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Resumen

Los planificadores en tiempo real (RTS, por sus siglas en inglés) son uno de los temas de
investigación más importantes en sistemas operativos. Este tipo de planificadores se cen-
tran en asignar tareas a los CPUs para cumplir con restricciones temporales que las tareas o
aplicaciones tienen. La omnipresencia de los RTS abarca desde sistemas cŕıticos en tiempo
real, como dispositivos médicos o controladores automáticos, hasta aplicaciones de entreten-
imiento, como videojuegos. Además, los dispositivos modernos, como teléfonos celulares,
dispositivos médicos y otros dispositivos portátiles introducen nuevas restricciones, como
cumplir en no superar los ĺımites térmicos o reducir la enerǵıa consumida. Por ejemplo,
la enerǵıa consumida por un aud́ıfono médico (aparato para el óıdo), debe ser lo más baja
posible, y la temperatura en este dispositivo debe ser cómodo para los pacientes. En las
industrias automotriz y aeroespacial, el control térmico también es primordial para evitar
acortar la vida útil de los componentes, además de minimizar el consumo de enerǵıa cuando
la enerǵıa es escasa, como ocurre en los sistemas satelitales alimentados por paneles solares.

El problema que se aborda en esta Tesis, se centra en el diseño de planificadores en tiempo
real para sistemas multiprocesadores en chip (MPSoC), que también toman en cuenta las
restricciones térmicas y de enerǵıa. Dado que este problema abarca problemas discretos y
continuos, el enfoque adoptado se basa en redes de Petri continuas temporizadas (TCPN,
por sus siglas en inglés), un formalismo capaz de capturar el comportamiento de señales
continuas positivas, como la temperatura o la enerǵıa, y simular comportamientos discretos,
como ejecuciones de tareas. Una conjetura que motivó esta investigación fue que combinando
técnicas de algoritmos combinatoriales y de control automático es posible derivar mejores
planificadores en tiempo real, donde utilizando un controlador continuo es posible solucionar
el problema de la NP-Complejidad y el rechazo de perturbaciones, como detenciones de
CPU, llegada de tareas aperiódicas o incertidumbres de modelado. Y mediante el análisis
combinatorio es posible discretizar una planificación continua. Con esta investigación, se
puede confirmar que la conjetura es cierta.

El Caṕıtulo 1 proporciona algunos antecedentes, establece la justificación de la Tesis, los
objetivos, y formaliza el problema aqúı estudiado.

El Caṕıtulo 2 propone una metodoloǵıa de modelado novedosa que representa, en un
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modelo monoĺıtico: la llegada de tareas, la asignación de tareas, la generación de calor, el
consumo de enerǵıa y la selección de frecuencia mediante una única herramienta formal. Esta
metodoloǵıa brinda grandes ventajas en comparación a las técnicas previamente reportadas
en la literatura. Por ejemplo, el modelo es tan preciso como un modelo de elementos finitos.
Se representa en una ecuación de variable de estado, susceptible para fines de control y
propósitos de planificación en tiempo real. Más aún, la metodoloǵıa evita las etapas de
calibración que otros enfoques realizan. Un punto clave de esta metodoloǵıa de modelado
radica en el hecho de que la ecuación diferencial parcial que representa el comportamiento
del sistema se aproxima a un conjunto de ecuaciones diferenciales ordinarias de primer orden,
lo que reduce considerablemente la complejidad del análisis.

En este caṕıtulo se presenta una herramienta de software para simular el modelo y los
planificadores propuestos.

El Caṕıtulo 3 presenta un primer planificador de tiempo real, que se enfoca en cumplir
con las restricciones temporales para un conjunto de tareas periódicas e independientes. Con
este propósito, el planificador calcula los tiempos de ejecución requeridos de cada tarea y
los representa como una función fluida (continua) de ejecución. Un controlador por mo-
dos deslizantes garantiza que todas las tareas se ejecuten según lo indicado por la función
previamente calculada, obteniendo una planificación continua. Finalmente, la planificación
continua es discretizada mediante un algoritmo de discretización.

El Caṕıtulo 4 extiende el controlador anteriormente propuesto para incluir variables
térmicas. Dado que las variables térmicas y temporales deben controlarse y sabiendo que
sólo existe una única variable de control en el modelo, se concluye que el sistema no es con-
trolable. Sin embargo, para solucionar este problema, se propone un planificador fluido que
cumple con las restricciones tanto temporales y térmicas. Utilizando un problema de progra-
mación lineal se obtiene una conjunto de funciones fluidas de ejecución que toma en cuenta
el cumplimiento de las restricciones térmicas y temporales, luego mediante un controlador de
modos deslizantes se forza al sistema a seguir estas nuevas funciones fluidas incluso en pres-
encia de perturbaciones, obteniendo aśı una planificación continua. El planificador continuo
se discretiza con un enfoque que equilibra la precisión en el control térmico y la sobrecarga
de tareas.

El Caṕıtulo 5 introduce un planificador que es capaz de minimizar la enerǵıa y cumplir con
las restricciones temporales de las tareas y las térmicas del sistema. Más aún, el planificador
es capaz de gestionar la llegada de tareas aperiódicas, gestionar los tiempos de asignación
de tareas y controlar la frecuencia de las CPUs. El esquema de planificación final que se
propone, se basa en un control en cascada que se beneficia de una ley de control PID para
calcular la frecuencia y un controlador de modos deslizantes para lidiar con las perturbaciones
y las variaciones paramétricas del sistema.



Abstract

Real-Time schedulers (RTS) is one of the paramount research topics in operating systems.
This kind of schedulers are focused on allocating tasks to CPUs to honour task temporal
constraints. The omnipresence of RTS ranges from critical hard-real time system, such as
medical devices or automatic controllers to entertaining applications, such as video-games.
Moreover, modern devices, such as cellphones, medical devices and other portable devices
introduce new constraints such as thermal upper bounds or consumed energy. For instance,
the energy consumed by a hearing aid must be as low as possible, and the temperature of
the device must be comfortable for patients. In the automotive and aerospace industries,
thermal control is also paramount to avoid shortening the lifespan of the components, and
power draw must be minimized when energy is scarce as in satellite systems powered by solar
panels.

The problem herein addressed focuses on designing Hard Real-Time schedulers for Mul-
tiprocessor Systems on Chip (MPSoCs), also considering thermal and energy constraints.
Since this problem encompasses discrete and continuous issues, the approach taken is based
on Timed Continuous Petri Nets (TCPN), a formalism capable of capturing the behav-
ior of positive continuous signals, such as temperature or energy, and simulating discrete
behaviours, such as task executions. A conjecture that motivated this research was that
combining combinatorial and automatic control techniques it is possible to derive better
schedulers, where a continuous controller is used to work around the NP-Completeness of the
problem and to reject some disturbances, such as CPUs detentions, arrival of aperiodic tasks
or modeling uncertainties, and the combinatorial analysis is used to discretize the continuous
schedules. Now, we can confirm that the conjecture is true.

Ch. 1 provides some background, sets the Thesis rational and objectives, and formalizes
the problem herein addressed.

Ch. 2 introduces a novel modeling methodology that represents in a monolithic model
the task arrival, task allocation, heat generation, energy consumption and frequency selection
using a single formal tool. This methodology offers great advantages over previously reported
techniques. For example, the model is as precise as a finite element model. It is represented in
a state variable equation, amenable for control and scheduling purposes, and the calibration
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stages of other approaches are avoided. A key point of this modeling methodology lays in
the fact that the partial differential equation representing the system’s behavior is translated
into a set of first order ordinary differential equations, reducing considerably the complexity
of the analysis.

A software tool to simulate and validate the model and proposed schedulers is introduced
in this chapter.

Ch. 3 presents a first RT scheduler, which focuses on honoring the constraints of a HRT
task set. With this purpose, the scheduler computes the required task execution times and
represents it as a fluid execution job function. A sliding mode controller ensures that every
tasks is executed as indicated by the function. Finally, the continuous schedule is discretized.

Ch. 4 extends the previous controller to include thermal aspects. Since the temporal and
thermal aspects must be controlled and there exists only one control variable, the system is
not controllable. To overcome this problem, a fluid schedule honoring both temporal and
thermal aspects is computed using a Linear Programming Problem, then a sliding mode
controller is used to force the system to track this new fluid schedule even in the presence
of disturbances. The continuous schedule is discretized taking an approach which balances
accuracy in thermal control and scheduling overhead.

Ch. 5 introduces a scheduler that is capable of minimizing energy and honouring temporal
and thermal constraints of the tasks. Even more, it is capable of manage arriving of aperiodic
tasks, and task allocation times and CPU frequency can be managed by the controller. The
final scheduling scheme relies on a cascade control that leverages a simple PID control law
to compute the frequency and the sliding mode controller to deal with disturbances and
parametric variations by bringing the fluid error to zero.
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Chapter 1

Introduction

This chapter motivates the work presented in this dissertation, summarizes the
objectives and contributions of this Thesis, examines the previous related work,
provides the necessary background, and formally states the central problem to
address.

1.1 Motivation

Multicore system-on-chips (MPSoCs) are being increasingly incorporated into embedded sys-
tems, even to support applications with hard real-time (HRT) applications in critical, con-
servative environments such as the automotive or aerospace industry. Flight management
or on-board maintenance systems tend to expand, and MPSoCs override the strong limits
imposed by single-cores on CPU time when the applications grow. Additionally, MPSoCs can
significantly contribute to savings in space, weight and power (known as the SWaP factor).
For example, current cars can boast more than 70 electronic control units ECUs) weighing
more than the entire engine block itself, wires included [1, 2].

However, leveraging the computing power of MPSoCs is quite a challenge. First, RT task
scheduling is more complicated on multiprocessors than on a single-core processor. Second,
power consumption can be an issue in battery-powered systems, or in spatial systems that
obtain the energy from solar panels, which limits the instant power draw. Last, inefficient
thermal management can lead to unexpected failures or to a short chip lifespan, two critical
aspects in avionics and satellites. Besides the higher cost to power increasingly demanding

1
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electronic systems, the higher energy dissipation represents a serious design issue as such
energy is transformed in heat which. If not effectively dissipated, heating may increase the
probability of faults and shorten the overall lifetime. Also, handhelds and other embedded
devices impose thermal constraints because of ergonomic reasons (typically 45oC for plastic
and 41oC for aluminum enclosures [3]).

Power consumption and heating can be lowered by decreasing V or the frequency, or by
disconnecting voltage domains in a chip, as long as correct values are produced. Nevertheless,
data correctness in RT systems do not only depend on the the output values, but also on
when they are produced. Thus, RT schedulers, which are in charge of guaranteeing that
jobs successfully meet their deadlines, must deal with an interesting trade-off between time
requirements associated to the workload execution and energy dissipation.

This work addresses the energy and thermal management problem in a RT system. The
first step to deal with this problem is the ability to model the temperature of a MPSoC accu-
rately and efficiently. The following steps involve the design of a thermal-aware multiproces-
sor scheduler able to ensure the correct execution of a hard RT task set, keeping the system
below a maximum temperature, minimizing the energy and managing disturbances and soft
RT aperiodic tasks. This Thesis claims that TCPNs are a suitable a modeling methodology
for this purposes. First, because of the continuous nature of the thermal problem and its
solid mathematical background, which include a state space representation. Second, because
they can be built in a modular way, with a graphical representation.

1.2 Thesis objectives

1.2.1 General Objective

The main objective of this Thesis is to show that, by using an fluid scheduler combining with
automatic control techniques, it is possible to deal with the NP-Completeness of the hard
real time scheduling problem while temporal, thermal and energy consumption aspects are
considered.

Specific Objectives

• To obtain a novel modeling methodology for an MPSoC, that represents the activity
and allocation of a RT task set on a set of CPUs, while the thermal activity, energy
consumption and disturbances are considered. The purpose is to eliminate the problems
of calibration, generalization and accuracy presented by other methodologies and to
summarize in a single monolithic model of state variables, the phenomena that influence
the design of HRT schedulers.
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• To design and test a thermal-aware RT scheduler using the aforementioned methodology.
To endow the thermal-aware RT scheduler with the capability of managing aperiodic
tasks minimizing power consumption, rejecting disturbances and eliminating the com-
binatorial and unidimensional of the existing schedulers.

1.3 Background on Petri Nets (PN)

This chapter presents the Petri net model, its main aspects and properties. A special focus
on Timed Continuous Petri nets (TCPN) is paid since they are the formal tool that will be
used to model temporal aspects of tasks and thermal aspects of CPU. An interested reader
must refer to [4, 5] for a deeper insight into this field.

Definition 1.1 A Petri net structure (N ) is a bipartite digraph formed by the four-tuple
N = 〈P, T, Pre, Post〉 where:

• P = {p1, p2, . . . , p|P |} is a finite set of nodes named places,

• T = {t1, t2, . . . , t|T |} is a finite set of nodes named transitions,

• Pre is a |P |×|T |, where Pre[i, j] represents the weighted (non-negative integer number)
arc going from pi to tj,

• Post is a |P | × |T |, where Post[i, j] represents the weighted (non-negative integer num-
ber) arc going from tj to pi,

The Petri net structure fulfills that P ∩ T = ∅ and P ∪ T 6= ∅.

In a Petri net structure the incidence matrix is defined as C = Post− Pre.
Pictorially, places, transitions and arcs are represented by circles, rectangles, and arrows

pointing from the source node to the ending one, respectively.

As a notation, if x ∈ P ∪T is a node of the N , then the input set of x, is •x = {xi ∈ P ∪T |
there exists an arc from xi to x}, and the output set of a node x, is x• = {xi ∈ P ∪ T | there
exists an arc from x to xi}.

1.3.1 (Discrete) Petri nets

Definition 1.2 A Petri net system (or Petri net) is the duple PN = (N ,M0) where N is
a Petri net structure and M : P → N ∪ {0} is a marking function assigning to each place a
non-negative integer number. M0 is the initial marking.
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In a PN, a transition tj is enabled at marking Mk iff Mk(pi) ≥ Pre(pi, tj), ∀pi ∈ P . In
a PN, an enabled transition tj, at Mk, can be fired. The firing of an enabled transition tj
produces a new marking that is computed with the fundamental PN equation:

Mk+1 = Mk + Cvk (1.1)

where vk(j) = 1 and vk(i) = 0, ∀i 6= j

1.3.2 Continuous Petri nets

A continuous Petri net is a Petri net structure together with a marking, where transitions
can be activated in any real amount between zero and its enabling degree. As a consequence,
the number of tokens residing in a place is represented by a non-negative real number. This
model is formally defined below.

Definition 1.3 A continuous Petri net (CPN) is the tuple 〈N ,m0〉 where N is a Petri

net structure and m0 is the initial marking, where the marking m : P → R|P |+ is a vector
representing the non-negative real number of tokens residing inside each place.

In a CPN a transition ti ∈ T is enabled iff for every pj ∈ •ti, m(pj) > 0. The continuous
enabling degree of a transition ti is given by

enab(ti,m) = min
pj∈•ti

{
m(pj)

Pre(pj, ti)

}
(1.2)

The enabling degrees are well defined if every transition has at least one input place,
which is assumed through this work. An enabled transition ti at a marking m can be fired in
any real amount 0 ≤ σi ≤ enab(ti,m), leading to a new marking m′ that is computed using
the fundamental continuous Petri net equation:

m′ = m+ C~σ (1.3)

where ~σ =
[
σ1, . . . , σ|T |

]T
.

1.3.3 Timed Continuous Petri Nets (TCPNs)

Definition 1.4 A Timed Continuous Petri Net (TCPN) (or timed fluid net) is a time-driven
continuous-state system described by the tuple 〈N , λ,m0〉, where 〈N ,m0〉 is a CPN and the

vector λ ∈ R|T |+ represents the transition firing rates.
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Under the infinite server semantics, an enabled transition ti fires with a speed defined as
the product of its associated rate, λi, and its enabling degree, enab(ti,m). The flow vector
f(m) is defined such that fi(m) denotes the flow through ti, thus,

fi(m) = λi · enab(ti,m) = λi · min
pj∈•ti

{
m(pj)

Pre(pj, ti)

}
.

Given a TCPN 〈N , λ,m0〉, the pair 〈N , λ〉 is referred as the TCPN timed structure.

The enabling degree vector enab(m) ∈ R|T |+ is defined such that enabi(m) = enab(ti,m).

A configuration is a set of arcs Cj = {(pi, tk)|pi ∈ •tk} where every tk ∈ T appears in only
one pair. An upper bound for the number of configurations is

∏
t∈T
|•t| = |•t1| × · · · × |•t|T ||.

For each possible configuration Cj, the configuration matrix Πj of dimension |T | × |P | is
defined as:

∀i ∈ {1, .., |T |},∀k ∈ {1, .., |P |}

Πjik =

{ 1
Pre(pk,ti)

, if (pk, ti) ∈ Cj
0, otherwise

Then, the flow through the transitions in a given configuration Cj can be written as the
vector f(m) = ΛΠjm, where Λ is the diagonal matrix whose elements Λi,i are the firing
transition rates λi.

In the systems modeled by TCPNs, control actions are applied to transitions and they can
be seen as decrements of activity speeds from the maximum allowed determined by transition
flows f(m). Thus, control actions in TCPNs are applied to transitions, decreasing their flow.
Transitions where a control action can be applied are said to be controllable. The set of all
controllable transitions is denoted by Tc, and the set of uncontrollable transitions is denoted
by Tnc = T \ Tc.

The control vector u ∈ R|T | is defined such that ui represents the control action over
ti ∈ T . The effective flow through a controlled transition is given by:

wi(m) = fi(m)− ui,
0 ≤ ui ≤ λi · enabi(m)

(1.4)

where wi(m) ≥ 0.

Thus, the behaviour of a TCPN system, in any configuration Ci is described by the state
equation:

ṁ = CΛΠim− Cu,
= CΛΠim− Ccuc

with 0 ≤ u ≤ ΛΠim (1.5)
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where CΛΠi is the dynamic matrix for Ci; the input matrix Cc = C(P, Tc) is the restriction of
the incidence matrix C to the columns of controllable transitions; uc = u(Tc) is the restriction
of u to the controllable transitions Tc.

1.3.4 TCPN model of a system: an example

Consider the manufacturing system in Fig. 1.1b. Raw materials arrive to input buffer I. A
resource of type R moves the material to the machine M , after which the resource is released.
M performs some operations over the material to obtain a final product. A resource of type
R unloads the machine and moves the product to the output buffer O. Then, the resource is
released.

I

O

M

a) c)

b)

Figure 1.1: a) TCPN model. b) Manufacturing Process. c) Marking evolution.

Fig. 1.1a shows the TCPN model of the system. The quantity of raw material is modeled
as the amount of tokens in place p1, the resource is modeled by place p6, and the capacity
of the machine is the initial marking of the net. The resource allocation policy is modeled
by the firing of transitions, and the number of products per unit time is the throughput of
the net system. If the initial marking is set as m0 = [5 0 0 0 3 3] and the firing rate vector is
λ = [1 1 1 1]T , then Λ = diag(λ). Therefore, f(m) = ΛΠm and from Eq. (1.5), we have:
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ṁ =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 −1 1 0
−1 1 −1 1


 λ1 ·m1

λ2 ·min{m2,m5}
λ3 ·min{m3,m6}

λ4 ·m4

 =


m4 −m1

m1 −min{m2,m5}
min{m2,m5} −min{m3,m6}

min{m3,m6} −m4

min{m3,m6} −min{m2,m5}
m4 −m1 +min{m2,m5} −min{m3,m6}



Note that enab(t1,m0) = m0[p1] = m1, enab(t2,m0) = m0[p2] = m2, enab(t3,m0) =
m0[p3] = m3 and enab(t4,m0) = m0[p4] = m4. In the initial state, the configuration in
the intial state is (p1, t1), (p2, t2), (p3, t3) and (p4, t4). The marking evolution is depicted on
Fig. 1.1c. As the system evolves, the marking m3 increases and the marking m6 decreases. At
time τ = 2, m2 = m6 and the configuration switches to (p1, t1), (p2, t2), (p6, t3) and (p4, t4).
The marking evolution graph shows the two different dynamics provided by the two different
system configurations.

1.4 Background on Real-time Systems

Typically, a real-time (RT) system consists of a controlling system and a controlled sys-
tem (environment). The controlling system can be one or more Electronic Control Units
(ECU), which consists on a number of application-specific integrated circuits (ASICs) and
/or microprocessors, running tasks baremetal or on top of a RT operating system. The
ECU interacts with the environment upon the information provided by sensors. Sensors
will typically provide readings at periodic intervals, and the ECU must respond by sending
signals to actuators. There may be unexpected or irregular events which must also receive
a response. In all cases, there will be a time bound within which the response should be
delivered. The ability of the computer to meet these demands depends on its capacity to
perform the necessary computations in the given time.

Thus, the principal characteristic of a real-time (RT) system is to provide correct outputs
in bounded time. The correctness of a RT system depends not only on the values but also on
the time at which they are produced. Some examples of RT systems include process control
systems, flight control systems, flexible manufacturing applications, robotics, intelligent high-
way systems, and high speed and multimedia communication systems. Belated outputs can
be useless or even harmful to the system. [6, 7] or [8] provide broadly accepted, technically
sound definitions related to the subject. This section summarizes the principal terms and
concepts with the precise terminology and notation used in this dissertation.
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1.4.1 RT Task Models, constraints and assumptions

A task is unit of work such as a program or code-block that when executed provides some
service of an application. RT systems typically consist of sets of RT tasks. A RT task is a
task that requires a specific amount of particular resource during a specific period of time. It
can be either dependent or independent. For a dependent RT task, its execution may require
an exclusive access to a shared resource (e.g., a file, a data structure in shared memory) or it
has some precedence constraints. Tasks are said to be independent when they do not interact
in any manner (accessing shared data, exchanging messages, etc.) with other tasks. If tasks
have precedence constraints, then one task may need to wait until another task finishes its
execution. In this work, each task is assumed to be independent where the only resource the
tasks share is the processor platform. RT tasks are normally recurrent. Each instance of a
task is called a job.

