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SURF features for efficient robot localization
with omnidirectional images

A. C. Murillo, J. J. Guerrero and C. Sagüés

Abstract— Many robotic applications work with visual
reference maps, which usually consist of sets of more or less
organized images. In these applications, there is a compromise
between the density of reference data stored and the capacity to
identify later the robot localization, when it is not exactly in the
same position as one of the reference views. Here we propose
the use of a recently developed feature, SURF, to improve
the performance of appearance-based localization methods that
perform image retrieval in large data sets. This feature is
integrated with a vision-based algorithm that allows both topo-
logical and metric localization using omnidirectional images
in a hierarchical approach. It uses Pyramidal kernels for the
topological localization and three-view geometric constraints
for the metric one. Experiments with several omnidirectional
images sets are shown, including comparisons with other
typically used features (radial lines and SIFT). The advantages
of this approach are proved, showing the use of SURF as the
best compromise between efficiency and accuracy in the results.

I. I NTRODUCTION

Often mobile robots have reference maps at their dis-
posal or are at least able to construct their own. Working
with vision sensors, these maps usually are a more or
less organized set of images, frequently grouped in clusters
corresponding to different locations or nodes, e.g rooms.
The robot localization needs to be more or less accurate
depending on the task to perform afterwards. For instance,
topological localization is less accurate but faster and more
useful to communicate with humans. However, for navigation
or interaction with objects (e.g. to avoid them or to pick
them) metric information is needed. In earlier work [1], we
have presented an appearance-based localization method that
uses a hierarchical approach to obtain topological and metric
localization information from omnidirectional images.

Omnidirectional vision and hierarchical localization are
two topics of interest nowadays. Omnidirectional vision has
become widespread in the last years, and has many well-
known advantages as well as extra difficulties compared
to conventional images. There are many works using all
kind of omnidirectional images, e.g. a map-based navigation
with images from conic mirrors [2] or localization based
on panoramic cylindric images composed of mosaics of
conventional ones [3]. Hierarchical localization processes
have been also a field of study in the previous years, e.g.,
[4], [5], [6]. Usually their goal is to localize the robot as
fast as possible with a lot of reference information, then they
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perform different steps pruning the reference data in each one
to save time. Other option to improve the efficiency with big
amounts of data consists of using efficient data structures that
allow us to speed up the computations, as in [7], using trees
to increase the efficiency with a lot of data in simultaneous
localization and mapping, or in [8], using clusters of features
and trees to efficiently search in a very big image database.

This work explains how to obtain an efficient global
localization combining SURF features with a hierarchical
method, which provides topological and metric information
with regard to a big set of reference images or visual
memory. Here the automatic construction of this reference
set, or topological map, is not studied, but there are many
recent works dealing with this problem, such as [9] or
[10]. The subjects of our work are open issues of hierar-
chical localization methods: improving the accuracy in the
final localization and increasing the speed to deal with big
reference data sets. Here, we improve the efficiency and
robustness of the work done in [1]. There, thanks to the use of
three-view geometric constraints, accurate metric localization
information can be obtained from a minimal set of reference
views. Its localization accuracy depends only on the wide
baseline it is able to deal with the image feature used, while
in other methods for image based metric localization, e.g. the
one proposed in [5], the accuracy depends on the separation
between reference images in the image grid stored. The
improvements here with regard to [1] are mostly due to the
integration with a recently developed local feature named
Speeded-Up Robust Features (SURF) [11]. This feature
allows us to better cope with wide baseline situations in a
efficient way.

