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A B S T R A C T

The irruption of mobile computing in the last years has highlighted
energy efficiency more than ever. The computational requirements for
battery-dependent devices are becoming more and more demanding
while the power budget remains tight.

Heterogeneous computing has emerged as the mainstream to sat-
isfy the increasingly computational requirements while keeping power
consumption low. Systems-on-chip (SoCs) include not only general-
purpose processors (GPPs) but also many specific processors to ef-
ficiently manage frequent tasks in mobile computing, such as com-
munications, security, location, and others. However, those tasks that
do not fit any of these specific processors rely on the GPP, where
efficiency plummets.

Programmable logic is hardware whose functionality is not de-
fined at the time of manufacture, and can be configured as many
times as required, even at runtime. The main manufacturers have re-
leased SoCs that include programmable logic tightly coupled with the
processing system, allowing the developers to improve efficiency by
dynamically including specific processors for any computationally-
intensive task.

In this dissertation, we explore the tradeoffs of this approach taking
the artificial intelligence (AI) on board games as a case study. Board
games are frequently found in mobile devices, and in fact, games as
Chess are part of the benchmarks used to measure the performance
of mobile SoCs. Board games are not only popular but also computa-
tionally demanding. Thus, they are good candidates to benefit from
hardware acceleration.

As a first contribution, we designed bare hardware implementa-
tions for three different board games (Reversi, Connect6, and Blokus
Duo) that increase energy efficiency by several orders of magnitude
compared to delegating the work to the GPP. However, the design of
complex hardware systems such as the AI for these games noticeably
prolongs time-to-market.

As a second contribution, we designed solutions based on hard-
ware/software codesign for these games, where only computationally-
intensive tasks are delegated to hardware while the remaining func-
tionality continues in software. This approach increases efficiency by
an order of magnitude while keeping time-to-market acceptable.

Finally, as a third contribution, we measured the additional over-
heads caused by the configuration process needed to load the hard-
ware accelerators in the SoC, and we have designed a hardware re-
configuration controller that drastically improves the efficiency of this
process.
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The results demonstrate the huge potential of SoCs that include
programmable logic. This scheme improves performance and power
consumption, and drastically increases energy efficiency, while the
penalty in design complexity is affordable. We believe that it is very
likely that, in the near future, SoCs that include programmable logic
will be frequently found in mobile devices.
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Part I

P R E L I M I N A R I E S





1
I N T R O D U C T I O N

1.1 rationale

The impressive rise of smartphones, tablets, wearables, and inter-
net of things (IoT) devices, has changed the computation landscape.
This market is displacing the until recently predominant market of
desktop and laptop computers, which is declining since 2011, and
this trend is expected to emphasize in the next years. The limited
power budget and the performance requirements of these devices
has caused energy-aware computing to take on special relevance. The
spectrum of applications developed for these devices has rapidly
grown, narrowing the gap with respect to those hitherto reserved
for desktop computers, where power is only limited because of ther-
mal constraints. In this scenario, the semiconductor industry faces
the challenge of delivering performance to support this new demand
while keeping a satisfactory user experience.

Computer architects have found in heterogeneous computing an ef-
ficient solution to increase efficiency beyond advances in the semicon-
ductor technology [3, 59]. The evolution of heterogeneous computing
resulted in processors that contain not only general-purpose cores but
also multiple specific processors to manage tasks such as graphics,
audio, communications, security, location, and others. These devices
are known as system-on-a-chip (SoC). SoCs have become more and
more complex thanks to an increasingly smaller integration scale, in-
cluding more specific processors and more powerful general-purpose
cores. Figure 1.1a depicts the block diagram of the SoC that will be
included in the Samsung Galaxy S8. This SoC includes many specific
processors to manage frequently used tasks in today’s smartphones,
improving both performance and energy efficiency for these tasks.
However, those computationally-intensive tasks that do no fit any
of these specific processors must rely on the general-purpose pro-
cessor where performance and efficiency plummets. Programmable
logic helps to overcome this limitation by allowing the developers to
implement any specialized hardware once the chip is manufactured,
whose functionality can be changed as many times as needed, even at
runtime. Hence, the same hardware resources can be used to provide
hardware acceleration for different applications.

The main field-programmable gate array (FPGA) manufacturers,
Xilinx and Altera, have released complete processor-based SoCs with
an FPGA integrated in a single chip (Zynq-7000 SoC and Zynq Ul-
traScale+ MPSoC by Xilinx [83]; Arria V [4] and Stratix 10 by Altera

3
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(b) Zynq UltraScale+

Figure 1.1: Snapdragon 835 and Zynq Ultrascale+ SoCs

[63]). These platforms are similar to those found in mobile devices,
but including a programmable logic fabric on chip, tightly integrated
with the low-power processors. They allow software developers to
use known programming environments, while logic designers can
leverage the FPGA to introduce customized features to improve per-
formance and reduce energy consumption. Figure 1.1b depicts the
block diagram of the Zynq UltraScale+, released in 2017.

FPGAs are expected to play a key role in any field where energy ef-
ficiency is essential. Leading manufacturers like Intel, IBM, and Qual-
comm have announced that they are preparing SoCs including pro-
cessors and FPGAs for data centers applications [30, 55]. Furthermore,
other companies such as Menta and Flex Logic have designed their
own intellectual property (IP) FPGA cores, which can be included
in any SoC at a reduced cost. Hence, FPGAs are expected to be fre-
quently found in mobile SoCs in the near future, just as graphics
processing unit (GPUs) are nowadays.
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1.2 objectives and dissertation overview

The objective of this dissertation is to analyze hardware design and
hardware/software codesign as ways to improve the energy efficiency
on the growing market of battery-dependent devices. We selected the
artificial intelligence (AI) of three board games as case study, and eval-
uated the performance, energy efficiency, and development effort of
each alternative. The rest of this dissertation is organized as follows:

• Part I continues in Chapter 2 with a brief introduction to pro-
grammable logic. Chapter 3 presents board games as case study
to evaluate performance and energy efficiency on programmable
logic and general-purpose processors.

• Part II presents our hardware designs for the AI of three com-
plex board games, Reversi, Connect6, and Blokus Duo. Chap-
ter 4 discusses the context in which our designs were carried
out and the methodology followed. Chapter 5 presents the de-
sign architecture of each case study, describing in detail the
most relevant modules and the experimental results, focusing
on the metrics performance, power, energy efficiency, and de-
velopment effort.

• Part III explores hardware/software codesign on new SoCs that
integrate general-purpose processors and programmable logic
as a way to improve energy efficiency. Chapter 6 begins with
a description of the platform where we carried out our experi-
ments, and an analysis of the different interfaces to communi-
cate the processing system with the programmable logic. Then,
we present the software/hardware partitions considered for our
cases studies, and finally we expose the experimental results.

• Part IV analyzes the overheads of dynamic partial reconfigura-
tion in terms of performance, energy, and resources. In Chap-
ter 7, we present a reconfiguration controller that minimizes the
reconfiguration overheads. Chapter 8 quantifies the overheads
of the components found in a system with reconfiguration ca-
pability, and shows the benefits of our controller on a real appli-
cation.

• Part V concludes and discusses future research lines in Chap-
ter 9.

1.3 contributions

At the time this dissertation is being written, a large part of the work
presented here has been published in peer-reviewed national and in-
ternational conferences and journals, or is currently under review pro-
cess.
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The main contributions of this dissertation are:

• Contributions on hardware implementation of the AI of board
games (Part II):

– We designed hardware implementations of the AI for three
board games: Reversi, Connect6, and Blokus Duo. We pro-
pose designs based on well-known search algorithms and
evaluation metrics that achieve a very efficient computa-
tion by fully exploiting the parallelism involved in board
processing. These works have been published in the Inter-
national Conference on Field-Programmable Technology, in 2010,
2013, and 2014. These works were also presented to the
hardware design competition organized annually by that
conference, and were awarded with the first prize in 2010

(3 competitors) and 2014 (14 competitors), with the second
prize in 2012 (13 competitors), and with the fourth prize in
2013 (26 competitors).

– We provide a comprehensive performance and energy effi-
ciency analysis of the AI for the Reversi game implemented
both on FPGAs and software. We optimized the hardware
design for Reversi game presented in Part II, and also de-
veloped an optimized software application. We carried out
a performance and energy analysis from a task-level to an
overall perspective. This work has been published in Mi-
croprocessors and Microsystems (March 2015).

• Contributions on hardware/software codesign applied to board
games (Part III):

– We designed several codesign schemes to split the AI en-
gine of the games Reversi, Connect6, and Blokus Duo into
software and hardware. New SoCs that integrate general-
purpose processors and programmable logic in the same
chip broaden the range of applications where codesign
becomes profitable thanks to much lower communication
overheads. We explored the benefits of codesign for board
games by moving board processing to hardware accelera-
tors while keeping the remaining tasks in software. This
work has been accepted for publication in IEEE Transac-
tions on Computational Intelligence and AI in Games (August
2016).

• Contributions on dynamic partial reconfiguration on FPGAs
(Part IV):

– We propose an efficient reconfiguration controller in or-
der to reduce the reconfiguration overheads, both in la-
tency and energy consumption. We propose the inclusion
of on-chip memory resources in the controller to achieve
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peak performance and provide support for prefetching and
caching. We also carried out a detailed analysis of the en-
ergy overhead of the reconfiguration process and the power
penalty according to where the configurations are retrieved
from. This work has been submitted to IET Computer and
Digital Techniques (submitted June 2016)





2
P R O G R A M M A B L E L O G I C

Frequently used tasks in mobile devices are executed in specific application
specific integrated circuits (ASICs) included in today’s SoCs. These compo-
nents offer the best performance and the lowest power consumption, but only
the tasks they were designed for benefit from them, leaving many demanding
tasks stayed out of the goodness of these components. Programmable logic is
hardware whose functionality can be defined after manufacturing, putting
hardware acceleration within reach of any application. In this chapter, we
introduce programmable logic and the typical workflow in systems which
include it.

2.1 introduction

Programmable logic devices (PLDs) are electronic components whose
functionality can be configured after manufacturing. The origin of
PLDs dates back to 1960’s and they have evolved giving rise to a va-
riety of devices, such as programmable read-only memory (PROM),
programmable logic array (PLA), complex programmable logic de-
vice (CPLD), or field-programmable gate array (FPGA). Among them,
FPGAs are today the most broadly used programmable logic devices.
They offer the highest amount of logic density, the most features,
and the highest performance. They constitute a mature technology
that has been proved to greatly increase performance and reduce en-
ergy consumption on many different applications ranging from data
processing and storage, to instrumentation, telecommunications, and
digital signal processing [11, 15, 16, 32, 42, 44].

An FPGA is an integrated circuit that contains an interconnected
array of logic cells that can be configured to implement any cus-
tom functionality. Each logic cell includes look-up tables (LUTs) to
implement logic functions, flip-flops (FFs) to implement sequential
logic, and multiplexers to interconnect the different elements. Fig-
ure 2.1 outlines this architecture, where logic cells are represented by
green boxes, and I/O is represented by orange boxes. In addition, FP-
GAs contain blocks of static memory, known as block random access
memories (BlockRAMs, or BRAMs), and other hard blocks like digi-
tal signal processors (DSPs) and multipliers in order to increase per-
formance and reduce power. The configuration of these logic blocks
and its interconnections allows the developers to implement complex
logic systems (the capacity of the latest FPGAs is equivalent to tens
of millions of ASIC NAND gates).

9
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Figure 2.1: FPGA architecture

2.2 hardware design on fpgas

The typical design flow to implement a digital system on an FPGA is
represented in Figure 2.2. The process begins with the specification of
the functionality and interfaces of the system components, and their
interaction. This specification is coded in a hardware description lan-
guage (HDL), like VHDL or Verilog, which allow hardware designers
to write a modular description of the design architecture and func-
tionality. It is possible to write a preliminary hardware description
in HDL in time comparable to the required by software development
in programming languages. However, writing HDL code ready to be
translated into an efficient hardware implementation requires a good
command on digital logic design, computer architecture, and parallel
computing. Regarding this issue, FPGA vendors are doing a great ef-
fort to simplify the hardware design process. For instance, Xilinx has
developed a C/C++ to HDL compiler that can directly map C/C++
code to an FPGA [77]. These tools are promising, but they still have
much room for improvement.

The process continues iterating between coding and debugging.
Hardware debugging at this stage relies on behavioral simulations.
These simulations employ a high level of abstraction to model the
hardware, leaving aside implementation issues such as resources uti-
lization, routing, and timing. Once the functionality is verified, the
design is synthesized, placed and routed. Synthesis translates the
hardware description into hardware blocks, such as adders, registers,
multiplexers, decoders, comparators, and so. The output of the syn-
thesis is mapped to the target FPGA in the place&route process. In
this stage, the hardware blocks are mapped to the FPGA resources
(i.e, logic cells, DSPs, BlockRAMs, interconnections, I/O). Finally, the
design implemented on the FPGA is verified.

Hardware design on FPGAs is significantly time consuming than
software development, and the main responsible is the debugging
process. Although we have stated that a qualified hardware designer
is able to write a design specification and to code it in time compara-
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Figure 2.2: Hardware design flow on FPGAs

ble to a functionally equivalent software solution, definitely this does
not apply to the debugging process. Behavioral simulations are much
more time consuming than debugging software by means of native
execution, and they usually have to be run many times. Furthermore,
compilation time for hardware (i.e., time required by synthesis and
place&route) is also much higher than for software.

2.3 hardware/software codesign on gpp/fpga platforms

Hardware/software codesign is a discipline that emerged in the early
1990s, in which system designers strategically partition an application
into hardware and software blocks that interact among them, in order
to improve at least one of the following metrics: time-to-market, per-
formance, or power/energy consumption. This is especially relevant
in embedded systems, where these metrics are usually considered de-
sign constraints, and solutions solely based on software or hardware
cannot always meet them. Markets are governed by increasingly se-
vere deadlines, and time-to-market frequently establishes the bound-
ary between success and failure. Hardware design on FPGAs pro-
vides differentiation but the development cycle involved is unaccept-
able in many market segments. Hardware/software codesign greatly
mitigates the effort of coding hardware by keeping most of the func-
tionality in software, and moving to hardware only computationally-
intensive kernels.