Each RT task occurring in a RT system has some timing properties. These timing prop-
erties should be considered when scheduling tasks on a RT system. The timing properties of
a given task refer to the following:

• Release time: Time at which the task is ready for processing.

• Worst case execution time (WCET): Maximum time taken to complete the task, after
the task is released. The worst case execution time is also referred to as the worst case
response.

• Deadline: Time by which execution of the task should be completed, after the task is
released. time.

RT tasks can be classified as hard, firm or soft real-time according to its criticality level.
Missing a deadline of a hard RT (HRT) task leads to unrecoverable or fatal results in the
system. The results of a belated Soft RT (SRT) task can still be useful or recoverable to the
system, and useless and harmless in the case of firm RT tasks.

A RT system can formally defined as follows:

Definition 1.5 RT system is defined as a system T , that consist of a set of RT tasks T =
{τ1, τ2, . . . , τn}, where the worst case execution time of each task τi ∈ T is ci. The system
is said to be real-time if there exists at least one task τi ∈ T , which falls into one of the
following categories:

• Task τi is a HRT task. That is, the execution of the task τi should be completed by a
given deadline di, i.e., ci ≤ di.

• Task τi is a SRT task. That is, the later the task τi finishes its computation after a given
deadline di, the more penalty it pays.
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• Task τi is a firm RT task. That is, the earlier the task τi finishes its computation before
a given deadline di, the more rewards it gains.

This work mostly deals with HRT task sets. RT systems theory has lead to a number of
theoretical task models. The most relevant and most related to the work in this dissertation
are presented next.

The Liu and Layland (LL) Sporadic Task Model

The activations (jobs) of the sporadic tasks are separated by a minimum. Arrival time and
deadline are relative to the task activation, without a global clock. This task model was
formally defined in [9] by C.L. Liu and J. Layland; hence the name. Sporadic tasks are so
common that they are customarily named periodic tasks, with the period considered as the
minimum time between consecutive jobs [8]

The Three-Parameter Sporadic Tasks Model

This model is a generalization of the Liu and Layland’s task model [9]. A sporadic task is
defined as follows:

Definition 1.6 A sporadic task τi is defined by the 3-tupla τi = (ci, di, ωi), where ci is the
WCET, di the relative deadline and ωi is the period or the minimum inter arrival separation
time.

A 3-parameter sporadic task system consists of a finite number of such 3-parameter spo-
radic tasks executing on a shared platform. The relationship between the values of task
relative deadlines and periods determines a further classification of 3-parameter sporadic
task systems:

• Implicit-deadline task system: the relative deadline of each task is equal to the task’s
period (di = ωi).

• Constrained-deadline task system: the relative deadline of each task is no larger than
the task period (di ≤ ωi).

• Arbitrary-deadline task systems: their relative deadlines are not subject to any con-
straint with regard to their periods.

Fig. (1.2) shows a constrained-deadline task system and Fig. 1.3 depicts a implicit-deadline
task system.
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Figure 1.2: Sporadic task with constrained-deadline.

A sporadic task is said to generate a synchronous arrival sequence (SAS) of jobs (Fig. 1.3),
if it generates jobs as rapidly as permitted to do so, i.e., a job arrives immediately the
minimum inter arrival separation has elapsed since the arrival of the previous job. This
notion is extended to task systems:

Definition 1.7 A task system is said to generate a SAS of jobs if all tasks in the task system
generate a job at the same instant in time, and each task generates subsequent jobs as rapidly
as permitted.

Periodic Tasks

A periodic task (Fig. 1.3), generates an unlimited sequence of jobs. Each job of a task
arrives with a continuous and deterministic pattern of time interval named period. That
is, it continuously requests resources at time values. In addition to this requirement, a RT
periodic task must complete processing by a specified deadline relative to the time that it
acquires the processor.

Definition 1.8 Let τi be a periodic task defined by the 4-tupla τi = (ai, ci, di, ωi), where
ai represents the release time. Every job is generated at time (ai + kωi) ∀ k ∈ N. The
computation time is denoted as ci and constitutes the WCET of the task. The deadline di is
the time by which the task should finish its execution. Finally, ωi is the period of the task.
The parameters (ci, di, ωi) are considered constant for every job of the task.

This task model presents analytical difficulties in RT applications, and it has been shown
that scheduling problems for periodic task models are highly intractable, NP-complete, even
on uniprocessors [8].
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Figure 1.3: Sporadic SAS task with implicit deadline.

Aperiodic tasks

Aperiodic tasks also consists on a infinitive sequence of instances (Fig. 1.4). They differ with
periodic tasks their irregular arrival time.

Definition 1.9 Let τapi an aperiodic task defined by the tupla τapi = (cai , d
a
i ), where cai is the

WCET and dai is the deadline. The arrival time of τapi is denoted as rai and is an unknown
parameter.

System Utilization

The utilization of a task τi is defined as:

ui =
ci
ωi
. (1.6)

The system utilization is the fraction of time the processor is busy running the task
system, i.e., the sum of the utilization of all the tasks in the task set,

U =
n∑
i=1

ci
ωi
. (1.7)

The utilization of a task system must be less or equal than the number of processors
U ≤ m. If this restriction is not met, then there does not exist an feasible schedule.

The density of a task τi is the ratio of the WCET to the smallest of its relative deadline
or period,

D =
n∑
i=1

ci
min(ωi, di)

. (1.8)
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Figure 1.4: Aperiodic task

Without loss of generality, in this work the WCET ci of task τi is characterized as a
function of the processor frequency. The WCET is considered to be fully scalable with the
processor frequency F :

ci =
cci
F

where cci is the WCET in cycles of the processor.

The hyper-period is defined as the period equal to the least common multiple of the n
periodic tasks H = lcm(ω1, ω2, . . . , ωn).

Common assumptions

The following list summarizes common assumptions taken in RT multiprocessor scheduling,
which this dissertation embraces [10, 8]:

• This work focuses on implicit-deadline tasks.

• Tasks are independent. The only resource shared by tasks are the CPUs. The contribu-
tions in this work mostly assume the three-parameters model (extended with aperiodic
tasks when required) as presented in Sec. 1.4.1.

• Jobs do never relinquish the CPU voluntarily. They always remains in the ready state
when forced to leave the CPU by preemption.

• Jobs can be preempted any time, without further restrictions than those imposed by
the scheduling algorithm.

• Jobs must execute sequentially on at most one processor at any time

• WCET is never exceeded, and job activation do always meet the adopted task model.

• Context-switching, migration and scheduling overheads are either negligible or prorated
in the WCETs.
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• Speculative mechanisms or cache memories are absent or deactivated in the CPUs

1.4.2 Multiprocessor Systems

A multiprocessor system is composed of a number of processors. When the multiprocessor is
integrated in a single chip, the CPUs are often called cores, giving rise to the terms multicore,
on-chip multicore [11] and even single-core or unicore processors to denote a processor with
a single CPU. In today’s embedded systems, a multiprocessor system on chip (MPSoC) is
a single chip that packages a number of general-purpose cores, specific-purpose functional
units like DSPs, GPGPUs, cryptographic processors or FPGAs, and interconnections and
I/O elements. This dissertation assumes symmetric multiprocessors (SMPs) with Uniform
Memory Access (UMA): all CPUs share a common principal memory through a shared in-
terconnection, and the memory access time does not depend on the CPU.

As far as RT scheduling is concerned, multiprocessor systems are described as follows [12]:

• Heterogeneous: The task execution rate depends on the task and the processor frequency
and architecture. CPUs have different Instruction Set Architectures (ISAs). A specific
task can only run on a specific CPU or set of CPUs.

• Homogeneous: The task execution rate is independent of the CPU. This implicitly
assumes that all CPUs are identical, have the same ISA and run at the same frequency.
Any task can run on any available CPU.

• Uniform: The task execution rate relies only on the CPU frequency. CPUs are identical
but can run at different clock frequencies. Hence a processor of speed 2 will double the
execution rate of all tasks with speed of 1.

An example of state-of-the-art multicore processor used in the industry include the MPPA-
256 [13], which does not support context switching and multitasking, forcing the use of parti-
tioned scheduling [14]. Another example is the LEON4 SPARC V8 Processor, manufactured
by Cobham Gaisler and selected by the European Space Agency [15].

1.4.3 RT scheduling

RT scheduling manages the allocation of task sets to a processor or set of processors. Most
basic concepts in RT scheduling belong to the broader subject of scheduling as known in com-
puting and operations research, and appear in computer operating systems, manufacturing
and service industries. However, the specificity of each field often implies distinct approaches
and nuances. The following concepts are at the basis of this dissertation in the context of
RT systems.
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A Scheduling algorithm is the set of rules to solve the problem or allocating n tasks to
m CPUs to satisfy (scheduling problem). With n > m, this implies sharing one or more
processors among different tasks, which implicitly involves switching tasks on a processor at
specific scheduling events. Common scheduling events are task activation, task termination,
the expiration of a fixed or variable time interval (known as quantum or time slice, or the
occurrence of more complex conditions such as time or thermal constraint violations. A
scheduling algorithm is work conserving if it does never leave an idle processor as long as an
unscheduled ready task exist [8].

The result of solving a scheduling problem by means of a scheduling algorithm is a sched-
ule. Formally a schedule is defined as follows:

Definition 1.10 A schedule is a set of 3-tuples (τ qi , CPUk, [ζr, ζs]), where τ qi is the q − th
job of task τi that is allocated to CPUk, starting its execution at time ζr and completing or
being preempted at ζs.

A task set is said to be feasible if there exists some scheduling algorithm under which it
is schedulable (i.e. tasks meet the imposed constraints). A scheduling algorithm is said to
be optimal if it is able to schedule any task set that is feasible [16]. A schedule is said to be
feasible if it can be repeated every hyper-period while meeting the required deadlines [17].
Feasible schedules can be computed off-line, before system operation, as a set of 3-tuples, or
can be computed on-line, determining which jobs must be allocated to which processors.

The time interval [ζr, ζs] is usually given as an integer multiple of a time quantity named
quantum.

A scheduler is a functional entity of an operating system or baremetal routine that upon
the occurrence of an scheduling event determines which jobs must run on which CPUs ac-
cording to the rules of a scheduling algorithm. The dispatcher gives control of a CPU to the
job allocated by the scheduler [18], causing the preemption of the job that was running in
that CPU. In the context of RT systems context, preemption is the operation of suspending
the execution of a job and inserting it into a ready-queue [19].

Complexity of the scheduling problem

The scheduling problem belongs to the broader class of combinatorial search problems. Com-
binatorial search is among the hardest common computational problems. These problems
form the well-studied class of NP-hard problems, i.e. the problem is as difficult to solve as
other problems tat have been widely studied and reported by experts [20]. It is believed that
it is very unlikely that a NP-hard problem can be solved in polynomial time.

Hence, it is natural to think of an approximation solution method for the scheduling
problem. Also, the problem formulation has been often simplified in the treatment of the
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certain properties of the system, or by making a few assumptions as in the task models
presented in Sec. 1.4.1.

1.4.4 RT Scheduling Algorithms

The aforementioned assumptions and the design space of RT scheduling introduce different
classifications. The following summary presents the two most relevant ones in the context of
RT scheduling for the purposes of this dissertation.

Priority management

According to how task and job priorities are managed, RT schedulers are classified as fol-
lows [21]:

• Fixed task priority (FTP) scheduling.- Tasks priorities are static. A well-known example
is Rate Monotonic, where priorities are allocated according to task period (the shorter
the period, the higher the priority) [17].

• Fixed job priority (FJP) scheduling.- Jobs of the same task may be assigned different
static priorities: once assigned, the priority of that job never changes. An outstanding
example is the Earlier Deadline First (EDF) policy [22].

• Dynamic priority (DP) scheduling.- Job priorities can dynamically change during the
execution. Examples of RT schedulers leveraging this policy are Pfair [23], DPfair [24],
Least Laxity (LL) [25] or EDZL [26].

Task allocation

The way RT tasks are distributed among the available CPUs in multiprocessors has been
traditionally tackled through two different approaches: partitioned and global scheduling [27,
28] and mixed solutions [29].

• Partitioned schedulers allocate tasks statically to CPUs, and tasks are not allowed to
migrate. Under this scheme, HRT schedulability analysis can be derived from uniproces-
sor scheduling, ensuring a maximum utilization bound of 50%, which severely hampers
the SWaP compromises [30].

• Global schedulers can allocate tasks to any CPU and allow task migration. Global
Earliest Deadline First (gEDF ) [31] is a global preemptive scheduling algorithm where
all ready tasks are enqueued in a single ready queue, and the m highest-priority tasks
are executed on the m processors. Job priorities are inversely proportional to their
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associated deadlines, with a smaller absolute deadline corresponding to a higher priority.
This algorithm guarantees soft real-time (SRT) schedulability for implicit-deadline task
sets, managing dynamic priorities at task level while fixing priorities at job level, but is
not optimal under a HRT scheme [32, 33].

• A third approach mixes static and dynamic allocation. Thus, clustered scheduling stati-
cally allocate tasks to clusters of CPUs, but jobs can migrate within their cluster [29]. Al-
ternatively, semipartitioned scheduling preforms a preliminary static allocation of some
tasks over the whole set of available CPUs, allowing the rest of them to migrate [34].

Global scheduling can benefit from the concept of fluid scheduling, which consists in in-
stantaneously sharing CPUs among all active jobs [35, 36, 37, 38]. Practical implementations
approach this theoretical behavior by interleaving jobs, keeping a fair CPU share within time
periods, and honoring time constraints in the case of RT tasks sets.

Upon this principles, global schedulers such as Pfair [39], PD [40] and PD2 [35] leverage
the idea of proportionate fairness. The time is discretized and the tasks can only be executed
during an integer number of quanta Q. The time quanta are then fairly distributed between
the tasks so that the difference (the fluid error) between the execution time of every task
and the fluid (continuous) schedule is smaller than 1 quantum at any time.

Only this kind of schedulers has been proved HRT and SRT optimal for implicit deadline
task sets, whereas partitioned scheduling is limited to a 50% utilization bound [30], and no
optimal scheduler exists for constrained or arbitrary deadlines [41].

The downside of Pfair algorithms is that they incur in an unfeasible number of context
switches and migrations, since scheduling actions are taken on a quantum basis. Deadline
partitioning schedulers such as BFair (Boundary Fairness [38]) and DPFair [37, 24]) alleviate
this overhead by limiting the scheduling points to the set of all task deadlines, i.e. scheduling
actions are now at variable time intervals instead of at a fixed quantum. This overhead can
still be reduced by relaxing the fairness requirement [42], but this means the loss of optimality
in terms of CPU usage.

Laxity rules

The laxity of a job is the difference between its time and work remaining until its deadline
i.e., the laxity of an instance of the task τi is defined as the deadline of the task di minus the
sum of its remaining execution time and the current time,

li = di − (remi − ζ) (1.9)

where remi is the remaining execution time. The Laxity changes dynamically, and when it
reaches zero it means that if the task does not begin to run at that moment it will lose its
deadline.
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Two common greedy algorithms for uniprocessor scheduling are Earliest Deadline Until
Zero Laxity (EDZL) [43] and Least Laxity First (LLF) [44]. They are implicitly deadline
partitioning algorithms that assign the highest priority to the job either with the earliest
deadline or with least laxity, respectively.

1.5 Background on heat transfer

Temperature is a constraint of paramount importance in modern computing systems. In
order to study how the temperature varies in a computer, it is needed to understand some
basic notions of thermodynamics. A thermodynamic analysis focuses on the amount of heat
transfer that exists in a system when it evolves from one steady state to another. Heat
transfer is a spontaneous thermodynamic phenomenon caused by the flow of energy that
appears among regions in thermal contact at different temperatures (i.e. with a temperature
gradient). There is a thermal equilibrium (no thermal flow) when all the regions reach the
same temperature. It is important to note that heat and temperature are different concepts.
Heat entails an energy transfer produced by differences in temperature, while temperature is
a measure of the heat. More precisely:

Definition 1.11 Heat is defined as the total kinetic energy of all atoms or molecules in a
substance.

Definition 1.12 Temperature is a measure of the average kinetic energy of individual
atoms and molecules of a substance.

Adding heat to a substance makes its atoms or molecules move faster, which increase its
temperature. Removing heat produces the opposite effect.

Definition 1.13 The specific heat (often denoted c) is the amount of energy required to
raise by one degree Celsius the temperature per unit mass of a substance.

There are two types of specific heat: the specific heat at constant volume (cv) and the
specific heat at constant pressure (cp). A substance whose specific volume does not change
with temperature or pressure is known as incomprehensible substance. In this substances cp ∼=
cv ∼= c. Solids and liquids remain constant volumes that are regarded as incomprehensible
substances.

Definition 1.14 The amount of heat transferred in a system is denoted as Q. The
heat transfer rate is the amount of heat transferred per unit time, measured in Jouls per
second (J/s, i.e. watts, and is denoted as Q̇.
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Definition 1.15 The ratio of heat per unit area perpendicular to the direction of Q̇ is called
the heat flow, and the average heat flow is expressed as:

q̇ =
Q̇

A
(1.10)

where A is the heat transfer area.

Heat transfer takes place according to the following different mechanisms governed by
their corresponding physical laws.

1.5.1 Conduction

In conduction, heat transfer takes place due to temperature difference in a body or between
bodies in thermal contact, without mixing of mass. The rate of heat transfer through con-
duction is governed by the Fourier’s law of heat conduction.

Definition 1.16 Fourier’s law of heat conduction.

Consider an element that has volume and a thickness ∆x, with a cross-sectional area
A, where the two opposite areas have temperatures T1 and T2. The rate of heat transfer is
proportional to the difference of temperature ∆T = T2−T1, and inversely proportional to the
thickness of that areas:

Q̇cond = kA
T1 − T2

∆x
= −kA∆T

∆x
(1.11)

where the proportionality constant k is a transport property known as the thermal conduc-
tivity coefficient of the material.

When ∆x→ 0, the equation 1.16 is reduced to its differential form:

Q̇cond = −kAdT
dx

(1.12)

This equation is known as Fourier’s law of heat conduction, in which dT
dx

is the temperature
gradient.

The minus sign appears because the temperature decreases in the direction of heat trans-
fer.

The coefficient of thermal conductivity k (W/mK) represents the capability of the mate-
rial to transport heat from one part to another because of the temperature gradient. It is a
material-specific property used to characterize the steady heat transport.
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1.5.2 Convection

In convection, heat is transferred to a moving fluid at the surface over it flows by a combi-
nation of molecular diffusion and bulk flow. Convection involves conduction and fluid flow.
The rate of convective heat transfer is governed by the Newton’s law of cooling.

Definition 1.17 Newton’s cooling law. The change rate of the temperature of an object
is proportional to the difference between its own temperature and the ambient temperature
(i.e. its surrounding temperature). Its defined as:

Q̇conv = hAs(Ts − T∞) (1.13)

where h is the coefficient of convection in (W/m2K); As is the heat transfer surface area;
Ts is the surface temperature; T∞ is the ambient temperature.

In thermodynamics and mechanics, the heat transfer coefficient is the proportionality
constant between the heat flux and the thermodynamic driving force for the flow of heat. It
is a parameter calculated experimentally and its value depends on factors that influence on
the convection, such as the fluid properties and the nature of movement.

1.5.3 Radiation

Radiation heat transfer is the transport of energy due to the emission of electromagnetic waves
or photons from a surface or volume. Radiation does not require a heat transfer medium,
and can occur in a vacuum. Heat transfer by radiation is proportional to the fourth power
of the absolute material temperature. Also, it depends on the properties of the material,
represented by ε, and on its temperature Ts. Radiation is given by the Stefan-Boltzman law :

Q̇emit = εσAsT
4
s (1.14)

where σ = 5.67 × 10−8W/m2 ·K4 is the Stefan-Boltzman constant and 0 ≤ ε ≤ 1 is the
emissivity of the material. An object with ε = 1 is a black object.

1.5.4 Heat Generation

Heat generation is a volumetric phenomenon, since it occurs throughout the medium. The
heat generation rate in a medium is usually specified per unit volume (W/m3) and denoted
as ėg. The heat generation rate in a medium can vary with time and position.
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Definition 1.18 The total heat generation rate in a medium with volume V can be deter-
mined as:

Q̇gen =

∫
V

ėgdV (1.15)

When the heat generation rate is uniform in a medium, the last equation is rewritten as:

Q̇gen = ėgV (1.16)

where ėg is the rate constant of heat generation per unit volume.

1.5.5 Power dissipation in CMOS

Power dissipation in CMOS circuits comes from two components. The dynamic dissipation
is caused by charging and discharging load capacitance (CL) and by short-circuit currents.
The static dissipation is due to leakage currents, and other currenta continuously drawn from
the power supply.