This paper introduces in the field of vision based local-
ization the usage of SURF. It has been previously used,
e.g, for object recognition in a museum guide application
[12]. However, it had not yet been applied in the robotics
field nor in omnidirectional images and seems convenient
in these tasks. It states to have more discriminative power
than other state-of-the-art features such as SIFT [13], yet
can be computed more efficiently and yields a lower di-
mensional feature descriptor resulting in faster matching.
The construction of the SURF features is quite convenient
also for hierarchical approaches. Initially, for the first rough
steps of the hierarchy, a faster and smaller feature descriptor
vector can be extracted. Later, for the more accurate steps
of the process, a more accurate descriptor vector can be ob-
tained. The experimental section compares the performance
of SURF against the popular SIFT (version provided by D.
Lowe in [13]), the most popular wide-baseline feature in the



last years, and against radial lines, a simple, fast and easy
feature to extract in omnidirectional images [1]. The results
of our experiments, with two different data sets, show that
the best compromise between performance and efficiency is
obtained with SURF.

We provide more details about SURF in section II, while
the localization process used is detailed in section III. Finally
in section IV, exhaustive experiments with different omnidi-
rectional image sets are shown to validate the proposal.

II. SPEEDEDUP ROBUST FEATURES (SURF)

SURF is a local feature recently presented in [11]. This
section shows a brief summary of its construction process,
first the interesting point localization and after the feature
descriptors computation.

A. Interest Point Localization.

The SURF detector is based on the Hessian matrix. Given
a pointx = [x, y] in an image I, the Hessian matrixH(x, σ)
in x at scaleσ is defined as follows

H(x, σ) =

[
Lxx Lxy

Lxy Lyy

]
, (1)

whereLxx(x, σ) is the convolution of the Gaussian second
order derivative ∂

∂2
x
g(σ) with the image I in pointx, and

similarly for Lxy(x, σ) and Lyy(x, σ). In contrast to SIFT,
which approximates Laplacian of Gaussian (LoG) with Dif-
ference of Gaussians (DoG), SURF approximates second
order Gaussian derivatives with box filters. See an example
of one of this filters for the lowest scale analyzed in Fig. 1
Image convolutions with these box filters can be computed
rapidly by using integral images [14].

Fig. 1. Left: gaussian second order derivative in xy-direction. Right:
corresponding box filter approximation.

The location and scale of interest points are selected by
relying on the determinant of the Hessian. Interest points
are localized in scale and image space by applying a non-
maximum suppression in a 3 x 3 x 3 neighbourhood. Finally,
the local maxima found of the approximated Hessian matrix
determinant are interpolated in scale and image space. For
more details, see [11].

B. Interest Point Descriptor.

In a first step, SURF constructs a circular region around
the detected interest points in order to assign a unique
orientation to the former and thus gain invariance to image
rotations. The orientation is computed using Haar wavelet
responses in bothx and y directions. The Haar wavelets
can be quickly computed via integral images, similar to
the Gaussian second order approximated box filters. The
dominant orientation is estimated and included in the interest
point information.

In a next step, SURF descriptors are constructed by ex-
tracting square regions around the interest points. These are
oriented in the directions assigned in the previous step. The
windows are split up in 4 x 4 sub-regions in order to retain
some spatial information. In each sub-region, Haar wavelets
are extracted at regularly spaced sample points. The wavelet
responses in horizontal and vertical directions (dx and dy)
are summed up over each sub-region. Furthermore, the
absolute values|dx| and |dy| are summed in order to obtain
information about the polarity of the image intensity changes.
Hence, the underlying intensity pattern of each sub-region
is described by a vectorV = [

∑
dx,

∑
dy,

∑ |dx|,
∑ |dy|].

The resulting descriptor vector for all 4 x 4 sub-regions is of
length 64, giving the standard SURF descriptor, SURF-64. It
is possible to use 3 x 3 sub-regions instead, then we obtain
a shorter version of the descriptor, SURF-36, that will be
also used in our applications. Notice that the Haar wavelets
are invariant to illumination bias and additional invariance
to contrast is achieved by normalizing the descriptor vector
to unit length.