Despite codesign comprises any combination of hardware and soft-
ware components, we focus on systems where software is executed
on a hard-core general-purpose processor and hardware is imple-
mented on an FPGA. Figure 2.3 shows the design flow we follow
to develop efficient codesign solutions. First, the application is devel-
oped in software. Second, we profile the application in order to iden-
tify its hotspots (i.e., the most time-consuming tasks). These hotspots
are the candidates to be moved to hardware. Then, an iterative pro-
cess begins, where software developers and hardware designers must
carefully refine their functionality and interface in order to minimize
the communication overhead. Finally, once the metrics concerning
the design constraints are satisfactory, hardware and software are in-
tegrated and codesign flow ends.
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Figure 2.3: Hardware/software design flow on FPGAs

2.4 dynamic partial reconfiguration

Dynamic partial reconfiguration (DPR) is one of the most interesting
features of FPGAs. DPR enables the reuse of the FPGA hardware re-
sources for different tasks at run-time according to the system needs
[33, 53]. This process takes place without interfering with other parts
of the system, and therefore, FPGAs can be used to develop flexible
platforms that can adapt themselves to the execution of different ap-
plications.

DPR provides several advantages. First, swapping hardware accel-
erators in and out on demand reduces the required chip area. Second,
DPR leads to a reduction of power consumption. The reduction of re-
quired chip area allows for the use of smaller FPGAs, which are not
only cheaper but also less power-hungry. Partial reconfiguration also
helps to meet timing constraints, which is especially helpful in hard-
real time.

The reconfiguration latency varies linearly with the size of the con-
figuration bitstream. Partial reconfiguration enables the possibility to
reconfigure only predefined regions of the FPGA while the remaining
parts are unaltered. Thus, the bitstreams that configure the FPGA can
be smaller, reducing the reconfiguration overhead. The reconfigura-
tion latency also depends on other factors such as the reconfiguration
protocol, and the bandwidth to the memory where the configurations
are stored.

Figure 2.4 shows an FPGA where two reconfigurable regions (RRs)
are defined and four tasks are executed. Hardware to process tasks a
and c is allocated in RR1, and tasks b and d are allocated in RR2. The
capability of reconfiguring a RR without interfering the other one
allows time-multiplexing. This topic will be analyzed in Chapter 7

and Chapter 8.
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3
B O A R D G A M E S

Hardware acceleration plays a key role in those tasks that are computation-
ally demanding. The artificial intelligence of board games is an excellent
benchmark for the performance and energy efficiency analysis of this disser-
tation due to heavy workload involved in their execution and the parallel
nature of their algorithms. We introduce board games in this chapter, stress-
ing the importance of how the computations involved in the AI algorithms
are performed. Finally, we describe the three games selected for this purpose,
Reversi, Connect6, and Blokus Duo.

3.1 background

Board games attract the interest of the community, not only because
of their popularity but also because their complexity poses the chal-
lenge of developing computer players strong enough to beat the top
human players [26, 27]. Chess in the twentieth century, and Go at
present, constitute the major icons of this interest.

The first game mastered by a computer was noughts and crosses
(also known as tic-tac-toe) in 1952, when Alexander S. Douglas devel-
oped a video game that could play perfect games. Later in 1997, Lo-
gistello, developed by Michael Buro, won every game in a six-game
match against world champion Takeshi Murakami, adding the com-
plex game Othello to the list of games where humans are overcome
by computers. Also in 1997, one of the most memorable milestones
took place when the machine designed by IBM, Deep Blue, mastered
Chess by beating the world champion at that time, Gary Kasparov.
Chess is the most popular and deeply studied board game, and one
of the most complex games of those where the community put their
efforts. Recently in March 2016, the computer program developed by
DeepMind, AlphaGo, beat the world champion Lee Sedol in a five-
game match. It was the first time a computer Go program beat a
9-dan professional without handicaps [46]. This is the greatest mile-
stone in the board game AI research since Go is one of the most
complex board games (the number of positions is 10

100 times larger
than in chess). It was chosen by Science as one of the breakthrough of
the year runners-up on 22 December 2016 [21].

Most of the board games currently remain unsolved because the
number of possible states is far from being amenable with the cur-
rent computational power. The design of a computerized board game
player covers three different domains:

• Game states search

15
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• Game strategy

• Computation

The first domain addresses the exploration of future game states as
a consequence of making a movement. The game tree is a represen-
tation of sequences of player’s movements and opponent’s responses.
Search algorithms make emphasis on smart explorations, trying to
avoid non-relevant states in order to explore as many future move-
ments as possible. Making deep searches has a great importance since
the closer is the end of the game the more accurate are the movement
quality estimations. The techniques applied in this domain are orthog-
onal with the game, thus, their algorithms are reusable for any board
game.

The second domain involves many years of game study to reach a
deep understanding of the game in order to conceive concepts which
allows the game designers to reasonably estimate the quality of the
movements. The game of Chess is the epitome with a large set of
game concepts such as piece capturing, mobility, open lines, piece ac-
tivity, pawn structure, King’s role, and many more. Properly weight-
ing these concepts allows an AI engine to guide the search within
future movements towards the most promising one. Notice that this
design domain is game-dependent and therefore it needs to be de-
signed specifically for each game.

The third domain deals with the way the algorithms involved both
in game-strategy knowledge and game-states search are executed.
The main point here is data parallelism. The operations required to
compute movements in board games exhibit many sources of paral-
lelism, and therefore, a computation platform that efficiently exploits
this would be able to process a larger number of future movements.

3.2 artificial intelligence in board games

Several alternatives can be taken when designing the AI engine for a
board game. The most frequently found paradigm consists in the ex-
ploration of future movements and the estimation of the movements
expectation based on strategy concepts of the game. The exploration
of future movements takes knowledge from the classical tree-search
problem, found in many applications of the AI. Several algorithms
have been developed for this purpose, such as MiniMax [56], Nega-
Max [25], Negascout [10], SSS* [45] or B* [65]. We have selected the
MiniMax algorithm because it is widely used in board games applica-
tions, it is easy to implement both in software and hardware, and per-
forms well when combined with enhancements, such as alpha-beta
pruning or move ordering.

The MiniMax algorithm assumes that we will try to make our best
movement while the opponent also will, and therefore, we will try to
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maximize our expectation and the opponent will try to minimize it.
The procedure to select a movement is to explore future movements
in a depth-first fashion until terminal nodes are reached. A terminal
node is both a node where both players have no legal moves, or a
node where a preset depth is reached. Terminal nodes are evaluated
according to heuristics that estimate how promising looks the board
to win the game. Then, the scores are backpropagated in such a way
that even levels, which correspond to selections of our movements,
are propagated with the maximum score, and odd levels, which cor-
responds to opponent’s selections of movements, are propagated with
the minimum score.

Alpha-beta pruning is a strong enhancement for this algorithm
which avoids the exploration of nodes which are irrelevant. Figure 3.1
shows the operation of the MiniMax algorithm with alpha-beta prun-
ing on a small game tree. Nodes in red with dashed lines are those
ones not explored because of the alpha-beta pruning. For example,
the red node with score 7 is not explored because of the scores already
assigned of its parent nodes. Its parent node is already assigned with
a score of 9 and it is a max level, therefore, further explorations of
successors would lead to a score equal or higher than 9. Since the
grandparent node is already assigned with a score of 8 and it is a
min level, we can safely stop exploring that branch since it will not be
relevant for the search outcome.

The effectiveness of this technique depends on the order the move-
ments are explored. For an alpha-beta cutoff to occur, a good oppo-
nent’s response has to be explored. Hence, the sooner the best move-
ments are explored the higher the alpha-beta pruning efficiency. Be-
ing Obd the baseline (i.e., no alpha-beta is applied), where b is the
branch factor, and d is the exploration depth, a random move order-
ing reduces this to O3/4bd, and an - unfeasible - perfect move ordering
reduces the number of nodes explored to Obd/2.

Move ordering can be achieved both relying on game knowledge,
and on information inferred during the search. In the former, a deep
understanding of the game strategy sets those movements which are
likely to be better. In the latter, search is divided into incremental
sub-searches in order to get movement quality estimations to be used
in the subsequent deeper search. This algorithm is known as depth-
first iterative deepening (DFID) [37]. Given a budget for the search,
defined either by a preset maximum depth or a timeout, searches of
increasing depth are performed. A search of depth d benefits from
the outcome of the previous search of depth d-1. This algorithm in-
troduces an overhead as a result of the repeated work that deeper
searches already did in previous searches. This overhead, which de-
pends on the branch factor b and the depth d, is shown in Equation 3.1.
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Figure 3.1: Minimax with alpha-beta pruning algorithm

This overhead is not only small but also reduces the effective branch
factor of deeper searches, improving the overall performance.

overheadDFID =
db + (d− 1)b2 + . . . + 3bd−2 + 2bd−1

bd (3.1)

There are other alternatives that follow other approaches, such as
Monte-Carlo tree search (MCTS), where the selection of the move-
ments relies on statistics, or machine learning, where the AI is trained
from games played between top human players in order to learn how
to select good movements. Monte Carlo makes a non-deterministic
exploration based on playouts. A playout consists in a sequence of
random movements from a given board until the end of the game is
reached. Evaluation is always fully accurate in this algorithm since
the end of game is always reached.

Machine learning has burst into board games in the last years al-
lowing the AI designers to replace years of game study with emerged
knowledge [20, 60, 82]. AlphaGo represents so far the most remark-
able success beating the top human players; Go programs, before Al-
phaGo appeared on the scene, were able to beat only amateurs. We be-
lieve that machine learning algorithms are good candidates for hard-
ware acceleration, and we will like to explore that in future works.

3.3 computation in board games

Mastering complex games such as Chess or Go relied not only on
state-of-the-art algorithms but also on very powerful platforms capa-
ble of running their artificial intelligence engine extremely fast. Deep
Blue was a supercomputer specifically designed to play chess, where
900 CPUs and 480 chess-specific hardware accelerators were the key
to enhance its play strength [29]. AlphaGo was ran on the Google
cloud platform when beat the world champion, distributing its exe-
cution on 1,920 CPUs and 280 GPUs [5]. The reason to allocate such
computational power is that both the search into the game tree and
the board processing exhibit a great parallelism, and exploiting it can
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increase the number of positions explored per unit of time by sev-
eral orders of magnitude. It is clear that hardware plays a crucial role
to increase the play strength, however, moving these applications to
the market makes it necessary to fit them to the hardware available
in users’ machines. Applications developed for desktop computers
usually satisfy most users, but the question is: Are the solutions di-
rectly applicable to mobile devices? The fact is that there is a big gap
between the strength of the board game applications developed for
desktop computers, and those developed for mobile devices. At first
glance, it might be thought that mobile processors do not provide
enough performance. However, current SoCs developed for mobile
devices include up to eight powerful out-of-order 64-bit cores run-
ning up to more than 2 GHz, providing a lot of computational power,
which is more than enough to execute a strong board game player.
The actual limit is the power budget. SoCs for mobile devices provide
high peak performance, but running a computationally-intensive ap-
plication drains the battery very fast, worsening the user experience.

A key to achieve gains in performance while keeping or even reduc-
ing the power budget is to use application-specific hardware. The ac-
celerators included in Deep Blue were ASICs. ASICs provide the best
performance and energy efficiency balance, but they also involves
large development cycles and in most cases unaffordable costs [28].
The flexibility and low cost of programmable logic solves this draw-
back. Several works have described implementations of board games
in FPGAs. Wong et al. [70] presented an implementation of the Reversi
game. Their design reached a 3.67 speedup over an equivalent soft-
ware running on a high-end processor. Other games like Connect6,
Blokus, and Go have also been implemented by the FPGA developer’s
community. The works presented in [35, 58, 69, 80] detail FPGA-based
implementations of these games and comparisons with software, re-
porting speedups of one or even two orders of magnitude. All these
previous works focused on performance, but energy is crucial in mo-
bile devices. A previous work was published in 2014 where not only
performance but also energy was evaluated. Olivito et al. elaborated
a comprehensive comparison of hardware and software implementa-
tions of Reversi in terms of performance and power, and pointed out
that the hardware implementation on a low-cost FPGA was able to
perform 25 times faster while consuming 400 times less power than
the software implementation running on a high-end processor [51].

In the light of these results, it is clear that FPGAs outperform
general-purpose processors both in performance and power in these
games. However, the development of a board game application purely
in hardware involves a much larger development cycle than in soft-
ware, far from the demands of the industry.

Hardware/software codesign on hybrid CPU/FPGA platforms com-
bines the flexibility and short development cycles of software design
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with the higher performance and lower power consumption of FP-
GAs. Early codesigns were based on systems where the CPU and the
FPGA were in different chips, communicated through a system bus.

One of the first applications of codesign to accelerate board games
was published in 2002 [9]. This study presents a Chess player in which
the move generation was accelerated by an FPGA and the remain-
ing tasks of the AI were executed on a processor. In 2004, another
successful use of processors and FPGAs to accelerate a Chess pro-
gram was presented in [18]. Brutus was one of the strongest chess
programs at that time and one of its key design strategies was to
split the tree search into software and hardware. In these previous
approaches, the CPU/FPGA communication overhead was a limiting
factor both for the granularity and the speedups obtained by the tasks
moved to hardware. The new heterogeneous SoCs, which integrate
processors and FPGAs in the same chip, take weight off this issue.
Moreover, manufacturers provide codesign environments with tools
that automatically generate bus interfaces. Hence, communications
are not only more efficient but also easier to manage. Some previ-
ous codesign works for board games on these new platforms have
been developed [36, 50, 57, 64]. The common idea in these works is
to delegate board processing to the hardware while commanding the
search in software. This strategy leads to great speedups and energy
consumption savings with a small development effort overhead.

3.4 reversi

Reversi (aka Othello) is a strategy board game for two players. Game
unfolds on a 8×8 board placing discs which are colored black on one
side and white on the opposite side. Each player shall be assigned to
play a color, and the goal is to finish the game with more discs placed
on the board than the opponent.

The game begins with blacks making a legal move. A legal move
consists in placing a disc on an empty square in such a way that
at least one opponent’s discs is outflanked. Play then alternates be-
tween black and white. When a player has no legal moves, he forfeits
his turn and the opponent plays again. Players are not allowed to vol-
untarily forfeit their turns. The game ends when both players have
no legal moves. Therefore, it is possible to end a game before all the
64 squares are filled.

Reversi is a complex game which remains unsolved for the stan-
dard board size of 8x8 (the game tree is estimated to have 10

58 nodes
[1]). Hence, the design of a perfect player is unfeasible and it must rely
on evaluation heuristics and search techniques which cannot guaran-
tee that the best movement is selected.

It is a popular game thoroughly studied over the years, giving room
to several concepts which make reasonable estimations about which



3.5 connect6 21

X

X

X

X

X

Score = ω1(∑X-∑X)+ω2(∑ -∑ )

X

X

X

X X X

Figure 3.2: Evaluation metrics for Reversi

player is more likely to win the game. We selected two powerful con-
cepts to evaluate boards in our design: mobility and stable discs.

Mobility measures the number of legal moves of each player. It
is a crucial concept because a reduced mobility usually forces the
player to make undesirable moves. Thus, looking for movements that
maximize our mobility while minimizing the opponent’s one makes
it more likely to be in a better shape.

