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SURF features for efficient robot localization
with omnidirectional images

A. C. Murillo, J. J. Guerrero and C. Sags

Abstract—Many robotic applications work with visual  perform different steps pruning the reference data in each one
reference maps, which usually consist of sets of more or less to save time. Other option to improve the efficiency with big
organized images. In these applications, there is a compromise 54 nts of data consists of using efficient data structures that
between the density of reference data stored and the capacity to . . .
identify later the robot localization, when it is not exactly in the a”C_)W us to speed UD the ColmpUtat'ons' as ”.1 m’ using trees
same position as one of the reference views. Here we proposeto increase the eﬁ|C|ency with a lot of data in simultaneous
the use of a recently developed feature, SURF, to improve localization and mapping, or in [8], using clusters of features
the performance of appearance-based localization methods that gnd trees to efficiently search in a very big image database.
perform image retrieval in large data sets. This feature is This work explains how to obtain an efficient global
integrated with a vision-based algorithm that allows both topo- o . . . ;
logical and metric localization using omnidirectional images localization _Comblnlpg SURF fgatures with ‘f" hlerarchllcal
in a hierarchical approach. It uses Pyramidal kemels for the ~Method, which provides topological and metric information
topological localization and three-view geometric constraints with regard to a big set of reference images or visual
for the metric one. Experiments with several omnidirectional memory. Here the automatic construction of this reference

images sets are shown, including comparisons with other ; ; ;
typically used features (radial lines and SIFT). The advantages set, Otr topoklogtljcall_map, 'Itsh nt(;t. StUdli(Ij’ but ther:’e aregmany
of this approach are proved, showing the use of SURF as the recent works cealing wi is problem, such as [9] or

best compromise between efficiency and accuracy in the results. [10]. The subjects of our work are open issues of hierar-
chical localization methods: improving the accuracy in the
final localization and increasing the speed to deal with big
. INTRODUCTION reference data sets. Here, we improve the efficiency and
Often mobile robots have reference maps at their digoebustness of the work done in [1]. There, thanks to the use of
posal or are at least able to construct their own. Workinthree-view geometric constraints, accurate metric localization
with vision sensors, these maps usually are a more @¥formation can be obtained from a minimal set of reference
less organized set of images, frequently grouped in clusteviews. Its localization accuracy depends only on the wide
corresponding to different locations or nodes, e.g roombaseline it is able to deal with the image feature used, while
The robot localization needs to be more or less accurate other methods for image based metric localization, e.g. the
depending on the task to perform afterwards. For instancene proposed in [5], the accuracy depends on the separation
topological localization is less accurate but faster and motgetween reference images in the image grid stored. The
useful to communicate with humans. However, for navigatioimprovements here with regard to [1] are mostly due to the
or interaction with objects (e.g. to avoid them or to pickintegration with a recently developed local feature named
them) metric information is needed. In earlier work [1], weSpeeded-Up Robust Features (SURF) [11]. This feature
have presented an appearance-based localization method tilws us to better cope with wide baseline situations in a
uses a hierarchical approach to obtain topological and metefficient way.
localization information from omnidirectional images. This paper introduces in the field of vision based local-
Omnidirectional vision and hierarchical localization argzation the usage of SURF. It has been previously used,
two topics of interest nowadays. Omnidirectional vision has.g, for object recognition in a museum guide application
become widespread in the last years, and has many wdll-2]. However, it had not yet been applied in the robotics
known advantages as well as extra difficulties compardield nor in omnidirectional images and seems convenient
to conventional images. There are many works using allh these tasks. It states to have more discriminative power
kind of omnidirectional images, e.g. a map-based navigatidghan other state-of-the-art features such as SIFT [13], yet
with images from conic mirrors [2] or localization basedcan be computed more efficiently and yields a lower di-
on panoramic cylindric images composed of mosaics dfiensional feature descriptor resulting in faster matching.
conventional ones [3]. Hierarchical localization processeghe construction of the SURF features is quite convenient
have been also a field of study in the previous years, e.@lso for hierarchical approaches. Initially, for the first rough
[4], [5], [6]. Usually their goal is to localize the robot as steps of the hierarchy, a faster and smaller feature descriptor
fast as possible with a lot of reference information, then theyector can be extracted. Later, for the more accurate steps
of the process, a more accurate descriptor vector can be ob-
This work was supported by the projects DPI2003-07986, DPI2006gined. The experimental section compares the performance
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last years, and against radial lines, a simple, fast and easyin a next step, SURF descriptors are constructed by ex-
feature to extract in omnidirectional images [1]. The resultracting square regions around the interest points. These are
of our experiments, with two different data sets, show thatriented in the directions assigned in the previous step. The
the best compromise between performance and efficiencyvisndows are split up in 4 x 4 sub-regions in order to retain
obtained with SURF. some spatial information. In each sub-region, Haar wavelets
We provide more details about SURF in section Il, whileare extracted at regularly spaced sample points. The wavelet
the localization process used is detailed in section Ill. Finallyesponses in horizontal and vertical directiods @nd dy)
in section IV, exhaustive experiments with different omnidi-are summed up over each sub-region. Furthermore, the
rectional image sets are shown to validate the proposal. absolute value&l,| and|d,| are summed in order to obtain
information about the polarity of the image intensity changes.
IIl. SPEEDEDUP ROBUST FEATURES (SURF) Hence, the underlying intensity pattern of each sub-region
SURF is a local feature recently presented in [11]. Thigs described by a vectoV = [ d,, > dy, > |d|, > |dy |-
section shows a brief summary of its construction proces$he resulting descriptor vector for all 4 x 4 sub-regions is of
first the interesting point localization and after the featurgength 64, giving the standard SURF descriptor, SURF-64. It
descriptors computation. is possible to use 3 x 3 sub-regions instead, then we obtain
a shorter version of the descriptor, SURF-36, that will be
also used in our applications. Notice that the Haar wavelets
The SURF detector is based on the Hessian matrix. Givefye invariant to illumination bias and additional invariance
a pointx = [z, y] in an image |, the Hessian matri(X, ) o contrast is achieved by normalizing the descriptor vector