The dominant component in dynamic power dissipation is the charging of CL. The
average dynamic power dissipation Pdyn can be expressed as the average instantaneous energy
dissipation:

Pdyn =
VDD
T

∫ T

0

iDD(t)dt (1.17)

where iDD(t) is the transient current drawn from the power supply and VDD is the voltage
supply. The integral is the total amount of charges delivered during the time interval T .
During each transition, the load capacitance is charged to VDD or discharged to ground, and
the amount of charges delivered (Q) is therefore equal to CL VDD. Assuming a nodal activity
of α on the load and a clock frequency of F , the total number of transitions amounts to αTF
[45]. Therefore, Eq. (1.17) simplifies to:

Pdyn =
VDD
T

αCLTFVDD = CeffV
2
DDF (1.18)

where Ceff = αCL is called effective switching capacitance as it is the part of total capaci-
tance that contributes to power consumption.

The main component in the static power are leakage currents. Static power dissipation
is always present when the device is energized. Up to the 65 nm process, the dynamic power
was the dominant factor in the total power (∼ 90%), because techniques and materials
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allowed the leakage currents sub-threshold. However, especially from the 45nm process, the
contribution of static power has been growing to become the most relevant factor [46].

Leakage comes from a number of currents, among which sub-threshold and gate leakage
currents are the most important. Gate leakage is insensitive to temperature and can be
removed by using high-k devices. Dual gate devices drastically reduce the leakage for the cost
of higher dynamic power [47]. Leakage varies non-linearly with temperature, but knowledge
of the average temperature Within regions of uniform design style is sufficient to accurately
determine leakage power consumption using a simple model resulting in less than 1% error
in leakage estimation [48].

The dissipated power in a CMOS circuit appears in the form of heat, which can damage
the circuit if not properly removed. In summary, heat is generated from the silicon active
surface due to active switching and leakage. All the energy consumed by the integrated
circuit is first dissipated in the form of heat in the transistors and interconnects, and is
eventually removed to the environment by heat transfer. Elevated temperatures can shorten
interconnect and device lifetimes, and package reliability can be severely affected by local
hot spots and higher temperature gradients. For all these reasons, in order to fully account
for the thermal effects, it is important to model temperature and to leverage accurate and
efficient thermal techniques to control temperature in the system [49].

1.5.6 Thermal Models and Temperature Control

Thermal models are usually build using numerical methods as finite differences, finite ele-
ments, finite volumes [50, 51] or by analogy using RC models [52, 53, 54, 55, 56]. All of these
techniques lead to fine thermal models. Nevertheless, numerical methods do not provide a
state space model, and the derived results cannot be used in further optimization or control
stages. On the other hand, RC models require parameter calibration, which much relies on
engineering expertise and empirical data.

1.6 Prior Work

This section highlights the novelty of the proposals and the relationship among the papers
published as a consequence of the research in this dissertation, with respect to previous work
in thermal and energy aware RT scheduling. It also explains the rationale behind the thesis,
and states the problem to solve.

Thermal-aware scheduling has been largely studied in single core systems, scaling the
processor frequency to reduce its power consumption and temperature. Dynamic Voltage
and Frequency Scaling (DVFS) is a well-know technique used with this purpose [57] [58].
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Chen et al. [59] study the temperature problem in both uniprocessors and homoge-
neous multiprocessor systems. They leverage an EDF-based algorithm that minimizes max-
imum temperature and energy. They also derive an approximation bound for the max-
imum temperature in the EDF algorithm. They stick to a partitioning (no migration)
scheme. Schor et al. [60] perform a worst-case temperature analysis for RT tasks with non-
deterministic workloads running on multiprocessors systems.

Feedback methods from control theory have been often used to cope with a dynamic envi-
ronment for RT scheduling. The feedback control algorithm in [61] enforces both thermal and
RT constraints but is restricted to single-core processors, as they do not consider inter-core
thermal coupling in multicore processors. A general framework of dynamic thermal man-
agement for multicore processors is proposed in [62]. It basically consists in a hierarchical
feedback control loop with PI controllers, but does not guarantee RT performance. The ther-
mal problem is defined in [63] as a control theory problem with a state space representation,
and proposes an optimum solution to the frequency assignment problem for thermal balanc-
ing in MPSoCs, but it does not consider RT constraints nor the scheduling problem. Other
contributions based on control theory are limited to SRT systems, allowing for a certain
percentage of missed deadlines [64, 65, 66].

Ahmed et al. [67] tackle the problem of thermal constrained scheduling of periodic tasks,
but they assume partitioned scheduling instead of global (migration) scheduling. Chantem
et al. [54] use an equivalent circuit model to estimate the temperature for a given set of a
hard RT tasks on a multicore system, also referred to a partitioned scheme, but they lack of
a true integrated state model.

We introduced in Sec. 1.4.4 as a suitable deadline partitioning algorithm for maximizing
CPU utilization while reducing the high number of context switches and migrations typical of
quantum-based Pfair algorithms. However, the deadline intervals defined in DPfair can be
too long to cope with temperature variations. On the contrary, making scheduling decisions
every fixed quantum as in Pfair can provide a very precise temperature control, at the cost
of a higher overhead nonetheless.

RUN (Reduction to Uniprocessor) [68, 69] addresses the problem of reducing the context
switching and migration that appears in global scheduling. RUN considers feasible systems
composed of independent implicit-deadline periodic (not sporadic) tasks on identical pro-
cessors, and transforms the multiprocessor RT scheduling problem into an equivalent set of
uniprocessor problem. The key underlying tool is the utilization of a task (Sec. 1.4.1) and
its dual, e.g. if 0.6 is the utilization of a task, its dual is 0.4. During an off-line stage,
RUN tries to find proper utilization subset, which are task groups (named servers) with an
aggregated utilization equal to 1 (i.e. with maximum CPU utilization). This is called a pack
operation. A proper utilization subset can be allocated to a virtual processor, configuring
a proper subsystem. After a succesful pack, a dual operation follows. The dual operation
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mas groups with an aggregated dual utilization of 1groups considering the dual utilization.
The pack-dual operations continue until a single utilization system is found. The algorithm
guarantees convergence. Then, RUN uses EDF to schedule each task group on-line, revers-
ing (unpacking) the pack-dual operations performed off-line . Under the DUAL and PACK
operations, this algorithm yields a small number of preemptions and migrations.

QPS (Quasi-Partitioned Scheduling) [70] does also partition the system tasks into subsets.
There are two types of subsets, the minor and major execution sets, depending on whether
they require one or multiple processors. If all subsets are minor, QPS boils down to a
partitioned EDF. Major execution sets are scheduled either by a set of QPS servers on
multiple processors, or by local EDF on a single processor depending on their execution
requirements.

QPS is capable of adapting its scheduling strategy as a function of system load by mon-
itoring major execution sets at run-time. Like RUN, QPS partitions the system off-line
and generates the schedule on-line. If aperiodic tasks arrive to the system, QPS needs to
recompute the servers, unlike fluid schedulers, which are more amenable to provide online
adaptation.

Despite the optimality of Pfair and DPfair, most of the aforementioned references leverage
partitioned approaches. The overhead due to context-switch and migration has tipped the
scale in favor of semipartitioned and empirical designs, and few contributions still leverage
global scheduling techniques [71]. In semipartitioned schedulers, some tasks are statically
allocated to the processors whereas others are split across multiple processors as in global
scheduling [72]. On the other hand, empirical designs resort to a combination of techniques,
but can only solve specific problems [73].

Far from all the research discussed to this point, the automotive, aeronautics and space
industry remains understandably conservative. Although they are already embracing multi-
cores, they follow a traditional cyclic executive upon static partitioning [74, 75, 76]. This is
a safe approach, but it leads to unbalanced SWaP, and faces tough problems such as the fair
Worst Case Delay calculation, which calls for complex ILP solutions [77, 78]. Difficulties ex-
acerbate when including additional constraints such as a maximum temperature or resource
sharing, requiring new models and tools [73].

1.7 Rationale and contributions of this Thesis

The analysis of the prior work shows that there are still many open avenues in the HRT mul-
tiprocessor scheduling arena. There does not exist a single or simple approach, particularly
when additional constraints other than time enter the scenario.

This dissertation constitutes the first contribution exploring TCPNs as a possible tool
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for the design, analysis and simulation of thermal-aware HRT multiprocessor schedulers, and
extend on the faced problems and their solutions.

1.7.1 TCPNs as a modeling tool

The first problem is to show that TCPNs are a suitable formalism to describe a multiprocessor
executing a RT task sets, including task allocation and thermal activity. Ch. 2 presents a
novel methodology that, unlike the traditional methods of thermal analysis cited in 1.5.6,
leads to a single global TCPN model that captures the state of the RT task set and the CPUs
along with the thermal behavior of the system. The TCPN global model encompasses a task
module, a CPU module and a thermal module. The thermal module leverages the results
published in [79].

A simulation framework provides the necessary tools to automatically build the model and
perform simulations comparing different RT schedulers and providing temperature variations.
This framework is described in 2.7, and constitutes the basis of a more ambitious simulation
project, publicly available, that evolves as a joint effort [80].

1.7.2 TCPNs as a tool for HRT multiprocessor scheduling

The second problem is to explore and select a HRT scheduling algorithm for thermal con-
trol, also suitable for leveraging control techniques. Among the different choices previously
referenced, global scheduling is a suitable starting point. The continuous nature of TCPNs
matches well the continuous nature of global fluid scheduling and the thermal dynamics of
the underlying system. Besides, only global fluid schedulers have been proved HRT optimal
for implicit-deadline HRT task sets (Sec. 1.4.4).

We discussed in the previous section (Sec. 1.6 that the many scheduling points in quantum-
based schedulers such as Pfair are good candidates to control temperature, at the cost of
a high overhead. The fewer scheduling points in interval-based schedulers such as DPfair
can lead to a lower overhead, but the variable intervals between deadlines can be too long
to cope with temperature variations. This suggested the idea of exploring a compromise
between quantum-based and deadline interval-based global scheduling to achieve an optimal
thermal control in a MPSoC, resorting to feedback control techniques.

The result of this exploration is presented in Ch. 3, and was published in in [81]. The
compromise in this algorithm consists in calculating the fluid function (the fluid execution
rate) of each task for every deadline interval up to the hyperperiod, according to a deadline
partition policy, but making the scheduling decisions on a quantum basis. The quantum
is calculated as the great common divisor (GCD) of all deadlines. Every quantum, the
simulation every quantum of a TCPN model of the system provides the actual execution
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time of the jobs, which is compared with the expected (fluid) execution time to obtain the
fluid error. The error determines the priority of each job according to the time it must run
until the next quantum. Next, jobs are allocated to the CPUs by priority order. If the actual
execution is subject to disturbances, a sliding mode feedback controller minimizes the fluid
error. The evolution of the TCPN barely takes a simple linear computation.

1.7.3 TCPNs and control for thermal-aware HRT multiprocessor
scheduling

The third problem, the inclusion of a thermal constraint in the research, led to the scheme
presented in Ch. 4. This approach constitutes a novelty with respect previous work on global
and thermal HRT scheduling, and has been accepted for publication in [82].

Now, the solution of a linear programming problem (LPP), which is computed off-line
in polynomial time, provides the fluid time share that each task must be granted at each
processor during the hyperperiod to meet HRT and thermal constraints. If the LPP has a
feasible solution for a given HRT task set, then there exists a thermal-aware HRT schedule
under which the task set is schedulable, and the schedule is optimal in terms of thermal and
temporal constraints and CPU utilization.

The LPP does not provide CPU allocation nor execution times, since this is a global
scheduling approach, which is inherently dynamic. Thus, we look for (and the solution of the
LPP is) just a set of coefficients jβi, which represent the optimal amount of task execution
time that must be allocated to each processor. Using these coefficients jβi, the functions

jFSCτi(ζ) = jβicci
H

ζ are computed, each one representing the amount of τi that must be
executed in CPUj by time ζ so that temporal and thermal constraints are fulfilled.

Next, an on-line thermal-aware RT fluid scheduler allocates tasks to CPUs ensuring that
task τi is executed in CPUj exactly jFSCτi(ζ) at time ζ. The functions are calculated
at each deadline interval over the ordered set of all task deadlines (i.e. at each ζ = sdi)
following a deadline partitioning scheme. However, the fluid scheduler is discretized on-line,
on a quantum basis, with Q = GCD(sdi), as in pfair global algorithms.

At each quantum, the sliding mode feedback controller leveraged in Ch. 3 makes the
TCPN model of the system to evolve so that the error between the jFSCτi(ζ) and the actual
fluid execution time of τi on each CPUj becomes minimum, accounting for disturbances.
Then, a per-CPU task priority queue is build upon the difference between the fluid and the
actual discrete execution time, and jobs are accordingly dispatched. This is different and
more convenient than the global job queue in former implementations of Pfair algorithms,
including [81]. The feedback controller allows the system to recover from disturbances such
as CPU detentions due to environmental hazards causing energy interruptions or thermal
peaks.
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The advantage and principal novelty of this approach is the implementation of an on-
off control law, which leads to a low-overhead scheduler, capable of handling perturbations
in underloaded systems without rescheduling a job. The adopted scheme can be used to
simulate a system or to generate a scheduler for a real physical system (Sec. 4.3.4).

1.7.4 TCPNs and control for thermal-aware HRT scheduling with
aperiodic tasks and disturbances

The last problem is the management of SRT aperiodic tasks while preserving the thermal and
time constraints of the HRT task set. With this purpose, the proposal in Ch. 5 integrates a
PID controller into the scheduling scheme presented in Ch. 4, configuring a cascade control.

The underlying idea is inspired on [83], with substantial differences nonetheless. As
in [83], the starting point is the calculation of a minimum system frequency (F ∗) at which
the system can properly run a HRT task set, achieving an utilization of 100 %, and the
maximum frequency (F+) at which the system can run without surpassing a temperature
threshold. Any frequency increase over F ∗ up to F+ (i.e. any F |F ∗ ≤ F ≤ F+) will lower
the CPU utilization, freeing a utilization slack in which an aperiodic task could be run unless
it does not fit into the maximum achievable slack, which is limited by F+.

In [83], the LPP solved during the off-line stage yields discretized fluid functions, in CPU
cycles per task and deadline interval (over the set of all task deadlines, according to a deadline
partitioning approach), instead of providing a fluid time share per task and CPU that must
be discretized later on-line, as in Ch. 4. The on-line stage is event-based (upon a zero-
laxity, task completion or aperiodic task arrival event) instead of quantum-based, making
the calculations lighter than in Ch. 4 during normal operation. However, upon arrival of an
aperiodic task, an adaptive scheduler performs the on-line re-computation of the CPU cycles
that each task has to run during each deadline interval, also accounting for the cycles of
the incoming aperiodic task (when accepted). Also, task allocation is performed in [83] by
applying a Fixed-Priority Zero-Laxity algorithm (FPZL, [84]) over a single global job queue,
whereas the scheduler in Ch. 4 allocates jobs leveraging per-CPU queues, because the off-line
stage already provides per-task, per-CPU fluid functions.

The contribution of Ch.5 is a lighter management of aperiodic tasks that can be incorpo-
rated to different scheduling schemes, while retaining the ability of the scheduler presented
in Ch. 4 to deal with disturbances, thanks to a cascade control. Upon the idea of freeing
utilization by increasing the frequency over the minimum F ∗ that warrants the correct exe-
cution of the HRT task set, a PID controller avoids the heavy computation required to find
the upper next safe frequency in the CPUs to run a SRT aperiodic task, accepted or not by
an Aperiodic Task Manager, depending on the remaining capacity of the system.



1.8. Problem definition 27

1.8 Problem definition

Formally, the problem that constitutes the starting point of the Thesis can be formally stated
as follows.

Definition 1.19 The system consists of a set of n periodic tasks T = {τ1, . . . , τn} that must
be allocated and executed on a set of m homogeneous processors P = {CPU1, . . . CPUm}. A
task τi is characterized by a 4-tuple τi = (cci, di, ωi, ei), where cci are the CPU cycles required
to complete an instance of the task or job, calculated as the WCET ; di is the relative implicit
deadline, ωi is the task period and ei is the energy demanded by the task during execution.
All tasks hold the same priority and are independent (with no resource sharing). A job τ ki of
task τi ∈ T must complete its execution within the time period [(k− 1)ωi, (k− 1)ωi + di], i.e.
it is executed for a fixed number of cci CPU cycles. Once a job τ ki is over, a new one (τ k+1

i )
becomes immediately ready for execution at time kωi.

The hyper-period is defined as the period equal to the least common multiple H =
lcm(ω1, ω2, . . . , ωn) of all task periods. The system utilization is defined as the fraction of
time during which the processor is busy running the task set i.e., U =

∑n
i=1

cci
ωi

. In this
dissertation we only consider cases where U ≤ m.

Problem 1.8.1 Thermal-aware fluid scheduler. Given the system defined in Definition 1.19,
design an algorithm to allocate within the hyperperiod the tasks in T to the m identical CPUs
in P in such a way that the deadlines for T are always satisfied and the CPU temperatures
are kept always below a given temperature threshold Tmax.





Chapter 2

System Modeling Methodology

This Chapter presents a modular methodology that models RT tasks, CPUs and
their thermal behavior in an MPSoC. The methodology captures task arrival time,
the allocation of tasks to CPUs, CPU execution cycles, energy consumed and tem-
perature variations. The Chapter introduces a simulation tool, publicly available,
developed to support the experiments in this Thesis.

2.1 Introduction

The first problem to face in order to explore the capabilities of TCPNs for thermal-aware
multiprocessor RT scheduling is to build a model encompassing a RT task set, the CPUs and
the thermodynamics of the system. Tasks and CPUs can be separately modeled using two
distinct types of TCPN modules. A third different module divides the MPSoC into prisms,
and models heat generation, thermal conduction and convection. Heat generation considers
both the dynamic and the static power. All modules are assembled into a global TCPN
model that represents the dynamical behavior of the system: task arrivals, CPU throughput
and temperature variation.

This model has a number of benefits. First, it inherits the advantages of Petri nets,
such as the graphical representation and a sound mathematical background. Second, the
underlaying Ordinary Discrete Equations (ODEs) correspond to a central discretization in
space while the time is kept continuous. Therefore, the model shares advantages of the

29
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Table 2.1: System notation
Symbol Description

n Number of tasks
m Number of processors
T A task set
P a Processor set
τi The ith task
cci The worst-case execution in CPU cycles of τi
ci The worst-case execution time of τi
di The relative deadline of τi
ωi The period of τi
ui The utilization of task τi
U System utilization
H Hyperperiod
F Set of discrete frequencies
F s Set of discrete operating frequencies F s ⊆ F
Φ∗ The normalized minimum frequency
F∗ The minimum frequency
Fc The solution of Eq.(5.4)
F+ The maximum thermal frequency
Fn The operating frequency
sdki The k − th deadline of task τi
SD The set of ordered deadlines sdqi
IkSD The k − th scheduling interval
xki The cycles of task τi to be executed during IkSD
xkτai The cycles of task τai to be executed during IkSD
Xk Set of all active tasks in IkSD
kq Thermal conductivity of component q
Vq Volume of component q

VCPUj Volume of CPU j
ρq Density of component q
cpq Specific heat capacity of component q
h convection coefficient
Tq Temperature of component q
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Table 2.2: Notation for the TCPN model
TCPN symbol Description

TCPN Module for task τi
pωi Period place of τi
pdi Deadline place of τi
pcci Cpu cycles place of τi
tωi period transition of τi
λωi Fire rate of transition tωi

TCPN Module for CPUj
pidlej Idle state place of CPUj
ppowj Power place of CPUj
pbusyi,j Busy state place of τi in CPUj
talloci,j Allocation transition of τi in CPUj
texeci,j Execution transition of τi in CPUj
λalloci,j Fire rate transition of talloci,j

λexeci,j Fire rate transition of texeci,j

η CPU modeling parameter
TCPN Thermal model

pcomq Place of component q
pairq Place of component q
pαq Place for leakage power of component q
tcondq→r Conduction transition from component q to component r
tconvq Convection transition of component q
tconvq→∞ Convection transition of component q to air
tαq Leakage power transition for α of component q
tδq Leakage power transition for δ of component q

λcondq→r Fire rate transition of tcondq→r
λconvq Fire rate transition of tconvq

λconvq→∞ Fire rate transition of tconvq→∞
λαq Fire rate transition of tαq
λδq Fire rate transition of tδq
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...

... ...

Figure 2.1: TCPN module for task τi. Firing of transition tωi represents job generations. A
job generated means cci cycles in place pcci . The relative deadline is captured in pdi for model
completeness.

finite difference methods like consistence, order and stability while avoiding the calibration
stage. Last, this approach leads to a state space equation that encompasses task arrival, task
execution and thermal evolution. This makes easier to perform the thermal and temporal
analysis of CPUs, and it allows controlling the temperature of the system by selecting an
appropriate task execution sequence. This constitutes a new approach that leverages the
power of TCPNs to integrate a modular description of a RT physical system along with its
thermal and energy characteristics.

The methodology can be applied to a wide range of tasks and scheduling models. However,
this work abides by the assumptions described in Sec. 1.4.1, implicit in the formal definition
of the general problem tackled in this Thesis (Sec. 1.19).

Secs. 2.2, 2.3 and 2.4 describe the task, CPU and thermal modules respectively. Sec. 4.3.4.
Table 2.1 summarizes system parameters and symbols used throughout this dissertation, and
Table 2.2 gathers the notation related to the global TCPN model.

2.2 Task module

Modeling tasks arrival

The period ωi of task τi implies that 1
ωi

jobs arrive per second in average (arriving frequency).

This is captured in the TCPN module as the firing rate λωi = 1
ωi

of transition tωi (Fig. 2.1).
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Figure 2.2: TCPN module for a single CPUj. Places pbusyj represents the busy state of

processor. The firing transition texecj represents the execution of a job. Place pidlej represents
the idle state.