Sable discs are those ones that, once placed, they cannot be flipped
anymore. Discs placed on the corners are always stable because there
is no way to outflank them in any direction. Once a player has got a
corner, he can turn more discs into stables. Since the goal of the game
is to end the game with more discs than the opponent, having discs
that definitely contribute to the final score is usually desirable.

Figure 3.2 illustrates the evaluation based on this two concepts on
an example board. On the left, the board is evaluated for the white
player, which has a mobility of 5 and 6 stable discs. On the right, the
same board is evaluated for the black player, which has a mobility of
6 and 8 stable discs. The evaluation function computes the weighted
difference for each metric.

3.5 connect6

Connect-6 is a board game that was introduced in 2003 by Professor
I-Chen Wu. This game belongs to the family k-in-a-row games. The
game unfolds on a 19×19 board between two players, black and white,
each one playing with stones of the corresponding color, which are
placed on the intersections. Blacks moves first, placing only one black
stone on an intersection. Subsequently, white and black take turns,
placing two stones on two different unoccupied intersections each
turn. The first player that gets six or more stones of his color in a row
(horizontally, vertically, or diagonally) wins.
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The complexity of this game is huge due to size of the board and
the relaxed rule for making legal moves. The game-tree complexity
of Connect(19,19,6,2,1) is estimated in 10

140nodes [78].
The key strategy concept in this game is the idea of threat. Threats

are game positions which allow the opponent to win the game in a
single movement if not defended, i.e., any combination of six contigu-
ous squares, in any direction, with four stones of the same color and
two empty squares, or five stones of the same color and one empty
square. The extension of this concept to positions where a player may
win the game not only in a single movement, but also in two or three,
enables to identify not only immediate risks but also future risks. To
this end, we name threat-k six contiguous squares, in any direction,
which contain k stones of the same color and the remaining squares
are empty.

Threats are valuable both for board evaluation and move gener-
ation. For the purpose of evaluating boards, we consider three cat-
egories: threats-4 (t4s), threats-3 (t3s), and threats-2 (t2s). Category t4
includes also threats-5 (t5s), since they have the same value because a
single stone is sufficient to defend the threat in both cases. Figure 3.3
illustrates the board evaluation based on threats: threats-k created by
the black player are marked on the left (t4s in read, t3s in orange, and
t2s in yellow), and threats-k created by the white player are marked
on the right (t4s in dark blue, t3s in light blue, and t2s in green). The
relative importance of each category was tuned empirically accord-
ing to the performance against other Connect6 applications. For the
purpose of generating movements, we also consider threats-1 (t1s) be-
cause there are situations, especially in the early game, where players
do not have any other threat category. Making movements only in
threat positions reduces drastically the search space by preventing
the exploration of poor movements.

Figure 3.4 depicts this search space reduction on two boards, mark-
ing in black those intersections that are explored because they belong
a threat-k, and marking in gray those intersections that are not ex-
plored. In the board on the left t1s are explored because the black
player does not have any other threat of higher category. In the board
on the right only t2s and higher are explored.

3.6 blokus duo

Blokus is an abstract strategy board game for two to four players,
invented by Bernard Tavitian and first released in 2000, and played
on a 20×20 board. Blokus Duo is a variant of Blokus designed for
only two players and played on a smaller 14×14 board. This game
is becoming increasingly popular because its rules are simple and
games become fast and dynamic.
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Score = ω1(∑ -∑ )+ω2(∑ -∑ )+ω3(∑ -∑ )

Figure 3.3: Evaluation metrics for Connect6

Figure 3.4: Search space cutoff based on threats in Connect6

Each player has a set of 21 different-shaped tiles, and can place
them with eight different rotations. Figure 3.5 shows an example
board and the remaining tiles for each player. The game begins with
blue placing any tile, in any rotation, in such a way that the square
[E,10] is occupied. Then, green must place any tile, in any rotation, oc-
cupying [J,5]. Thereafter, players have to place tiles in empty squares,
sharing at least one corner with another tile of the same color already
placed in the board (corner-to-corner rule), and not sharing any edge
with any other tile of the same color (edge-to-edge rule). Each player
places one tile at one time, and the game continues until neither of
them can place tiles anymore. When the game finishes, the player that
has occupied more squares wins the game.

The underlying strategy should prevent the opponent from placing
tiles, especially the largest ones, while enabling us placing as many
tiles as possible. A good metric that guides towards this objective is ac-
cessibility, which quantifies the number of squares that are potentially
reachable in a given board. A square is reachable if can be occupied
by means of a legal move. A player with higher accessibility than the
opponent during the game has more chances to win the game. Fig-
ure 3.6 marks in light blue the blue player’s accessibility for the game
status presented in Figure 3.5, and in light green the green player’s
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Figure 3.5: Blokus Duo game: board and remaining tiles

Score = ω1(∑X-∑X)+ω2(∑ -∑ )

Figure 3.6: Evaluation metrics for Blokus Duo

accessibility. Boards are evaluated computing the weighted difference
for both metrics, accessibility and occupied squares.

Accessibility can be also used to reduce the search space by explor-
ing only movements in areas in dispute with the opponent. Placing
tiles in these areas should have higher priority since they are not safe
from being captured in the next opponent’s movement. We define
overlapping map as the union of the opponent’s accessibility map and
adjacent squares to his tile edges. We define overlapping factor as the
number of squares of a legal move that are contained in the overlap-
ping map, and finally, we define overlapping threshold as the minimum
overlapping factor required to explore the legal move under consid-
eration. Figure 3.7 illustrates the blue player’s overlapping map, and
two different legal moves, one that has an overlapping factor of 5, and
another one that does not overlaps at all. The threshold varies along
the game as shown in the same figure. This setup was tuned empir-
ically following the same methodology than the previously exposed
for determining the weights used in the evaluation function.
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Figure 3.7: Search space cutoff based on accessibility in Blokus Duo
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4
I N T R O D U C T I O N

This chapter describes the framework where the hardware designs presented
in this dissertation were developed, and the methodology that was followed
in accordance to that framework.

4.1 framework

The IEEE International Conference on Field-Programmable Technol-
ogy [31] organizes each year a hardware design competition on FP-
GAs. The topic selected by the conference committee is board games:
Sudoku in 2009, Reversi in 2010, Connect6 in 2011-2012, Blokus Duo
in 2013-2014, and Traxx in 2015-2016. The designs presented in Chap-
ter 5 were developed in order to participate in this competition. The
fact that the competition details (board game, rules, and communica-
tion protocol) are disclosed a few months before the submission dead-
line conditions the workflow. It is a tight deadline to learn about each
specific game, test strategies, and develop and validate the hardware
design. Following the competition rules, the designs do not make
any use of general-purpose processors, neither hard nor soft cores,
and therefore they fully rely on custom hardware modules. These
designs were subsequently optimized, analyzed in terms of perfor-
mance, power and energy efficiency, and compared with algorithmi-
cally equivalent software applications.

4.2 methodology

We split the work in pre-competition, where the time budget is very
tight and the priority is to have a competing and validated hardware
design, and post-competition, where further work such as adding
new features, optimizing the hardware and software solutions, or tak-
ing measures is done.

4.2.1 Pre-competition

Our workflow to develop the hardware designs for the competitions
was as follows:

1. Design of the AI engine

The AI of all our designs is based on the exploration of move-
ments in advance, and on the evaluation of boards according
to a quantification of game strategy concepts. We opted for

29
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the well-known minimax with alpha-beta prune to explore the
game tree because is one of the most used search algorithms
for board games and it is easy to implement. In order to design
the board evaluation function, we got insight about the strategy
of each game to pick some concepts easily amenable of being
turned into metrics.

2. Development of a preliminary software version to test, explore,
and adjust the strategy

Making tests in hardware is much more time-consuming than
in software. Therefore, it is worthy to develop a software appli-
cation as a test bench to evaluate the quality of a given strat-
egy, and explore other alternatives, by playing against different
opponents: those supplied by the competition committee, and
other stronger open source players. This software application
was also very helpful to debug the hardware designs.

3. Development of the hardware design

Those modules which are not strategy-dependent, such as the
board generator, or the I/O, were developed in parallel with
the preliminary software. Once we got a satisfactory strategy,
we also designed its corresponding hardware modules.

4. Performance optimization and test

The design must be tested in order to guarantee that it always
provide valid moves, otherwise it would immediately loss the
game. Testing an application that processes millions of board
games per second was a challenging task. We carried out ex-
tensive simulations, but the simulation of a complete game was
not feasible. Instead, we included in our hardware designs some
specific support to store a trace and then compared the results
with an equivalent software version. This methodology helped
us to identify divergences between the hardware and the soft-
ware version.

In parallel with the testing process, we continued analyzing
the games and our implementations in order to improve the
strength of our strategy and accelerate its computation.

4.2.2 Post-competition

The analysis of the performance and energy of hardware and soft-
ware solutions demands additional work on both the software and
hardware developed for the competitions, namely:

1. Completion and optimization of the software developed before
the competition
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The purpose of the preliminary software developed before the
competitions was to test and compare strategies as fast as pos-
sible, and therefore these applications were not fully optimized.
In addition, some functionalities were only developed in hard-
ware due to the severe deadline. Since a fair hardware/software
comparative requires exactly the same functionality, we adapted
our software in order to be algorithmically equivalent to the
hardware designs.

2. Optimization of the hardware design

The hardware designs which competed had much room for op-
timization in terms of performance, by better exploiting par-
allelism, and resources utilization. These optimizations have a
remarkable impact in the energy efficiency of the design.

3. Data collection

Data collection for performance measurements in software de-
signs was obtained by profiling with third-party applications
and also by adding little instrumentation. Regarding the hard-
ware designs, data was collected by adding custom hardware
counters and the required I/O to get the values.

Power consumption was measured with a Yokogawa WT210

digital power meter.





5
C A S E S T U D I E S : R E V E R S I , C O N N E C T 6 , A N D
B L O K U S D U O

This chapter introduces the hardware designs that were presented to the
design competition organized annually by the International Conference on
Field-Programmable Technology. These designs participated in the editions
celebrated in 2010, 2012, and 2014. They demonstrated to be competitive,
as they were awarded with the first prize in 2010 and 2014, and with the
second prize in 2012.

5.1 case study i : fpga reversi player

5.1.1 Design architecture

In accordance with the AI engine paradigm introduced in Section 3.2,
our designs comprise three main modules: Board generator, board
evaluator, and search controller. In the Reversi game, the board gen-
erator consists of a module that identifies all the legal moves in a
board (move checker), a module that computes the new board af-
ter making a legal move (disc flipper), and a module responsible for
determining the order in which legal moves are explored (move selec-
tor). Board evaluator includes the module that computes the metric
stable discs, and the arithmetic support to process the evaluation func-
tion. Minimax control includes the storage resources for the boards of
the branch under exploration, and the hardware to guide the search.
This architecture is depicted in Figure 5.1, and below the most rele-
vant submodules are described.

1. Move checker

Finding out whether a square corresponds to a legal move re-
quires to check any flip pattern in each direction (N, E, S, W,
NE, SE, SW, NW). This task exhibits a great degree of data par-
allelism as hundreds of patterns must be checked, and a hard-
ware module can seamlessly exploit this parallelism since it is
able to check all the patterns for all the squares at the same
time. Figure 5.2 points out in red the legal moves for the white
player in that example board and the hardware cell that checks
all the patterns of a square in parallel. Each move checker con-
sists of 60 cells like the one shown in the figure (the board has
64 squares but the game begins with four squares in the cen-
ter, and then they cannot be legal moves). Each cell was cus-
tomized to use only the minimum required resources, since the
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Figure 5.1: Design architecture of the FPGA Reversi player
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Figure 5.2: Move checker cell

patterns to check are different for each cell of the board. For
instance, the cell corresponding to upper-left corner only looks
for patterns in the S, E and SE directions. These cells are fully
combinational, thus, they identify the legal moves in just one
clock cycle. Since mobility is one the board evaluation metrics,
our design includes two move checkers in order to compute in
parallel this metric both for black and white players.

2. Disc Flipper

This module returns the new board after making a legal move.
It is implemented as an iterative network composed by 64 cells,
one per each board square. This network works as follows:

(1) The cell corresponding to the selected movement begins the
pattern propagation to its neighbors in every direction.

(2) Each cell propagates a new pattern in each direction based
on the content of its square and its input pattern.

(3) If a cell identifies a flip pattern, it stops propagating the pat-
tern and returns a flip signal in the opposite direction. Every
cell that receives this signal turns its color and keeps propagat-
ing this signal until it arrives to the initial cell.

Figure 5.3 shows a simplified example of the operation of this
network with four squares in one direction. A white disc is
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Figure 5.3: Section of the disc flipper iterative network

placed in the cell marked with an ‘x’. This cell begins the pat-
tern propagation by sending the corresponding pattern to its
neighbor (a white disc, i.e., a white disc has been found so far).
The next cell propagates a new pattern according to its input
pattern and the content of its square (a white disc followed by
at least one black disc). The third cell propagates the same pat-
tern. The fourth cell finds another white discs that completes
a flip pattern, so it returns a flip signal in the opposite direc-
tion that is propagated until the starting cell is reached. All the
intermediate cells that receive this signal flip their discs.

As the previous module, this module is fully combinational, up-
dating the board in one clock cycle.

3. Stable checker

This module identifies the stable discs of a board. A disc is sta-
ble if there is no way for the opponent to outflank it, and there-
fore it will definitely contribute to the player score. A discs is
stable if at least one of its neighbors in any direction (horizontal,
vertical, diagonal, reverse diagonal) are stable. This is formally
defined in Equation 5.1, where Si,j means that the square located
in row i and column j is stable.

Si,j i f
(
Si,j−1 ∨ Si,j+1

)
∧
(
Si−1,j ∨ Si+1,j

)
∧
(
Si−1,j+1 ∨ Si+1,j−1

)
∧
(
Si−1,j−1 ∨ Si+1,j+1

)
(5.1)

We designed this module as an iterative network. However, as
mapping this mutually recursive definition into a purely combi-
national hardware module generates combinational loops that
seriously downgrade the performance, we added a flip-flop in
each inner cell, in such a way that computation is sequentilized
in layers. This network works as follows:
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Figure 5.4: Stable discs checker

(1) In the first cycle, the combinational logic for the border
squares determines which ones of them contain stable discs.

(2) In the following cycles, the intermediate results are prop-
agated in a round-trip fashion until the results converge, i.e.,
none of the cells output changes with respect to the output in
the previous clock cycle.