A. Interest Point Localization.

in x at scaleo is defined as follows to unit length.
H(x, o) = { Low  Lay } o An important characteristic of SURF is the fast extraction
Lay Ly process, that takes profit of integral images and a fast non-

where L, (x, o) is the convolution of the Gaussian secondnaximum suppression algorithm. Also is very convenient
order derivative.Z (o) with the image | in pointx, and the fast matching speed it permits, mainly achieved by a
similarly for Lwy(i,a) and L, (x,o). In contrast to SIFT, single step added to the indexing based on the sign of the
which approximates Laplacian of Gaussian (LoG) with Diflaplacian (trace of the Hessian matrix) of the interest point.
ference of Gaussians (DoG), SURF approximates seconi#€ sign of the Laplacian distinguishes bright blobs on a
order Gaussian derivatives with box filters. See an exampfiark background from the inverse situation. Bright interest
of one of this filters for the lowest scale analyzed in Fig. Points are only matched against other bright interest points

Image convolutions with these box filters can be compute@nd similarly for the dark ones. This minimal information
rapidly by using integral images [14]. permits to almost double the matching speed and it comes

at no computational costs, as it has already been computed
in the interest point detection step.

JJ,\

[11. EFFICIENT VISION BASED LOCALIZATION

This section explains a hierarchical method to efficiently
Fig. 1. Left: gaussian second order derivative in xy-direction. Right:Iocallze the aCtu?‘I position Of the robot with regard to a big
corresponding box filter approximation. set of reference images or visual memory (VM).

The location and scale of interest points are selected ba)‘/ Similarity evaluation for topological localization

relying on the determinant of the Hessian. Interest points This part details the process for the topological local-
are localized in scale and image space by applying a nofzation, i.e., to recognize the room, which evaluates the
maximum suppression in a 3 x 3 x 3 neighbourhood. Finallygimilarity between the current view and the images from the
the local maxima found of the approximated Hessian matriXM.

determinant are interpolated in scale and image space. ForFirst, a color global image descriptor is applied as a pre-

more details, see [11]. filtering for the reference views, as described in [1], rejecting
. ] those images with very low similarity in this descriptor. This
B. Interest Point Descriptor. filter can not be very strict, as the global descriptors are very

In a first step, SURF constructs a circular region arounsgensitive to occlusions and noise, but it is very useful to
the detected interest points in order to assign a uniqueduce the set of candidate locations for the next steps.
orientation to the former and thus gain invariance to image The rest and more important part of the similarity eval-
rotations. The orientation is computed using Haar waveletation assigns a more accurate similarity value to each
responses in both: and y directions. The Haar wavelets reference view that passed the initial pre-filter. This has
can be quickly computed via integral images, similar tdbeen done with two different methods, one based on a
the Gaussian second order approximated box filters. Thyramidal matching and other based on a nearest neighbour
dominant orientation is estimated and included in the interefiN) matching. In general, the first one is more efficient
point information. and robust, but this is not true for long descriptor vectors.