Modeling task deadlines

The relative deadline di of task τi is represented in the model of by the marking di at place
pdi (Fig. 2.1). Since this work only considers implicit deadlines (Secs. 1.4.1 and 1.19), di = ωi.
Gathering all the system information into the TCPN requires the addition of the marking of
an isolated TCPN place, although is never used.

Modeling task execution time

The duration of a task is represented in the TCPN model by the arc going from transition
tωi (Fig. 2.1). This arc models job arrival. Its weight (cci) is the WCET of the corresponding
task in CPU cycles. Accordingly, the marking of place pcci stands for the CPU cycles that
remain to be executed.

2.3 CPU module

This modeling methodology can be applied to homogeneous and heterogeneous cores, and
for global, partitioned and semi partitioned scheduling. This work considers homogeneous
cores and global scheduling. Therefore, any CPU in the set P = {CPU1, . . . , CPUm} can
accommodate any task in the set T .
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Modeling CPU throughput

The TCPN module of a CPU CPUj consists of transitions talloc1,j , ... , tallocn,j , transitions texec1,j ,

... , texecn,j , places pbusy1,j , ... , pbusyn,j and place pidlej (Fig. 2.2). Transitions talloc1,j , ... ,tallocn,j model
the allocation of the jobs of the tasks τ1, ... ,τn to processor CPUj. They are considered
immediate transitions (transitions that fires in zero time once they are enabled), and named
allocation transitions throughout this dissertation. Transition rates λalloc1,j , ... , λallocn,j match

the allocation rate of jobs to CPUj. Places pbusy1,j , ... , pbusyn,j represent the busy state of the
processor, when a job of task τi is allocated to CPUj. Transitions texec1,j , ... , texecn,j represent
the execution of the corresponding jobs on CPUj. Transition rates λexec1,j , ... , λexecn,j model
the execution rate. The model considers that jobs start to be executed instantaneously after
the allocation 1 . The marking of place pidlej models the available cycles of CPUj (throughput
capacity). The initial marking at pidlej is set to 1, to express that the CPUj is idle. The arcs
going from transitions texec1,j , ... , texecn,j to place pidlej and from place pidlej to transitions talloc1,j ,
... , tallocn,j are weighted by a constant value η, to ensure that the flow in transitions talloci,j is
limited by the throughput capacity of the CPU modeled by place pidlej .

Modeling CPU Power and Energy

The power consumed by a CPUj has two components: the dynamic power due to compu-
tational activities of tasks Pdyn, and the static power. The latter is mostly due to leakage
currents. Although it depends non-linearly of temperature, it can be modeled as a linear
function (Sec. 1.5.5). Thus,

PCPUj = Pdynj + Pleakj (2.1)

where Pdynj is the dynamic power due the activity in CPUj. The summation, Pleakj =
δTj +ρ, is an approximation of leakage power consumption, where Tj is the j− th processor’s
temperature and δ, ρ are modeling constants [85].

The average energy consumed in one cycle by task τi running on CPUj at a frequency
Fj can be defined as ei = PCPUj/Fj. In Fig. 2.6 (module CPUj) the execution flow f execi,j

of transitions texeci,j stands for the number of CPU cycles of task τi executed on CPUj, then
the dynamic power consumed by CPUj when task τi is executed during its cci cycles can be
expressed as:

1 For simulation reasons, the execution rates of CPUj can be set as λexeci,j = ηFj , where Fj is the frequency

of CPUj and η is a modeling parameter to ensure that pidlej constraints talloci,j (a suitable value is given by

η > 10). Moreover, the firing rate of transition talloci,j can be set as λalloci,j = ηλexeci,j .
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Pdynj =
∑

τiexecuted in CPUj

f execi,j

ei
cci

(2.2)

Figure 2.3: Thermal conduction and convection mechanisms and their TCPN models.

2.4 Thermal module

This module embodies a thermal model that rewrites the thermal partial differential equation
by a set of ordinary thermal differential equations. It is as precise as a Finite Element
approach, with the advantage of yielding a state model. It also avoids the calibration stages
of RC thermal approaches. This thermal model was accepted for publication in [86].

The module is composed of several thermal submodels, representing thermal conduction,
convection and heat generation.
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Figure 2.4: Heat generation mechanisms and their TCPN models.

Thermal Conduction and convection

The thermal conduction of two adjacent prismatic components is modeled according to the
equation of the TCPN module together with the parameters shown in the row named Thermal
Conduction of Fig. 2.3. These components are assumed to hold isotropic properties (thermal
conductivity coefficients k1, k2; volumes V1, V2; densities ρ1, ρ2 and specific heat capacities cp1,
cp2). The marking in the Petri net places (pcom1 and pcom2 ) represents the average temperature
of component 1 and component 2 respectively.

The thermal convection in a prismatic component (with a convection coefficient h) having
a temperature T1 is modeled by the TCPN module shown at the row Thermal Convection
of Fig. 2.3. The marking in places pcom1 and pair represents the average temperatures of the
component and the ambient temperature, respectively.

Heat generation

A prismatic component increments its thermal energy due to tasks’ jobs execution, this
phenomenon is modeled by Eq.(2.2), and the equivalent TCPN module shown at the first
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Figure 2.5: TCPN of the thermal model module. Weights ϑjq→q+1 =
λ
condj
q→q+1

λ
condj
q+1→q

, where q =

1, . . . , K − 1

row of Fig. 2.4.

The thermal energy due to leakage power of a prismatic component with temperature T1

is represented by the TCPN module at the second row of Fig. 2.4. The leakage coefficients δ
and α depend on the technology node and on the type of subcircuit (SRAM, logic) modeled by
each element. Our model allows setting both coefficients for each element separately, honoring
a precise floor-plan if required. However, the schedulers presented in this dissertation are
unaffected by the magnitude of the coefficients. Therefore, we assume throughout this Thesis
an average leakage behavior for every element, setting δ = 0.1 and α = 0.001 [67]. The
marking at place pcom1 represents the average temperature of the solid component.

Integrating conduction, convection and heat generation

The TCPN of the thermal module of Fig. 2.5 depicts the thermal model of a component
which generates heat due to the dynamic power of jobs executions and transfers heat by
conduction and convection to its surrounding components. The model is derived from the
basic models of Figs. 2.3 and 2.4, by merging the corresponding places of the basic TCPNs
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that represent the temperature of the component. By the principle of superposition of the
thermal system, the merged model is dynamically equivalent to merging the Petri net places
in the TCPN [86].

The number of prismatic thermal components necessary to permit an accurate thermal
analysis depends on the desired accuracy. A single thermal CPUj is modeled by the aggre-
gation of k prismatic components into a larger component with a volume VCPUj . Note that
there exist prismatic components without heat generation.

2.5 Putting the modules all together: the global TCPN

model

Fig. 2.6 shows a detailed part of the TCPN global model, joining tasks, CPU and thermal
modules framed by dashed boxes. At the frontier of these modules there are boundary places
and transitions. The modules are linked by connecting the boundary nodes using arcs. The
arcs from places pcci to transitions talloci,j represent the jobs of τi allocated to processor CPUj.
Places pexeci,j and arcs going from texeci,j to pexeci,j are added to merge the models. The marking
of place pexeci,j stands for the total amount of jobs of τi that have been executed in CPUj from
the initial time.

The power consumption due to task execution implies adding weighting arcs from transi-
tions texeci,j to places p

comj
1,...,k denoting the corresponding temperatures of the CPUj’s prismatic

components. The flow of transitions texeci,j (execution flow) stands for the number of CPU’s
cycles by time unit demanded by task τi while running on CPUj. The execution flow (f execi,j )

multiplied by the weight
ei×V j1

cci×VCPUj
equals the power generation in each prismatic component

corresponding to CPUj when the task τi is running.

Fig. 2.7 shows how all the modules are connected to integrate a monolithic global model.
As of today, we have developed a tool to automate the generation of the matrices and vectors
representing the thermal model, and we are currently extending the tool to automatically
include CPUs and tasks.
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Figure 2.6: Detailed TCPN global model of a uniprocessor system. It includes the task,
CPUs and thermal models.
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2.5.1 Fundamental equation

Based on the dynamical behavior of a TCPN system of Fig. 2.6 the fundamental equation of
the global model can be derived using Eq. (1.5) and formulated by the following equations:

ṁT =CTΛTΠT (m)mT + CaΛaΠa(m)ma

+Cexec
P fexec (2.3a)

ṁa =0 (2.3b)

ṁT =CTΛTΠT (m)mT − Calloc
T walloc (2.3c)

ṁP =CPΛPΠP(m)mP + Calloc
P walloc (2.3d)

ṁexec =Cexec
P fexec (2.3e)

The fundamental equation of the global model represents the dynamic behavior of the
system: task arrivals, CPU throughput and temperature variation. Actually, this equation
expands to a set of equations, because the complete system is modeled by the interconnecting
TCPN basic models (Figs. 2.3, 2.4), which requires the addition of a few extra linking places
or transitions. Note that Eqs. (2.3) is in a state space form, thus being able to design
controllers. The actual input control is the vector walloc, it represents the necessary flow going
through transitions talloc; i.e., the allocation of tasks to CPUs to meet temporal constraints.
The controlled variables are mexec and mT ; the former represents the accumulated task
execution and must be equal to the required task execution over time; the later represents
the temperature of the CPUs.

The differential equations undelying the thermal model in the TCPN are represented in
Eq. (2.3a) and (2.3b). The marking mT and ma represent the temperature vector of the
system and the fixed ambient temperature respectively. Matrices CT , ΛT , and ΠT (m) are
the incidence matrix, the firing rate transitions and the configuration matrix respectively
of the subnet in Fig. 2.6 thermal module, corresponding to the prismatic components of
the floor-plan. Matrices Ca, Λa, and Πa(m) represent the incidence matrix, the firing rate
transitions and the configuration matrix respectively, for the ambient temperature of the
thermal sub net.

The TCPN model for task arrival is described by Eq. (2.3c). The marking mT stands for
the dynamic task allocation in the system. Matrices CT , ΛT , and ΠT (m) are the incidence
matrix, the firing rate transitions and the configuration matrix corresponding to the sub net
of the task model in Fig. 2.6 modules task model.

The CPU behavior is modeled by Eq. (2.3d). The marking mP corresponds to the places
of the CPU modules of Fig. 2.6. Matrices CP , ΛP , and ΠP(m) represent the incidence
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Figure 2.7: Global multiprocessor TCPN schematic representation.

matrix, the firing rate transitions and the configuration matrix corresponding to the CPU
models.

Matrices Cexec
P , Calloc

T and Calloc
P stand for the connections of transitions texeci,j and talloci,j

from (to) places in the thermal model, task arrival model and CPU model, respectively.
Fig. 2.7 shows the connection of the aforementioned models, by means of the allocation
transitions talloci,j and the execution transitions texeci,j . Notice that the task model does not
depend on the temperature model or the CPU model, however it depends on walloc (see
Eq. 2.3c). The vector walloc represent the jobs assigned per unit time. These jobs are
removed from the task model and allocated into the processors for execution. In addition,
the CPU model evolves independently from the thermal model (Eq. 2.3a). The marking
mexec (the integral of fexec Eq. 2.3e) stands for the accumulated executed jobs.

The scheduling algorithms that will be proposed will act on the model by determining
when transitions talloci,j must be fired. In particular, we will define a controlled flow vector
walloc = [1w

alloc
1 , . . . , 1w

alloc
n , . . . ,mw

alloc
n ], it will define the allocation of jobs to CPUs, influ-

encing the dynamical behavior of the global model, causing temperature to raise or decrease
accordingly.
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Figure 2.8: Simulator Architecture

2.6 Methology and Simulation Environment

This Section describes a framework tool for testing HRT Schedulers. This tool consists of
three modules. The first one helps the user to define the problem: task set with periods,
deadlines and WCET in CPU cycles, along with the task allocation models, CPU usage,
temperature and energy consumption. In the second module, the user selects the scheduler
model. Finally the last module allows to execute the simulation either in manual or automatic
mode. In manual mode the simulator uses the task set data provided in the first section.
In automatic mode, the task set is generated by parameterizing the integrated UUniFast
algorithm [87].

2.7 Framework architecture

The simulation framework has been programmed in MatLab [88]. It is distributed as open
source software, publicly available, and can be used out-of-the-box [80]. Its modular design
provides flexibility to test a wide variety of schedulers and platforms. It includes a signal
routing interface allowing switching among different user-defined scheduling algorithms.

This framework makes easier to evaluate a large number of different scenarios, where the
platform (hardware), the set of tasks, and schedulers can be defined by the user through a
Graphical User Interface (GUI).

Fig. 2.8 shows the main modules of the framework. The user introduces the set of tasks,
platform, and the scheduler in the configuration module. After the completion of the config-
uration stage, the simulation is executed. Later the results are presented to the user. The
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following subsections describe these modules.

2.7.1 Configuration module

This module allows the introduction of all the information required by the framework. It is
organized in four sections: a) Task definition, b) CPU definition, c) Thermal definition, and
d) Scheduler definition. The order in which the information is introduced is irrelevant. The
user can resort to default values or turn-off some sections, like the thermal definition.

a) The Task definition section allows two different ways to introduce the information. One
way is to manually enter the number of tasks along with their parameters. Another way
is to let the algorithm UUniFast ([87]) automatically generate a task set with the desired
characteristics.

b) The CPU definition section requires two parameters: the number of CPUs and their
frequency scale. The frequency scale is a set of normalized frequencies at which the
platform could operate, where 1 indicates the highest frequency. The framework assumes
homogeneous CPUs, a feature that will be relaxed in future releases.

c) The thermal definition section requires the Printed Circuit Board (PCB) and CPU di-
mensions and thermal parameters, ambient temperature and the maximum operating
temperature.

d) The Scheduler definition section is generic. The user either, can select one from a set of
pre-programmed schedulers, or can define his/her own scheduler.

The user should consider signals like CPU temperature, system utilization, energy con-
sumption, (or a subset of them) to design her/his own scheduler. At every time step, the
section generates a matrix of size Number of tasks × Number of CPUs, where the ij − th
entry represents the allocation of the i− th task to the j − th CPU.

2.7.2 UUniFast module

The user can opt for the UUniFast algorithm ([87]) to generate the task set in the configu-
ration stage, indicating the number of tasks to be generated, the system utilization U and
the hyper-period H. The output is a feasible real-time task set with random task periods,
WCETs, deadlines and consumed energy. UUniFast generates one set of tasks at a time. It
allows to stress the scheduler under analysis with different set of tasks.
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2.7.3 Kernel simulation module

The Kernel module builds up a global simulation model according to the task set, CPUs,
thermal and energy parameters and the selected scheduler, and runs the simulation.

Figure 2.9: Kernel of the simulator.

The model represents task, CPU and thermal modules by a set of ordinary differential
equations, and generates the signals to/from the scheduler. The scheduler can be represented
either as a continuous or a discrete system. Accordingly, the scheduler can be modeled by
the paradigm of differential equations or finite automata.

Next subsections describe how to build module’s models. Later, we explain how the
modules are merged into a global model.

2.7.4 Scheduler module

The scheduler module allows to select at configuration time, one of the scheduling policies
available in the framework, or any scheduler defined by the user. The signals available to the
scheduler from other modules are mexec

i,j representing the amount of τi executed by CPUj,
and mTj the CPUj temperature. The signals that other modules require from the scheduler
are the task allocations signals jw

alloc
i .

2.7.5 Building the global model

The global model is simulated by solving the system:

Ṁ = AM + Bwalloc + B′ma

Y = SM
(2.4)



2.7. Framework architecture 45

where M = [mT ,mP ,mT ]T , and the matrices are:

A =

 CT ΛTΠT 0 0
0 CPΛPΠP 0
0 Cexec

P ΛexecΠexec CTΛTΠT

 (2.5)

B =

 Calloc
T

Calloc
P
0

 B′ =

 0
0

CaΛaΠa

 (2.6)

S =

 0 0 0
0 AP 0
0 0 ST

 (2.7)

AP corresponds to the output matrix for task execution and ST represents the temper-
ature output matrix. Thus the output vector Y = [mexec,mT ] contains the task execution
and the temperature of each processor. If the thermal module is not selected for simulation
the global model is slightly different: vector M will only contain M = [mT ,mP ], every
matrix (Eqs. 2.5 - 2.7) will lose its last row, and Eq. (2.5) will also lose its last column, and
the output vector Y = [mexec] will only contain the task execution.





Chapter 3

A HRT Fluid Scheduler

This chapter presents a fluid-time scheduler based on a sliding mode controller where
the sliding surface is related to fluid task executions. The scheduler leverages the
TCPN model introduced in Ch. 2. Also, this chapter proposes an implementation of
this fluid scheduler as a feasible discrete scheduler where the number of task migra-
tions and preemptions is bounded.

3.1 Introduction

This chapter introduces a fluid scheduler based on a sliding mode control technique. The
scheduler is derived from the TCPN global model obtained in Ch. 2, which constitutes itself
a modeling methodology for fluid schedulers in RT systems. The on-line discretization of this
fluid scheduler allows reducing task switching and migration. The scheduler here presented
shares with Pfair algorithms their HRT optimality in terms of CPU utilization. Furthermore,
the scheduler keeps the number of context switches and migrations reasonably low, by solving
the control equation only upon the job deadlines, profiting from the qualities of deadline
partitioning algorithms.

3.2 Temporal Fluid schedule (TFS)

This chapter proposes a fluid schedule based on a sliding mode control technique [89]. The
choice of this type of control obeys to the fact that it is an on-off control type, which requires

47
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negligible calculations, a key factor in an on-line scheduler. From now on, ζ represents the
current time. The control approach herein reported starts by computing the task fluid -
schedule function:

FSCτi(ζ) =
ci
ωi
ζ (3.1)

This function represents the optimal fluid execution of task τi [39, 38]. It is the time that
task τi should have run until time ζ to meet the RT constraints, also known as the fluid
share.

3.3 RT Sliding surface

The purpose of the sliding mode controller in this approach is to compute the error fluid
execution. The execution error of task τi (denoted Eτi(ζ)) is the difference between the
marking mexec

i =
∑m

j=1m
exec
i,j (total amount of jobs of τi allocated) in the global TCPN

model (Fig. 2.6) and the optimal fluid execution.

Eτi(ζ) = FSCτi(ζ)−mexec
i (ζ) (3.2)

To build the sliding surface, let x1
i = Eτi(ζ) and x2

i =
∑m

j=1 m
busy
i,j . Then, the following

system holds:

•
x1

i = ui − λexeci x2
i

•
x2

i = walloci − λexeci x2
i

(3.3)

where λexeci = λexeci,1 = . . . = λexeci,m , walloci =
∑m

j=1 jw
alloc
i and ui = cci

ωi
. Thus, for this

system, the sliding surface may then be set to be of the form:

Si(ζ) =
K1

λexeci

x1
i +

ui
λexeci

− x2
i (3.4)

where K1 is a real positive number.

Since the aim is to force the system states to the sliding surface, the adopted control
strategy must guarantee that the system trajectory moves toward and stays on the sliding
surface from any initial condition. Such control law is described in the following subsection.
Once the system slides on the surface Si(ζ) = 0, then
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x2
i = − K1

λexeci

x1
i −

ui
λexeci

(3.5)

Therefore

•
x1

i = −K1x
1
i (3.6)

In other words, the RT fluid execution error tends to zero asymptotically when the system
slides on the surface.

3.4 Control law computation

The following continuous sliding-mode control law is used [89] to reach the task optimal fluid
execution of each task τi and meet the temporal requirements.

walloci (ζ) = K2sign(Si(ζ)) + K1

λexeci
ui (3.7)

where sign(x) = 1 if x ≥ 0; 0 otherwise.

Proposition 3.1 Let T and P be the sets of n tasks and m processors, respectively. Let
FSCτi be the optimal fluid execution function of task τi. If the control law given by Eq. (3.7)
is applied to the global system with K1 = λexeci and guaranteed that 0 < K2 < ui then each
RT fluid execution error Ei(ζ) converges to zero.

Proof 3.1 The total controlled flow of a transitions talloci,j for each task τi is given by walloci =∑m
j=1 jw

alloc
i (ζ) in Eq. (3.7), where jŵ

alloc
i (ζ) is the control action. Note that when jw

alloc
i > 0,

transition talloci,j is fired, i.e., jobs of τi are being allocated to CPUj.

To prove the asymptotic stability of Eq. (3.2), a Lyapunov function can be defined, sat-

isfying V (0) = 0, V (x) > 0 and
•
V (x) < 0 ∀x 6= 0 ([90]). Let us consider the following

quadratic candidate Lyapunov function V :

V (S1, . . . ,Sn) = 1
2

n∑
i=1

S2
i (3.8)

V = 0 iff each Si = 0, and V > 0 if any Si 6= 0. Therefore, V can be considered a

Lyapunov function (and Eq. (3.2) is asymptotic stable) iff
•
V < 0 for any Si 6= 0.
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To prove this, we first compute the derivative of V :

•
V =

n∑
i=1

Si
•
S i =

n∑
i=1

Si (−K2sign(Si) + x2
i (λ

exec
i −K1))

≤
n∑
i=1

−K2Sisign(Si) + |Si||x2
i ||λexeci −K1|

≤
n∑
i=1

−|Si| (K2 − |x2
i ||λexeci −K1|)

(3.9)

Now, let us prove that following holds for each term in the sum (i.e. for each task)
−|Si| (K2 − |x2

i ||λexeci −K1|) < 0. To do that, the term is negative if K2 satisfies K2 >
|x2
i ||λexeci −K1|. Moreover, since the controlled flow is always positive (i.e., walloci = K2sign(Si)+
K1

λexeci
ui > 0), then if Si is positive, K2 must satisfy K2 > − K1

λexeci
ui, otherwise (when Si is neg-

ative) K2 must satisfy K2 <
K1

λexeci
ui

Therefore, for each task τi and the RT fluid execution error Ei(ζ) converges to zero asymp-
totically.