Figure 5.4 shows the architecture of the network of this module.
The module on the right identifies stable discs on the bound-
aries. Corners are stable once they are occupied (their posi-
tion prevent them from being outflanked), and the remaining
squares just have to check patterns based on which squares on
the boundaries are occupied. These results are propagated to
the inner cells of the network (Latched cells). These cells imple-
ment the definition presented in Equation 5.1 with an OR/AND
gate network, a flip-flop (FF) to store temporal outputs, and a
comparator (=) to check when the output becomes stable. This
network takes a variable number of cycles to converge, from 1

to 5.

5.2 case study ii : fpga connect6 player

5.2.1 Design architecture

Figure 5.5 shows the architecture for the Connect6 player. The core
of this design is the threat identification, which is performed by the
module Threats finder. Threats are used both to generate new po-
sitions (Board generator) and to evaluate boards (Board evaluator).
The board generator also includes a filter to discard threat positions
that are likely to have small expectation (Relevance zone filter), and a



5.2 case study ii : fpga connect6 player 37

�����

������	�� ������

�����	


����

������

�������

������

�����

���	���

����

��������

����

������

���������

���� ������

�����

������	��

�� �

���������

Figure 5.5: Design architecture of the FPGA Connect6 player

move selector that smartly combines threat positions in pairs to gen-
erate legal moves. The search controller is similar to the Reversi game.
Below the most relevant modules are described.

1. Threats finder

As explained in Chapter 3, we call threat-k six contiguous squares,
in any direction, which contain k stones of the same color and
the remaining squares are empty. Threats are involved both in
move generation and board evaluation. On one hand, only po-
sitions belonging a threat are considered relevant in order to
generate moves; on the other hand, threats-k is the only metric
the board evaluation is based on. The identification of threats re-
quires to analyze every row, column, and diagonal composed by
at least six squares. We name each of them section, and we name
window every possible combination of six contiguous squares
within a section. Each section is analyzed following the algo-
rithm detailed in [71]. This algorithm presents a data depen-
dence since t4s have to be identified prior to t3s, and t3s prior
to t2s. Figure 5.7 show a trace of the steps that the algorithm
follows to find the threats: We first look for t4s and we find
three windows that satisfy its definition; we select the leftmost
one and place a mark in its rightmost empty square. We have
identified one t4 so far, and the subsequent analysis reports one
window with a t4. We mark it and the subsequent analysis does
not find any t4 anymore. The next analysis follows the same
process looking for t3s, and finally the latest analysis will look
for t2s.

The module that performs this computation is shown in Fig-
ure 5.6. Threat finder consists of n section processors to analyze
in parallel all the sections in the board, three tree adders which
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Figure 5.6: Threat finder architecture

add the threat count of each section and threat category, and a
position translator which translates relative positions within a
section into absolute positions. This module requires one clock
cycle to find each threat-k within a section due to the data depen-
dence of the algorithm that identifies threats. Hence, the num-
ber of cycles required to analyze a board is determined by the
section with the largest number of threats-k.
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(a) Relevant windows
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Figure 5.7: Threats identification process
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Figure 5.8: Relevance zone filter

2. Relevance zone filter

Considering only threats-k to generate movements is the core
strategy to smartly reduce the exploration search space, but
even so it remains large. We added a second screen that dis-
cards any threat-k position which is far from the action zone. We
define action zone as those squares that have a stone at distance
1 or 2 in any direction. Figure 5.8 illustrates this screening on
a toy board, and the architecture of the module that performs
this screen. In this example, the white player has four t2s for
a total of 16 positions to analyze, and the relevance zone filter
discards 7 of that 16 positions. The module that computes the
relevance zone stores the exploration matrix of each level of the
game tree in BlockRAMs. After a movement, the module matrix
updater is responsible for both copying the matrix from level n
to level n+1, and marking as explorable those squares affected
by that movement.

3. Move selector

Both players place two stones in each movement, except the first
movement of the player who begins the game. We have seen that
the identification of the positions belonging a threat introduces
an initial and strong layer of intelligence, but exploring any com-
bination of those threats positions generates many meaningless
movements. Figure 5.9 depicts the scheme designed to select
those movements to be considered from all the possible com-
binations of threat positions, and the priority assigned to each
combination. The suffix h (from hero) in the categories refers to
those threats belonging the player who is moving, and the suffix
o (from opponent) refers to the player waiting for his turn. The
hardware module consists of a set of FIFOs, one per category
and player, that feed from Threat finder, and a finite state ma-
chine (FSM) that commands the extraction of threat positions
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(b) Move selector architecture

Figure 5.9: Move generation scheme and move selector architecture

from the FIFOs in order to generate movements according to
the categories presented in the scheme.

The scheme first checks whether the player who is moving has
any real threat (i.e., t4 or t5). If so, it selects a movement that
turns the real threat into six-in-a-row. Otherwise, the priority is
to defend from real threats, as any real threat not defended will
cause an immediate defeat. Note that just one stone is sufficient
to defend any threat-k, so the game will follow as long as the
number of threats to defend is less or equal to 2. Then, the of-
fensive movements are assigned with higher priority, exploring
first movements that upgrade potential threats (i.e., t3s, t2s, and
t1s, in this order). All the categories make up the movement by
defending or upgrading two different threats, except t2h, where
the two stones are placed in the same threat in order to upgrade
from a t2 to a t4. Note that this makes no sense on t3 since a t5
does not add any value regarding a t4.

In addition, we limited the number of movements to be consid-
ered up to 200. The reason is that, when there are no real threats
involved, the number of combinations is usually too large, lead-
ing to shallow searches. Since the promising moves are explored
first, the moves that are discarded beyond this limit are likely
to have small expectation, and therefore they can be safely ig-
nored.
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Figure 5.10: Design architecture of the Blokus Duo FPGA player

5.3 case study iii : fpga blokus duo player

5.3.1 Design architecture

The design for this game follows the same approach than the previous
case studies. The core of the design is the metric accessibility, i.e. the
number of squares that are accessible for each player, and, in this
case, the search controller includes a moves memory for the first four
levels of the game tree in order to increase the prune efficiency. This
architecture is depicted in Figure 5.10, and below the most relevant
modules are described.

1. Tile placer

Unlike the other two case studies, pieces in Blokus are not di-
mensionless. This fact adds some complexity to the modules
which operates on the board, and opens the range of design de-
cisions. Regarding the board, the straightforward approach is
to code which squares are occupied by each player, and which
ones are empty. However, we decided to also encode which
squares are forbidden for each player, given the edge-to-edge
restriction, because it simplifies other more complex modules
involved in board processing. We also decided to keep two dif-
ferent board codifications, one that stores which squares are
available for each player (boarda), and another one that stores
which player is occupying each square (boardv). The first cod-
ification supplies the information to compute the accessibility
with the optimal codification, whereas the second one provides
information necessary to find the vertices.

Regarding the tiles, we defined each combination of tile and ro-
tation as an array of horizontal and vertical offsets with respect
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Figure 5.11: Tile placer

to its center (assigned in the game specifications). Additionally,
each definition also includes the offsets of the squares that be-
come forbidden once the tile is placed in order to simplify the
hardware that updates the board after a movement. Figure 5.11

exemplifies this codification and shows the architecture of the
module that codifies the board after making a movement. Board
updater reads the tile definition, the coordinates of the square
where the tile center is placed, and the boards aforementioned,
and computes the new state of those squares affected.

2. Processing window

Board processing, both for move generation and board evalua-
tion is based on analysis from vertices, and the squares that are
reachable from a vertex are determined by the shape of the tiles,
giving rise to a shape like the one shown in Figure 5.12. We
designed this module to feed those modules that perform any
analysis from a vertex. Each cell of this module is composed
by an adder that calculates the board coordinates of its corre-
sponding square, and a multiplexer that selects the content of
that square from the board, and a NOT gate. Our design in-
cludes two instances of Processing window, one designed specif-
ically per each player. With the encoding shown in the figure,
each instance has to check only one bit: a square is accessible
for hero if it is free or it is forbidden for opponent, i.e., the most
significant bit is zero, and a square is accessible for opponent if
it is free or it is forbidden for hero, i.e., the least significant bit
is zero.

3. Move finder

Legal moves are found following two sequential steps:

(1) Identification of available squares that share at least one cor-
ner with a placed tile. A square is available if both the square
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Figure 5.12: Processing window

is free, and it does not cause any edge-to-edge contact with an
already placed tile of the same color.

(2) Verification of the availability of the remaining squares that
would occupy the new tile.

There are 21 different tiles, 8 possible rotations for each tile,
and several possibilities where to place the tile center to cause
corner-to-corner contact. The combination of this three param-
eters leads to hundreds of potential legal movements, however,
given the tiles symmetries and the edge-to-edge restriction, the
maximum number of legal movements from a given a vertex
is 127. We designed Move finder to be capable of analyzing in
parallel all these possibilities. The architecture of this module is
depicted in Figure 5.13.

Vertices Manager is responsible for identifying all the vertices in a
board and returning the next one to be processed (Figure 5.14).
In this module, Vertices map identifies in parallel all the valid
vertices and its type through 169 vertex detectors, and then Vertex
selector selects one of them given a preset order. We call vertex
any intersection of four squares, and we define its type as 0, 1,
2 or 3 depending on which one of the four squares contains the
piece of tile that originates a vertex.

Once a vertex has been selected, Move checker analyzes any of
the 127 aforementioned {tile, rotation, center} combinations. This
process requires to check whether those squares that would be
occupied by the movement are available. Figure 5.15 details the
architecture of this module. It includes one checker for each ver-
tex type, each one analyzes 127 potential legal moves. Checkers
for v3u00 (vertex type 3, tile u, rotation 0, position 0) and v3u01
are illustrated as an example.

Move selector is responsible for applying move filters and select-
ing the next move to be analyzed. Our design applies two filters
in order to skip movements that are likely to have poor expec-
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Figure 5.13: Move finder
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Figure 5.14: Vertices manager

tation. First, a size filter that masks movements of small tiles in
the early game, and second, an overlapping filter that discards
those movements that do not fight for areas in dispute. This fil-
ter checks how many pieces of the analyzed tile overlaps with
the accessibility map of the opponent, and discards those move-
ments whose overlapping factor is below the current overlap-
ping threshold (unless there were no movements satisfying the
overlapping threshold). These filters reduce the search space on
early game by a factor of 2.4. Figure 5.16 shows the architecture
of this module.

Finally, the movement selected from the movements vector is
translated into {center position, tile, rotation} by means of a
translation table.

4. Accessibility

The squares that are accessible for a player are those ones oc-
cupied by all his legal moves. An implementation that bene-
fits from hardware reusing would be to leverage the module
described previously that finds legal moves and adding little
support that would make it possible to compose the accessibil-
ity maps. However, this method would require as many cycles
as legal moves are in the board under analysis, slowing down
the board evaluation. For this reason, we designed a specific
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Figure 5.15: Move checker
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Figure 5.16: Move selector

module that accelerates the computation of this map. The un-
derlying idea is to identify any pattern that qualifies a square
as accessible. Consider the toy board represented in Figure 5.18:
square labeled as d5 is reachable if at least one the three move-
ments illustrated is available. For example, the first movement
is available if tile K has not been already placed, and squares
a2, b3, c4 and d5 are available. In this example, just three pat-
terns turns the square into accessible, but, the closer the square
is to the vertex, the more patterns have to be verified. As a re-
sult, the analysis of the accessibility from a vertex checks up to
459 patterns. The module Vertex processor shown in Figure 5.17

analyzes all these patterns in parallel.

The accessibility evaluator shown in Figure 5.19 implements
two evaluation units that traverses the board in opposite direc-
tions. Each evaluation unit identifies those squares that are ac-
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Figure 5.17: Vertex processor
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Figure 5.18: Patterns that qualify d5 as accessible
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Figure 5.19: Accessibility evaluator

cessible from the vertices assigned to the unit, and the union of
both partial maps give as a result the accessibility map. Finally,
a tree adder calculates the accessibility from the map. Each eval-
uation units takes one clock cycle per analyzed vertex.

5. Moves memory

In Chapter 3, we discussed the benefits of a good move order-
ing. Exploring first those movements with good expectation in-
creases the prune efficiency, and therefore deeper searches are
reached within a given time budget. The iterative deepening
implemented in our search engine, which provides move order-
ing based on incremental searches, requires support to store the
sequence of movements according to that ordering. The design
of the moves memory is strongly linked to the branch factor of
the game, the average search depth, and the memory resources
available. Given the values of these parameters for our Blokus
implementation, it is possible to store the whole ordered se-
quence of movements for the first two tree levels, and a partial
order for levels 3 and 4. Support for deeper levels would exceed
the on-chip memory resources.

L1 and L2 memories are implementations of the well-known
bubble sort algorithm (Figure 5.20a). We chose this algorithm
due to its simplicity and because node ordering is fully over-
lapped with other computations. L1 consists of two memories
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Memory Method Hits (%) Collisions (%) Size (entries) Cutoff (%)

L1 Bubble 100.0 - 512 88.0

L2 Bubble 100.0 - 65,536 93.3

L3 Hash 83.5 2.0 16,384 94.2

L4 Hash 81.6 2.7 65,536 94.4

Table 5.1: Moves memory parameters

in order to be capable of supplying the sorting of the last search
and storing the new sorting of the deeper search. This memory
creates indices for each L1 node in the first search as references
to their L2 successors. Alpha-beta prune is disabled in this ini-
tial search to get more accurate scores. L2 is a simplified version
with just one memory as nodes of level two are not reordered
in deeper searches.

L3 and L4 are hash-based memories that only stores the best
scored successor for each one of the upper level nodes. Each
memory entry stores the move chain from the root to the leaf.
This piece of data is necessary to check the validity of the move-
ment supplied by the hash memory, since entries are replaced
on collisions. Figure 5.20b illustrates the operation of this mem-
ory. A toy game tree is shown labeling its nodes with the move-
ments explored (notation is [x, y, tile, rotation]). Minimax search
found that the most promising movement in level 3 was 4bs3
(node colored in green). It will be stored in the L3 memory in
an address determined by a hash function taken from the JAVA
library. On the next deeper search, the hash memory will be
asked when exploring the move sequence 5at7, 38f0, and it will
return 4bs3, which was the movement stored in the previous
shallower search.

Table 5.1 summarizes the main parameters and some perfor-
mance metrics of each moves memory. Results show that hash-
based memories offer high hit rates and low collisions rate de-
spite its small size. The last column shows the reduction in
the number of successors to be explored taking as baseline the
search space of a minimax with alpha-beta pruning and no
move ordering. The effect of move ordering gets smaller as
performed in deeper levels since the resulting cutoffs are per-
formed on smaller subtrees.