Therefore, SIFT descriptor seems not suitable for this methdigger bin-sizes, that more than one feature from each image
due to its descriptor size (128), then we tried also the secoffalls in a certain histogram cell (as happens in Fig. 2), so we
similarity measurement to make our experimental validatiooount two matches there but we can not distinguish them.
more complete. 2) Similarity based on Nearest Neighbour matchinge

1) Similarity based on Pyramidal matchingiVe use a can compute a similarity score that depends on the matches
similarity evaluation process based on the Pyramid matchirfgund (») between the pair of images, weighted by the
kernels proposed in [15]. It allows local feature matchingwerage distanced) between the features matched. It has
between the reference images and the current one with lingartake also into account the number of features not matched
cost in the number of features. It takes into account thia each image K, and F, respectively) weighted by the
distribution of the local features, not only their descriptorsprobability of occlusion of the featuresP(). The defined
The features descriptors vectors are used to implement thigsimilarity (D1.5) measure is
mentioned matching structures. The idea consists of building
for each image several multi-dimensional histograms (one
dimension per descriptor), where each feature falls in one of Once the most similar image from the VM to the current
the histogram bins. Each descriptor value is rounded to tlmme is determined with one of the previously explained
histogram resolution, which gives a set of coordinates thaimilarity evaluations, the annotations of this chosen image
indicates the bin corresponding to that feature. indicate the room where the robot is currently.

Several levels of histograms are defined. In each level, . o i i
the size of the bins is increased by powers of two until afp- Metric localization through the Radial Trifocal Tensor
the features fall into one bin. The histograms of each image For many applications, a localization information more
are stored in a vector (or pyramig)with different levels of accurate than the current room is needed. The structure and
resolution. The similarity between two images, the current ( motion parameters have been typically recovered in computer
and one of the VM), is obtained by finding the intersection vision applications from geometric constructions such as

DIS=nd+ Fi(1 - P,)+ Fa(1—P,) . (4)

of their corresponding pyramids of histograms the fundamental matrix, with well known structure from
L motion algorithms [16]. The multi-view geometry constraint

S((c), b (v)) = Zw’iN’i(c’ v), (2) for three 1D views is the 1D trifocal tensor [17]. In case
i—0 of omnidirectional images, accurate robot and landmarks

with N, the number of matches (features that fall in thdocalization can be achieved from the 1D radial trifocal
same bin of the histograms, see Fig. 2 ) between imagedensor [18]. This tensor is robustly estimated from trios of
and v in level i of the pyramid.w; is the weight for the Ccorrespondences, applying a robust meth@egag in the
matches in that level, that is the inverse of the current bifiree-view matching process to simultaneously reject outliers
size ). This distance is divided by a factor determinecind estimate the tensor.

by the self-similarity score of each image, in order to avoid In our case, the three omnidirectional images used are
giving advantage to images with bigger sets of features, $8€ current one and two from the reference database (the

the distance obtained is most similar found and one neighbour). The image feature
S((c), p(v)) dimension used is their orientation relative to the direction
Sev = V/S@(0), v(e)) S () o) @) where the camera is pointing (see Fig. 3). It must be

expressed as 1D homogeneous coordinategsing, coss|.
The projections of a certain featuxein the three views

tor 1

0 PYRAMIDAL MATCHING :Z:ﬂi ;QZQE ; : (r1,r2,r3) are constrained by the trilinear constraint imposed
_\%g (with descriptor vector of 2 dimensions) 9 by the 1D trifocal tensor
bin of size 2"
2 match 2 2 2 —
- [] o;n,:,:,oes > imt Zj:l > ket Tigk T1gy T2 T3y = 0, ®)
?i“ 055,:292(0) whereT; . (i,7,k = 1,2) are the eight elements of tiex
< matches . .
of level 1 2 x 2 trifocal tensor and subindex, are the components of
- o vectorsr.
?':r‘,;’tfcj;jjz The 1D tensor can be estimated with five matches and two
~ of level 2 additional constraints [19] defined for the calibrated situation
(internal parameters of the camera are known). From this
| ‘ | ‘ | | bin of size 2™ tensor estimated for omnidirectional images, without other
N IR . Ly 5  matchofleveln camera calibration than the center of projection, a robust
o1z 3 e s e e set of matches, the camera motion and the structure of the

scene can be computed in a closed form [18]. Fig. 3 shows a
%eature projected in three views and the location parameters
estimated.

