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Vı́ctor Viñals
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Abstract

Nowadays, most computer manufacturers offer chip multiprocessors (CMPs) due
to the always increasing chip density. These CMPs have a broad range of charac-
teristics, but all of them support the shared memory programming model. As a
result, every CMP implements a coherence protocol to keep local caches coherent.

Coherence protocols consume an important fraction of power to determine which
coherence action to perform. Specifically, on CMPs with write-through local
caches, a shared cache and a directory-based coherence protocol implemented as
a duplicate of local caches tags, we have observed that energy is wasted in the
directory due to two main reasons.

Firstly, an important fraction of directory lookups are useless, because the target
block is not located in any local cache. The power consumed by the directory
could be reduce by filtering out useless directory lookups.

Secondly, useful directory lookups (there are local copies of the target block) are
performed over target blocks that are shared by a small number of processors.
The directory power consumption could be reduced by limiting the directory
lookups to only the directory entries that have a copy of the block.

Along this thesis we propose two filtering mechanisms. Each of these mechanisms
is focused on one of the problems described above: while our first proposal focuses
on reducing number of directory lookups performed, our second proposal aims at
reducing the associativity of directory lookups. Several implementations of both
filtering approaches have been proposed and evaluated, having all of them a very
limited hardware complexity. Our results show that the power consumed by the
directory can be reduced as much as 30%.
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Chapter 1

Introduction

This initial chapter of this thesis summarizes the state of the art of coherence protocols,
paying special attention to directory-based protocols and mechanisms that reduce the
energy consumed by the coherence protocols. In the last section, we briefly motivate
and describe the mechanisms proposed along this thesis as well as the organization of
this document in the different chapters.

During the last decades, ever higher operating frequencies have been the main factor
driving the performance growth of single-core processors. However, further increases in
operating frequencies are increasingly hard to obtain with newer generations of technology.
One of the main reasons is the impact of wire delays as feature sizes continue to shrink. To
compensate, single-core processors have become increasingly more complex even leading to
designs with inefficiencies in power/performance.

However, the density in the chips continues increasing, which have encouraged the
development of chip multiprocessors (CMPs). Nowadays, most computer manufacturers
offer CMPs such as the IBM Power7 with 8 cores with four threads each [30], the SUN
Rainbow Falls with 16 cores with 8 threads each [47], the Intel Nehalem-EX with 8 cores
with 2 threads each [32], the Fujitsu SPARC64 VIIIfx with 8 cores [37], the AMD Phenom
II with 6 cores, and the SUN Niagara2 with 8 cores [29]. Figure 1.1 shows Niagara2 chip
overview.

All these systems differ from each other in important features like the number of cores,
the memory hierarchy, or the interconnection network on-chip. However, in all of them
there is at least a local cache level per node and all of them support the shared memory
programming model. Thus, every CMP implements a coherence protocol to keep local caches
coherent.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Niagara2 chip overview. In this chip we can easily distinguish 8 cores (SPARC Core), 8 shared
cache banks (L2 TAG and L2 Data Bank), and the interconnection network on-chip (CCX).

1.1 Coherence protocols

A coherence problem arises in a multiprocessor because every processor access the shared
memory through its local cache. Without a coherence mechanism, one processor can write a
new value to a memory address and another processor can still access the old value cached
in its local cache. Figure 1.2 shows an example of coherence problem. Processors P1 and P2
have local caches and are connected by a bus to main memory. X is a memory address that
is read and written by the processors in the order specified by the numbers in the circles.
First, P1 reads X. It needs to access main memory and it allocates X in its local cache. P2
also reads X from main memory and keeps X in its local cache. Then, P1 writes a new value
in X, but it only updates the value of X in its local cache. Later, when P2 reads X, it reads
the value of X from its local copy, so it reads an stale value.

The behavior of a memory system is correct if any read to a memory address returns
the most recently written value to that memory address, that is, if the memory system is
coherent and consistent. Coherence ensures that all the copies of a memory address in the
system are coherent: a) writes to any memory address are propagated to all the processors
in the system (write propagation property), and b) writes to a specific memory address are
seen in the same order by all the processors (write serialization property).