5.4 experimental results

We evaluated both performance and energy efficiency of the hard-
ware designs and the functionally equivalent software versions. Due
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ories for levels 1 and
2
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(b) Hash-based memories for levels 3 and 4

Figure 5.20: Moves memories

to the fact that the designs of the three case studies were devel-
oped along several years, the target platforms where they were im-
plemented and analyzed may differ in each case study. We decided
to port all the hardware and software designs to the recent Zynq SoC.
Evaluations on this platform make software and hardware compar-
isons more fair because differences due to the fabrication process are
removed (both the ARM processor and the programmable logic fabric
are built under 28nm technology in the same chip), and because it is
a real target platform that might be the core of future mobile devices.
Table 5.2 summarizes the specifications of the target platforms where
the hardware designs were implemented, and Table 5.3 summarizes
the specifications of the platforms where the software versions were
executed. Frequency on programmable logic platforms is not speci-
fied because it depends on the design.

Performance evaluation of hardware designs was performed with
a minimal instrumentation; adding some counters and small memo-
ries allows data collection for measures of both overall and task-level
performance. This instrumentation has null impact on performance
and negligible impact on power. In the case of the software versions,
third-party tools were used: Intel VTune XE Amplifier for the Intel
processors, and GNU gproof, included in the Xilinx Vivado tool suite,
for the ARM processor. Intel VTune is a non-intrusive profiler based
on statistical sampling that leverages dedicated hardware on the In-
tel processors to collect data. On the other hand, GNU gproof is an
intrusive profiler also based on statistical sampling.

Regarding the evaluation of power, we considered the consumption
due to the execution of our applications. Measures taken with the
power meter include the power consumption of the whole platform
(i.e., the PC when evaluating desktop processors, and the evaluation
board when evaluating FPGAs and the processor of the Zynq SoC).
Thus, it includes both the static and the dynamic power consumption
of every platform component. In order to consider only the dynamic
power required by our applications, we first measure the power con-
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Platform Processor Tech (nm) Year Frequency

i7 Intel i7-2600 32 2011 3.4 GHz

Atom Intel Atom D525 45 2010 1.8 GHz

Cortex-A9 ARM Cortex-A9 28 2012 667 MHz

Table 5.2: General-purpose platforms specifications

Platform Board Tech (nm) Year Logic Cells BRAM (kB)

Virtex II-Pro [74] 90 2002 30k 306

Virtex-5 [75] 65 2006 110k 666

Spartan-6 [6] 45 2009 43k 261

Zynq [81] 28 2012 85k 560

Table 5.3: Programmable logic platforms specifications

sumption of each platform in an idle state, and then we repeat the
measurements when the applications are running. To extract the dy-
namic power, we take the difference between both measurements.

Finally we computed the metric Energy efficiency, which measures
useful work done per unit of energy. We define useful work as the
number of boards analyzed; therefore, combining the performance
metric kBoards analyzed per second with the power data, we obtain the
energy efficiency metric as shown in Equation 5.2.

Energy e f f iciency =
per f ormance

power
=

kBoards
s

watt
=

kBoards
J

(5.2)

Tables 5.4, 5.5, and 5.6 show experimental results for each case
study. Ex. Time stands for the time required to complete a game; Power
represents the dynamic power consumption, i.e., the average increase
in power consumption due to the execution of our application; num-
bers in the column Energy are the product of power and execution
time, which represents the energy consumed during a game due to
the execution of our application, and finally Energy efficiency connects
the time to complete a game with the energy demanded applying
Equation 5.2.

Despite hardware designs were conceived to decide each move-
ment within one second as a consequence of the competition rules,
we removed this timeout and set the AI engine to explore in advance
a fixed number of moves to make fair comparisons. In this way, we
guarantee the same useful work is done regardless the target plat-
form. The Reversi application explores eight moves in advance, the
Blokus application explores four moves, and the Connect6 applica-
tion explores three moves. With these parameters, these applications
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Platform Ex. Time (s) Power (W) Energy (J) E. eff. (kBoards/J)

i7 33.0 24.19 798.27 18.0

Atom 169.7 1.07 181.58 79.3

Cortex-A9 365.8 0.10 36.58 393.7

Virtex-II Pro 3.6 0.42 1.51 9,523.8

Virtex-5 2.1 0.15 0.32 45,714.3

Spartan-6 3.6 0.06 0.22 66,666.7

Zynq 3.6 0.02 0.07 200,000.0

Table 5.4: Reversi experimental results

Platform Ex. Time (s) Power (W) Energy (J) E. eff. (kBoards/J)

i7 96.0 29.98 2,878.08 5.0

Cortex-A9 1244.6 0.10 124.46 115.7

Zynq 9.1 0.03 0.27 52,747.3

Table 5.5: Connect6 experimental results

explore 14.4, 38.4, and 4.0 million boards during a game, respectively.
Differences in execution time on the FPGAs are due to the frequency
the designs can be clocked. In the Reversi implementation, the syn-
thesis tool was able to clock the design at 60 MHz for the Virtex-5,
and at 32 MHz for the others. The Connect6 design was clocked at
75 MHz, and the Blokus design works at 33 MHz in the two FPGA
where it was implemented.

Hardware designs overwhelmingly outperform the GPPs, even the
high-performance desktop processor, which drains much more power
than the low-power desktop processor and the mobile processor. In
particular, the results for the Reversi game show a efficiency gap sized
from one to four orders of magnitude; numbers for Connect6 are sim-
ilar to Reversi. The hardware implementation on the Zynq platform
exhibits an efficiency four orders of magnitude higher than the i7,
and two orders of magnitude higher than the mobile processor in-
cluded in the same chip; the most impressive results are achieved
with the Blokus application, bringing a 30× speedup over the desk-
top processor and a 300× over the mobile processor, leading to the
best performance and energy savings from all the designs analyzed.

Figure 5.21 illustrates the energy efficiency for each case study in
what we consider the most representative platforms: the ARM Cortex-
A9 mobile processor and the FPGA, both built under the same scale
integration, and Intel i7 high-performance desktop processor as a ref-
erence for performance. There is an efficiency gap sized from two to
three orders of magnitude between the FPGA implementation and
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Platform Ex. Time (s) Power (W) Energy (J) E. eff. (kBoards/J)

i7 852.0 28.56 24,333.12 0.6

Cortex-A9 8,615.5 0.10 861.55 16.7

Virtex-5 28.7 0.19 5.45 2,640.7

Zynq 28.7 0.03 0.86 16,724.7

Table 5.6: Blokus experimental results
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Figure 5.21: Energy efficiency

the mobile processor, and a four orders of magnitude gap between
the FPGA and the high-performance desktop processor.

Table 5.7 shows the FPGA utilization of the hardware designs on
the Zynq platform, the compilation time of both hardware and soft-
ware solutions, and the time invested to implement and test the differ-
ent solutions. Compilation time takes just a few seconds for software,
whereas it takes hundreds or even thousands for hardware. Hard-
ware compilation is a much more complex process, and this slows
down the development cycle since designing and testing of complex
designs requires a not negligible number of compilations.

Regarding the design time, there is a factor of about 2.5 between
the development cycle of the hardware and software solutions. These
numbers include the time to implement and test a defined design,
i.e., this does not include the learning process about the game, and
the design of the strategy. The complexity of the hardware design
exploration can be reduced by developing a preliminary software so-
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Design
LUTs

(%)

FFs

(%)

BRAMs

(%)

Compi. time

(s)

Design time

(weeks)

Reversi ARM - - - 1.7 7

Reversi FPGA 10.4 0.9 2.9 538.0 17

Connect6 ARM - - - 2.4 8

Connect6 FPGA 81.4 8.0 2.2 1953.2 21

Blokus ARM - - - 2.9 10

Blokus FPGA 48.7 5.7 69.6 1771.0 26

Table 5.7: Resources utilization

lution to carry out an initial analysis. With this approach, the design
space is explored in software, and only the most promising strategy
is designed in hardware.



Part III

H A R D WA R E / S O F T WA R E C O D E S I G N





6
C A S E S T U D I E S : R E V E R S I , C O N N E C T 6 , A N D
B L O K U S D U O

Based on the hardware designs presented in the previous chapter, we explored
hardware/software solutions as a way to improve energy efficiency while keep-
ing a competitive development effort. This chapter covers the work around
this discipline. First, we introduce the platform where the experiments were
carried out, and an analysis of the performance of the different communi-
cation interfaces between the processor and the programmable logic fabric.
Then, we propose several codesign partitions based on a hotspot analysis of
the applications, and finally, we expose the experimental results.

6.1 xilinz zynq-7000 extensible processing platform

Zynq-7000 is a SoC that integrates a dual-core ARM Cortex-A9 general-
purpose processor, and an FPGA, all in a single chip. This heteroge-
neous platform joins up software flexibility and hardware efficiency,
allowing developers to differentiate their products by increasing per-
formance and energy efficiency. Figure 6.1 shows the block diagram
of this platform, which is divided into what Xilinx names the process-
ing system (PS), and the programmable logic (PL). The PS includes
the general-purpose cores, a 256 KB on-chip memory, and a snoop
control unit (SCP) responsible for managing the cache coherency both
if caches are written by the ARM cores or by any module imple-
mented on the PL. The PL includes configurable logic blocks (CLBs),
memory blocks (RAM), and digital signal processing (DSP) blocks.

A critical aspect for hardware/software codesign to succeed is to
enable an efficient communication between the processor and the
programmable logic; the speedup achieved by the custom hardware
must compensate for the communication overhead. Interconnection
between the PL and the PS is based on the ARM advanced micro-
controller bus architecture (AMBA) advanced extensible interface 4

(AXI4) [2]. This open-standard interface facilitates intellectual prop-
erty (IP) integration, saving development time while providing high
throughput and low latency. This bus offers several configurations,
optimized to different traffic profiles. Our designs leverages AXI-Lite,
which is suitable for small transfers, and AXI-Stream, which is suit-
able for larger transfers thanks to its burst mode. When using AXI-
Lite, the hardware accelerator is assigned a set of 32-bit registers
mapped into the processor memory space. Communicating hardware
and software is as simple as writing or reading these registers. On
the other hand, when using AXI-Stream, a DMA sends the data back

55
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Figure 6.1: Xilinx Zynq Platform Block Diagram

and forth through the accelerator coherency port (ACP) or AXI high-
performance (AXI HP) ports. We selected ACP because it ensures
cache coherency when our hardware accelerator modifies the mem-
ory without processor intervention.

As a previous analysis to develop codesign solutions, we measured
the communication latency of the two interfaces aforementioned ac-
cording to the transfer length in order to select the most suitable al-
ternative for each communication operation. As can be seen in Fig-
ure 6.2, the latency of the AXI-Lite interface is constant because each
transfer always sends a single word. Instead, the time in AXI-Stream
transfers decreases logarithmically as the transfer size increases. AXI-
Stream Custom is a simplified version of AXI-Stream, where the DMA
driver is simplified under the assumption that the source and destina-
tion addresses are always the same along the execution of an applica-
tion, and the DMA has no simultaneous accesses. These assumptions
apply in our case studies, and greatly increases the throughput for
medium-sized transferences. Figure 6.3 shows the operations that the
driver supplied by Xilinx performs, and how we modified them in
our customized driver. Each one of the operations detailed involves
a transference through the AXI-Lite interface, which is used to con-
figure the DMA. Therefore, the Xilinx DMA driver performs five con-
figuration transferences each time a DMA transference is requested,
whereas our customized driver performs these operations only once,
when the application is launched. The only remaining configuration-
related transference is the writing of the transference length, which is
the operation that triggers the DMA transference.
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Figure 6.2: Transference throughput of each AXI interface

init_DMA(){
cfg_initialize();

}

DMA_transfer(){
check_busy();
set_address();
read_config();
write_config();
set_transfer_length();

}

����������	
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init_DMA(){
cfg_initialize();
set_address();
read_config();
write_config();

}

DMA_transfer(){
set_transfer_length();

}

Figure 6.3: Operations on the Xilinx and our customized drivers

6.2 case study i : reversi player

6.2.1 Hardware acceleration

The profiling of the software application revealed that 89.3% of the
game time is invested in the evaluation of boards—48.6% computing
stable discs, and 40.1% computing the mobility—, 9.6% of the game
time is spent in the move generation, and only 1.1% is due to the
execution of the game-tree search algorithm. Hence, we developed
hardware accelerators for the two tasks involved in board evaluation:
computation of mobility, and computation of stable discs. Figure 6.4
outlines the framework of the software method that computes these
metrics in order to point out the sources of parallelism in these tasks.
Loops in red are those fully unrolled in our hardware implementa-
tion, whereas loops in yellow are just partially unrolled due to data
dependences.

6.2.2 Codesign schemes

We have implemented two codesign schemes for the Reversi game.
The first one only moves to hardware the computation of the metric
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Figure 6.4: Parallelism in the Reversi metrics
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Figure 6.5: Codesign schemes for the Reversi application

mobility, and the other scheme moves to hardware the whole evalua-
tion. These schemes are depicted in Figure 6.5.

The accelerators receive the board to process from the ARM pro-
cessor and return the metrics values. Each board square stores three
states: black, white, and free, and its encoding is not the same in soft-
ware than in hardware: the hardware accelerators allocate 2 bits per
square, whereas the software application allocates 8 bits. The over-
head of sending the board as encoded in software, and then selecting
in hardware only the worthy bits is much higher than performing
bitwise operations in software in order to pack the data and then
sending only those bits used by the hardware accelerator. The code
we added in the software application to pack the board reduces the
size of each transference from 16 words to 4 words. Hence, according
to the analysis of the interface throughput presented in Section 6.1,
both AXI-Lite, and AXI-Stream with a customized driver, offer a very
similar throughput. We selected the AXI-Lite interface because of its
simplicity.

The evaluation output is composed by the mobility of each player,
and the number of stable discs of each player. All these values are
ranged from 0 to 64, therefore each one of them is coded in 6 bits.
These four values fit in a single word, so they are also transferred
through the AXI-Lite interface.

Table 6.1 summarizes the features of each operation involving data
movement. In this case study, packed data from the CPU to the FPGA
perfectly fits the word size. Readback from the FPGA only uses a por-
tion of the transference, 12 bits out of 32 (37.5%) in the first codesign
scheme, and 24 bits out of 32 (75.0%) in the second codesign.
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Operation
Transfer size

(words)
Interface Transfer occupancy

Feed accelerator 4 AXI-Lite 1.000

Readback mobility 1 AXI-Lite 0.375

Readback mobility & stables 1 AXI-Lite 0.750

Table 6.1: CPU/FPGA communication parameters in the Reversi application

for each section
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for each window
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Figure 6.6: Parallelism in the Connect6 metrics

6.3 case study ii : connect6 player

6.3.1 Hardware acceleration

This application takes 90.4% of the execution time evaluating boards,
9.0% finding and selecting moves, and the remaining 0.6% is due to
the minimax control. We only developed the hardware module that
computes the number of threats, responsible for the hotspot of this
application. Developing also the module to identify and select legal
moves would be the next natural step, but the complexity of this
hardware module is much higher than the module that evaluates the
board, and the potential gain is much lower. Figure 6.6 outlines the
framework of the software method that computes these metrics in
order to show the sources of parallelism in these tasks. Loops in red
are fully unrollable, whereas the loop in black is sequential because
of data dependences.