An important characteristic of SURF is the fast extraction
process, that takes profit of integral images and a fast non-
maximum suppression algorithm. Also is very convenient
the fast matching speed it permits, mainly achieved by a
single step added to the indexing based on the sign of the
Laplacian (trace of the Hessian matrix) of the interest point.
The sign of the Laplacian distinguishes bright blobs on a
dark background from the inverse situation. Bright interest
points are only matched against other bright interest points
and similarly for the dark ones. This minimal information
permits to almost double the matching speed and it comes
at no computational costs, as it has already been computed
in the interest point detection step.

III. E FFICIENT VISION BASED LOCALIZATION

This section explains a hierarchical method to efficiently
localize the actual position of the robot with regard to a big
set of reference images or visual memory (VM).

A. Similarity evaluation for topological localization

This part details the process for the topological local-
ization, i.e., to recognize the room, which evaluates the
similarity between the current view and the images from the
VM.

First, a color global image descriptor is applied as a pre-
filtering for the reference views, as described in [1], rejecting
those images with very low similarity in this descriptor. This
filter can not be very strict, as the global descriptors are very
sensitive to occlusions and noise, but it is very useful to
reduce the set of candidate locations for the next steps.

The rest and more important part of the similarity eval-
uation assigns a more accurate similarity value to each
reference view that passed the initial pre-filter. This has
been done with two different methods, one based on a
Pyramidal matching and other based on a nearest neighbour
(NN) matching. In general, the first one is more efficient
and robust, but this is not true for long descriptor vectors.



Therefore, SIFT descriptor seems not suitable for this method
due to its descriptor size (128), then we tried also the second
similarity measurement to make our experimental validation
more complete.

1) Similarity based on Pyramidal matching:We use a
similarity evaluation process based on the Pyramid matching
kernels proposed in [15]. It allows local feature matching
between the reference images and the current one with linear
cost in the number of features. It takes into account the
distribution of the local features, not only their descriptors.
The features descriptors vectors are used to implement this
mentioned matching structures. The idea consists of building
for each image several multi-dimensional histograms (one
dimension per descriptor), where each feature falls in one of
the histogram bins. Each descriptor value is rounded to the
histogram resolution, which gives a set of coordinates that
indicates the bin corresponding to that feature.

Several levels of histograms are defined. In each level,
the size of the bins is increased by powers of two until all
the features fall into one bin. The histograms of each image
are stored in a vector (or pyramid)ψ with different levels of
resolution. The similarity between two images, the current (c)
and one of the VM (v), is obtained by finding the intersection
of their corresponding pyramids of histograms

S(ψ(c), ψ(v)) =

L∑
i=0

wiNi(c, v) , (2)

with Ni the number of matches (features that fall in the
same bin of the histograms, see Fig. 2 ) between imagesc
and v in level i of the pyramid.wi is the weight for the
matches in that level, that is the inverse of the current bin
size (2i). This distance is divided by a factor determined
by the self-similarity score of each image, in order to avoid
giving advantage to images with bigger sets of features, so
the distance obtained is

Scv =
S(ψ(c), ψ(v))√

S(ψ(c), ψ(c)) S(ψ(v), ψ(v))
. (3)

PYRAMIDAL MATCHING 
(with descriptor vector of 2 dimensions)
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Fig. 2. Example of Pyramidal Matching, with correspondences in level 0,
1 and 2. For graphic simplification, with a descriptor of 2 dimensions.

Note that the matching obtained does not have all matches
feature-to-feature, it happens often, specially when using

bigger bin-sizes, that more than one feature from each image
falls in a certain histogram cell (as happens in Fig. 2), so we
count two matches there but we can not distinguish them.

2) Similarity based on Nearest Neighbour matching:We
can compute a similarity score that depends on the matches
found (n) between the pair of images, weighted by the
average distance (d) between the features matched. It has
to take also into account the number of features not matched
in each image (F1 and F2 respectively) weighted by the
probability of occlusion of the features (Po). The defined
dissimilarity (DIS) measure is

DIS = n d + F1(1− Po) + F2(1− Po) . (4)

Once the most similar image from the VM to the current
one is determined with one of the previously explained
similarity evaluations, the annotations of this chosen image
indicate the room where the robot is currently.