Consistency defines the memory model of the system, that is, it defines the constraints
on the order in which reads and writes to any memory location can appear to execute with
respect to one another. Depending on the specific constraints applied, different consistency
models can be distinguished. The memory consistency model is defined in the ISA of the
architecture and programmers are responsible for writing correct programs under the specific
constraints of the consistency model.
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Figure 1.2: Example of cache coherence problem. Processors P1 and P2 are connected to main memory
and both of them have a local cache. They read and write the value of X which is a memory address in the
order specified by the numbers in the circles. First, both P1 and P2 read the value of X from memory and
they allocate it in their local caches. Then, P1 writes X, but it only updates its local cache. Later, P2 reads
X again, but it only access to the copy in its local cache so it gets a stale value.

The most straightforward consistency model is called sequential consistency (SC) [33].
It requires that the result of any execution is the same as if the operations of all the proces-
sors were executed in some sequential order, and the operations of each individual processor
occur in this sequence in the order specified by its program, like in a sharing-time system.
This model is very simple to understand by programmers, but it restricts many of the per-
formance optimizations that modern uniprocessor compilers and microprocessors employ.
When using SC most of the memory latency is directly seen by processors as stall time.
Thus, other consistency models more relaxed have been defined. For example, Total Store
Ordering (TSO) [54] and Processor Consistency (PC) [23] allow reads to be performed be-
fore earlier writes in program order; Partial Store Ordering (PSO) [54] allows writes to be
performed before earlier writes as long as they access different locations; and Weak Con-
sistency [14], Release Consistency [20], and Relaxed Memory Ordering (RMO) [59] do not
guarantee program order besides data and control dependences within a process. In these
consistency models, barriers are used to guarantee SC in synchronization points.

The mechanisms to keep a multiprocessor memory system coherent are called cache
coherence protocols. These protocols keep track of the sharing of each memory block. Co-
herence protocols can be classified as directory-based or snoopy-based protocols. Directory-
based protocols keep a directory that stores the state of each block of main memory. All
transactions should access this structure in order to determine which coherence actions should
take place. In the snoopy-based protocols the state of each block of cached data is stored in
the local caches, that is, the information about the state of the cached data is distributed.
As a result, all memory accesses should be sent to all the local caches in the system.

Coherence protocols can also be classified as invalidation or update protocols. If the
write propagation invalidates the local copies of the location written, the protocol is an
invalidation protocol. On the other hand, if local copies are updated, it is an update protocol.
In any case, next time other processor reads the location written, it gets the last value written
either because the local copy has been updated or because the local copy is not valid anymore
in its local cache so it is necessary to access either the main memory or the local cache that



4 CHAPTER 1. INTRODUCTION

keeps the last written value.

The write policy of local caches is very important to define a coherence protocol. If the
local caches are write-through, the last value written to any location will always be in main
memory. Due to that, the only information that the protocol needs to keep for each block
is which local caches keep a copy of the block. On the other hand, if the local caches are
write-back, a block written by a store can be only located in the local cache of the processor
performing the store. Thus, the coherence protocol keeps not only which local caches keep
a copy of a block but the block state in each local cache since it is necessary to know if the
block is updated in main memory or not.

Any coherence protocol is defined by the different states in which a block can be and
the transitions among the states. A transition consists of the event that causes the state
change and the actions that need to be performed in order to maintain coherence. The events
causing state changes are both the requests performed by the processors (reads and writes)
and the actions performed to maintain coherence (invalidations or updates depending on the
coherence protocol). Figure 1.3 shows an example of a basic coherence protocol based on
invalidation with write-back local caches called MSI. The name of this protocol stands for
the name of the three states in which a memory block can be: Modified (M), Shared (S), and
Invalid (I). A block is Invalid for a processor when its local cache does not keep a copy of
the block. The state Shared identifies a block that is located in the local cache of a processor
and that its value has not been modified so the value in main memory is up-to-date and
there can be copies in other local caches. A block is classified as Modified for a processor
when its local cache keeps a copy and it is the only valid copy in the system.

write P0 / invalidate Px

read P0 / report Px

read P0 / -

read P0 / -

write P0 / -

write P0 / invalidate Px

read Px / send value

write Px / send value

write Px / -

M S I

read Px / -

Figure 1.3: State transition diagram for an invalidation coherence protocol called MSI. This protocol has
three states: Modified (M), Shared (S), and Invalid (I). The solid lines indicate state changes caused by reads
or writes performed by the processor to which this state diagram belongs (read P0 and write P0). The
dotted lines indicate state changes due to reads or writes performed by other processors (read Px and write
Px). Every line is labeled (A/B) with the event causing the transition (A) and the action performed by the
processor (B).