6.3.2 Codesign schemes

For this case-study, we only implemented one codesign scheme (Fig-
ure 6.7). The dataflow from the software application to the hardware
accelerator in Connect6 is the same than in Reversi. The input of the
hardware accelerator is the board, and its squares stores three states:
back, white, and free. As in the Reversi application, we followed the
same pack&send approach, which reduces the transference size from
91 to 23 words. However, even after packing, the amount of data to
transfer is large enough to use the AXI-Stream interface. The use of
this interface makes it necessary to add a small module to store the
board (Board storage). This module includes an array of 361 2-bit reg-
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Figure 6.7: Codesign schemes for the Connect6 application

Operation
Transfer size

(words)
Interface Transfer occupancy

Feed accelerator 23 AXI-Stream 0.5938

Readback eval 1 AXI-Lite 0.8125

Table 6.2: CPU/FPGA communication parameters in the Connect6 applica-
tion

isters and the control logic to store the board as it is being received
from the ARM processor.

The evaluation output is composed by the number of t4s, t3s, and
t2s of each player. These six values occupy 24 bits, fitting in a single
word, so they are transferred through the AXI-Lite interface.

Given the board size in Connect6 and the word size, we decided
send half a row in each transference (squares from 1 to 10, and from
11 to 19 respectively). The transference occupancy factor is poor, but
it simplifies the code that packs the board and the hardware module
that stores the board in the accelerator (Board Storage) at the expense
of a very low impact on the overall performance since the communi-
cation overhead in this case study is low (a perfect occupancy factor
would just reduce the execution time by less than 1%). Readbacks
from the FPGA uses 26 bits out of 32 (81.25%). These data and other
communication parameters are summarized in Table 6.2.

6.4 case study iii : blokus player

6.4.1 Hardware acceleration

Profiling our Blokus software application showed that it spends 92.7%
of the time evaluating boards, 5.3% finding legal moves and generat-
ing new nodes, 1.9% generating overlapping maps, and the remaining
0.1% executing the minimax search. According to these results, we de-
cided to move the board evaluation to hardware. We also moved the
generation of overlapping maps, despite not being one of the larger
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Figure 6.8: Parallelism in the Blokus Duo application

hotspots, because the hardware developed to evaluate nodes also pro-
vides such maps. Figure 6.8 outlines the framework of the software
method that computes these metrics in order to show the sources
of parallelism in these tasks. The task that identifies and selects the
vertices to analyze is fully parallel, and the task that processes the
accessibility surrounding a vertex, although it does not present any
data dependence, only exploits a degree of parallelism of two thanks
to a pair of units traversing the board in opposite directions. Includ-
ing more units would exceed the hardware resources of the FPGA
where it was implemented.

6.4.2 Codesign schemes

Figure 6.9 illustrates the codesign schemes developed for the Blokus
application, one that computes in hardware the board evaluation, and
another one that also computes the overlapping maps reusing the
same hardware that performs the evaluation. The accelerator devel-
oped for this game has three inputs: the board that provides which
player occupies each square to find the vertices, the board that pro-
vides which squares are forbidden for each player to identify the
squares that are accessible from each vertex, and the tiles available
for each player. A first approach would be to send all these data,
but, since the board that stores which squares are forbidden is easily
computable from the board that stores which squares are occupied by
each player, we decided to send only the latter and to include a combi-
national module in the accelerator to compute the other board encod-
ing (Board composer). This strategy halves the dataflow from the pro-
cessor to the FPGA with no penalty on performance and a minimal
extra development effort. Another small module to store the board
(Board storage) is also necessary for the same reason we explained in
the Connect6 application. Each board processing, after packing, de-
mands to send 15 words from the processor to the accelerator - 13

to send the board, and 2 to send the array of tiles -. Readbacks re-
turn the evaluation values or the overlapping map. Evaluation values
are two values of 7 bits, which fit in a single word, indicating the
accessibility of each player. The overlapping map is an array of 196

bits (fits in 7 words). Following the interface selection guideline, the
evaluation values are transferred through the AXI-Lite interface, and
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Figure 6.9: Codesign schemes for the Blokus application

Operation
Transfer size

(words)
Interface Transfer occupancy

Feed accelerator 15 AXI-Stream 0.875

Readback eval 1 AXI-Lite 0.4375

Readback map 7 AXI-Stream 0.875

Table 6.3: CPU/FPGA communication parameters in the Blokus Duo appli-
cation

the overlapping map through the AXI-Stream. Notice that they are
independent operations, evaluation values are only requested when
processing terminal nodes whereas overlapping maps are requested
when processing non-terminal nodes.

The features of each operation involving data movement for this
application are shown in Table 6.3. We send a row in each transfer-
ence, resulting in an utilization of 28 out of 32 bits (87.5%). Readback
from the FPGA uses 14 bits out of 32 (43.75%) for evaluations, and 28

out of 32 bits (87.5%) for overlapping maps.

6.5 experimental results

We evaluated both performance and energy efficiency of the all the
codesigns described in the previous section and the software-only ver-
sions over the Zynq SoC. The software-only versions were also eval-
uated on the Intel i7 processor to add a reference of a performance-
oriented processor. Results were gathered following the methodology
described in Section 5.4. We also evaluated the impact of the com-
munication between the processor and the FPGA in each codesign
scheme, and, finally, the development effort of both the software-only
and codesign versions.
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6.5.1 Performance and energy

Tables 5.4, 5.5, and 5.6 show the experimental results for each case
study. Ex. Time stands for the time required to complete a game;
Partitioning details how the computation is distributed between the
processor and the FPGA.; Power represents the dynamic power con-
sumption, i.e., the average increase in power consumption due to the
execution of our application; numbers in the column Energy are the
product of power and execution time, which represents the energy
consumed during a game due to the execution of our application; and
Energy efficiency measures the quotient of performance and power. We
obtained these measures with the search tree exploring eight moves
in advance in the case of the Reversi, four moves for the Blokus, and
three moves in the case of the Connect6. With these parameters, our
Reversi application explores 14.4 million boards during a game, the
Blokus application explores 38.4 million, and the Connect6 explores
4 million.

The results in Table 6.4 show that the codesign solutions offer re-
markable speedups over the software-only version for the Reversi
game. The first hybrid design achieves a 1.9 speedup over the soft-
ware running on the Cortex-A9 by moving to the programmable logic
fabric the computations responsible for the 53.5% of the original com-
putation time, while the second codesign, which moves to hardware
the whole board evaluation, is 6.3× faster. The latter, based on a low-
power processor, approaches the Intel i7 processor performance while
consuming 173 times less energy.

In the case of Connect6 (Table 6.5), moving the board evaluation to
the hardware reduces execution time and the energy consumed by a
factor of 11. As in the Reversi game, this codesign alternative with
a low-power processor almost reaches the performance of the high-
performance Intel i7, but requiring 250 times less energy. Codesign a*
slightly improves the results thanks to a customization of the DMA
driver, taking advantage of the particularities of this application.

The results for Blokus, shown in Table 6.6, are impressive since the
hybrid designs even outperform the Intel i7. The reasons are that the
portion of the computation moved to the programmable logic fabric
is greater, and that the size of the data transferences benefits from the
high throughput offered by the AXI-Stream interface. Hybrid designs
are from 14× to 20× faster than the software application running on
the ARM processor. This improvement in performance leads to huge
energy savings. Notice that codesigns (a)–(a*), and (b)–(b*) have the
same task partitioning and the only difference among them is the use
of a customized DMA driver.

Figure 6.10 compares the energy efficiency of the most representa-
tive solutions. That is, the software running on the high-performance
desktop processor (i7) and on the low-power mobile processor (Cortex-
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Platform
Ex. Time

(s)

Partitioning

(CPU - FPGA)

Power

(W)

Energy

(J)

Energy Eff

(kBoards/J)

i7 33.0 100.0% - 0.0% 24.19 798.27 18.0

Cortex-A9 365.8 100.0% - 0.0% 0.10 36.58 393.7

Codesign (a) 189.9 46.5% - 53.5% 0.08 15.19 947.9

Codesign (b) 57.7 8.1% - 91.9% 0.08 1.51 3119.6

Table 6.4: Reversi experimental results

Platform
Ex. Time

(s)

Partitioning

(CPU - FPGA)

Power

(W)

Energy

(J)

Energy Eff

(kBoards/J)

i7 96.0 100.0% - 0.0% 29.98 2,878.08 5.0

Cortex-A9 1244.6 100.0% - 0.0% 0.10 124.46 115.7

Codesign (a) 116.5 9.6% - 90.4% 0.10 11.65 1236.1

Codesign (a*) 112.0 9.6% - 90.4% 0.10 11.20 1285.7

Table 6.5: Connect6 experimental results

Platform
Ex. Time

(s)

Partitioning

(CPU - FPGA)

Power

(W)

Energy

(J)

Energy Eff

(kBoards/J)

i7 852.0 100.0% - 0.0% 28.56 24,333.12 0.6

Cortex-A9 8,615.5 100.0% - 0.0% 0.10 861.55 16.7

Codesign (a) 614.1 7.4% - 92.6% 0.10 61.41 234.5

Codesign (a*) 573.8 7.4% - 92.6% 0.10 57.38 251.0

Codesign (b) 475.8 5.4% - 94.6% 0.09 47.58 336.3

Codesign (b*) 427.8 5.4% - 94.6% 0.09 42.78 374.0

Table 6.6: Blokus experimental results
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Figure 6.10: Energy efficiency of the most representative alternatives

A9), and the best codesign solution for each case study (Cortex-A9 +
FPGA). Moving the computationally-intensive tasks to hardware al-
lows the designers to increase by one order of magnitude the energy
efficiency. This difference rises to two or even three orders of magni-
tude when compared with i7.

6.5.2 Communication overhead

We stated in Section 6.1 that one of the key points of codesign is the
communication scheme. For this reason, we studied the interfaces of
the Zynq SoC to select the most suitable one in each data movement
operation, and we added additional code to remove useless data from
the messages involved in that operations.

Table 6.7 quantifies the impact of the communication between the
processor and the programmable logic in terms of performance for
the hybrid schemes. We collected the data by measuring the time
spent moving data among them. The overhead due to data packing
and unpacking is included in the communication overhead presented
in the table. Our codesign schemes send the board from the processor
to the accelerator every time the accelerator is used and then sends
back the evaluation values. The overhead in our most communication-
optimized versions is lower than 10%, except in the Reversi because
it cannot take advantage of the higher throughput of the AXI-Stream
interface.

There are design alternatives that could reduce the communication
overhead, but this kind of design decisions imply a compromise be-
tween efficiency and design complexity. For instance, a design alter-
native in our codesigns is to avoid board transferences, which are re-
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Design
Communication

overhead

Data transferred

(MB)

Throughput

(MB/s)

Reversi (a) 15.7% 596.8 20.0

Reversi (b) 55.5% 641.0 20.0

Connect6 (a) 8.9% 386.2 37.0

Connect6 (a*) 4.5% 386.2 73.6

Blokus (a) 14.4% 2543.2 28.7

Blokus (a*) 8.4% 2543.2 52.8

Blokus (b) 18.8% 2702.5 30.2

Blokus (b*) 9.0% 2702.5 70.4

Table 6.7: PS/PL Communication overhead

sponsible for most of the overhead. In a game-tree search, each board
to be evaluated can be obtained making the sequence of movements
of the current branch under exploration on the actual board, and the
size of that sequence is much lower than the board. Figure 6.11 illus-
trates this idea. Each time our application is requested to find the next
move, it would send the current board to the accelerator. Notice that
now it would be done just once for each search. Then, every time our
search algorithm reaches a node that has to be evaluated, only the
move sequence is sent to the accelerator instead of the board. In the
example illustrated on the figure, when node (a) has to be evaluated,
the software would send the move sequence {mL1, mL2, m1

L3} to the
accelerator. The preprocessor included would compute the resulting
board after making that movements on the current board (module
Tile placer described in item 1), and would forward it to the acceler-
ator. This scheme would have a great impact in the communication
overhead, since the size of a move chain is notably smaller than the
board, but requires to develop additional hardware and to modify
the interface of the software method that the hardware accelerator is
replacing.

6.5.3 Resource utilization and development effort

The development of the software versions used in this study, includ-
ing optimization and profiling, took from seven to ten weeks for each
game. Regarding the hybrid versions, the development and debug-
ging of the hardware accelerator for the Reversi required only four
days due to its simplicity. The accelerators for the Connect6 and
Blokus are more complex, especially in the case of Blokus, and their
development took one week and three weeks, respectively. It is im-
portant to mention that the available design tools for codesign (in
our case we use Xilinx Vivado [76]) are definitely helpful since the
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Figure 6.11: Alternative communication scheme

Design
LUTs

(%)

FFs

(%)

BRAMs

(%)

Compi. time

(s)

Design time

(weeks)

Reversi software - - - 1.7 7

Reversi codesign (a) 4.8 1.1 0.0 344.0 8

Reversi codesign (b) 7.4 1.2 0.0 422.0 8

Connect6 software - - - 2.4 8

Connect6 codesign 72.0 6.4 0.7 1545.0 9

Blokus software - - - 2.9 10

Blokus codesign (a) 29.7 4.9 1.4 1,139.0 13

Blokus codesign (b) 30.0 5.0 1.4 1,247.0 13

Table 6.8: Resource utilization in codesign solutions and development effort
in software-only and codesigns

communication infrastructure and the hardware/software interfaces
are generated automatically, and the software can interact with the
hardware accelerator just as it is done with any other peripheral.

Table 6.8 summarizes the FPGA resources used in each codesign
scheme, the compilation time for these schemes and for the software-
only applications, and the design time invested. Notice that compila-
tion time in hybrid solutions is similar to the numbers in hardware
designs presented in Section 5.4, but the actual impact in the devel-
opment cycle is noticeably lower since hardware in codesign is much
simpler than in hardware-only designs, and therefore the develop-
ment demands much less compilations. Thus, the overhead in terms
of time of the codesign solutions with regard to the software-only
solutions are 14.3% for Reversi, 12.5% for Connect6, and 30.0% for
Blokus.





Part IV

D Y N A M I C PA RT I A L R E C O N F I G U R AT I O N





7
M U LT I - M O D E R E C O N F I G U R AT I O N C O N T R O L L E R

This chapter presents the reconfiguration controller that we designed in order
to increase efficiency in the reconfiguration process. We first discuss several
techniques explored by the research community to reduce the reconfiguration
overheads, and then we describe the architecture and the operation of our
proposal.