The correct selection of the gains K1 and K2 for the derived control law provided by
Eq. (3.7) allows tracking the optimal fluid schedule for each task τi. Therefore, the fluid
execution mexec follows a fluid schedule. However, any practical implementation of this
scheduling requires the discretization of the fluid instant share of the CPU.

3.5 On-line discretization of a Fluid schedule

The previous section has proved that the proposed fluid scheduler is theoretically feasible
(i.e, the fluid execution error converges to zero and tasks meet the time constraints). As all
fluid schedulers, it triggers an unfeasible number of task preemptions and migrations. To
deal with this issue we provide a discrete implementation described by Alg. 1 based on a
deadline partitioning approach.

3.5.1 Deadline partitioning approach

Due to the periodicity of the schedule, we can limit the schedule of the tasks up to the hyper-
period (from time 0 to time H) [39]. We consider the ordered set of all job deadlines to
define scheduling intervals, as in deadline partitioning ([24]). Each task τi must be executed
ni = H

ωi
times within the hyperperiod H. Thus every q ∗ ωi, where q = 1, ..., ni is a deadline

that must be considered in the analysis. These deadlines can be ordered and joined in the
set SDi = {sd1

i , ..., sd
ni
i }. A general set of deadlines is defined as SD = SD0 ∪ ... ∪ SD|T |
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ALGORITHM 1: On-line discretization of the fluid schedule

Input: The TCPN of the task set T , the ordered set SD where any sdk ∈ SD is lower or equal than
H. The quantum Q. The task fluid -schedule functions FSCτi .

Output: A feasible discrete schedule
1 Initialize i = 1, sd = sdi, ζ = 0, Mexec

i (ζ) = 0 ∀τi ∈ T ;

2 for ζ ≤ H do
3 All tasks are preempted from the processors;
4 REi(ζ) = FSCτi(sd)−Mexec

i (ζ) ; /* Compute remaining jobs */

5 ET (ζ) = {τi|REi(ζ) > 0} ; /* Compute the set of tasks to be executed */

6 PRi(ζ) = mexec
i (ζ)−Mexec

i (ζ) ; /* Compute the priority for every task τi in ET (ζ) */

7 for j = 1 to m do
8 Select the task τa for CPUj with the highest priority value in ET (ζ);
9 Remove the task τa from ET (ζ) ;

10 Mexec
a (ζ +Q) = Mexec

a (ζ) +Q ; /* Compute the discrete execution of task τa */

11 Remove τa from ETj ;

12 end
13 Simulate the global TCPN model from ζ to ζ +Q; /* Solve Eqs. (2.3) to compute mexec */

14 ζ = ζ +Q; /* Update time */

15 if ζ == sd then
16 i = i+ 1, sd = sdi
17 end

18 end

where SD0 = {0}. The elements of SD can be arranged in ascendant order and renamed as
SD = {sd0, ..., sdα}, where α is the last deadline. The scheduling interval IkSD = [sdk−1, sdk]
is defined and |IkSD| = sdk − sdk−1 represents the scheduling interval duration.

Assuming a quantum-based time and without loss of generality let Q denote the quantum
length in time units. Q is defined as the GCD of the elements sdi ∈ SD (where i ≤ α) and
the values of the function FSCτi evaluated at sdi.

Alg. 1 computes a discrete schedule from the fluid schedule introduced in Sec. 3.2. The
control is applying to the system when the algorithm simulates the global TCPN model in
step 13. It solves Eqs. (2.3) to compute mexec. The algorithm requires a new discrete variable
M exec

i (ζ) which represent the discrete execution of task τi. The evolution of M exec
i (ζ +Q) =

M exec
i (ζ) + Q is determined by the algorithm, and means that Q CPU cycles of task τi are

allocated. Thus, this equation represents the total amount of CPU cycles of task τi that have
been allocated from the initial time. The discrete schedule resulting from Algorithm 1 equals
the fluid schedule at every deadline time sdk ∈ SD, i.e. it ensures that the discrete schedule
meets all deadlines of all tasks.

If at any time ζ, sdi < ζ < sdi+1, it holds that FSCτi(sdk) > M exec
i (ζ) (the required

fluid schedule at the end of the interval is bigger than the current discrete schedule), then
τi must be allocated in a CPU. Thus the m tasks with the current positive greatest RE
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(remaining job execution, REτi(ζ) = FSCτi(sdk)−M exec
i (ζ)) and PR (task priority function,

PRτi(ζ) = mexec
i (ζ)−M exec

i (ζ) must be allocated to a CPU.

The value of mexec
i (ζ) can be replaced by FSCτi(ζ) since they have the same value.

However, we use it here because we will later include thermal characteristics, making these
values no longer be equal because we will have to balance thermal and temporal trade-offs.

Proposition 3.2 If a feasible fluid schedule is given as input to Algorithm 1, then the re-
sulting discrete schedule has the following properties.

1. It meets task time constraints at every scheduling point sdk ∈ SD.

2. The number of task migrations and preemptions is bounded.

Proof 3.2 Part 1) Sentence 1.

From the definition of quantum, we know that the time interval [sdk, sdk+1] is divided by
the quantum into Dk+1

k = (sdk+1 − sdk)/Q time sub-intervals. From [39] we know that the
fluid schedule meets the task time constraints at every time, which is specially true at the sdk
points. Moreover, since the fluid schedule is feasible then, at time sdk, the CPU ′s are capable
to execute the required percentage FSCτa(sdk) of any task τa. Assuming that there exist m
processors and n tasks, and since the m processors are capable to execute the fluid schedule,
then:

m ·Dk+1
k ≥

n∑
i=1

(FSCτi(sdk+1)− FSCτi(sdk)) (3.10)

At time zero, both the fluid schedule and discrete schedule have executed zero percentage
of each task, thus the discrete schedule meets task time constraints at sd0.

Now, we will show that if the discrete schedule meets the fluid schedule at any sdk then it
meets the fluid schedule at any sdk+1 as well.

Proceeding by contradiction, assume that the discrete schedule does not meet the fluid
schedule at sdk+1. Then the remaining jobs functions are positive for some tasks (i.e. the
discrete PN has executed these tasks in a lower percentage than the fluid one). For the sake
of explanation, suppose that there exists only one task τa such that REτa(sdk+1) = Na > 0.
Since Eq. (3.10) holds, then the processors have the capability to execute the required percent-
age of tasks at time sdk+1. However, since τa was not allocated in the required percentage
(FSCτa(sdk+1)), then τa had some remaining jobs at time ζ = sdk+1 −Q.

Therefore, two cases are possible:

Case 1: If Na = αQ, where α = 1 (i.e., PRτa = Q)
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In this case yet another two possibilities arise:

a) τa was fired at time ζ, then τa finishes the required percentage of execution, i.e.,
REτa(sdk+1) = 0, which is a contradiction.

b) τa was not allocated at time ζ. Thus, according to step 8 of the algorithm, m tasks,
different from τa, were found having priority larger or equal than that of τa, thus they were
allocated.

If the behavior of the algorithm is analyzed at time ζ − Q (a previous time step), it will
result that m tasks were found, different than τa, having larger or equal priorities than that
of τa (otherwise, task τa would be allocated and thus finished its execution). By repeating this
analysis, going back in time until sdk, it will be obtained that REτa(sdk) = Na > 0, i.e., the
discrete schedule does not meet the fluid schedule at sdk, reaching a contradiction.

Case 2: If Na = αQ, α > 1, then at time ζ, PRτa(ζ) > PRτi(ζ), for some task τi 6= τa.
Thus τa was allocated at time ζ and α = α − 1. Let ζ = ζ − Q. If sdk is reached then
REτa(sdk) = Na > 0, i.e., the discrete schedule does not meet the fluid schedule at sdk, a
contradiction, otherwise if α− 1 == 1 then go to Case 1.

Part 2) Sentence 2.

Since the hyper-period H is divided into I = H
Q

subintervals and task migrations and
preemptions occur at the end of this subintervals then the number of task migrations and
preemptions is bounded by I.

Complexity

The algorithm executes I = H
Q

times, where H is the hyper-period, thus the loop in step 7 of
the algorithm runs I times. The instruction inside this loop runs in polynomial time in the
size of the transitions of the TCPN. As mentioned in previous section, the execution on the
TCPN is polynomial and therefore the algorithm is polynomial too.

3.6 Example

Let us consider the task set T = {τ1, τ2, τ3}, with τ1 = (9, 10, 10), τ2 = (9, 10, 10), τ3 =
(8, 40, 40), running on two CPUs. The hyper-period is H = 40. The fluid schedule mexec

i (ζ)
is obtained by applying the fluid controller (Fig. 3.1). The fluid schedule and the error Eτi
converge to zero, and therefore the fluid schedule based on the sliding-mode control meets
the time constraints.

Now, the on-line Algorithm 1 discretizes the fluid schedule. The set of deadlines is SD =
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Figure 3.1: A feasible fluid schedule. The execution error Eτi converges to zero due the
control action.

{10, 20, 30, 40} and the quantum Q = 1. The computed discrete schedule appears in Fig. 3.2.
At every sd ∈ SD the tokens accrued in mexec

i (sd) meet the fluid schedule requirements. For
instance, at sd = 10 the fluid schedule indicates that task τ1 requires 9 time units. Analyzing
Fig. 3.2, τ1 is executed 1 time units in CPU1 from ζ = 0 to ζ = 1, 3 time units in CPU2

from ζ = 1 to ζ = 4 and 5 time units in CPU1 from ζ = 5 to ζ = 10. Thus, τ1 is executed 9
time units at sd = 10.

3.7 Conclusions

The approximation introduced in this Chapter shows that the modeling methodology of Ch. 2
allows the successful design and test of a HRT global scheduler which leverages a simple on-
off controller. This is a first step in the search for a suitable method for temperature control
under HRT constraints. The fluid functions are computed on deadline partitioning basis,
but the scheduling decisions are taken on a quantum based, which was the first objective of
the approach in order to allow for a fine thermal control in the future. These results were
presented in [81]. However, there are two principal issues to be tackled yet, in addition to
the inclusion of thermal constraints. First, to lower the computing overhead. Although the
controller is simple, Alg. 1 produces a high number of task preemption and migration that
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Figure 3.2: Discretization of the fluid schedule for CPU1 and CPU2.

compromises the performance of the system. Second, there is a single global job queue, actu-
ally a list ordered by job priority. Jobs are allocated to CPUs by priority order irrespective
the CPU they were running on during the previous scheduling period. There chances for
applying CPU affinity heuristics are slim: all jobs are preempted every Q, and a job could
come back to the same CPU it was running on. The inclusion of thermal restrictions on this
scheme led to a better solution.





Chapter 4

A HRT Thermal-Aware Fluid
Scheduler

This chapter presents OLDTFS, a global on-line fluid scheduler that meets both ther-
mal and RT constraints, resorting to a feedback control technique. The thermal sched-
ule feasibility is proved by a LPP that captures HRT and thermal constraints as linear
constraints. If there exists a feasible solution, then the LPP solution represents the
correct execution of tasks as a continuous linear functions over time ( fluid sched-
ule functions), honoring HRT and thermal constraints. Then, the fluid scheduler is
discretized allowing control on context switching and migrations. The feedback con-
troller that implements the proposed global scheduler allows the system to recover from
disturbances such as CPU detentions due to environmental hazards causing energy in-
terruptions or thermal peaks.

4.1 Introduction

The previous chapters established the basis to cope with the inclusion of thermal constraints
in HRT scheduling leveraging the advantages of TCPNs as a modeling and simulation tool. A
single global TCPN models tasks, CPUs and thermal activity. The evolution of the complete
system is described by Eqs. (2.3). The inclusion of thermal constraints entails a new com-
promise between overhead (context-switches and migrations) and precision, which is strongly
related to selecting a discretization based on fixed (quantum) or variable (deadline-based)
scheduling intervals. Alg. 1 in Ch. 3 provided such a trade-off.

In this chapter, we first determine the existence of a feasible HRT thermal-aware schedule.

57
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Then, we present OLDTFS, a controller implementing the RT thermal-aware scheduler in two
stages, an off-line and an on-line stage. The off-line stage alleviate the overhead of Alg. 1 by
means of a Linear Programming Problem (LPP) which computes the fraction of each task job
to be run at each CPU. This facilitates the management of a per-CPU queue in the ulterior
on-line scheduler. Also, the controller is now able to deal with disturbances as long as there
is some utilization slack. The overhead can be greatly reduced by using an opportunistic
DP-fair under specific circumstances. The solution can be applied to a simulated system or
to a physical system (Sec. 4.3.4). This approach has been accepted for publication [82].

4.2 HRT thermal-aware fluid schedule Feasibility

This section proves that if there exists a feasible schedule, then a set-point for the controlled
variable mexec exists that satisfies the thermal and temporal constraints simultaneously.

Definition 4.1 A schedule is thermal feasible if it satisfies the required deadlines every
hyperperiod and the temperature of the processors do not exceed a maximum operating value
Tmax = [Tmax1, . . . , Tmaxm]. Moreover, since the schedule is periodic, the temperature of
the processors must satisfy that temperatures at the start and at the end of the hyperperiod
are equal.

The feasibility analysis is accomplished in three parts. First, we present the temporal and
CPU utilization restrictions. Second, we derive the thermal constraints. Both restrictions are
described as linear functions of certain coefficients jβi denoting fractions of task executions.
Third, we pose a LPP to compute the fraction of each task job to be run at each CPU, subject
to the constraints mentioned above, whose solution provides the values of the coefficients jβi.
The continuous controller in Sec. 4.3 uses these coefficients.

4.2.1 Computation of the temporal fluid-schedule functions

The task fluid schedule function is computed as:

FSCτi(ζ) =
ci
ωi
ζ (4.1)

where ζ is the current time. This function represents the optimal fluid execution of task
τi at time ζ [39] [38]. Eq. (4.1) is defined as optimal in the literature, although it just provides
a feasible schedule for task τi. We obtain a fluid schedule function for each pair CPUj and
task τi as follows.
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Assume that sτ = τ 1
i . . . τ

q
h is a sequence of jobs, and T ′ the set of tasks in the sequence

sτ , i.e. T ′ = {τa ∈ T | ∃ τ ba ∈ sτ}. Now, suppose that the jobs in sτ can be executed in
any CPU. Since migration is possible, a single job τ ba ∈ sτ (the b − th execution of τa) can
be executed in several CPU. If we denote by jcc

b
a the CPU cycles that job τ ba runs in CPUj,

the total number of cycles that the b − th execution of τa takes running in all the CPUs is

cca =
m∑
j=1

jcc
b
a.

Moreover, if the sequence sτ is a periodic schedule with hyperperiod H, then the number
of instances of task τa in sτ is ia = H

ωa
. The number of CPU cycles that task τa executes

in CPUj during the hyperperiod is jcca =
ia∑
r=1

jcc
r
a = jβa × cca. Thus jcca is a proportion

of cca, where jβa is the number of times that τa is executed on CPUj until the hyperperiod
(always a real positive). Hence, the number of jobs of τa executed during the hyperperiod of
a periodic sequence sτ can be computed as:

ia =
m∑
j=1

jβn =
H

wa
∀ τa ∈ T [Temporal Constraint] (4.2)

In order to fulfill task deadlines, the CPUj utilization must not exceed the capacity of
the processors:

∑
τi∈T

ci × jβi
H

≤ 1 ∀ CPUj ∈ P [CPU utilization Constraint] (4.3)

where ci = cca
F

is the respective total execution time of τi.

The fluid execution of a task (FSCτi) can be derived from the previous equations. Since

cca =
m∑
j=1

jcc
b
a, then cca × ia =

m∑
j=1

ia∑
r=1

jcc
r
a represents the CPU cycles during the hyperperiod.

Thus, at the hyperperiod H, the total execution time ca×ia = ca×
m∑
j=1

jβa, and it follows that

ca ×
(
H
ωa

)
=

m∑
j=1

jβa × ca. By dividing the last expression by H, we obtain ca
ωa

=
m∑
j=1

jβa×ca
H

.

Generalizing, for a task τi, FSCτi(ζ) can be expressed as:

FSCτi(ζ) = 1FSCτi(ζ) + . . .+ mFSCτi(ζ) =
1βi × ci
H

ζ + . . .+
mβi × ci
H

ζ (4.4)

where jFSCτi(ζ) = jβi×ci
H

ζ stands for the fluid schedule function of τi at time ζ in CPUj.
Eqs. (4.2) and (4.3) provide the temporal restrictions for computing the jβa coefficients.
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4.2.2 Thermal Analysis

The relationship between task allocation and temperature was formulated in Section 2.5.1
using Eqs. (2.3a) and (2.3d). Eq. (2.3d) can be rewritten by applying the following change
of variable. Let M1

T = mT and M2
T = mP , thus MT = [M1

T M2
T ]T denotes the state

variables corresponding to the thermal behavior of processors and the task dynamic allocation
respectively. Hence, the part of the model that represents the relationship between the
temperature and the power consumption due to task allocation is:

ṀT = AMT + Bwalloc + B′ma

YT = S′MT
(4.5)

where A corresponds to the system matrix, B is the input matrix, and B′ conforms the
matrix associated to ambient temperature (ma which is considered constant). These matrices
are:

A =

[
CTΛTΠT Cexec

P ΛexecΠexec

0 CPΛPΠP

]
B′ =

[
CaΛaΠama

0

]
B =

[
0

Calloc
P

]
(4.6)

As stated before, vector walloc is the controlled flow of the allocation transitions (it
stands for the task allocation rate to CPUs). The task allocated to CPU (mP) times
Cexec
P ΛexecΠexec(m) represents the dynamic computational power of the tasks under execu-

tion. The matrix S′ = [S 0] is the output matrix which selects the components representing
the temperature of the CPUs, and YT stands for the temperature of the components of the
processor. The schedule must be periodic from a temporal and thermal point of view. Thus,
the initial temperature must be equal to the final temperature (evaluated at the hyperperiod
H) to meet the thermal feasibility condition, i.e.: YT (H) = S′MT (0).

Now, we assume that the processor is running the periodic schedule at a constant rate,
then its temperature is a non-decreasing function, and it reaches a steady state condition. In
a thermal steady state ṀT = 0, the steady state temperature (MTss) and the steady state
CPUs temperature (YTss) are computed as:

MTss = −A−1(Bwalloc + B′ma)
YTss = S′MTss

(4.7)

The steady state temperature YTss [k] of CPUk must be less than or equal to its maximum
temperature level (YTss [k] ≤ Tmaxk) so as not to violate the thermal constraint. In a vectorial
form:
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S′MTss ≤ Tmax (4.8)

Combining Eqs. (4.7) and (4.8),

−S′A−1Bwalloc ≤ Tmax + S′A−1B′ma [Thermal constraint] (4.9)

The previous equation provides the thermal constraints that must fulfill the allocation
of tasks to the processors (walloc). Now, walloc must be represented as a function of jβi
parameters. In steady state, the flows in transitions talloc and texec are equal. According to
the temporal restrictions in Eq. (4.2), the flow required in talloci,j must be jβi×ci

H
, matching the

number of jobs of task τi assigned to CPUj per time unit. The next subsection computes
the jβi coefficients.

4.2.3 computation of the fluid execution

The computation of the fluid execution of tasks can be formulated as a LPP, to deal with the
steady state temperature and the maximum temperature of each CPU. The problem consists
in finding a solution for the jβi subject to thermal, temporal and CPU utilization constraints,
which translates into Eq. (4.10):

min
m∑
j=1

∑
τa∈T

jβa

s.t.

−SA−1B
[ ∑

τa

1βaca
H , . . . ,

∑
τa

mβaca
H

]T
≤ Tmax + SA−1B′ma

}
Thermal Constraint

m∑
j=1

jβn = H
ωn
∀i = 1, . . . , n

}
Temporal Constraint

∑
τa∈T

ca×mβa

H ≤ 1 ∀j = 1, . . . ,m
}

CPU util. Constraint

(4.10)

The thermal constraint in Eq. (4.9) states that the temperature of the processors due to
task execution must not violate the maximum allowed temperature. The estimated temporal
constraints, Eqs. (4.2) and (4.3) ensure that the number of jobs within the hyperperiod allows
for a feasible schedule. The last constraint ensures that the computation utilization of each
CPU is ≤ 1.

Proposition 4.1 Consider a system as defined in 1.19 and the thermal-aware fluid scheduler
problem 1.8.1 for this system. If the linear programming problem LPP (4.10) defined for the



62 4. A HRT Thermal-Aware Fluid Scheduler

system parameters has a feasible solution, then there exists a thermal-aware HRT feasible
schedule.

If a solution exists, then the coefficients jβi can be found. Hence the jFSCτi(ζ) = jβi×ci
H

ζ
functions are completely known, and any scheduler capable of tracking these functions will
obtain a schedule that fulfills thermal and temporal task constraints since temporal and
thermal restrictions are met.

To show the existence of such a scheduler (and complete the proof), we propose in the
next section a continuous scheduler whose result is discretized in a later stage. It uses the
functions jFSCτi(ζ) (target function) and mexec

i,j (ζ) (actual task execution) to define an error
as the difference between these two quantities. By controlling task allocation with walloc the
proposed scheduler brings the error down to zero. This is proved in proposition 4.2, where
the Lyapunov functions guarantee that the error reaches a zero value.