Different coherence protocols have been defined along the last decades. These protocols
differ from each other in the write policy of local caches (write-back or write-through), the
interconnection network they use, or the responsible for supplying a block (local caches or
main memory). Some examples of protocols are: a) write-once [24], Synapse N+1 [19],
Berkeley [31], and Illinois (or MESI) [46] which are based on invalidations, and b) Firefly
and Dragon [38] which are based on updates.
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1.1.1 Snoop-based coherence protocols

In snoop-based coherence protocols, the state of each block located in the local caches is
maintained by the local caches, that is, the information about the state of any cached block
is distributed. To know the state of any block (local caches sharing and state of the copy in
main memory), it is necessary to gather in the information about that block in each local
cache.

Local caches should be informed of any memory access performed by any processor
that it is not a local hit to maintain the information about their local blocks updated. For
example, any local cache (L10) has to the informed of a store performed in another local
cache (L11) that does not keep a local copy of that block in exclusive state in order to
invalidate/update L10’s local copy (if it exists), or any local cache (L12) needs to know
when a load miss is performed in other local cache (L13) since it is possible that L12 keeps
the only copy of that block in the system.

Figure 1.4 shows a multiprocessor with four processors with local caches that are con-
nected by a bus. This multiprocessor keeps coherence by a snoop-based coherence protocol.
In this example, P1 performs a write over a memory address X that is not located in its local
cache. It is necessary to inform the rest of the local caches about this memory operation, so
the write miss is broadcasted on the bus. Depending on the specific protocol and the block
state it would be also necessary to send the memory access to main memory.

P0

L1

P2

L1

P3

L1

P1

L1

bus

write X

write X by P1

write X by P1

write X by P1

X = ?

memory

Figure 1.4: Snoop-based coherence protocol.

Snoop-based protocols became important in multiprocessors that connect the different
processors with local caches using a bus since very few changes were necessary to implement
the coherence protocol. In the local caches it was only necessary to add a mechanism to snoop
the bus and maintain the state of local cached blocks. The reads and writes performed by the
processors and sent through the bus keep the caches coherent and the serialization provided
by the bus maintains coherency and consistency. However, a bus-based multiprocessor does
not scale well.

The process of snooping can be implemented using the local cache tags. However,
processor performance might be reduced since processor requests can be delayed by snoop
requests. This situation gets worse with multithreading processors as they put more pressure
on the local cache. To avoid this performance loss, the local cache tags are duplicated. The
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snoop requests access the copy of the local cache tags and only when there is a hit, the state
of the corresponding block is accessed to be modified.

Any local cache miss and most writes generate a bus transaction either to request
the block or to invalidate or update the local copies of the block. All these transactions
perform lookups in all the local caches in the system. However, only a small fraction of these
lookups hit in the local caches because the fraction of effective shared cache blocks is small
and at any specific point of time these shared blocks are just shared by a few number of
processors [41]. Snoop-based protocols consume a significant amount of energy to broadcast
requests and perform snoop lookups. This energy is in general wasted because the snoop
lookups typically miss in the local caches. In Section 1.2 several mechanism to reduce energy
consumption in snoop-based protocols are described.

