?

Ex.  Maxflow, bipartite matching, shortest paths, …  [many, many, more]

Approach 1:  Use a specialized algorithm to solve it.

・Algorithms 4/e.

・Vast literature on algorithms.

Approach 2:  Use linear programming.

・Many problems are easily modeled as LPs.

・Commercial solvers can solve those LPs.

・Might be slower than specialized solution

(but you might not care).

Got an LP solver? Learn to use it!

Linear programming perspective
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Is there a universal problem-solving model?

・Maxflow. 

・Shortest paths.

・Bipartite matching.

・Assignment problem.

・Multicommodity flow.

…

・Two-person zero-sum games.

・Linear programming.

…

・Factoring

・NP-complete problems. 

…

Does P = NP?   No universal problem-solving model exists unless P = NP.
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Universal problem-solving model (in theory)

tractable

see next lecture

intractable ?
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