4.3 Thermal-Aware HRT Fluid Scheduler Control

If the LPP has a feasible solution, then each task τi in each CPUj must be executed at
the fluid execution rate (jFSCτi(ζ)) to honor the HRT thermal fluid schedule. Considering

ϕi,j = jβi×ci
H

the fluid schedule function becomes jFSCτi(ζ) = ϕi,jζ. This function jFSCτi(ζ)
will be used as a set-point for the control stage.

We leverage a sliding mode feedback controller to manage workload execution [89]. The
purpose of the controller is to keep the RT thermal fluid execution error ETi,j(ζ) equal to
zero. This error is defined as the difference between the task fluid execution jFSCτi(ζ) of a
task τi in CPUj and its actual execution percentage (mexec

i,j (ζ) in Fig. 2.6a):

ETi,j(ζ) = jFSCτi(ζ)−mexec
i,j (ζ) (4.11)

4.3.1 RT Thermal Sliding surface

In the sliding mode technique, a sliding surface S is first designed as a function of the system’s
state in such way that, if the system is controlled so that S is null then the error converges
to zero. In order to construct the sliding surface, let x1

i,j = ETi,j(ζ) and x2
i,j = mbusy

i,j . Then,
the following system holds:

•
x1

i,j = ϕi,j − λexeci,j x2
i,j

•
x2

i,j = jw
alloc
i − λexeci,j x2

i,j

(4.12)
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For this system, the sliding surface may then be set to be of the form:

Si,j(ζ) =
K1

λexeci,j

x1
i,j +

ϕi,j
λexeci,j

− x2
i,j (4.13)

where K1 is a real positive number.

Since the aim is to force the system states to the sliding surface, the control strategy must
guarantee that the system trajectory moves toward and stays on the sliding surface from any
initial condition. Such control law is described in the following subsection. Once the system
slides on the surface Si,j(ζ) = 0, then

x2
i,j = − K1

λexeci,j

x1
i,j −

ϕi,j
λexeci,j

(4.14)

Therefore

•
x1

i,j = −K1x
1
i,j (4.15)

In other words, the RT thermal error fluid execution tends to zero asymptotically when
the system slides on the surface.

4.3.2 Control law computation

Now, a control law is designed to force the system to slide on the surface, which will lead
to a null error and thus the system will track the fluid schedule function of each task τi and
CPUj, meeting both temporal and thermal requirements. The control law is proposed as:

jw
alloc
i (ζ) = jŵ

alloc
i (ζ) + K1

λexeci,j
ϕi,j (4.16)

where jŵ
alloc
i (ζ) = K2sign(Si,j(ζ)) and sign(x) = 1 if x ≥ 0; 0 otherwise.

Proposition 4.2 Let T and P be the sets of n tasks and m processors, respectively. Let

jFSCτi be fluid schedule function of task τi and CPUj, obtained by solving the linear pro-
gramming problem of Eq. (4.10). If the control law given by Eq. (4.16) is applied to the global
system with K1 = λexeci,j and 0 < K2 < ϕi,j then each RT thermal fluid execution error ETi,j(ζ)
converges to zero.

Proof 4.1 The controlled flow of a transition talloci,j is given by jw
alloc
i (ζ) in Eq. (4.16), where

jŵ
alloc
i (ζ) is the control action. Note that when jw

alloc
i > 0, transition talloci,j is fired, i.e., jobs

of τi are being allocated to CPUj.
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In order to prove the asymptotic stability of Eq. (4.11), a Lyapunov function can be

defined, satisfying V (0) = 0, V (x) > 0 and
•
V (x) < 0 ∀x 6= 0 ([90]). Let us consider the

following quadratic candidate Lyapunov function V :

V (S1,1, . . . ,Sn,m) = 1
2

n∑
i=1

m∑
j=1

S2
i,j (4.17)

V = 0 iff each Si,j = 0, and V > 0 if any Si,j 6= 0. Therefore, V can be considered a

Lyapunov function (and Eq. (4.11) is asymptotic stable) iff
•
V < 0 for any Si,j 6= 0. To prove

this, we first compute the derivative of V :

•
V =

n∑
i=1

m∑
j=1

Si,j
•
S i,j =

n∑
i=1

m∑
j=1

Si,j
(
−jŵalloci + x2

i,j(λ
exec
i,j −K1)

)
≤

n∑
i=1

m∑
j=1

−K2Si,jsign(Si,j) + |Si,j||x2
i,j||λexeci,j −K1|

≤
n∑
i=1

m∑
j=1

−|Si,j|
(
K2 − |x2

i,j||λexeci,j −K1|
) (4.18)

Next, let us prove that following holds for each term in the sum (i.e. for each task
and CPU) −|Si,j|

(
K2 − |x2

i,j||λexeci,j −K1|
)
< 0. The term is negative if K2 satisfies K2 >

|x2
i,j||λexeci,j − K1|. Since the controlled flow is always positive (i.e., jw

alloc
i = K2sign(Si,j) +

K1

λexeci,j
ϕi,j > 0), then if Si,j is positive, K2 must satisfy K2 > − K1

λexeci,j
ϕi,j, otherwise (when Si,j

is negative) K2 must satisfy K2 <
K1

λexeci,j
ϕi,j.

Therefore, in order to satisfy the stability condition (
•
V < 0), K2 must satisfy |x2

i,j||λexeci,j −
K1| < K2 <

K1

λexeci,j
ϕi,j. For simplicity, we assume that K1 = λexeci,j , hence 0 < K2 < ϕi,j.

Thus, for each τi and CPUj the RT thermal fluid execution error ETi,j(ζ) converges to zero
asymptotically.

The correct selection of the gains K1 and K2 for the derived control law provided by
Eq. (4.16) allows tracking the optimal fluid schedule for each τi and CPUj, which is thermally
feasible. Therefore, the fluid execution mexec follows a fluid schedule.

4.3.3 OLDTFS (On-line discretization of the Thermal-Aware fluid
schedule)

The Alg. 2 (OLDTFS ) implements our thermal-aware RT fluid scheduler, aiming to balance
a good thermal control and a suitable context-switch overhead. Abiding by the hypothesis
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ALGORITHM 2: On-line discretization of Thermal fluid schedule (OLDTFS)

Input: The TCPN of the set of tasks T , the ordered set SD where any sdk ∈ SD is lower or equal
than H. The quantum Q. The fluid schedule jw

alloc
i . The number of processors m

Output: The discrete schedule jW
alloc
i

1 Initialize i = 1, sd = sdi, ζ = 0, Mexec
i,j (ζ) = 0 ∀τi ∈ T and ∀CPUj ∈ P;

2 for ζ ≤ H do
3 All tasks are preempted from the processors;
4 REi,j(ζ) = jFSCτi(sd)−Mexec

i,j (ζ) ; /* Compute remaining jobs */

5 ETj(ζ) = {τi|REi,j(ζ) > 0∀CPUj ∈ P} ; /* Compute the set of tasks to be executed */

6 PRi,j(ζ) = mexec
i,j (ζ)−Mexec

i,j (ζ) ; /* Compute the priority for every task τi in ETj(ζ) */

7 for j = 1 to m do
8 jW

alloc
i = 0, 1 ≤ j ≤ m, 1 ≤ i ≤ n ;

9 τa = task with the highest priority value in ETj(ζ); /* ETj(ζ): task queue of CPUj */

10 jW
alloc
a = 1 ; /* Set τa to run on CPUj */

11 ; /* Now remove τa from all tasks queues but ETj(ζ): */

12 Remove τa from ETk(ζ) for all 1 ≤ k ≤ m and k 6= j ;

13 Mexec
a,j (ζ +Q) = Mexec

a,j (ζ) +Q× jW
alloc
a ; /* Compute the discrete execution of τa */

14 Remove τa from ETj ;
15 Switch to τa in CPUj ; /* Only if scheduling tasks in a real, physical system */

16 end
17 Simulate the CPU TCPN model from ζ to ζ +Q; /* Solve Eqs. (2.3.e) to compute mexec */

18 ζ = ζ +Q; /* Update time */

19 if ζ == sd then
20 i = i+ 1, sd = sdi
21 end

22 end

exposed in Sec. 1.7, we leverage the approach taken in the previous Ch. 3, which limits the
fluid schedule computation to the set of deadlines, but places the scheduling points on a
quantum basis. Later we will show that under precise circumstances it is possible to limit
the scheduling points to the set of deadlines as well, and still accomplish the RT and thermal
constraints without requiring a fixed quantum, all the more lowering the overhead. OLDTFS
yields a discrete schedule that closely tracks the fluid one (mexec) by computing a schedule
up to the hyperperiod (from time zero to time H). We first define the set of deadlines SD
and quantum Q as in [81].

For every time interval [sdk, sdk+1] (where sdk+1 ≤ H and k =, 0, 1, . . .), at time ζ, if

jFSCτi(sdk) > M exec
i,j (ζ), τi must be allocated to CPUj so that it runs to the point required

by the fluid scheduler, to warrant that the k-th job of τi completes before its k-th deadline.

The thermal-compliant HRT fluid schedule (jFSCτi(sdk)) was computed in the off-line
stage. We define the remaining jobs execution until the next deadline in the whole set of
deadlines as:
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REi,j(ζ) = jFSCτi(sdk)−M exec
i,j (ζ)

for each task τi and CPUj (line 4), and the task priority function as (line 6 of Alg. 2):

PRi,j(ζ) = mexec
i,j (ζ)−M exec

i,j (ζ)

All tasks τi such that REi,j(ζ) > 0 must be allocated to CPUj before the next quantum.
The discretized time that task τi must run on CPUj starting at time ζ + Q is given by the
following equation (line 13):

M exec
i,j (ζ +Q) = M exec

i,j (ζ) +Q× jW
alloc
i (4.19)

where

jW
alloc
i =

{
1 if τi is allocated for execution in CPUj at time ζ
0 otherwise

Thus, Eq. (4.19) yields the execution time slice of each task job in a CPUs when dispatched
for the next interval. We can leverage the TCPN to entirely simulate a physical system, or to
exclusively compute the fluid schedule, discretized on a quantum basis in Alg. 2. In the first
case, besides accounting for the runtime, we have to actually dispatch the task on a specific
CPU (statement in line 15).

4.3.4 Overview of the Thermal-Aware RT scheduler

Fig. 4.1 summarizes the three parts of the proposed scheduler highlighting the system control
signals. The dotted boxes above and below (A, B) exemplify the evolution of the principal
system’s input and output signals during normal operation (A) or under disturbance (such
as a CPU detention, B).

During the off-line stage, the scheduler is build up as described in Ch. 2, from the TCPN
model, according to the thermal parameters of the materials of the system, the number of
prisms, and the parameters of the CPUs and HRT task set, obtaining its state equation.
Then, the constraints of the LPP are stated from this model, and the LPP solution pro-
vides the coefficients for the fluid scheduling functions jFSCτi(ζ) (S1), which guarantee the
accomplishment of the thermal and HRT constraints in H (hyperperiod).

As described in Sec. 2.6, all this process has been fully automated, as part of a pub-
licly available simulation framework [80] that includes a number of schedulers that can be
simulated out-of-the-box.
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Figure 4.1: Thermal-Aware HRT Fluid Scheduler overview. To simplify the view we re-
spectively name jFSCτi(ζ), jw

alloc
i , mexec

i,j and M exec
i,j as the signal arrays S1, S2, S3, S4. S5

provides the feedback to capture disturbances.

The on-line stage starts with the sliding mode controller allocating tasks to CPUs in the
TCPN model. The controller throttles the fluid marking jw

alloc
i (S2), which is proportional

to the error ETi,j(ζ) (Eq. 4.11), to make S3 (the current fluid schedule, mexec
i,j in the TCPN)

follow S1 (the fluid schedule calculated off-line), closing ETi,j(ζ).

During normal operation S3 will always follow S1 (upper dotted box A in Fig. 4.1).
Alg. 2 iterates every quantum Q. It computes the error as the difference between the fluid
execution time S3 (provided by the TCPN model) and the actual discrete execution time S4
(Alg. 2 line 4), dynamically adjusts priorities accordingly (line 6) and selects, allocates and
dispatches the jobs until the next scheduling point (line 18).

Under disturbance, S5 is asserted, which modifies the dynamics of the TCPN model. For
example, if a disturbance can lead a CPU to a halt, the flow of transitions texeci,j (representing

the active execution of task τi on CPUj, Fig. 2.6) is computed as f execi,j = (λexeci,j mbusy
i,j )× S5.

For example (Fig. 4.1 box B) halting CPUj at time ζ1 (S5 = 0) will halt the simulated
CPU in the TCPN model, increasing S2 so that mexec

i,j (S3) higher that jFSCτi(ζ) (S1). The
controller will increase S2 so that S3 increases accordingly until ζ2. By ζ3, S1 has reached its
normal level and S3 has caught up with the S1 line.
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OLDTFS discretizes S3 by increasing the ratio at which the tasks smitten by the CPU
halt are dispatched in successive quanta (compare S4 in box A and B). A scheduler lacking
a continuous controller like this are not capable of recovering from disturbances. A sliding
mode controller is specially suitable when dealing with off-line and on-line signals.

Complexity

The algorithm executes I = H/Q times (H is the hyperperiod), thus the outer loop in
Alg. 2 runs I times. The instructions inside this loop run in polynomial time in the size
of the number of tasks and CPUs. All the instructions in the inner loop (lines 7 − 14) run
in polynomial time. Moreover, Eq. (2.3.e) (Alg. 2 line 15) can be rewritten in a discrete
state space representation. Hence the TCPN is simulated in polynomial time, and therefore
the algorithm is polynomial too. Note that Eqs. (2.3a) and (2.3b) are not computed in the
algorithm because they are not required to solve mexec.

4.3.5 Discretization of the Thermal-Aware fluid schedule by op-
portunistic DP-Fair

Our methodology allows establishing the circumstances under with we can implement the
thermal-aware RT scheduler without a fixed quantum, limiting the scheduling points (i.e.
possible context-switches and migrations) to the set of all task deadlines, still ensuring a
proper thermal control.

If the linear programming problem in Eq. (4.10) has a solution, it means that the coef-
ficients jβi of the solution meet the thermal, temporal and CPU utilization constraints in a
steady-state temperature. These coefficients can now be used to develop an algorithm based
on DP-Fair. However, in contrast with the deadline partitioning technique, based on the
task local utilization, we leverage the coefficients jβi as the task share that must run on each
CPU for each time slice, defined by all the deadlines of all tasks in the system. The algo-
rithm is opportunistic in that it prioritizes the thermal constraint and makes the processors
to become idle when the temperature of the CPUs approaches the temperature limit. When
resuming execution, the algorithm catches up and meet the temporal constraints.

4.4 Simulation Results

The following experiments show the ability of the proposed scheduler to meet HRT and
thermal constraints and to deal with disturbances. Also, we compare OLDTFS with a
straightforward implementation of a DP-Fair scheduler [37].
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4.4.1 Experimental setup

We consider a package with two homogeneous 1cm × 1cm microprocessors mounted over a
5cm × 5cm copper heat spreader. The microprocessors and the copper heat spreader are
respectively 0.5mm and 1mm thick. The temperature of the surrounding air is fixed and set
to 35oC, in the range of an environment type C according to [91]. The convection coefficient
of the heat spreader is h = 0.001 W

mm2oC
. The isotropic thermal properties of the materials in

the package are shown in Table I. We assume CPUs with caches and speculative mechanisms
non-existent or turned-off, and tasks running at a fixed frequency F = 1GHz. Thus, WCET,
deadline and period time bounds can be stated more accurately. We include scheduling and
context switch overhead in the WCET. We have used for the thermal model a mesh of 25×25
prisms for the heat spreader, 5× 5 prisms per CPU, totaling 675 prisms.

The experiments are performed using the simulation framework presented in Sec. 2.7,
which automates the description of the TCPN model including the thermal parameters of
the system and the generation of task sets. To solve the LPP in Eq. (4.10) during the off-line
stage we use the lingprog (simplex algorithm) function of MatLab [88]. We obtain the
predicted task execution (ṁexec) during the on-line stage with the ODE45 solver. All the
experiments can be reproduced with the publicly available package [80].

4.4.2 OLDTFS results

The first experiment considers a thermo-hydraulic system. Both the water level in a tank
and its temperature are controlled by a certain algorithm, resulting in a periodic task set
T = {τ1, τ2, τ3} running on a MPSoC with two cores; the maximum operating temperature of
both cores is Tmax1,2 = 100oC. Tasks τ2 and τ3 control the level and temperature respectively.
Task τ1 (acquisition task) is used to read the sensors every sample period. We have computed
the sample period according to Shannon’s theorem. The relevant task parameters are WCET
(in CPU cycles), sample time ω and deadline d (with ω = d in this case), resulting in
τ1 = (2 × 109, 4, 4, 6.4), τ2 = (5 × 109, 8, 8, 8), τ3 = (6 × 109, 12, 12, 9.6), and the consumed
energy e. Task independence is achieved by the correct computation of the sample time. If
ω1 is two or more times shorter than ω2 and ω3, then the level and temperature variables are
known before the execution of τ2 and τ3, i.e. tasks are independent of each other.

Fig. 4.2 depicts the schedule obtained by the on-line discretization of the fluid temporal
scheduler. Fig. 4.3 shows the evolution of temperature in both CPUs until the hyperperiod,
using two different values for the quantum. Temporal and thermal constraints are met with
both values, but temperature variations are much narrower with Q = 0.05 than with the
computed quantum Q = 0.5. A theoretical infinitesimal quantum would match the optimal
thermal solution with infinitesimal context switches.
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Figure 4.2: Schedule computed by OLDTFS algorithm for the example of subsection 4.4.2.
Its execution produce a rising in the CPUs temperature depicted in Fig. 4.3.

A second experiment shows the sensitivity of OLDTFS to computation utilization and its
ability to cope with a significant number of tasks pushing temperature well over the limit. We
leverage the algorithm UUniFast [87] to generate 103 task sets with computation utilization
varying from 1 to 2 to evaluate the thermal feasibility, and only considering task sets which
are computationally feasible.

Fig. 4.4 shows the maximum temperature per CPU reached during the first hyperperiod,
while varying the computation utilization (x-axis). The maximum temperature does not only
depend on the computational utilization, but on the power consumption of each task set too
(see LPP in Eq. 4.10). OLDTFS keeps the maximum temperature under control along the
whole range of utilization values. The smaller the quantum, the finer the thermal control at
the cost of a higher overhead.

4.4.3 OLDTFS vs. DP-Fair

We have seen that OLDTFS allows a great control on temperature, but finding a balance to
keep a low overhead requires experimenting with different quanta. DP-Fair only schedules
tasks on the set of deadlines, which generally yields fewer scheduling points than when using
a quantum. However, a baseline DP-Fair can fail to keep the temperature inside a safe
region.

The following example makes evident this observation. It considers two identical CPUs
and three tasks such that T = {τ1, τ2, τ3}, where τ1 = (2 × 109, 4, 4, 6.4), τ2 = (5 ×
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Figure 4.3: CPUs temperature evolution due to the execution of the computed schedule
in the example of subsection 4.4.2, for different quantums. The initial conditions of CPU1

and CPU2 are mT (0)[1] = 81.5664oC, mT (0)[2] = 80.7352oC respectively. Note that the
temperature does not exceed the bound Tmax = 100oC. As expected, a smaller quantum
means a lower temperature variation.

10, 8, 8, 8), τ3 = (6 × 10, 12, 12, 9.6). The CPU utilization is U = 1.625, and therefore
the scheduling problem has a solution on a two processor platform.

Both DP-Fair and OLDTFS compute feasible schedules. Fig. 4.5 shows the temperature
evolution for both schedules. OLDTFS evenly distributes the execution and idle time of the
CPUs over the scheduling points, keeping temperature under the 90◦C bound. In contrast,
DP-Fair runs all the tasks as soon as possible during the scheduling points, with accrued idle
time at the end of each scheduled point, which leads to a temperature violation. The number
of context switches and migrations in DP-Fair is much lower than in OLDTFS nonetheless.

4.4.4 Thermal-aware Opportunistic DP-Fair

Fig. 4.6 compares the temperature variations yielded by OLDTFS with a small quantum and
by the thermal-aware opportunistic DP-Fair presented in Sec. 4.3.5. The temperature bound
is set to Tmax = 100oC for a set of task T = {τ1, τ2, τ3}, where τ1 = (2 × 109, 4, 4, 9.6), τ2 =
(5 × 109, 8, 8, 9.6), τ3 = (6 × 109, 12, 12, 9.6), and P = {CPU1, CPU2}. The hyperperiod is
H = 24 and the CPU utilization is U = 1.62. Both algorithms meet the thermal constraint,
but OLDTFS reaches a lower temperature.
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Figure 4.4: Maximum temperature of processors considering 103 tasks sets, generated by
the UniFast algorithm, with utilization varying 1-2. Each marker represents the maximum
temperature of a task set with the corresponding utilization.

Figure 4.5: Temperature evolution in both CPUs for the example in Sec. 4.4.3. DP-Fair
produce a temporal feasible schedule, but unlike OLDTFS it violates the thermal bound.