1.1.2 Directory-based coherence protocols

Directory-based coherence protocols maintain the state of every block of main memory in a
structure called directory. Any processor request must access the directory and get the state
of the target block. Once the state of the block is read, the appropriate actions to maintain
coherence must be performed by the directory and the processors involved in the request.
Figure 1.5 shows the different actions carried out by a directory-based coherence protocol
in a multiprocessor with write-back local caches when a processor performs a read request
over a dirty block. Processor P0 reads location X. A dirty copy of X is located in the local
cache of processor P3 and this information is kept in the directory. P0 sends a read request
to the directory. The directory responses to P0 indicating that P3 keeps the current value
of X. Then processor P0 sends a request to P3 and P3 sends the data to P0 and a revision
message to the directory in order it updates its state. The final state of X in the directory
and the local caches is identified in the figure with the number four inside of a circle.

P3P2P1P0

interconnection network

read X

memory

X = 3

local

cache

local

cache

local

cache

X = 54

local

cache

X=5

directory

X dirty in P3

X dirty P0 y P34

read request X1 2 owner P3

3 read request XX=54

4 revision message

Figure 1.5: Directory-based coherence protocol in a multiprocessor with write-back local caches.

There are two basic schemes to implement a directory: duplicate tags and full-map [56,
9]. Figure 1.6(a) shows a duplicate tag directory scheme. The directory is a separate struc-
ture that keeps a copy of all tags and state bits of each line in the local caches [6]. Fig-
ure 1.6(b) shows a full-map directory scheme. Each memory block keeps a presence bit
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vector and a dirty bit. Each bit of this vector corresponds to one processor or to one local
cache. An additional bit is used to identify if the local copies of the block are dirty, that is,
the block is up-to-date in memory. The two directory schemes are logically equivalent.

P3P2P1P0

interconnection network

memory tag array local cache P0

tag array local cache P1

tag array local cache P2

tag array local cache P3

directory

data

arrayta
glocal

caches

data

arrayta
gdata

arrayta
gdata

arrayta
g

(a) duplicate tag directory

P3P2P1P0

interconnection network

memory

local

cache

directory

P0 P3P2P1 dirty

presence bits dirty bit

local

cache

local

cache

local

cache

(b) full-map directory

Figure 1.6: Basic directory scheme implementations.

Both directory schemes can be distributed among interleaved memory modules. In a
full-map directory, the interleaving for a directory and memory modules is the same. In a
duplicate tag directory, the size of the directory depends on the interleaving. If it exists an
injective mapping of the cache sets to memory modules then the total directory size is the
local cache tag size, e.g., when memory modules are interleaved by the lower address bits of
the cache index [55, 57]. In other cases the directory size is bigger than the size of the local
cache tags [44].

Several directory schemes have been proposed to reduce the high storage requirements
of full-map directories. Some proposals reduce the number of entries in the directory based
on the memory hierarchy organization, while other schemes reduce the number of bits per
directory entry according to the program behavior.

Sparse directory schemes have less entries than full-map directories [25, 45]. Based on
the fact that the number of blocks stored in local caches is much smaller than the number
of memory blocks or blocks in a shared inclusive cache, sparse directories are organized as
caches. Their entries are dynamically allocated to keep coherence information about the
blocks kept in the local caches. The number of blocks that can be cached simultaneously is
restricted by cache organization parameters (number of sets and associativity). The man-
agement of conflicts increase the miss rate.

Limited pointer directory schemes reduce the number of bits of each directory entry [60,
1, 10]. Since only a few local caches have a copy of a specific block, it is possible to only
maintain, instead of a presence bit vector, a fixed number of pointers, each pointing to a
processor that currently caches the block. The number of concurrent copies of a block is
limited by the number of pointers. When the number of pointers is exhausted and a new
processor requests a new copy of the block, overflow strategies are used [4, 10, 42, 1, 25, 34]
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Recently, Ferdman et at. design a new directory scheme based on sparse directories,
but preventing the set conflicts that diminish performance and reducing the area cost [18].
This directory scheme is intended for many cores since it keeps the power consumption and
area utilization nearly constant regardless of core count.

Differences between duplicate tag directory and other directory schemes mentioned
above arise in size, lookup method, and retrieved information in a lookup operation. In a
duplicate tag directory the lookup is associative, while in a full map directory a lookup is
performed using the address to index the structure. The lookup associativity in the duplicate
tag directory is the aggregate associativity of the caches it tracks, that is, all possible locations
are checked like in a snooping protocol. Both directory schemes identify the processors that
have a copy. However, the duplicate tag directory scheme also identifies the way in the set
of the local caches. Concerning size, the duplicate tag directory uses the smallest explicit
representation of all blocks contained in local caches.