Note that the matching obtained does not have all matchesUsing 1D bearing-only data, it is well known that three
feature-to-feature, it happens often, specially when usingews are needed to recover the structure of the scene.

Fig. 2. Example of Pyramidal Matching, with correspondences in level
1 and 2. For graphic simplification, with a descriptor of 2 dimensions.
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s e scene | corresponds to unclassified ones from other rooms, buildings
S 3=lsing, cbs 4] or outdoors. From thé\lmere data set, we have extracted

N the frames from the low quality videos provided from the
rounds 1 and 4 (2000 frames extracted in the first, and 2040
in the second). We kept just every 5th frame. From these, we
assigned half for the visual memory (the odd frames: 0-10-
20-30- ... ) and the other half for testing (5-15-25-...). The
images correspond to a robot-tour around a typical house
environment with several rooms (living-room, kitchen,...).
Fig. 4 shows a scheme of both databases, in case of data set
LV with details of the relative displacements between views.
All images have been acquired with an omnidirectional

Fig. 3. Landmark projection in 1D views and motion parameters estimatedf!SION Sensor with hyperbohc mirror.
translation directionstf.21, ty21], [t231, ty31] and rotationsea1, a31.

=[sine, cose,]

b,/
r::

tY31

4 = ALMERE DATA SET

corridor ROOMS
edroom il |
bedroom

But there are more advantages in computing the metr §
localization with this three view geometry based approac |
First, as it uses two reference images and we suppose ,
annotated reference set, the reference information betwe...
these two views helps to solve the ambiguity and the scale of
the localization obtained from the 1D tensor. Second, usind
three views makes the matching more robust without tog
much computing overload (matches between images in thg e
VM can be pre-computed and stored). The fact of using
only the angular coordinate also helps to the robustnesﬁ,mcml
as in omnidirectional images it is more accurate than the T

other polar coordinate (the radial coordinate). Finally, it s
can also help to automatically detect situations of failure., |

For example, if the two reference images that obtained the

kitchen ~ ©

database, it can give us indications of some mistake and Data set LV rooms

allow us to act accordingly. Fig. 4. Grids of images in rooms used in the experiments. Fdmere
data set (typical home environment). Bottom: data L3ét(typical office
IV. LOCALIZATION EXPERIMENTS environment).

This section shows the performance of the method ex-
plained in previous sections for the topological Iocalizatio%\
(i.e. current room recognition) and for the metric localization. ™

The results obtained with the new feature SURF [11] were This section shows the topological localization perfor-
compared to results with the most commonly used widenance of the methods explained in section IlI-A. The ex-
baseline feature, SIFT [13], and to results with radial lineperiments consisted of running the similarity evaluation to
as they are simple and fast features previously used for thdsealize the room where the robot is. Three different cases
tasks. The feature extraction was performed with the implevere studied:
mentation provided in the given references. The radial line - Case 1: data sdtV. This data set contains views that
matching was performed as in [1] and the matching of SURWere taken separately in each room (not during a robot tour),
and SIFT was a typical nearest neighbour algorithm thd#king annotations for the ground truth. In this case, the
considers a match correct if the distance between fitt ( localization was done using a view from data Isétas query
and secondd?) nearest neighbour fitgl <thresholdxd2. and the other views from the same data set as VM.

Two data sets of omnidirectional images were used, - Case 2:Almerelx1. In this case, the query image to
Almere (standard data set provided in [20]) and our owrbe localized belongs to Almere-data geund 1 and the
(named data setV). We decided to use also this secondvM was composed with other images from the same round.
data set because ground truth data was available for itmages in thisound 1were taken during a robot tour around
images, which was convenient to measure the errors in titfee environment shown in Fig.4.
localization. This visual memory has 70 omnidirectional - Case 3:Almere4x1. This is the most complicated case,
images (640x480 pixels). 37 of them are sorted, classifidzecause the VM was built from Almereund limages but
in four different rooms, with between 6 and 15 images ofhe query ones belonged tound 4 This tour was done in
each one (depending on the size of the room). The refte same environment but with many occlusions and noise.