4.4.5 Disturbance recovering with OLDTFS

The feedback controller embedded in the scheduler can recover the system from disturbances
such as CPU detentions due to hazardous environmental conditions, energy interruptions
and other eventualities, as we discussed when describing the overall structure and operation
of the scheduler (Sec. 4.3.4, Fig. 4.1 box B). As a proof of concept, we consider three tasks
T = {τ1, τ2, τ3}, where τ1 = (2× 109, 4, 4, 6.4), τ2 = (5× 109, 8, 8, 8), τ3 = (6× 109, 12, 12, 9.6)
running on two processors. A disturbance causes CPU1 to halt during the time interval [5, 7],
resuming task execution in ζ > 7. Fig. 4.7 represents the task execution according to our
scheduler (Fig. 4.1). The three plots on the left correspond to the allocation of the three
tasks on CPU1. During the time interval [5, 7], mexec

1,i (ζ) (S3) is unable to track the fluid
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Figure 4.6: Temperature evolution for the example in Sec. 4.4.4 by applying the OLDTFS
and the opportunistic DP-Fair algorithm, which is a blend of the DP-Fair algorithm and the
proposed fluid scheduling functions. Both algorithms yields a thermal and temporal feasible
schedule, but context switches are higher in OLDTFS.

schedule (1FSCi(ζ), S3), and appears constant (flat) in the plot. When ζ > 7, the controller
starts increasing the task execution rate (without never exceeding a 100% CPU utilization):
mexec

1,i (ζ) increases continuously and the discretized schedule (M exec
1,i (ζ), red dots) follows up

on a quantum basis.

4.5 Conclusions

The approach in Ch. 3 set a solid ground to add and deal with thermal constraints by
exploring the balance between fixed (quantum) interval scheduling and variable (deadline
based) interval scheduling, including a simple on-off controller. However, establishing an
optimal quantum to limit the overhead can be onerous, and the on-line allocation method in
Alg. 1 requires heuristics to avoid unnecessary context switches and migrations. The approach
taken in this Chapter moves key decisions to the off-line stage, and leverages the controller
during the on-line stage to minimize the fluid error even in the presence of disturbances. We
also show that a pure deadline partitioning approach can be sufficient to keep the temperature
under control, although temperature variations are higher than when relying on the OLDTFS
on-line scheduler. This scheduling approach has been accepted for publication [82].

Managing aperiodic tasks while honoring the constraints of the HRT task set under ther-
mal restrictions introduces a new level of difficulty, especially in battery-operated o satellite
systems in which power draw can be an issue. This problem is addressed in the next chapter.
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Figure 4.7: Task execution of the example presented in Sec. 4.4.5. A disturbance is introduced
during 5-7 s, when the CPU1 stops task execution due to an external and uncontrollable
interruption. Note that when the interruption is released, CPU1 increases task execution by
using the idle spaces; when the fluid schedule function is reached (its reference), then the
CPU1 continues with its normal task execution.



Chapter 5

Thermal, Energy-Aware RT
Scheduling with aperiodic task and
disturbance management

This Chapter introduces a cascade control scheme to manage the execution of aperiodic tasks
arriving asynchronously to a HRT system with thermal constraints in which energy consump-
tion must be minimized, while dealing with disturbances and parametric variations. The
proposed controller assumes that there exists a feasible fluid schedule, the aperiodic task pa-
rameters are accessible upon task arrival, and that the CPU clock frequency can be throttled.

5.1 Introduction

The two previous chapters introduced two HRT multiprocessor scheduling algorithms de-
signed and tested using a methodology based on TCPNs. Alg. 1 is based on a fluid scheduler
and a sliding mode controller to guarantee that temporal constraints are honoured. Alg. 2
goes one step further and is capable of keeping the temperature below a fixed bound while
always meeting HRT constraints and managing disturbances. In battery-operated devices,
however, the power draw must be minimized to extend the battery lifespan and the auton-
omy of the device. Also, managing SRT aperiodic tasks is a desirable feature, as long as it
warrants the requirements of the HRT task set in the system.

This chapter proposes the integration of a PID controller and an Aperiodic Task Manager
(ATM ) module into the thermal-aware RT scheduler of Ch. 4. The purpose of this new
controller is to manage SRT aperiodic tasks by throttling frequency. This conforms a cascade
control in which the PID controler manages frequency based on the continuous utilization of
the system, whereas the sliding mode controller manages disturbances based on the fluid error
as explained in Sec. 4.3.1. Both controllers warrant the fulfillment of the thermal constraint.

75
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The rationale for this chapter was summarized in Sec. 1.7.4, on the intuition that given a
minimum frequency which ensures the correct execution of a HRT task set at maximum CPU
utilization, any frequency increase (up to a maximum determined by an upper temperature
boundary), will lower the total utilization of the system. This will free CPU time as a slack
that can be exploited to accommodate aperiodic tasks when they arrive. This intuition was
leveraged in [83], where a sizeable computing overhead upon the arrival of an aperiodic task is
required. The approach taken in this chapter substantially lowers that computing overhead.

The first section (Sec. 5.2) introduces the principal features of the METARTS algorithm,
proposed and detailed in [83]. The METARTS algorithm provides the minimum frequency
required to safely run a HRT task set with thermal constraints, the maximum frequency at
which the system can run respecting the temperature limit, and the per-task per-deadline
interval CPU cycles each task must run to meet the thermal and HRT constraints. These
results from METARTS are leveraged in the scheme proposed in this chapter. Sec. 5.3
presents an off-line algorithm that yields a schedule for the HRT task set according to a FPZL
policy, later used by the ATM. Sec. 5.4 introduces the concepts of free equivalent system and
instantaneous system utilization, the condition to accept or reject an incoming SRT aperiodic
task, and the PID controller. Sec. 5.5 presents the ATM and the integration of all the control
and scheduling elements into the scheduling scheme. Sec. 5.6 shows the simulation results of
a proof of concept. Sec. 5.7 closes the chapter with some final conclusions.

5.2 The METARTS algorithm

The METARTS scheduler solves the following problem.

Problem 5.2.1 Given the task set T and CPU set P, the Minimum Energy Thermal Aware
Real Time Scheduler ( METARTS) problem consists in designing an algorithm to allocate the
tasks in T to the m identical CPUs within the hyperperiod H, such that the deadlines for
T are always satisfied and the CPU temperatures are always kept below a given temperature
bound Tmax and the consumed energy is minimum.

Typically, the clock frequency of modern CPUs is adjusted according to a number of safe
values F = [F1, . . . , Fmax]. We normalize this set as φ = [φmin = F1

Fmax
, . . . , 1].

In METARTS, the parameter Cexec
P of Eq. (2.3a) is rewritten as F 3C

′exec
P to indicate

that this parameter depends on the CPU clock frequency. The same steady state analysis for
temperature that led to Eq. (4.9), leads now to the following thermal constraint equation:

−SA−1F 3Bwalloc ≤ Tmax + SA−1B′ma (5.1)
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This equation, which depends on the CPU clock frequency, provides the thermal con-
straints that the allocation of tasks to the processors (walloc) must fulfill. The normalized
operation frequency for minimum consumption of energy is:

Φ∗ = max{φmin,
1

m

n∑
i=1

cci
ωiFmax

} (5.2)

The normalized frequency Φ∗ meets the temporal constraints. The actual frequency is
computed as:

F ∗ = min{F ∈ F|F ≥ Φ∗Fmax} (5.3)

The maximum thermal frequency F+ is the greatest frequency at which all CPUs could
operate at 100% of utilization without violating the thermal constraint. F+ is computed by
solving the next programming problem.

max F+

s.t.

−SA−1F+3

B
[

CC1

F+H , . . . ,
CCm

F+H

]T ≤ Tmax + SA−1B′ma

CCj

F+H = 1 ∀j = 1, . . . ,m

F ∗ ≤ F+ ≤ Fmax

(5.4)

The first constraint sets the thermal constraint. CCj represents the cycles that CPUj
must execute per hyperperiod. Since all CPUs must work at their maximum capacity, the
second constraint forces the CPU utilization be 100%. The last constraint bounds F to the
actual clock frequency range of CPUs. The solution for F+ has to be in the set F of discrete
frequencies. Thus the processor frequency is updated as F+ = max{F ∈ F|F ≤ F+}.

The algorithm uses the set of deadlines SD and scheduling interval IkSD presented in
Sec. 3.5 to find the number of cycles (xki ) that each job of task τi must run at the k − th
scheduling interval, solving the following LPP:
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min
n∑
i=1

xki ∀k = 1, . . . , α

s.t

∀k
n∑
i=1

xki = m ∗ |IkSD| ∗ F ∗

if ri = 0
k∑
γ=1

xγi = q ∗ cci

if ri 6= 0
k∑
γ=1

xγi ≥ −q ∗ cc∗i +max{0,
k∑
γ=1
|IγSD| ∗ F ∗ − cc∗i }

(5.5)

The constraints are represented by a unimodular matrix, and therefore the previous prob-
lems provide integer solutions [83].

5.3 Off-line job allocation

The clock frequencies F ∗, F+ and the xki cycles computed off-line in Eqs. (5.3-5.5) determine
that task τ ki must be allocated xki cycles at F ∗ clock frequency during the IkSD interval to
accomplish the HRT and thermal constraints, and that the frequency could be throttled up
to F+ without violating the thermal constraint. However, this off-line computation does not
determine which job must be allocated to which CPU at which time.

The actual allocation is performed in [83] by means of an on-line scheduler, using a fixed-
priority Zero-Laxity (FPZL) policy [84]. This allocation policy is simple, and the frequencies
and cycles provided by the off-line stage guarantee the fulfillment of HRT and thermal con-
straints. However, the aperiodic scheduler included in [83] that manages the arrival of
aperiodic tasks requires a sizeable amount of on-line computation.

Therefore, we propose to leverage the ability of the TCPN model of tasks and CPUs to
obtain an off-line discrete schedule of the HRT task set at minimum frequency (F ∗) over the
hyper-period. This will allow for a lighter on-line management of aperiodic tasks later.

As in [83], Alg. 3 relies on a FPZL policy, and uses the clock frequencies F ∗, F+ and the xki
cycles computed in Eqs. (5.3-5.5), to perform job allocation. Therefore, the schedule meets
the required HRT and thermal constraints. However, the schedule is now obtained off-line by
simulating the TCPN model of tasks and CPUs (denoted TCPN* ) along the hyper-period.
The algorithm yields the values of the allocation function jWi(ζ), which is equal to one if
the job is allocated (and dispatched) at time ζ, and equal to zero otherwise. The value of
this allocation function changes at each scheduling event. Scheduling events are either a
zero-laxity event or a job termination event.

Whenever an event occurs, job priorities are updated according to a FPZL policy in a set
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ALGORITHM 3: FPZL off-line Scheduler
Input:
IkSD – Scheduling (deadline) intervals;
Xk – Task cycles per deadline interval ;
F ∗ – CPU frequency ;
H – Hyper-period;
TCPN∗ – TCPN model of tasks and CPUs (no thermal module);
step – Time Step Simulation
Output: jWi(ζ) Task allocation function (it determines a feasible schedule)

1 Initialize
2 k = 0;
3 ζ = 0
4 mexec

i (0) = 0 The actual executed tasks;

5 while ζ ≤ H do
6 Compute the set of job laxities SL(ζ) as in Eq. (5.6) Compute task priorities sorting SL(ζ) by

descending order ; // priority= (1,2,3)

7 Allocate the m tasks with highest priority:
8 jWi(ζ) = 1 if τi is executed in CPUj , otherwise jWi = 0 ;

9 Compute the flow jw
alloc
i (ζ) as in Eq. (5.7)

10 Compute mexec(ζ) by simulating the TCPN* model
11 ζ = ζ + step ; // Update time (step is the time step simulation)

12 if ζ ≥ sdk+1 then
13 k = k + 1 ; // Update scheduling interval IkSD = [sdk, sdk+1]

14 end



80 5. A resilient RT scheduler

SL as follows:

SL(ζ) = {slτi |slτi =
xki
F ∗
ζ + xki −

xki
F ∗
sdk+1 −

mexec
i (ζ)−mexec

i (sdk)

F ∗
, xki ∈ Xk} (5.6)

Jobs reaching their zero-laxity time are given the maximum priority (= 1). Jobs being
executed and with laxity different from zero receive priority equal to 2. The remaining jobs
receive priority level equal to 3 (the lowest one). Thus, zero laxity tasks have the highest
priority and must be executed immediately.

Step 7 in Alg. 3 computes the allocation function jWi(ζ). This function is equal to
one if the job is allocated and dispatched at time ζ, and equal to zero otherwise. In order
to advance the simulation of the TCPN*, jw

alloc
i (ζ) has to be computed according to the

following equation:

jw
alloc
i (ζ) =

{
(xki −mexec

i (ζ))λi if jWi(ζ) = 1
0 otherwise

(5.7)

The last equation represents the flow through the allocation transitions of the TCPN*
model.

5.4 Aperiodic task management based on the free equiv-

alent system

The METARTS algorithm (Sec. 5.2) provides F ∗ and F+. The HRT task set can safely
run at F ∗ for minimum power draw, at 100% utilization. In a real case, the fact that
F ∗ > (Φ∗ × Fmax) can make tasks run faster, leading to a near-optimal utilization, slightly
below the theoretical 100% [83]. This utilization slack will never cause thermal or HRT
constraint violations, and therefore, in which follows, we assume that the theoretical 100%
is always achieved. Throttling the CPU frequency up in the range [F ∗ . . . F+] will lower
utilization all the more, freeing up CPU capacity (increasing the slack) to allocate aperiodic
tasks. In this proposal, we compute the free CPU utilization slack to derive a scheduling
algorithm that accepts or rejects SRT aperiodic tasks while complying with the constraints
of the HRT task set.
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5.4.1 Computing a free equivalent system

Assuming that a feasible schedule for the HRT task set is known, that the system utilization
is 100% because the CPUs are running at frequency F ∗, and that the maximum frequency
at which the system can run honoring the thermal constraints is F+, then the maximum
free CPU utilization (Umax) represents the maximum workload that the system supports, in
addition to the HRT set of tasks, without compromising the temporal and thermal constraints
of the system.

Umax = m−
∑

τi∈HRT

cci
F+wi

(5.8)

The m CPUs are homogeneous and the schedule for the HRT task set achieves a 100%
utilization at F ∗, therefore the maximum capacity per CPU is Umax

m
. Hence, the equivalent

free system is a set of m homogeneous processors, where each processor has a Umax
m

capacity.

Umax is obtained at the beginning of the hyper-period ζ = 0. This value decreases linearly
as time increases. Hence, the maximum free CPU utilization at time ζ is:

LUmax(ζ) = −Umax
H

ζ + Umax (5.9)

5.4.2 Executed task cycles

In this scenario in which the frequency can be throttled between F ∗ and F+ to achieve a
maximum CPU utilization, every task in the HRT task set has executed the following amount
of cycles at time ζ:

cci(ζ) =

ζ∫
0

F (ζ)Exi(ζ)dζ (5.10)

where F ∗ ≤ F (ζ) ≤ F+ and

Exi(ζ) =

{
0 if τi is not being executed at time ζ
1 otherwise

(5.11)

Hence, the time consumed in the set of CPUs by task τi at time ζ is:
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ei(ζ) =

ζ∫
0

Exi(ζ)dζ (5.12)

Then the task utilization of τi at time ζ is:

ui(ζ) =
ei(ζ)

ζ
(5.13)

The scheduler will always throttle the frequency to achieve a system utilization as close
as possible to 100% at any time ζ, therefore:

U(ζ) =
∑

τi∈HRT

ui(ζ) = m (5.14)

5.4.3 Condition for the acceptance of an aperiodic task

The parameters of an aperiodic task τa are known at time arrival ζa, and therefore its uti-
lization at time ζa is also known:

ua(ζ) =
cca

ωaF (ζ)
(5.15)

Depending on the task utilization and the maximum free CPU utilization at time ζ, τa
can be accepted or rejected. Formally, if

LUmax(ζ)− ua(ζ) ≥ 0 (5.16)

the task is accepted since the system is still able to run τa honoring all task deadlines.

5.4.4 Instantaneous system utilization

Assume that the system is operating in the scheduling interval IkSD = [sdk, sdk+1], where sdk,
sdk+1 are the starting and ending time of the interval, and the current time is sdk < ζ < sdk+1

when an aperiodic task τa arrives to the system at time ζa. Then, an aperiodic task is accepted
or rejected according to Eq. (5.16).
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When τa is accepted, the frequency must be updated to meet task deadlines and minimize
energy. First, we must compute the remaining CPU cycles of each task in the interval IkSD,
at time ζa, sdk < ζa < sdk+1:

ccRi (ζa) = cci(sdk+1)− cci(ζa) (5.17)

Also the remaining time is computed.

ζR = sdk+1 − ζa (5.18)

The remaining time of the aperiodic task is computed as follows.

ζRa = min(sdk+1 − ζa, da − ζa)

In this section we are assuming that task τa must execute its cca CPU cycles in sdk+1.

Then, the following equation can be solved for F (ζ):

m =
∑

τi∈A(ζ<ζa)

ccRi (ζ)

ζRF (ζ)
+

∑
τa∈A(ζ=ζa)

cca(sdk+1)

ζRa F (ζ)
(5.19)

resulting in:

F (ζ) =
∑

τi∈A(ζ<ζa)

ccRi (ζ)

ζRm
+

∑
τa∈A(ζ=ζa)

cca(sdk+1)

ζRa m
(5.20)

where A(ζ) is the set of tasks that are active at time ζ.

Computing this equation on-line would lead to an inefficient scheduler. The next subsec-
tion introduces a control scheme where a PID controller computes F (ζ) in a simpler way.

5.4.5 A PID control scheme

Fig. 5.1 depicts the architecture of the proposed scheduler. The reference m is the number of
CPUs and represents the 100% system capacity. The PID controller measures the utilization
error and computes the CPU frequency F (ζ) making this error equal to zero to achieve 100%
of system utilization. The system block includes the characteristics of tasks and CPUs. The
scheduler block computes a feasible schedule and generates the task starting and stopping
times as outputs. The utilization block receives the task starting and stopping times, and the
task parameters from the scheduler and system blocks, respectively, to compute the actual



84 5. A resilient RT scheduler

Figure 5.1: Scheduler managing aperiodic tasks. It includes a frequency adaptive mechanism
guaranteeing a 100% CPU utilization

system utilization using the left side of Eq. (5.19). Upon arrival of an aperiodic task, the
system determines if the task is schedulable or should be rejected. Schedulable tasks are
added to the task set, from which they are removed after completion. Next, we first describe
the PID controller block in Fig. 5.1, and then the scheduler block.

PID controller

The basic PID controller responds to error by a correction that is an algebraic superposition of
three actions (or forces). The first is the proportional action. It changes power in proportion
to the value of the error and in the direction that reduces the error. The second is the integral
action. It adjusts power incrementally, in proportion to the time integral of previous errors.
This action tends to accumulate a slowly-changing bias that becomes constant when the error
becomes zero, hence maintaining the system at the zero-error state. The last component is
the derivative action. It adjusts power in proportion to the rate of change of error in the
direction that reduces the rate of change, damping the response to avoid overshooting. At
any time ζ, the output of the controller is the same instant frequency given in Eq. (5.20),
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now calculated as the weighted sum of the three terms above:

F (ζ) = KP

(
e(ζ) +

1

KI

∫ ζ

0

e(ζ)dζ +KD
de(ζ)

dζ

)
(5.21)

where KP, KI and KD are constants that need to be tuned according to stability analysis.
The error e(ζ) is computed as:

e(ζ) = m−

 ∑
τi∈A(ζ<ζa)

ccRi (ζ)

ζRF (ζ)
+

∑
τa∈A(ζ=ζa)

cca(sdk+1)

ζRa F (ζ)

 (5.22)

Eq. (5.21) can be discretized as follows:

F (ζ) ≈ KP

(
e(ζ) +

1

KI

ζ∑
%=1

e(%Γ)Γ +KD
e(ζ)− e(ζ − Γ)

Γ

)
(5.23)

Here, Γ is the discretization period. Then,

F (ζ − Γ) ≈ KP

(
e(ζ − Γ) +

1

KI

ζ−Γ∑
%=1

e(%Γ)Γ +KD

(
e(ζ − Γ)− e(ζ − 2Γ)

Γ

))
(5.24)

The combination of the last two equations lead to the following discrete calculation of
the PID:

F (ζ) = F (ζ − Γ) + α1e(ζ) + α2e(ζ − Γ) + α3e(ζ − 2Γ) (5.25)

This equation provides the same instant frequency F (ζ) than Eq. (5.20), in a way than
can be leveraged in an on-line scehduler. The constants αi are computed as follows:

α1 = KP (1 + Γ
KI

+ KD
Γ

), α2 = KP (−1− 2KD
Γ

), α3 = KP KD
Γ

.

It is important to remark that the computed frequency is the minimum frequency required
to guarantee that no task deadlines are missed, and therefore this scheme is accepting on-line
aperiodic tasks for execution while minimizing the power draw.

Scheduler

The scheduler block in Fig. 5.1 can be implemented in different ways. For example, an on-line
version of Alg. 3 could replace the simulation of the TCPN* in line 10 to read task execution
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times (mexec(ζ)) from a real system directly. Alternatively, the next section presents a
proposal to adapt the scheduling scheme of Ch. 4, which uses a sliding mode controller along
with the OLDTFS on-line scheduler. In this way, not only the scheduler is able to manage
aperiodic tasks, but also to recover the system from disturbances entailing CPU detentions,
or to deal with parametric variations in the system model.

5.5 Aperiodic task management and fluid scheduler

This section introduces a scheduling proposal that integrates the PID controller presented
in Sec. 5.4.5 (Fig. 5.1) into the thermal-aware RT scheduler presented in Sec. 4.3.4. The
purpose is to leverage the ability of the PID controller to manage aperiodic tasks along with
the ability of the thermal-aware RT scheduler to recover from disturbances. The scheduler in
Sec. 4.3.4 resorts to a fluid scheduler with a sliding mode controller, which is then discretized
with Alg. 2 (Fig. 4.1). Next, we describe the computation of the new fluid functions and
the new adapted sliding mode control law. No changes are required in Alg. 2 to obtain the
discretized output.