Any coherence request in a snoop-based protocol looks up every local cache. However,
most of these lookups are not necessary since the target block is not located in any local
cache or it is allocated only in a small number of local caches. These pointless lookups
waste energy. Using a full-map directory this problem can be solved since only the local
caches that effectively have a local copy of the target block are looked up. Despite accessing
only the local caches involved in the coherence request, it requires the local cache tags to
be duplicated in order to not delay processor requests causing a performance loss. The
problem when using a full-map directory is the directory structure itself. This structure is
accessed by any coherence request (dynamic energy consumption) and some schemes have
high storage requirements (leakage power). Moreover, any coherence action requires several
messages through the interconnection network. Although these messages are point-to-point
and they do not have a high energy consumption, they might introduce an important delay
in every coherence request.

A duplicate tag directory has smaller storage requirements. However, the directory
lookups consume a significant amount of power since they are associative. In fact, all possible
locations are checked like in a snooping protocol, though now only the directory structure is
accessed. The advantage of a duplicate tag directory is that a directory lookup identifies not
only the local caches that have a copy of the target block, but the way in the local caches
in which the block is located. Thus, invalidation messages only consist of the index and the
way of the local cache that has to be invalidated. Moreover, as invalidation messages does
not need to access the local cache tag array, the processor requests are never delayed. So it
is not necessary to duplicate the local cache tag array.

1.1.3 Other proposals

Recently, Zebchuk et. al. [61] propose a directory structure that use an implicit and con-
servative representation of the blocks located in the local caches instead of the explicit
representation used in conventional directory schemes. The structure organization is like a
duplicate tag directory but the blocks located in each set of the local caches are represented
using a bloom filter. In this proposal, the storage overhead of the directory structure is
smaller than in conventional directories organizations, but it requires to introduce several
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extensions to a base coherence protocol.

This proposal is in between snoop-based and directory-based protocols. Unlike directory-
based protocols, the tagless directory is not able to limit local cache lookups performed by
coherence requests to the ones performed over blocks present in the local caches. However,
not all the local caches are looked up for every coherence request as it is necessary in a
snoop-based protocol. The tagless directory requires a small structure that scales nicely
with the number of cores and that does not have a high energy consumption. However, to
maintain the directory up-to-date, it is necessary to add new coherence messages or at least
to add more information to the coherence messages performed by a directory-based protocol.

1.2 Mechanisms to reduce power consumption in co-

herence protocols

During the last decade several techniques to filter out coherence actions have been published.
The proposed mechanisms try to reduce either local cache lookups performed by coherence
requests or directly the broadcast messages. In order to reduce the coherence actions a
filter structure is necessary. This structure is either placed together with the local caches or
distributed in the on-chip network.

First, we will go over proposals that use a filter which is placed together with the local
caches. The filters are small structures that are accessed before any snoop-induced local
cache tag lookup is performed and try to avoid useless local cache lookups. They determine
whether the target block might be located or definitely it is not present in the local cache.
The former case requires a local cache lookup while, in the latter case, the cache lookup is
known to ”miss”, that is, it is useless and it can be avoided.

Jetty [41] proposes for a SMP system three different filters: a) a filter that keeps blocks
not present in the local cache (got from last snoop-induced tag lookups that missed), b) a
filter that keeps a superset of the blocks in the local cache (updated with any allocation
or replacement), and c) a mix of the two first filters. Ekman et al. [15] analyze the power
performance of Jetty in a CMP system. They conclude that, as the local cache sizes are
smaller than in a SMP system, the filter and the local caches energy consumption are similar.
Thus, Jetty is not an interesting mechanism for CMP systems.

Salapura et al. [48, 49] proposes a mechanism similar to Jetty, but their main interest
is to filter useless snoop-induced lookups not to reduce power consumption but to improve
performance. Snoop-induced lookups can delay processor requests causing a performance
loss, so if the number of snoop-induced lookups is reduced, less processor requests will be
delayed and processor performance will improve. The filter used is a Stream Register which
keeps a superset of the blocks in the local cache. A Stream Register consists of a set of base
addresses with a corresponding bit mask. The bit mask identifies which base address bits
are significant. An address is consider to be present in a Stream Register if it matches all
base address significant bits from any entry.