Topological localization performance



The results of the room recognition performed in these With regard to robustness, we can consider this topological
cases are show in Table I. The first ropre-filter, gives localization approach good, as we have tried to reduce the
a summary of the performance of the pre-filtering usedize of the reference images to half and the performance
in the similarity evaluation, showing the average numbestayed similar to the shown results. Reducing the reference
of images rejectedr¢j.) and the false negatives wrongly image set is not a problem for the correctness in the topolog-
rejected f.n.). ical localization (to identify the current room). Next section

Column 10k indicates the percentage of tests where theesults show that the minimal amount required of reference
most similar image found was correct. The time informatioimages is set by the ability of the features used to obtain
in column T/T,,, s is just a comparative of the relative speedhree view matches in widely separated images. Not all the
to compare a query with the reference set of images for eatdatures allow us to reduce in the same amount the density
of the features used. The surf execution timg,(F) is taken of the reference data, due to the different performance of
as reference and the others are relative to it in each case. Neteh feature for wide-baseline matching.
that the implementations were run in Matlab and were not
optimized for speed. B. Metric localization performance

The results for radial lines were definitely better with  yiatic jocalization tests were performed with randomly
the Pyramidal matching classification, as the correctnegs cen samples from the available data sets. A query image
with the NN evaluation was similar, but the execution tim%as picked, its most similar was detected using the previ-

was smaller for the Pyramidal matching (around 25% lessyg|y explained similarity evaluation, and with those two and
However, note t_hat when the difficulty of the case studlegne neighbouring in the VM, we performed a robust three-
increases, the lines performance decreases more than Wiy matching and tensor estimation to recover the camera
the other features. The results for SIFT shown in Table 14 jandmarks location. Not only the metric errors should be
were obtained with the NN similarity classification, becausg,yen into account. but also the performance with more or
the ones obtained with the Pyramidal matching were WOrSgyss separated views. The discrepancy between images that

e.g., just 60% correct classificatiorisOk) using data set \ye are aple to deal during the matching indicates with the
LV while with NN it achieved a 89%. This and specially thedensity of images needed in the VM.

high execution times confirmed that the Pyramidal matching First, two representative tests are detailed in Table Il. They

is not suitaple for S”:_T (it t,°°k around 30 times more tha'?:\re both using data s&V because there was ground truth
the Pyramidal matching with SURF-36). This was already5ijahle only for that data. The errors obtained were good,
expected because of the blg'SIZE of its de;crlptpr vgctor. Y ecially taking into account the accuracy of the ground
the performance of SIFT using the NN similarity (in Tabley, v, that was manually obtained measuring with metric tape
1) was lower than the obtained with SURF-36 features ang,y ooniometer. The description of each test is as follows:
the Pyramidal matching. To sum up, the best compromise _ Test 1. Typical trio of images obtained after evaluating

gﬁgien. tcho:;]ectlgess a(;ldl exetCl;]t_lon tllme .\;\_/ast.obtamed USiig similarity of a query. In this case, the three features where
wi € Fyramidal matching classihcation. robust enough to provide matches to estimate correctly the

The case 3, Almerexd1, was the most difficult and _indeed 1D radial tensor (we see acceptable errors for three of them
the one with worse performance. However, analyzing some. | good matching results in Fig.5)

of the tests that failed, the results were not completely wrong, _ Test 2. This is a more difficult case, where we got almost

L.e., many of these tests used views close to an open dc}ﬂre minimum necessary matches to estimate the tensor. Note

to next room, therefore many features maiched were fromat the method is still working properly. The worse perfor-

that next room already visible in the image. This made thﬁwmce of SIFT and lines in this case is explained by the few

at'gg_”t;‘m t?:vef tanother room asl Iocahtzz?]t_lon. It could r:)_e[ ree-view matches obtained, while SURF obtained a little
studied In the future a more compiex matching process whl gger set, enough to make the geometry estimation more

takes into account that different parts of the image can belona%curate Fig. 6 shows SURF matches. A more advanced
to different rooms, then these situations could be handledmatching process could help to increase the set of matches