B. Metric localization through the Radial Trifocal Tensor

For many applications, a localization information more
accurate than the current room is needed. The structure and
motion parameters have been typically recovered in computer
vision applications from geometric constructions such as
the fundamental matrix, with well known structure from
motion algorithms [16]. The multi-view geometry constraint
for three 1D views is the 1D trifocal tensor [17]. In case
of omnidirectional images, accurate robot and landmarks
localization can be achieved from the 1D radial trifocal
tensor [18]. This tensor is robustly estimated from trios of
correspondences, applying a robust method (ransac) in the
three-view matching process to simultaneously reject outliers
and estimate the tensor.

In our case, the three omnidirectional images used are
the current one and two from the reference database (the
most similar found and one neighbour). The image feature
dimension used is their orientationφ, relative to the direction
where the camera is pointing (see Fig. 3). It must be
expressed as 1D homogeneous coordinatesr = [sinφ, cosφ].

The projections of a certain featurev in the three views
(r1, r2, r3) are constrained by the trilinear constraint imposed
by the 1D trifocal tensor

∑2

i=1

∑2

j=1

∑2

k=1
Tijk r1(i) r2(j)r3(k) = 0, (5)

whereTijk (i, j, k = 1, 2) are the eight elements of the2×
2× 2 trifocal tensor and subindex(·) are the components of
vectorsr .

The 1D tensor can be estimated with five matches and two
additional constraints [19] defined for the calibrated situation
(internal parameters of the camera are known). From this
tensor estimated for omnidirectional images, without other
camera calibration than the center of projection, a robust
set of matches, the camera motion and the structure of the
scene can be computed in a closed form [18]. Fig. 3 shows a
feature projected in three views and the location parameters
estimated.

Using 1D bearing-only data, it is well known that three
views are needed to recover the structure of the scene.
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Fig. 3. Landmark projection in 1D views and motion parameters estimated:
translation directions [tx21, ty21], [tx31, ty31] and rotationsα21, α31.

But there are more advantages in computing the metric
localization with this three view geometry based approach.
First, as it uses two reference images and we suppose an
annotated reference set, the reference information between
these two views helps to solve the ambiguity and the scale of
the localization obtained from the 1D tensor. Second, using
three views makes the matching more robust without too
much computing overload (matches between images in the
VM can be pre-computed and stored). The fact of using
only the angular coordinate also helps to the robustness,
as in omnidirectional images it is more accurate than the
other polar coordinate (the radial coordinate). Finally, it
can also help to automatically detect situations of failure.
For example, if the two reference images that obtained the
highest similarity scores are not from the same room in the
database, it can give us indications of some mistake and
allow us to act accordingly.

IV. L OCALIZATION EXPERIMENTS

This section shows the performance of the method ex-
plained in previous sections for the topological localization
(i.e. current room recognition) and for the metric localization.

The results obtained with the new feature SURF [11] were
compared to results with the most commonly used wide-
baseline feature, SIFT [13], and to results with radial lines,
as they are simple and fast features previously used for these
tasks. The feature extraction was performed with the imple-
mentation provided in the given references. The radial line
matching was performed as in [1] and the matching of SURF
and SIFT was a typical nearest neighbour algorithm that
considers a match correct if the distance between first (d1)
and second (d2) nearest neighbour fitsd1 ≤threshold∗d2.

Two data sets of omnidirectional images were used,
Almere (standard data set provided in [20]) and our own
(named data setLV). We decided to use also this second
data set because ground truth data was available for its
images, which was convenient to measure the errors in the
localization. This visual memory has 70 omnidirectional
images (640x480 pixels). 37 of them are sorted, classified
in four different rooms, with between 6 and 15 images of
each one (depending on the size of the room). The rest

corresponds to unclassified ones from other rooms, buildings
or outdoors. From theAlmere data set, we have extracted
the frames from the low quality videos provided from the
rounds 1 and 4 (2000 frames extracted in the first, and 2040
in the second). We kept just every 5th frame. From these, we
assigned half for the visual memory (the odd frames: 0-10-
20-30- ... ) and the other half for testing (5-15-25-...). The
images correspond to a robot-tour around a typical house
environment with several rooms (living-room, kitchen,...).
Fig. 4 shows a scheme of both databases, in case of data set
LV with details of the relative displacements between views.
All images have been acquired with an omnidirectional
vision sensor with hyperbolic mirror.