When the goal of the filter is to avoid broadcasts, the filters are accessed before any



10 CHAPTER 1. INTRODUCTION

coherence request is sent by any processor. Depending on the specific mechanism, the filters
determine either whether the target block is shared by any other processor or not, or the
subset of processors that shared the target block. If the target block is not shared at all,
broadcast is not necessary. If the subset of processors sharing the target block is identified,
the broadcast can be replaced with as many point-to-point messages as necessary.

PST (Page Sharing Table) [16] is a unit integrated with the TLB that keeps track for
each page of how many blocks the local cache has and which processors have blocks from
that page. Using this structure coherence requests are snooped only by those local caches
that have blocks located in the same page as the target block.

RegionScout [40] identifies which regions are not shared. A region is defined as a
continuous, aligned memory area. RegionScout uses two structures: NSRT (Not Shared
Region Table) and CRH (Cached Region Hash). The first one keeps track of all regions
that are identified as not shared by any other processor. A not shared region is identified
after a coherence request over a block included in that region. Processors indicate for any
coherence requests that reach them if any block of the same region of the target block is
located in its caches or not. If every processor classifies the region of a block as not shared,
then that region is included in the NSRT. The CRH is a Bloom filter that keeps a superset
of all regions locally cached. It is used to identify not shared regions by a processor without
accessing its local cache. An access to a memory address that belongs to any region in the
NSRT does not require a broadcast since that memory address is not shared by any other
processor.

Cantin et al. [8] propose a filter that, like RegionScout, keeps sharing region information
for each processor. This proposal requires a structure called RCA (Region Coherence Array).
This structure keeps the state of any region of which there is at least a locally cached block.
As the information kept for any region is precise and it indicates not only the presence of a
block belonging to that region but the state of it, the proposed structure is bigger than in
RegionScout. However, they are able to remove more coherence requests.

Strauss et al. [53] analyze how to implement adaptive forwarding algorithms in network
rings using filters that indicate the probability of a snoop-induced lookup to hit in the local
cache. These filters are similar to the ones in the previous proposals [41, 40, 8].

All previous proposals use both processors requests (reads and writes) and coherence
requests performed by other processors to keep the filter structures up-to-date. There are
also some proposals that use filters that classify blocks as shared or not shared based on
program semantics. Dash et al.[12] proposes to add information regarding shared memory
regions during software development and compilation. If a processor request access a block
that belongs to a region identified as non-shared, none coherence request will be necessary.
Ballapuram [5] proposes a similar idea. It describes two different techniques. The first one,
called SSP (Selective Snoop Probe), labels blocks as stack and non-stack. Stack blocks are
never shared so no coherence actions are performed for them. For the non-stack blocks, a
superset of the locally cache blocks is kept using a bloom filter to filter snoop-induced local
cache tag lookups. The second technique, called ESP (Essential Snoop Probe) labels at
compilation time variables (stack, global, and heap) as blocks that do not need coherence
actions since they are not shared.
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There are also proposals that distribute the filter over the on-chip network for snoopy-
based and directory-based protocols. Agarwal et. al. [2] propose adding a region tracker
structure in each output port of the routers. This structure indicates which regions are
not located in the local caches of the processors reached from a specific port, so useless
broadcast messages are not sent. Jerger [28], in a coarse-grain like directory-based protocol,
adds counting bloom filters to each output port of the routers in order to not broadcast
useless invalidation messages addressed to the local caches reached from a specific port.

1.3 Our proposal

We propose filtering mechanisms to reduce the power consumed by a duplicate tag directory
in a CMP which has multithreaded processors with local instruction and write-through data
caches, and an inclusive shared cache. (A detailed description of the CMP is in Section 2.1.)