7.1 introduction

Dynamic partial reconfiguration (DPR) is one of the most interesting
features of FPGAs. Reconfiguration enables the reuse of the FPGA
hardware resources for different tasks that can be loaded at run-time
according to the system needs. Hence, FPGAs can be used to develop
flexible platforms that can adapt themselves to the execution of dif-
ferent applications. However, the reconfiguration process introduces
overheads both in the execution time and in the energy consump-
tion. The reason is that it involves not only using the reconfiguration
circuitry to update the device configuration, but also moving large
data sets from the memory where the configurations are stored to the
reconfiguration port.

The analysis of the reconfiguration overheads has been the target
of many research groups, mainly focused on time overheads. Many
different strategies have been explored:

• Reconfigurable computing architecture: Despite FPGAs market is
clearly dominated by single-context and fine-grained architec-
ture, several works have proposed alternative reconfigurable ar-
chitectures like coarse-grain architectures [24], which offer less
flexibility but require smaller configuration bitstreams, or multi-
context FPGAs [38], which permit loading a new configuration
while another one is being executed.

• Scheduling: Scheduling techniques attempt to hide the reconfig-
uration latency by fetching the configurations in advance and
storing them in idle reconfigurable regions. This approach is
powerful in embedded systems where the task execution order
is known. Some relevant works that propose reconfiguration
scheduling techniques are [13, 22, 41, 49, 54, 61].

• Compression: Configurations are stored in bitstreams that are
amenable of compression. Compressed configurations are fetched
faster, but they have to be decompressed before writing them
in the device, and this may involve additional time and energy

71
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penalties. The inclusion of hardware support for decompression
is crucial to minimize these penalties. Some relevant works on
compression are [17, 40].

• Customized storage resources: The configuration process may ben-
efit from a hierarchical storage composed by memories with
different performance and energy profiles. For instance [14] pro-
poses the inclusion of heterogeneous on-chip memory modules,
ones optimized for performance and others optimized for low-
power. With this approach the designer can explore different
power/performance reconfiguration tradeoffs.

• Caching: The idea is to store configurations in different recon-
figurable regions in the device and design specific replacement
techniques to maximize the configuration reuse. Some interest-
ing configuration caching techniques are presented in [12, 34,
39]. The application of the caching technique is not limited to
reconfigurable regions, but it can be also applied on the mem-
ory hierarchy where configurations are stored.

Regarding the reconfiguration process, many works assume that the
reconfiguration latency is a fixed time that can be calculated by di-
viding the size of the configuration by the peak bandwidth of the
reconfiguration port. In fact, the peak reconfiguration bandwidth is
usually the only value provided by FPGA vendors. However, is that
value relevant? Can we really achieve that bandwidth? How can we
do it? Several recent works point out that the actual reconfiguration
latencies obtained in representative case studies are one order of mag-
nitude, or even two, worse than the peak reconfiguration latency [19,
52]. The reason for these poor results is that configurations are usually
stored in off-chip non-volatile memories, and the actual bandwidth of
these memories is much smaller than the bandwidth of the reconfigu-
ration port. Hence, the bottleneck is not the reconfiguration port, but
the bandwidth of the external memories. Some recent works have
demonstrated that it is possible to achieve almost peak-performance
when using some specific external memories with some additional
support. For instance in [66] the authors achieve almost peak recon-
figuration performance for a Virtex-6 when using DDR3 memories, a
DMA controller, and some additional FIFOs to hide the latency, and
in [43], they retrieve configurations from an external SRAM through
a customized DMA. However, the last generation of FPGAs can be
reconfigured at 200 MHz (previous Xilinx FPGAs are limited to 100

MHz), and, even with this scheme, it is unfeasible to achieve peak re-
configuration performance. Moreover, in many systems energy over-
heads are as relevant as performance, and the use of external memo-
ries strongly penalizes in power and energy.

Some previous works propose the inclusion of memory resources
inside the reconfiguration controller in order to preload configura-
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tions. In [47] the authors analyze the reconfiguration latency of a sys-
tem implemented in a Virtex-4 FPGA that includes a system bus that
is used for all the data transfers, including those needed to carry
out a reconfiguration, i.e. reading the configuration and sending it to
the reconfiguration port. They measured the reconfiguration latencies
taking into account the different access schemes provided by the bus,
and including a DMA controller. The results demonstrate the impact
of the communication scheme in the reconfiguration latency. In their
analysis, they claim that the only way to achieve the peak reconfigura-
tion bandwidth is to avoid accesses to the system bus. Even when the
system bus is available and transfers are performed through a DMA,
these accesses introduce significant delays.

Other interesting works are [8, 23]. In these articles, the authors pro-
pose partial reconfiguration controllers that reaches a throughput of
1.433GB/s and 2.2GB/s. These controllers allocate on-chip memory
resources to store the configurations, and the Internal Configuration
Access Port (ICAP) is overclocked up to 550 MHz. Although the man-
ufacturer does not guarantee proper operation at frequencies higher
than 100 MHz [67], these works are a proof of concept of the use
of internal memory for future and faster versions of the ICAP. After
analyzing these interesting previous works, it is clear that the recon-
figuration latency drastically depends on where the configurations
are stored and the communication scheme used to read them.

7.2 target architecture

We made the evaluation on the XUPV5-LX110T Development Sys-
tem included in the Xilinx University Program. Our target architec-
ture consists of three different memories that can be used to store
configuration bitstreams, a reconfiguration controller that provides
an interface with the ICAP , a processor, and at least one RR. Fig-
ure 7.1 depicts the elements of this architecture. In our experiments,
the processor is a Xilinx MicroBlaze, the system bus is a PLB 4.6, and
the memories are a 1GB Compact Flash, a 64-bit wide 256MB DDR2

SODIMM, and the FPGA internal BlockRAMs (BRAMs). Addition-
ally, DMA and interrupt controllers supplied by Xilinx were added in
order to evaluate their performance-energy tradeoffs.

The selection of the memories where configurations are stored, and
how to move these configurations among these memories and the
reconfiguration controller is not straightforward, as it depends on
multiple factors such as the power budget, the performance require-
ments, and the needs of other system components (for example, if the
DDR or the Flash memories are already used by other components,
the static power of these controllers will not introduce an additional
penalty). In the experimental results presented in Section 5, we an-
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Figure 7.1: Target architecture

alyze the reconfiguration energy-performance trade-off in order to
help designers to make their decisions.

7.3 partial reconfiguration controller

7.3.1 Xilinx IP

Xilinx provides the XPS_HWICAP IP core for the Virtex-5 FPGA to
manage partial reconfigurations in processor-based systems [73]. It is
composed by several control registers, two small FIFOs, a finite-state
machine (FSM), and a PLB bus interface [72]. Xilinx also provides a
driver to use this controller from the processor-side. This driver en-
ables read configurations from any memory in the system and to send
the data to the XPS_HWICAP controller through the PLB bus. This
controller is easy to use and it should be the starting point for any-
body who wants to carry out reconfigurations. However, this driver
has not been designed to optimize the data transfers among the mem-
ories and the XPS_HWICAP. As a result, as explained in section 5, it
only achieves a reconfiguration throughput of 12 MB/s, far from the
peak 400 MB/s supported by the ICAP.

7.3.2 Multi-Mode ICAP Controller

In order to reach the maximum reconfiguration throughput, the ICAP
should receive one 32-bit word per cycle at a 100MHz rate. As ex-
plained in the previous section, it is hard to achieve this bandwidth
when configurations are stored in off-chip memories, or even when
they are stored on-chip but they are accessed through a shared sys-
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Figure 7.2: Multi-Mode ICAP Controller

tem bus. A solution is to store them inside the configuration con-
troller. With this approach the reconfigurations can be carried out at
full speed. In current FPGA architectures, this can be achieved by
reserving part of the on-chip RAMs for the controller.

Figure 7.2 illustrates the architecture of our partial reconfiguration
controller, called Multi-Mode ICAP. The bus interface was automat-
ically generated by the Xilinx EDK tool, and the remaining blocks
were designed in VHDL and integrated inside the EDK project. The
Control and the Address registers are software accessible. Hence the
processor can easily provide the information and check if the con-
troller has finished. If the system includes an interrupt controller, the
controller can generate an interrupt when the done bit is activated;
again this is straightforward using the EDK tools. This architecture
based on an internal memory, a register-based interface, and a control
unit is very similar to those proposed in [8, 47]. The main difference
is that our control unit provides support for several useful working
modes.

The Multi-Mode ICAP supports four different working modes:

• Mode 0: Configuration Load. The controller receives a configura-
tion and stores it in the Bitstream Memory. The controller does
not send the configuration to the ICAP. This mode is useful to
fetch configurations in advance from the external memories in
order to reduce the reconfiguration latency since, once a con-
figuration is stored, our controller sends it to the ICAP at the
maximum supported speed.

• Mode 1: External reconfiguration and configuration load. The con-
troller receives a configuration and forwards it to the ICAP.
In parallel, it stores the configuration in the internal Bitstream
Memory. In this mode the reconfiguration speed depends on
how fast the configuration data are received from the bus, i.e.
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Figure 7.3: Control Register

our controller does not reduce the reconfiguration latency in
this mode. However, if the same configuration is required again,
it can be loaded from the internal Bitstream Memory at the max-
imum speed.

• Mode 2: External reconfiguration. The controller receives a config-
uration and forwards it to the ICAP as in the previous case, but
in this mode the configuration is not stored in the Bitstream
Memory.

• Mode 3: Internal reconfiguration. The controller sends to the ICAP
a configuration previously stored in the Bitstream Memory. The
reconfiguration is carried out at full speed.

In order to support this functionality, only two software accessible
registers (Control and Address registers) and little additional control
logic are necessary. The control register (Figure 7.3) is used to config-
ure our controller. Bit 0 reports when an operation has finished, bit 1

triggers the start of an operation, and bits 2 and 3 are used to select
the working mode. Finally the remaining 28 bits are used to set the
size of the configuration expressed in 32-bits words. The address reg-
ister specifies the initial address of the Bitstream Memory to store or
load a specific configuration.

The control unit (Figure 7.4) only requires three states: Idle, Forward,
and Internal Reconfig. The controller is initially in the Idle state. When
the start bit is activated it will move forward to state Forward, or
Internal Reconfig according to the mode set on the control register. In
Forward, every configuration word received from the bus is forwarded
to the proper destination: Bitstream Memory for modes 0 and 1, and
the ICAP for modes 1 and 2. In Internal Reconfig, the controller reads
the configuration stored in the Bitstream memory included in the
reconfiguration controller, and forwards it to the ICAP. In all cases,
a counter is used to know how many words have been processed
and to update the next Bitstream Memory address to be read. When
the counter reaches the number of words requested the Done bit is
activated.

The implementation of this control unit requires a 2-bit register
to store the current state, a counter that keeps track of how many
words have been received, an adder to update the Bitstream Memory
address, and a comparator to know when all the words have been
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Figure 7.4: Multi-Mode ICAP Finite State Machine

processed. We have also included a bit swapper module. The reason
is that Xilinx Plan Ahead, which is the tool that we used to gener-
ate the bitstreams for run-time reconfiguration, does not generate the
configuration data in the same bit order required by the ICAP [67].
Hence, the bit swapper module reorders each configuration word by
swapping the bits within each byte, i.e. from (b31..b24, b23..b16, b15..b8,
b7..b0) to (b24..b31, b16..b23, b8..b15, b0..b7). This step might be instead
done in software once a configuration bitstream is generated, and
then this module could be removed. We decided to do it in hardware
because it does not introduces any hardware overhead and because it
simplifies the use of the controller.

The available on-chip RAM varies a lot depending on the FPGA
used. The current tendency in computer architecture is to include
more and more on-chip memory resources. In fact, Xilinx has recently
announced a new family of FPGAs, called UltraScale+TM, which
brings a breakthrough including up to 65,913 Mbits of on-chip RAM
[68], making it feasible to store several configurations even for large
reconfigurable regions. However, small FPGAs have less than 1 Mbit.
Hence, the benefits of including a Bitstream Memory embedded in
our controller depend on the availability of on-chip memory and the
size of the reconfigurable regions. If there are enough on-chip mem-
ory resources to store a significant part of the needed configurations
our controller will help to optimize the reconfiguration process. At
this point, other orthogonal techniques such as compression would
play an important role. Adding compression support to our controller
is as simple as including a decompression module before the bit swap-
per.

In our controller the size of the Bitstream Memory is a generic pa-
rameter that can be instantiated with different values. In our imple-
mentation we can use up to 256 KB. The FPGA includes more RAM
resources, but they are used to implement other elements of the sys-
tem. This size can be used to store the configuration of a reconfig-
urable region of 8000 LUTs. If this is not enough, the configuration
can be partially stored in the Bitstream Memory, and later the recon-
figuration can be carried out combining modes 2 and 3. This is a key
feature to maximize the use of the on-chip memory.
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7.3.3 Configuration Prefetching and Caching support

Our controller has been designed to provide support both for config-
uration prefetching and configuration caching. As explained in the
related work section, prefetching and caching have been proved to be
powerful techniques to reduce the reconfiguration latency. These tech-
niques are usually applied by loading and storing the configurations
in different reconfigurable regions.

The idea behind configuration prefetching, as applied in the arti-
cles [13, 22, 41, 49, 54, 61] cited in Section 7.1, is to carry out the
reconfigurations in advance. For instance, while a task is executed on
a RR, we may prefetch the following task by storing it in another RR.

Configuration caching in FPGAs consists in temporally storing some
selected configurations in idle RRs. Hence, when these tasks need
to be executed, they are already loaded and no reconfiguration is
needed (this is called a configuration cache hit). Some examples al-
ready mentioned in Section 7.1 are [12, 34, 39].

However, the application of these techniques onto RRs presents a
strong limitation: it is only feasible in systems where some of the RRs
are idle and fits the configuration to be preloaded. Including an on-
chip memory inside the reconfiguration controller in order to store
configurations helps to overcome this limitation since even when all
the reconfigurable regions are busy, it is still possible to apply these
techniques. Of course the benefits are different: if a configuration is
stored in a RR, it can be immediately used when required without
carrying out a reconfiguration, whereas if it is stored in the Bitstream
Memory of our controller, the reconfiguration is still necessary, but it
can be carried out at full speed.