Almere 1
corridor

living room

bedroom
kitchen

ALMERE DATA SET

ROOMS

Data set LV rooms
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Fig. 4. Grids of images in rooms used in the experiments. Top:Almere
data set (typical home environment). Bottom: data setLV (typical office
environment).

A. Topological localization performance

This section shows the topological localization perfor-
mance of the methods explained in section III-A. The ex-
periments consisted of running the similarity evaluation to
localize the room where the robot is. Three different cases
were studied:

- Case 1: data setLV. This data set contains views that
were taken separately in each room (not during a robot tour),
taking annotations for the ground truth. In this case, the
localization was done using a view from data setLV as query
and the other views from the same data set as VM.

- Case 2:Almere1∝1. In this case, the query image to
be localized belongs to Almere-data setround 1, and the
VM was composed with other images from the same round.
Images in thisround 1were taken during a robot tour around
the environment shown in Fig.4.

- Case 3:Almere4∝1. This is the most complicated case,
because the VM was built from Almereround 1 images but
the query ones belonged toround 4. This tour was done in
the same environment but with many occlusions and noise.



The results of the room recognition performed in these
cases are show in Table I. The first row,pre-filter, gives
a summary of the performance of the pre-filtering used
in the similarity evaluation, showing the average number
of images rejected (rej.) and the false negatives wrongly
rejected (f.n.).

Column 1Ok indicates the percentage of tests where the
most similar image found was correct. The time information
in column T/Tsurf is just a comparative of the relative speed
to compare a query with the reference set of images for each
of the features used. The surf execution time (Tsurf ) is taken
as reference and the others are relative to it in each case. Note
that the implementations were run in Matlab and were not
optimized for speed.

The results for radial lines were definitely better with
the Pyramidal matching classification, as the correctness
with the NN evaluation was similar, but the execution time
was smaller for the Pyramidal matching (around 25% less).
However, note that when the difficulty of the case studied
increases, the lines performance decreases more than with
the other features. The results for SIFT shown in Table I
were obtained with the NN similarity classification, because
the ones obtained with the Pyramidal matching were worse,
e.g., just 60% correct classifications(1Ok) using data set
LV while with NN it achieved a 89%. This and specially the
high execution times confirmed that the Pyramidal matching
is not suitable for SIFT (it took around 30 times more than
the Pyramidal matching with SURF-36). This was already
expected because of the big size of its descriptor vector. Yet,
the performance of SIFT using the NN similarity (in Table
I) was lower than the obtained with SURF-36 features and
the Pyramidal matching. To sum up, the best compromise
between correctness and execution time was obtained using
SURF with the Pyramidal matching classification.

The case 3, Almere4∝1, was the most difficult and indeed
the one with worse performance. However, analyzing some
of the tests that failed, the results were not completely wrong,
i.e., many of these tests used views close to an open door
to next room, therefore many features matched were from
that next room already visible in the image. This made the
algorithm give another room as localization. It could be
studied in the future a more complex matching process which
takes into account that different parts of the image can belong
to different rooms, then these situations could be handled.

TABLE I

ROOM RECOGNITION: PRE-FILTERING AND SIMILARITY

EVALUATION RESULTS.

data set LV Almere1∝1 Almere4∝1
pre-filter rej. f.n. rej. f.n. rej. f.n.