As processors are multithreaded, local caches are highly accessed by the processors.
A directory organization such as a full-map directory requires a lookup in the local cache
tags for every invalidation. As a result, if processor requests and invalidations sent from the
directory share the same local cache port, thread execution can be delayed. Thus, the local
cache tags require two ports so that thread performance is not diminished. An alternative is
to replicate the cache tags [52, 11]. This replica is located side-to-side with the local cache
tags and it is used by invalidations to set the state bits of the cached blocks.

The replica of the local cache tags can be located in the other side of the interconnection
network and be used as a duplicate tag directory. The full-map directory is removed. Now,
when an invalidation is sent, the local cache set and way to invalidate is already identified in
the message, and a local cache lookup is not needed. As the replica of the local cache tags is
located together with the inclusive shared cache, it is possible to keep pointers to the shared
cache tags (set index and way) instead of the local cache tags themselves. Consequently, the
duplicate tag structure is much smaller [29].

Every directory lookup requires an expensive associative lookup in the duplicate tag
structure. However, we analyze the behavior of several programs and we conclude that: a)
an important fraction of directory lookups are useless since there are no local copies of the
target block, and b) the directory lookups that are useful are performed over blocks that
are shared by a small number of processors. Based on these observations, we propose two
filtering mechanisms. The first filtering mechanism tries to identify in advance directory
lookups that are useless and filters them out. This filter reduces significantly the number of
directory lookups performed (Chapter 3). The second filtering mechanism tries to identify
which processors have local copies of the target block of a directory lookup, that is, the
sharers of the target block. Once the sharers are determined, the directory lookup only
checks the directory entries corresponding to those processors, and therefore, the directory
lookup associativity is reduced (Chapter 4).

The rest of this dissertation is organized in four chapters. Chapter 2 describes the
methodology used in the evaluation of the proposed filtering mechanisms: CMP model
chosen, simulation infrastructure developed, and benchmarks used. Chapter 3 describes
the first filtering mechanism which reduces the number of directory lookups performed.
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Chapter 4 introduces the second filtering mechanism proposed which reduces the directory
lookup associativity. Finally, we conclude this thesis in Chapter 5 with a summary of the
contributions and publications derived from this research.



Chapter 2

Methodology

Along this chapter we describe the evaluation methodology. First, we introduce the
CMP model that we assume in all the experiments carried out to evaluate the different
mechanisms proposed in this thesis. Next, we describe the most important character-
istics of the simulation infrastructure. Finally, we present the benchmarks used and
we introduce their main characteristics.

2.1 CMP model

Figure 2.1 shows the CMP configuration we assume along this thesis. It is a CMP with 8
in-order multithreaded cores and a memory hierarchy similar to the one in Niagara 2. The
first cache level is local to each core, and is composed of an instruction cache (L1 I) and a
write-through no-write-allocate data cache (L1 D). Each core has also a store buffer (SB)
with several entries per thread that contain all outstanding stores. The second-level cache
(L2) is shared among all the cores and is inclusive, that is, all data in the local caches must
also be in the shared cache. It is divided into different banks interleaved by second-level
cache block size. Two crossbars communicate the two cache levels.

A write-invalidate directory-based protocol is used to maintain cache coherence among
the local caches. The directory is distributed among the second-level cache banks, keeping
close to each bank the information about the blocks mapped to it. Table 2.1 presents the
specific parameters we chose for the memory hierarchy. All of them are based on Niagara 2
memory hierarchy parameters.

CMPs that use write-through local caches (as the one modeled in this paper) require
more bandwidth than CMPs that use write-back local caches (like Piranha [6]), because
all stores must access the shared cache. However, the extra bandwidth guarantees that
data is always updated in the shared cache. Thus, the latency to access shared data does

13



14 CHAPTER 2. METHODOLOGY

M

P1

L1 I L1 D SB

L2 DIR

M

Pn

L1 I L1 D SB

L2 DIR

M

P0

L1 I L1 D SB

L2 DIR

CROSSBAR

Figure 2.1: CMP model with a first-level local cache per core (instruction cache, data cache and store
buffer) and a second-level shared cache divided in several banks.