Hence, our controller supports configuration prefetching and caching
at two levels, RRs and on-chip memory. Chapter 8 presents a case
study that illustrates the benefits of this additional level. In this study
we have included only one RR and, we have used the Bitstream Mem-
ory for configuration caching and prefetching.
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E X P E R I M E N TA L R E S U LT S

In this chapter we expose the experimental results of the reconfiguration
controller presented in the previous chapter. We measured reconfiguration
latency and the power demanded both for retrieving the configurations from
different memories, and for loading the configuration onto the FPGA. Sys-
tems with DRP capability usually include other components, such as a
DMA, memory controllers, or an interrupt controller, and these components
also have an impact in the overheads. We analyze the penalty in terms of
resources and power caused by their inclusion. Finally, we analyze the per-
formance of our controller on a 3D rendering application, using the prefetch
and caching capabilities.

8.1 latency

We have measured the reconfiguration latency for both Xilinx con-
troller and our controller retrieving configuration data from three dif-
ferent memories: a non-volatile off-chip memory (Flash), a volatile
off-chip memory (DDR2), and a volatile on-chip memory (BRAM).
Figure 8.1 depicts the normalized reconfiguration latencies for all
the evaluations. Notice that the results are represented in logarith-
mic scale. The red line points out the minimum latency according to
the ICAP bandwidth.

With the XPS_HWICAP controller, reconfigurations from Flash take
2,900 ms/MB. In the case of transferences from the Flash memory, the
inclusion of a DMA controller does not reduce significantly the la-
tency because the Flash controller limits transferences to only 2 bytes.
If data are read from DDR2, the latency decreases to 117 ms/MB
without DMA and 34.7 ms/MB with DMA, still far from taking fully
advantage of the reconfiguration port bandwidth. Finally, retrieving
the configurations from on-chip memory is the fastest choice, with a
latency of 79 ms/MB without DMA, and 28 ms/MB with DMA.

In the case of our controller, both Flash and DDR2 alternatives
got similar latencies with the XPS_HWICAP controller since in these
cases the controller is not the bottleneck. However, the on-chip recon-
figuration is clearly faster. The reason is that our on-chip memory is
embedded in the controller. Hence, no accesses to the system bus are
needed. For this reason, our controller achieves the minimum recon-
figuration latency (one write operation per cycle at 100MHz, i.e. 400

MB/s), which is 31 times faster than the XPS_HWICAP. In fact, our
controller can be clocked at 500 MHz, but, as explained before, Xilinx

79
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Figure 8.1: Reconfiguration latencies

does not guarantee proper operation for frequencies above 100 MHz
in this FPGA [67].

We have also evaluated the benefits of including a DMA controller
to manage the transactions from the different memories without pro-
cessor intervention. As it can be seen in the figure, the DMA con-
troller reduces all the latencies significantly, but even in the best case
is still eight times slower than using the embedded Bitstream mem-
ory. Moreover the original Xilinx functions for the XPS_HWICAP do
not support DMA transactions. Hence they have to be modified by
the user.

8.2 resources and power overheads

In order to analyze the performance-energy tradeoff, we took power
measures of reconfiguration. Most previous work on this is based on
models [7, 62], and therefore they do not perform any actual mea-
surement. A previous work that actually performs measurements is
[48]. A. In this work, Nafkha et al. carried out power measures of the
reconfiguration process on a Xilinx ML505 development board us-
ing a high-speed digital oscilloscope and the shunt resistor method.
For our measurements, we decided to use a Yokogawa WT210 dig-
ital power meter, which is an accepted device by the Standard Per-
formance Evaluation Corporation (SPEC) for power efficiency bench-
marking [79].

Table 8.1 summarizes the FPGA resources and the static power
overheads of each component. To measure the static power consump-
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Component
LUTs

(%)

FFs

(%)

BRAMs

(%)

Static power

(W)

DDR2 controller 3.66 5.34 3.38 3.54

Flash controller 0.15 0.31 0.00 0.32

Interrupt controller 0.12 0.18 0.00 0.02

DMA controller 1.01 0.81 0.00 0.64

Multi-Mode ICAP (128KB) 0.64 0.51 21.6 0.28

Multi-Mode ICAP (256KB) 0.65 0.52 43.24 0.45

XPS_HWICAP 1.04 1.02 1.35 0.16

Table 8.1: Resources utilization and static power consumption

tion of each component, we first measured the power consumption
of a system with all the components in an idle state, and then we
removed them one by one and repeated the power measures. The
difference between these sequent measures corresponds to the static
power of each component removed. Ambient temperature was con-
stant in all the measures.

Although these data may change from one FPGA to another, we
believe that it provides an interesting hint for any designer in order
to decide whether to include or not any component based on the
overheads, the resources available, the power budget, and the system
requirements. For instance, in systems with a very constrained power
budget, avoiding the use of the DDR2 memory, if possible, will sig-
nificantly help to meet this power budget.

LUTs and FFs required by the Multi-Mode ICAP controller keep
almost constant and very low regardless its storage capacity (the
small variations are due to the additional addressing bits required
for higher memory capacities), and the static power consumption lin-
early increases with the memory size by a factor of 1.6.

Figure 8.2 depicts the dynamic power consumption due to the
reconfigurations, both for our controller and for the XPS_HWICAP.
Each bar is divided into two terms: Data Transference, which includes
the dynamic power consumption due to data movement from the
external memories to the reconfiguration controller, and Reconfigura-
tion, which includes the power consumption of the reconfiguration
controller and the FPGA reconfiguration circuitry.

To split the power consumption between reconfiguration and data
transference we carry out two different measures. First we carry out
the reconfiguration. This involves reading the configuration from the
given memory and carrying out the reconfiguration process. Second,
we repeat the process but this time we use our reconfiguration con-
troller in mode 0. In this mode we read the configuration and send
it to the controller, but the controller does not carry out the recon-
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Figure 8.2: Dynamic power consumption
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Figure 8.3: Energy consumption

figuration. The difference between these two values corresponds to
the power term associated to the reconfiguration. In all the cases we
repeat the process inside a while loop for several minutes, and took
the average value to avoid noisy power data.

The term ‘Reconfiguration’ keeps almost constant about 0.15W in
all the setups. On the contrary, the Data Transference term greatly
varies depending on the case. This term is null for Multi-Mode (on-
chip) because all the process is carried out inside the controller, whereas
setups retrieving configurations from DDR2 present the highest val-
ues due to the use of the DDR2 controller and the access to an off-chip
memory. The term ‘Data Transference’ is reduced by 26% if the config-
urations are stored on-chip instead of on DDR2, and it is even lower
when using the Flash memory. However, in the latter case the reason
for the reduction is the slow access to that memory.
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Figure 8.3 shows the energy consumed, in miliJules, per MB re-
configured for the setups evaluated in Figure 8.2. The setups that
retrieve the configurations from the Flash memory exhibit the worst
results, taking into account both static and dynamic energy. Despite
consuming less power than the DDR2-based setups, the long latency
of this memory (see Figure 8.1) causes a strong energy penalty. On
the contrary, setups that use an on-chip memory are the most energy-
aware. It is remarkable the fact that our Multi-Mode ICAP controller
requires two orders of magnitude less energy than the XPS_HWICAP
(on-chip). In fact, the energy required by this setup is, at least, one
order or magnitude lower than any other setup. Hence a bitstream
memory embedded in the reconfiguration controller drastically re-
duces the reconfiguration energy overheads.

8.3 configuration prefetching and caching

Our multi-mode controller has been designed to provide an addi-
tional level for configuration caching and prefetching. Using the Bit-
stream Memory, we can apply these techniques even when all the re-
configurable regions are busy. In this section, we present a case study
to illustrate the benefits of this approach.

We have selected a 3D rendering application based on the open
source Pocket-GL library (Pocket GL). This application includes 20

different sequential task graphs that are combinations of ten different
tasks. We analyzed the same application in a previous article that
presented a run-time scheduler for reconfigurable systems [13]. This
scheduler included support both for configuration prefetching and
caching taking advantage of idle reconfigurable regions to reduce the
reconfiguration overhead. However, since these are sequential graphs,
the system designer may decide to include only one reconfigurable
region to execute this application, and in that case there would be
no idle regions available. Hence, we have extended our scheduler to
apply prefetching and caching using the Bitstream Memory of our
controller whenever no idle regions are available.

The results are depicted in Figure 8.4. The leftmost column shows
the initial overhead when the reconfigurations are carried out on de-
mand and without applying neither prefetching nor caching. We as-
sume that the configurations are stored in the DDR2 memory, and
that the system includes a DMA controller. In this case the applica-
tion needs 70% more time due to the reconfigurations. If we use the
Bitstream Memory to apply a prefetch approach we can reduce that
overhead to 38%. The implemented approach is very simple, while
executing one task the following one is stored, totally or partially de-
pending on the available time, in the Bitstream Memory, and when
the stored task is executed our controller carries out the reconfigura-
tion of the portion stored in the Bitstream Memory 3.2 times faster.
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Figure 8.4: Reconfiguration overheads for the Pocket GL application when
using the Bitstream Memory to apply configuration prefetching
and caching

These results can be further improved by caching some critical
tasks. The idea is to store in the Bitstream Memory the configuration
of those tasks that generate the largest reconfiguration overheads. In
the figure we can see that when the configuration of the most critical
task is cached the overhead is reduced to 27%, and if the two most
critical tasks are cached it is 22%. In the rightmost column we can
see that caching the remaining 8 tasks provides no further reductions.
The reason is that the prefetch technique is already reducing the re-
configuration latency of those tasks. In fact when the two most critical
tasks are cached the reconfiguration overhead is reduced by a factor
of 3.2, which is the best result that can be achieved in this scenario.
Hence, if the Bitstream Memory provides enough storage space to
store three configurations (the two cached ones plus the one that is
prefetched each time) the system will provide the same performance
with a system that stores all the configurations on-chip.
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9
C O N C L U S I O N S A N D F U T U R E W O R K

This chapter highlights the conclusions of this dissertation and points out
future lines of investigation.

9.1 hardware design

The increasing relevance of energy-aware computing is giving more
prominence than ever to hardware design. Heterogeneous computing
has settled in the computation roadmap, and the design of ASICs is
getting prohibitively expensive because of rising costs associated to
state-of-the-art integration scales, shrinking the class of applications
and markets that can afford them. FPGAs are an excellent alternative
by providing a balance between performance, power consumption,
and programmability. Corporate movements in the main chip manu-
facturers, such as the acquisition of Altera by Intel, or recently signed
deals between IBM, Qualcomm and Xilinx, demonstrate the impor-
tance of this technology.

In Part II of this dissertation, we have explored the potential of
programmable logic to accelerate the artificial intelligence on board
games. Board games are an interesting case study because are popu-
lar applications, frequently found in user’s mobile devices, and they
demand heavy computations. We analyzed three complex board games:
Reversi, Connect6, and Blokus Duo. The analysis considered the met-
rics performance, power, energy efficiency, and development effort,
of hardware and software versions algorithmically equivalent. The
hardware implementations improve energy efficiency by three orders
of magnitude compared with the software implementations executed
on a mobile processor. When compared with a performance-oriented
desktop processor, the energy efficiency gap grows up to four orders
of magnitude. These impressive results come from both higher perfor-
mance and lower power consumption. However, these improvements
do not come for free, as development in hardware is harder than in
software. Hardware is parallel by nature, and this increases the de-
sign complexity. Debugging complex designs, where many modules
are working and interacting at the same time turns both the design
and its validation into a hard undertaking. The development cycle in
our hardware designs, developed by experienced hardware designers,
was about 2.5× longer than in our software applications, also devel-
oped by experienced software developers.

Many market niches governed by tough time-to-market may find
unacceptable this results, preventing the use of this technology. FPGA
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vendors are putting their efforts in new tools to shorten the devel-
opment cycle, such as high-level synthesis tools, which, based on
software-like specifications, try to automatically extract the parallelism
and to translate into a custom hardware system. This tools are now
in an early stage, and have much room for improvement.

9.2 hardware/software codesign

Hardware highlights in performance and energy, whereas software
do in flexibility. Moving to hardware all the tasks within an applica-
tions increases the development effort, whereas the potential profit on
those non computationally-intensive tasks is limited by the Amdahl’s
law. Hardware/software codesign emerges as a discipline to bring
together goodnesses from both software and hardware worlds. New
platforms released in the last years, coupling general-purpose proces-
sors and programmable logic in the same chip, broaden the range of
applications where this discipline becomes profitable by facilitating
hardware/software integration, and by minimizing the communica-
tion overhead.

In Part III of this dissertation, we propose codesign solutions for the
AI of the board games explored in the Part II. We identify board eval-
uation as the most computationally-intensive kernel. We also explore
alternatives regarding the hardware/software communication in or-
der to minimize its impact. Our codesigns improves energy efficiency
by one order of magnitude over the software-only implementations
executed on a mobile processor. In spite of the fact that development
on FPGAs adds some complexity to the design process, hybrid hard-
ware/software platforms pays-off the harder development cycle since
noncritical tasks remain executed in the general-purpose processor,
and the FPGA is reserved for specific and demanding tasks.

9.3 dynamic partial reconfiguration

FPGAs capability of modifying the operation of specific regions of
the programmable logic fabric without halting the remaining ones is
a powerful feature that increases the flexibility of the FPGA-based sys-
tems, and reduces the chip area required, leading to smaller, cheaper,
and less power-hungry silicon devices. It also reduces the overhead
associated to the load of the hardware accelerators, since only a por-
tion of the FPGA has to be configured, and therefore configuration
bitstreams become smaller.

While the benefits of DRP are clear, the overheads associated to this
process, and the optimal setup regarding its management are not so
clear. In Part IV of this dissertation, we present an analysis of the over-
heads in the reconfiguration process, in terms of performance, power
and energy. Designers should explore the different tradeoffs offered
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by the variety of memories where the set of configuration bitstreams
can be stored, and by the components involved in the process, such
as the memory controller, a DMA, or the reconfiguration controller,
in order to meet the operation constraints and to improve efficiency.

We propose a reconfiguration controller that drastically improves
energy efficiency by leveraging on-chip memory, and by including
support for prefetching and caching. This controller achieves peak
performance and reduces the power penalty of moving data from
external memories to the reconfiguration port when configuring from
its on-chip memory. The viability of this approach is endorsed by the
impressive increase of on-chip memory resources in the latest FPGA
architectures.

9.4 future work

We will like to analyze FPGA implementations of AI engines for
board games based on machine learning. Machine learning is a field
that enjoys enormous popularity today, since it has been proved to
succeed in many different knowledge fields, and artificial intelligence
in board games is one of them, as the recent victory of the Deep-
Mind artificial player over the human world champion in the game
Go proved. In addition, the regular structures of the kernels used in
machine learning, and their parallelism degree, make them ideal for
hardware acceleration. Furthermore, there is a huge interest in port-
ing these algorithms to mobile devices as they can be used in many
different fields, and the main issue is finding energy-efficient solu-
tions.
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