60 3 18.4 4.5 19.5 5.6
1 Ok T/Tsurf 1 Ok T/Tsurf 1 Ok T/Tsurf

lines-22 89% 0.1 73% 0.2 47% 0.2
surf-36 97% 1 95% 1 67% 1

sift*-128 89% 3 80% 10 60% 10
The number after each feature type shows the length of its descriptor set.
* Results with SIFT using NN similarity evaluation, results with the other

features using the Pyramidal one.

With regard to robustness, we can consider this topological
localization approach good, as we have tried to reduce the
size of the reference images to half and the performance
stayed similar to the shown results. Reducing the reference
image set is not a problem for the correctness in the topolog-
ical localization (to identify the current room). Next section
results show that the minimal amount required of reference
images is set by the ability of the features used to obtain
three view matches in widely separated images. Not all the
features allow us to reduce in the same amount the density
of the reference data, due to the different performance of
each feature for wide-baseline matching.

B. Metric localization performance

Metric localization tests were performed with randomly
chosen samples from the available data sets. A query image
was picked, its most similar was detected using the previ-
ously explained similarity evaluation, and with those two and
one neighbouring in the VM, we performed a robust three-
view matching and tensor estimation to recover the camera
and landmarks location. Not only the metric errors should be
taken into account, but also the performance with more or
less separated views. The discrepancy between images that
we are able to deal during the matching indicates with the
density of images needed in the VM.

First, two representative tests are detailed in Table II. They
are both using data setLV because there was ground truth
available only for that data. The errors obtained were good,
specially taking into account the accuracy of the ground
truth, that was manually obtained measuring with metric tape
and goniometer. The description of each test is as follows:

- Test 1. Typical trio of images obtained after evaluating
the similarity of a query. In this case, the three features where
robust enough to provide matches to estimate correctly the
1D radial tensor (we see acceptable errors for three of them
and good matching results in Fig.5).

- Test 2. This is a more difficult case, where we got almost
the minimum necessary matches to estimate the tensor. Note
that the method is still working properly. The worse perfor-
mance of SIFT and lines in this case is explained by the few
three-view matches obtained, while SURF obtained a little
bigger set, enough to make the geometry estimation more
accurate. Fig. 6 shows SURF matches. A more advanced
matching process could help to increase the set of matches
and get better performance with all features.

TABLE II

ROBOT METRIC LOCALIZATION ERRORS ESTIMATING THE1D TENSOR

WITH DIFFERENT FEATURES(AVERAGE FROM 20 EXECUTIONS).

TEST 1-A10-A08-A09 TEST 2-D00-D02-D05
Localization α21 α31 t21 t31 α21 α31 t21 t31

lines-22 1.4 1.2 0.9 0.6 2 3.5 7 3.4
surf-64 1.2 0.9 0.9 0.4 1.6 0.4 2.4 4.6
sift-128 1.3 0.9 1 0.3 1.8 2.7 6.6 11

Average errors (degrees) in 20 executions for rotationsα and directions of
translationt = [tx, ty ] (see these parameters in Fig. 3).

The number after each feature type shows the length of its descriptor set.



Several tests with theAlmeredata set were performed too,
to evaluate the matching with more challenging views. We
had no ground truth to compare the localization results ob-
tained there, so no errors are measured here. The experiments
performed with this data set can be grouped in two tests:

- Test 3. Almere1∝1. Different random queries from
Almere data set round 1 were compared against the VM
built also from that round (indeed, different test and training
views). The matching results were similar to Test 1 results.

- Test 4.Almere4∝1. This was the most challenging case.
Random query images from Almere data set round 4 (highly
occluded) were compared against the VM built from Almere
round 1. Fig. 7 is an example of SURF matching results
for this test. We can see in the same figure the location
parameters obtained, that were stable after several execution,
and we can not measure the errors, but they seem acceptable.
The results from SIFT were similar to SURF, but lines were
not able to obtain enough three view matches, showing that
they can not deal with cases where the baseline increases
significantly. In general, once the most similar from the VM
to the query was found, if the neighbouring image selected
was further than 10 or 20 frames, the lines started to behave
bad, while for SIFT and SURF 50 frames and higher distance
was still ok.