and get better performance with all features.
TABLE |

ROOM RECOGNITION: PRE-FILTERING AND SIMILARITY

EVALUATION RESULTS. TABLE I
ROBOT METRIC LOCALIZATION ERRORS ESTIMATING THE1D TENSOR
data set LV Almereix1 Almere4x1 WITH DIFFERENT FEATURES(AVERAGE FROM 20 EXECUTIONS).
pre-filter | rej. fn. rej. fn. rej. fn.
60 3 18.4 4.5 19.5 5.6 TEST 1-A10-A08-A09 TEST 2-D00-D02-D05
1 Ok T/Tsu'rf 1 Ok T/Tsu'rf 1 Ok T/Tsu'rf Localization | a2 @31 t21 t31 @21 @31 to1 t31
lines-22 | 89% 0.1 73% 0.2 47% 0.2 lines-22 141 12 ] 09] 06 2 35 7 34
surf-36 | 97% 1 95% 1 67% 1 surf-64 121 09[09]04] 16 ] 04 1] 247 46
sift*-128 | 89% 3 80% 10 60% 10 Sift-128 1.3 ] 0.9 1 03] 18| 27 [ 66| 11
The number after each feature type shows the Tength of its descriptor séverage errors (degrees) in 20 executions for rotatierend directions of
* Results with SIFT using NN similarity evaluation, results with the other translationt = [t., t,] (see these parameters in Fig. 3).

features using the Pyramidal one. The number after each feature type shows the length of its descriptor set.



Several tests with thAlmeredata set were performed too, SURF features have been extensively compared against radial
to evaluate the matching with more challenging views. Wénes and SIFT features, showing SURF the best compromise
had no ground truth to compare the localization results olieetween efficiency and accuracy in all the process, giving
tained there, so no errors are measured here. The experimeadsurate results and allowing faster computations.

performed with this data set can be grouped in two tests:
- Test 3. Almereix1. Different random queries from

VI. ACKNOWLEDGMENTS

Almere data set round 1 were Compared against the VM Thanks to H. Bay for his helpful comments in this work.

built also from that round (indeed, different test and training
views). The matching results were similar to Test 1 results.
- Test 4.Almere4x1. This was the most challenging case. [
Random query images from Almere data set round 4 (highly
occluded) were compared against the VM built from Almerel2]
round 1. Fig. 7 is an example of SURF matching results
for this test. We can see in the same figure the locationg;
parameters obtained, that were stable after several execution,

and we can not measure the errors, but they seem acceptable.

The results from SIFT were similar to SURF, but lines weres]
not able to obtain enough three view matches, showing that
they can not deal with cases where the baseline increas?ﬁ
significantly. In general, once the most similar from the VM
to the query was found, if the neighbouring image selected
was further than 10 or 20 frames, the lines started to behaé
bad, while for SIFT and SURF 50 frames and higher distance
was still ok. [71

In one hand, for the simpler cases, all features performed
similarly well with regard to the matching and localization. [g]
Here, the radial lines had the advantage of being faster in
extraction and matching. Although they got fewer matches o
the radial lines usually represent useful features in the scene,
such as walls, doors,... On the other hand, using more
separated views SURF and SIFT performance was bettE’
As shown in Test 4. In this more challenging cases, notice
the advantages of SURF, which is faster than SIFT getting?]
similar accuracy in the localization parameters. The average
time for SURF three view matching was three times lesgz
than for SIFT (using the same matching method for both),
due to the shorter SURF descriptor vector. Moreover, in oy,
experiments SIFT extraction was almost three times slower
than SURF’s.

Taking into account both topological and metric locall*4!
izations results, we can conclude the better performance of
SUREF, as it is always the best performing or in case of simild#5]
accuracy is much faster than the other options.

V. CONCLUSION 6l

In this work we have presented an appearance based higr)
archical method to localize a robot against a visual memory
(VM) of reference omnidirectional images. The proposal
combines the use of a recently developed feature (SURF) e
two efficient steps. First using Pyramidal matching kernels
to evaluate fast the similarity with the VM and to obtain
a topological localization. Secondly, using the most similat!
image found in the VM, a metric localization is computed.
That is made from a 1D trifocal tensor robustly estimate?0]
from three view feature matches. One of the big advantages
using the proposed method is that we can get accurate metric
localization even if the reference image set has low density.
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QUERY MOST SIMILAR FOUND ADJACENT IN THE VM

SIFT-128. 79 matches after robust estimation.
Fig. 5. TEST 1. Hall (room A) - images A0O1 A08 A09

Localization | as91 a31 t21 t31

surf 64 161° | 1500 | 114° | 13>
Fig. 7. TEST 4. Frames Almere4 1125 - Almerel 500 - Almerel 550. 40 robust SURF matches.