Fluid execution function

The fluid execution function for a task τi in CPUj is computed by integrating the allocation
function jWi(ζ) obtained in Alg. 3 as follows:

jFSCτi(ζ) = F ∗

Fmax

∫ ζ
0 jWi(ζ)dζ (5.26)

where F ∗ is the minimum frequency that minimizes the energy consumption, ζ is the
current time, and 0 ≤ ζ ≤ H. This fluid function provides a fluid schedule that fulfills
temporal and thermal constraints. The difference of this function with respect to the function
that was obtained in Eq. 4.1 is that it represents the execution of a task τi in CPUj as a
line with a slope F ∗, becoming 0 when the task is not executed in CPUj. The scheduler will
track this function to make all tasks meet the thermal and temporal requirements. As in
the scheduler in Ch. 4, a sliding mode controller is in charge of reducing the fluid error (the
difference between the actual execution time and the fluid execution time), which can appear
upon disturbance. However, the sliding mode control law that was presented in Sec. 4.3.1
now depends on the new fluid task fluid execution jFSCτi(ζ) (Eq. 5.26). The new form of
the control law is presented next.
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Control law computation

Following a similar analysis to Proposition 4.2, the new control law jw
alloc
i (ζ) is computed as

jw
alloc
i (ζ) = jŵ

alloc
i (ζ) + K1

λexeci,j

jFSCτi (H)

HF (ζ) (5.27)

where jŵ
alloc
i (ζ) = K2sign(Si,j(ζ)) and Si,j(ζ) = K1

λexeci,j
x1
i,j+

jFSCτi (H)

HF (ζ)λexeci,j
−x2

i,j. sign(x) = 1 if x ≥
0; 0 otherwise.

Note that F (ζ) is the frequency computed by the PID controller in Eq. (5.25).

Discretization by OLDTFS

The vector walloc(ζ) represents a fluid schedule, yielding continuous values in vector mexec(ζ)
and generating an infinitesimal number of context switchings and migrations. The Alg. 2
in Sec. 4.3.3 (OLDTFS ) can be used to discretize the fluid schedule. OLDTFS provides a
discrete schedule that closely tracks the fluid schedule (mexec(ζ)) by computing a schedule
up to the hyperperiod (from time zero to time H).

5.5.1 The Aperiodic Task Manager (ATM )

The management of aperiodic tasks in this scheduling system requires two operations: throt-
tling frequency and accept or reject aperiodic tasks. The first operation is performed by
the PID controller (Sec. 5.4.5). The second operation is performed by the Aperiodic Task
Manager (ATM ), described in this section. The ATM uses Eq. (5.16) to accept and dispatch
the SRT aperiodic tasks arriving to the system if they do not jeopardize the constraints of
the HRT task set and the thermal limit, or to reject them otherwise. First, we analyze how
to compute the zero-laxity of the HRT that is running when a SRT aperiodic task arrives.
Then, we will explain the ATM algorithm.

Zero-laxity computation

Upon acceptance of an aperiodic task, the PID controller computes a new operating CPU
clock frequency F ∗. The ATM grants the highest priority to the accepted aperiodic task,
which runs either to completion or until a HRT task reaches its zero laxity.

The red dashed line in Fig. 5.2 shows the fluid execution of the HRT task τi in CPUj
(jFSCτi(ζ)) at the normalized frequency φ∗ = F ∗

Fmax
. The green solid line represents the
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Figure 5.2: Task execution of task τi in CPUj. At time ζ = rai an aperiodic task τai arrives
to the system.

actual execution mexec
i,j of τi, and the blue dotted lines represent its fluid execution jFSC

n
τi

(ζ)

at any possible normalized frequency φn = F (ζ)
Fmax

(computed by the PID control).

In the figure, an aperiodic task τai arrives to the system at ζ = rai demanding ccai CPU
cycles. At this time ζ = rai , task τi is running in CPUj (green solid line). Since τai is
given the highest priority task when it arrives, it is immediatly dipatched, preempting τi
(flat green line). At ζ = rai + Zi,j, the maximum error Emax

i,j is equal to Ei,j(ζ) (where
ETi,j(ζ) = jFSCτi(ζ)−mexec

i,j (ζ) as defined in Eq. 4.11). This triggers a zero-laxity event: τi
must resume execution lest it miss its HRT deadline, and τai must be preempted accordingly.

The challenge at this point is to calculate Emax
i,j upon arrival of τai . This can be done with

the known signals (jFSCτi and mexec
i,j (ζ)). Analyzing Fig. 5.2 we can derive the following

equation:

Zi,j = Zφ∗

i,j − Z
φn

i,j (5.28)

where Zφ
i,j =

jFSC
∗
τi

(sdk+1)−mexeci,j (ζ)

φ∗ and Zφn

i,j =
jFSC

n
τi

(sdk)−mexeci,j (ζ)

φn
.

Then, the maximum error between the fluid execution function jFSCτi(ζ) and the actual
execution mexec

i,j (ζ) at time ζ = rai is computed as:



5.5. Aperiodic task management and fluid scheduler 89

ALGORITHM 4: ATM
Input: parameters of τai : (rai , cc

a
i , d

a
i ), Ei,j(ζ)

Output: Aperiodic task execution
1 Initialize Emaxi,j = 0;

2 while true do
3 if ζ = rai and LUmax(ζ)− ua(ζ) ≥ 0 then
4 Preempt task in CPUj with the lowest priority;
5 Accept and dispatch aperiodic task;
6 Compute Emaxi,j using Eq. (5.29) ; // Maximum error allowed for task τai
7 else
8 Reject aperiodic task;
9 end

10 if Ei,j(ζ)− Emaxi,j == 0 then
11 preempt τai , and continue with the normal behaviour of τi;
12 end

13 end

Emax
i,j = φ∗Zi,j (5.29)

The ATM algorithm

Alg. 4 shows the Aperiodic Task Manager (ATM ). A scheduling event occurs when an ape-
riodic task arrives and when a HRT task reaches its zero laxity (i.e., when Ei,j −Emax

i,j = 0).
If the aperiodic task is accepted (step 3), the HRT task τi that is currently running in CPUj
is preempted. The ATM computes the maximum execution error Emax

i,j that will trigger the
zero-laxity event (Ei,j−Emax

i,j = 0). The zero-laxity event preempts the aperiodic task τai and
resumes τi at the adjusted CPU frequency F (ζ).

5.5.2 Overview of the complete scheduler

Fig. 5.3 provides an overview of the complete scheduling approach. An off-line stage computes
the fluid functions jFSCτi(ζ) (signal vector S1). The on-line scheduler holds the same fluid
scheduler and the discretized scheduler (OLDTFS ) used in Ch. 4 (see Fig. 4.1), which work
the same way here. Differences are that the fluid functions computed off-line are now given
as a function of F (ζ) (Eq. 5.26), that the frequency is now dynamic, throttled by the PID
controller (Eq. 5.25), and that a new module, the ATM, rejects or accepts incoming SRT
aperiodic tasks.

The upper box A in the figure shows the behavior of the system during normal operation.
There is no frequency switch because there is no incoming aperiodic task (or if any, the
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Figure 5.3: Frequency control OLDTFS overview.

aperiodic task has been rejected by the ATM). S3 (the execution time of τi) as given by
the TCPN* model (the internal model of tasks and CPUs in the scheduler) matches the
fluid scheduler, as it happened in the thermal-aware RT scheduler of Ch. 4 during normal
operation, no disturbances (Fig. 4.1, box A).

The lower box A in Fig. 5.3 depicts the behavior of the system upon arrival —and accep-
tance, according to Eq. (5.16)— of a SRT aperiodic task (τai ) at time ζa = rai , demanding ccai
cycles, with utilization ua. Accepting τai implies that a HRT task τi in CPUj is preempted,
and τai is immediately dispatched. To accept τai , the ATM (Eq. 5.16) takes into account that
the execution of the aperiodic task fits into the schedule because the frequency can be safely
throttled up —honoring the thermal constraint— so that the preempted HRT task can meet
its deadline once it resumes execution.
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At time ζ2, either τai ends or is preempted because τi reaches its zero-laxity condition.
At this point, the PID controller computes a new convenient frequency F (ζ) according to
Eq. (5.25). The increase in frequency is can be seen in the variation of S2 in Fig. 5.3, box
B. At this new (higher) frequency, τi resumes execution in CPUj. The slope of S1 in Box B
(jFSCτi) increases from ζ2 to ζ3 with respect to the slope of this function in box A, meaning
that τi is running faster, until catching up the fluid slope expected when running at the
normal (minimum) frequency (F ∗).

The scenario depicted in Fig. 5.3, box B, does only show the arrival —an acceptance— of
an aperiodic task. In contrast with the thermal-aware controller in Fig. 4.1, there is now a
cascade control composed of the PID controller (frequency) and the sliding mode controller
(still in charge of dealing with disturbances or parametric variations). Therefore, we could
still add different scenarios with an incoming aperiodic task (the situation isolated in Fig. 5.3,
box B) and disturbances (the situation depicted in Fig. 4.1, box B).

5.6 Simulation Results

A proof of concept shows in this section how the proposed scheduler deals with aperiodic
tasks. Let us consider the HRT task set T = {τ1, τ2, τ3}, where τ1 = (2000, 4), τ2 =
(5000, 8), τ3 = (6000, 12); the hyperperiod is H = 24. These tasks run on two homogeneous
1cm× 1cm silicon microprocessors mounted over a 5cm× 5cm cooper heat spreader, where
the thickness of the silicon microprocessors and the cooper heat spreader is 0.5mm and
1mm respectively. The isotropic thermal properties of the materials are taken from [86].
The processor supports four operating frequency levels F = {0.5, 0.85, 0.95, 1}KHz. The
temperature of the surrounding air is constant and set to 45oC. The maximum operating
temperature level is set to Tmax1,2 = 50oC. The simulations presented in this dissertation
consider CPUs with caches and speculative mechanisms non-existent or turned off.

In the offline stage, the METARTS algorithm obtains the minimum frequency for the
HRT task as φ∗ = 0.8125 according to Eq. (5.2). Hence, the selected discrete frequency is
F ∗ = 0.85kHz (Eq. 5.3). Eq. (5.4) provides the maximum clock frequency (F+ = 1kHz), so
that the METARTS problem has a feasible solution. Then, solving the LPP in Eq. (5.5) for
F ∗ yields the CPU cycles of each task xki to be executed at each interval. Alg. 3 determines
which jobs must be allocated to which CPU (i.e. the values of the allocation function jWi(ζ)).
The fluid execution function for a task τi in CPUj is computed by using Eq. (5.26). This
function provides the fluid schedule at the discrete frequency F ∗ that fulfills temporal and
thermal constraints. Moreover, the fluid schedule is used as a set point in the online stage.

Fig. 5.4 depicts the outcome of the online scheduler proposed in Sec. 5.5 when an aperiodic
task τa1 = (2000, 10) arrives at ζ = 2 with an absolute deadline at ζ = 12. The ATM deals
with this incoming aperiodic task, accepting τa1 at ζ = 2. At the interval [2, 8] the PID
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Figure 5.4: Task execution of the example. The y-axis shows the utilization of the CPU.

controller throttles the frequency up to F (ζ) = 1Khz, τa1 is dispatched and runs in CPU2

during this interval. However, the fact that F ∗ > (Φ∗×Fmax) makes tasks allocated to CPU2

run faster in this simulation. This translates into the slack that appears in the lowest plot
of the figure (interval [18, 20]).

5.7 Conclusions

The scheduling scheme introduced in Ch. 4 can be easily empowered by incorporating the
ability to manage SRT aperiodic tasks while honoring the thermal constraints of the system
and the constraints of the HRT task set.

A cascade control is a straightforward solution that requires minimal changes in the
scheme, leveraging the results provided by the METARTS algorithm [83]. The cascade
control is composed of a new PID controller along with the sliding mode controller already
present in the scheduling scheme of Ch. 4.



5.7. Conclusions 93

The PID controller computes the CPU frequency required to speed up HRT taks resuming
execution upon acceptance of a SRT aperiodic tasks in the range [F ∗, . . . , F+] in order to
free up CPU capacity and allocate aperiodic tasks. This approach avoids the recalculation
upon arrival of aperiodic tasks which appears in [83]. The sliding mode controller is still able
to deal with disturbances and parametric variations. The result is a resilient RT multipro-
cessor scheduler able to minimize energy consumption and guarantee thermal and temporal
constraints.





Chapter 6

Conclusions

6.1 Summary

6.1.1 TCPNs as a modelling tool for RT scheduling

A first objective in the Thesis has been to explore the advantages and possible drawbacks of
using TCPNs to model RT task sets running on a multiprocessor, accounting for thermal and
energy constraints. Although Petri nets have been leveraged for decades in different fields for
scheduling purposes including RT restrictions, as far as we know this is the first work based
on TCPNs specifically addressed to RT scheduling on multiprocessors.

As a hypothesis, the continuous nature of the thermal problem and RT multiprocessor
schedulers based on global, fluid approaches, could well be modeled by means of a TCPN.
On the other hand, multiprocessors provide as much power as design complexity, and the
modular nature of TCPNs could also help at this point. Also, the experience of using control
techniques along with TCPNs in other fields could be leveraged in the RT multiprocessor
scheduling arena.

As a proof of concept, results in this Thesis are promising in that we have found a suitable
methodology, automated with a publicly available tool, to design and test RT multiprocessor
schedulers encompassing thermal and energy aspects. Other than making the design process
easier (gathering task, CPU and thermal behavior in a single formalism), a simplified TCPN
model of tasks and CPUs (TCPN*, without thermal components) requires few calculations to
solve the state equation, and constitutes a feasible tool to derive the fluid error and leverage
on-off controllers for a better system’s resilience.

The simulation framework implemented to support the experimental parts of this The-
sis constitutes the basis of a more ambitious joint project that is currently under develop-
ment [80].

95
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6.1.2 Control integration

The problem considered in this Thesis involves controlling three different variables: time,
temperature and energy (the latter by operating on CPU frequency), subject to specific
constraints. Moreover, asynchronous unexpected events such as incoming aperiodic tasks
or disturbances are considered. From a bare control theory point of view, this constitutes
a complex problem, which can not be solved with a single controller. Fortunately, there
are solid tools to bring this problem down to a simpler control problem, amenable to be
tackled by means of feedback controllers. Feedback controllers can deal with a wide range of
behaviors related to RT tasks with thermal and energy constraints.

A first tool to face this problem is the global TCPN model obtained in Ch. 2, which leads
to a state space equation that allows controlling the workload execution, the temperature
and the energy consumption of the system.

A second tool comes from the RT scheduling theory. By the reasons discussed in Secs. 1.6
and 1.7.2, global fluid schedulers constitute a first choice, because they are amenable to
be modeled with a TCPN, and especially because they are HRT and SRT optimal. Fluid
schedulers trigger an infinitesimal number of task preemptions and migrations and must be
discretized. Thus, the objective in Ch. 3 is twofold. First, to analyze the compromise between
a quantum-based and a deadline interval-based discretization. Second, to use a controller to
bring the fluid error down to zero with a low computing overhead. This led to exploiting a
continuous sliding mode controller in the scheduler, which fulfills the HRT requirements.

The inclusion of temperature in Ch. 4 as an additional variable to control required a
different approach. The solution to Eq. (4.10) represents the fraction of each job to be run at
each CPU during the hyperperiod to meet all thermal, time and utilization constraints. That
means that no controller is required to fulfill system requirements during normal operation.
This opens up the chance to leverage a controller to improve on-line resilience. Therefore,
the sliding mode controller that was successfully used in Ch. 3 to close the fluid error, is now
targeted to the dynamic management of disturbances at fixed CPU frequency as long as the
system keeps under maximum utilization (Fig. 4.1).

Dealing with aperiodic tasks introduces a new complexity level. The solution to the
METARTS problem [83] provides the minimum frequency (F ∗) at with the system can run
to accomplish the requirements a the HRT task set. It also provides the maximum frequency
at which the system can run (F+) and the job cycles per deadline interval to meet thermal
and HRT constraints.

Upon these results, Ch. 5 leverages the ability to throttle the current frequency F (ζ)
to decrease the instantaneous utilization as per the HRT task set, freeing up a slack to
accommodate incoming aperiodic tasks up to the limit imposed by F+. The problem is that
calculating the new F (ζ) upon arrival of an aperiodic task can be onerous. However, it
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boils down to a simple linear computation if derived from the PID control law presented in
Sec. 5.4.5. Leveraging the scheduling scheme of Ch. 4 leads to a cascade control where the
PID controller manages F (ζ) and the sliding mode controller deals with disturbances and
parametric variations.

6.1.3 Resilient, energy-efficient RT scheduling

This Thesis has followed an incremental approach, starting with a RT global scheduler with
control integration (Ch. 3) which results were presented in [81]. Lessons learned are that the
discretization of fluid schedulers leads to difficult compromises, and on the bright side, that
TCPNs a really a powerful modeling tool in this context. Over the basis of this scheduler,
Ch. 4 includes a thermal constraint and leverages the sliding mode controller to deal with
disturbances and parametric variations inside specific utilization limits. This scheduler has
been accepted for publication [82].

The results draw a few important conclusions. First, computing off-line the per-task, per-
CPU time share leads to a lighter on-line discretized scheduler. Second, ensuring thermal,
time and utilization constraints by solving off-line an LPP, allows the use of a simple on-off
controller to deal with disturbances and parametric variations, thus improving the resilience
of the system. Third, the fluid functions (which are computed off-line) can be tracked on-
line by solving the state equation of a simple TCPN model of tasks and CPUs (TCPN* ),
according to an allocation vector managed by the on-off controller to minimize the fluid error
upon disturbance. Last, that the on-off control can lead to an unbounded number of context
switches and migrations.

The final step consists on considering the management of SRT aperiodic tasks and distur-
bances while observing HRT and thermal constraints, which constitutes a complex problem.
The approach taken in [83] ensured the safe execution of an HRT task set with minimum
power draw, and the ability of throttling up CPU frequency up to a maximum F+ that still
keeps the system under the maximum allowed temperature. Per-task, per-deadline interval
cycles computed off-line as time-dependent functions allowed for an on-line scheduler with a
low overhead. However, recomputing these functions upon the arrival of an aperiodic task
requires a tough calculation.

Thus, Ch. 5 starts from the scheduling scheme of Ch. 4 and leverages a simple PID
controller to compute the frequency required to safely run a HRT job which was preempted
upon acceptance of an incoming aperiodic task, profiting from the results obtained by solving
the METARTS problem in [83]. The PID controller and the sliding mode controller conforms
a cascade control that endows the system with a higher resilience with a low computing
overhead.

As a bonus, the Chapter also introduces the idea of performing task allocation off-line
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(Alg. 3) using a FPZL policy over the per-task, per-deadline interval cycles provided by the
solution to the METARTS problem for the HRT task set. In other words, starting with a
global fluid scheduling algorithm, it is possible to obtain a partition which is HRT optimal
(the optimality is ensured by the HRT optimality of the fluid schedule), thermal-safe, and
with takes a minimum power draw. Being an off-line partition, off-line heuristics can be
applied to minimize context switches and migrations.

6.2 Open questions and Future Work

The assumptions taken in this work are commonplace in RT scheduling (Sec. 1.4.1), and pro-
vides a convenient starting point when designing and testing multiprocessor schedulers. On
the other hand, as mentioned in Sec. 1.6, the strict safety levels demanded by the automotive
and aerospace industries impose scheduling models strongly deterministic at all levels, as-
suming a loss of optimality in resource usage, such as partitioned scheduling locally managed
by a cyclic executive.

However, there is a growing interest in matching real-world needs and advances in RT
scheduling theory as the industry progresses in embracing multiprocessor for RT systems.
Reasons are that real systems are facing more and more the problem of hardware overprovi-
sioning, along with problems derived from contention in memory accesses which are difficult
to bound, among others. It has already been claimed that RT algorithms other than the cyclic
executive and schedulability analysis beyond RMS or DMS are perfectly viable, although not
even EDF (first proposed in 1974 [92]) is being implemented in certified RTOS [10].

Closing the gap between industry and RT research can be done in two ways. On the one
hand, by exploiting theoretical models and results with an eye on real-world constraints. On
the other hand, by directly starting with the paradigms and workloads used in the industry.

The first way can be undertaken from this Thesis perspective by leveraging Alg. 3 for
example. It will be worth exploring heuristics to reduce context switching an migrations over
a schedule obtained off-line, which warrants thermal, time and utilization constraints.

Concerning the second way, the modeling power of TCPNs could well be tried to tackle
the contention problem which appears when scheduling the Minor Frame (MIF) in a cyclic
executives [93].

Other than that, the basis established in this Thesis has given foot to several on-going
projects. One of them is the already mentioned simulation framework [80]. Another impor-
tant one is the implementation of the schedulers in LitmusRT [10], running on a platform
instrumented for thermal and power measuring. Along with the focus on the reduction of
the overhead especially when applying the on-off control, testing on-the field the capabilities
of the schedulers will provide interesting results.



Bibliography

[1] S. Abinesh, M. Kathiresh, and R. Neelavenik, “Analysis of multi-core architecture for au-
tomotive applications,” in 2014 International Conference on Embedded Systems (ICES),
pp. 76–79, July 2014.

[2] K. Vipin, “Cannoc: An open-source noc architecture for ecu consolidation,” in 2018
IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 940–943, Aug 2018.

[3] M. K. Berhe, “Ergonomic temperature limits for handheld electronic devices,” in ASME
2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineer-
ing Heat Transfer Summer Conference, ASME, 2007.
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