In one hand, for the simpler cases, all features performed
similarly well with regard to the matching and localization.
Here, the radial lines had the advantage of being faster in
extraction and matching. Although they got fewer matches,
the radial lines usually represent useful features in the scene,
such as walls, doors,... On the other hand, using more
separated views SURF and SIFT performance was better.
As shown in Test 4. In this more challenging cases, notice
the advantages of SURF, which is faster than SIFT getting
similar accuracy in the localization parameters. The average
time for SURF three view matching was three times less
than for SIFT (using the same matching method for both),
due to the shorter SURF descriptor vector. Moreover, in our
experiments SIFT extraction was almost three times slower
than SURF’s.

Taking into account both topological and metric local-
izations results, we can conclude the better performance of
SURF, as it is always the best performing or in case of similar
accuracy is much faster than the other options.

V. CONCLUSION

In this work we have presented an appearance based hier-
archical method to localize a robot against a visual memory
(VM) of reference omnidirectional images. The proposal
combines the use of a recently developed feature (SURF) in
two efficient steps. First using Pyramidal matching kernels
to evaluate fast the similarity with the VM and to obtain
a topological localization. Secondly, using the most similar
image found in the VM, a metric localization is computed.
That is made from a 1D trifocal tensor robustly estimated
from three view feature matches. One of the big advantages
using the proposed method is that we can get accurate metric
localization even if the reference image set has low density.

SURF features have been extensively compared against radial
lines and SIFT features, showing SURF the best compromise
between efficiency and accuracy in all the process, giving
accurate results and allowing faster computations.
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[9] T. Goedeḿe, T. Tuytelaars, and L. Van Gool. Visual topological map
building in self-similar environments. InInt. Conf. on Informatics in
Control, Automation and Robotics, pages 3–9, 2006.

[10] Z.Zivkovic, B.Bakker, and B.Krose. Hierarchical map building using
visual landmarks and geometric constraints. InIn Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pages 7–12, 2005.

[11] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. InThe ninth European Conference on Computer Vision,
2006, http://www.vision.ee.ethz.ch/ surf/.

[12] Herbert Bay, Beat Fasel, and Luc Van Gool. Interactive museum guide:
Fast and robust recognition of museum objects. InFirst international
workshop on mobile vision, 2006.

[13] D. G. Lowe. Distinctive image features from scale-invariant key-
points. Int. Journal of Computer Vision, 60(2):91–110, 2004,
http://www.cs.ubc.ca/ lowe/keypoints/.

[14] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. InIEEE Conf. on Computer Vision and Pattern
Recognition, pages 511–518, 2001.

[15] K. Grauman and T. Darrell. The pyramid match kernels: Discrimina-
tive classification with sets of image features. InIEEE Int. Conf. on
Computer Vision, pages 1458–1465, 2005.

[16] R. Hartley and A. Zisserman.Multiple View Geometry in Computer
Vision. Cambridge University Press, Cambridge, 2000.

[17] O. Faugeras, L. Quan, and P. Sturm. Self-calibration of a 1d projective
camera and its application to the self-calibration of a 2d projective
camera. IEEE Trans. on Pattern Analysis and Machine Intelligence,
22(10):1179–1185, 2000.

[18] C. Sag̈ués, A. C. Murillo, J. J. Guerrero, T. Goedemé, T. Tuytelaars,
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Radial lines. 20 matches after robust estimation (2 wrong).

SURF-64. 55 matches after robust estimation.

SIFT-128. 79 matches after robust estimation.

Fig. 5. TEST 1. Hall (room A) - images A01 A08 A09

Fig. 6. TEST 2. Corridor (room D) - images D00 D02 D05: 8 robust SURF matches.

Localization α21 α31 t21 t31
surf 64 161 o 150o 114 o 132o

Fig. 7. TEST 4. Frames Almere4 1125 - Almere1 500 - Almere1 550. 40 robust SURF matches.