L1 D size 8KB L2 size 4MB
L1 D associativity 4-way L2 number of banks 8
L1 D block size 16B L2 associativity 16-way
L1 I size 16KB L2 block size 64B
L1 I associativity 8-way L2 latency 7 cycles
L1 I block size 32B L2 MSHR 8
Crossbar arbitration 3 cycles Store

Buffer
8 entries
per threadCrossbar latency 3 cycles

Physical address 40 bits Memory latency 117 cycles

Table 2.1: Memory hierarchy parameters

not depend on how many caches are sharing it, but it is only increased by contention in
the interconnection network. Moreover, in a system with write-back local caches, local
caches are responsible for serving dirty blocks when they are requested by other processors.
These requests can delay the access of a processor to its local caches, reducing processor’s
performance. In a system with write-through local caches, local caches do not serve any
other processor requests.1

Like in Niagara 2 [55], instruction/data block exclusivity is maintained in the local
caches, that is, the same block can not be at once in both instruction and data caches
(across all cores). The directory is responsible for ensuring instruction/data exclusivity. The
shared cache block size is larger than the block size of the local caches. Thus, copies of
different subblocks from the same shared cache block can reside in local caches of different
types (instruction/data).

2.1.1 Coherence Directory

We assume a directory similar to that of Niagara 2 [55], which consists of a duplicate of
the local cache tags. The directory is split into instruction and data directories, replicating
the organization of the local caches. The directory in each bank is implemented as a CAM

1The bandwidth requirements to implement local write-through caches is so high in many-core systems
(which is not the target of this thesis), that makes it unaffordable. However, in this scenario, a practical
implementation would be to organize the many-core system in small clusters and perform cache coherency
at the cluster level. Each of these clusters would be the CMP modeled in this thesis.
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structure whose area requirements is O(PxNL1/NBL2), being P the number of processors, NL1
the number of lines in the local caches and NBL2 the number of banks of the shared cache.
The size of this structure also depends on the local cache tag size. As the shared cache is
inclusive, any local cache block is allocated in the shared cache. Thus, the local cache block
tag in the directory could be replaced by the set index and way of the corresponding shared
cache block. Since in the modeled CMP the shared cache tag array is accessed before the
directory, set index and way are available on time to access the directory. This information
requires fewer bits, and so, the directory size and its power consumption are smaller.

A lookup in a duplicate tag directory is associative, so it is expensive in terms of
energy consumption. However, this lookup identifies not only the processors that have a
copy, but also the way in the set of the local caches. Block invalidations are performed by
sending to all involved processors a message that includes the local cache set index and the
way(s) in the set to invalidate. So, there is no need of local cache lookups to identify which
block to invalidate. The directory is also responsible for identifying which stores have to
update a block in the local cache of the processor performing the store. Thus, stores update
local caches when the acknowledgement message is received. This message, like invalidation
messages, includes the way that has to be updated.

Directory Organization

Duplicate instruction and data directories have a similar structure, but they are accessed in
a different way depending on the kind of memory access to the shared cache that performs
the access to the directory.

In order to understand better the directory organization, let us first assume that the
shared cache block size is the same as the local cache block size. The shared cache is split
in several banks and it is interleaved by its block size. The directory is also split in order
that each shared cache bank only keeps the fragment of the directory corresponding to the
blocks mapped to that bank. Blocks located in contiguous local cache sets are mapped to
different shared cache banks and therefore to different directories. Thus, the number of local
cache blocks assigned to a particular directory is (NLCS/SCB)*LC, being NSLC the number of
local cache sets, SCB the number of shared cache banks, and LC the number of local caches.
Figure 2.2 shows an example of how the blocks in the local cache sets are mapped to the
different directories. We can see that blocks located in the first set of a local cache are
mapped to the directory of the first shared cache bank, blocks located in the second set are
mapped to the directory of the second shared cache bank, and so on. Blocks located in a
specific set are mapped to a single directory, independently of the local cache where they are
located.

However, as the local cache block size is smaller than the shared cache block size in our
CMP model, several contiguous local cache sets are mapped to the same shared cache bank.
This number is equal to the ratio between the shared cache and the local cache block size. As
before, the number of blocks mapped to a particular directory is (NLCS/SCB)*LC. Figure 2.3
shows the same system as Figure 2.2, but now the local cache block size is half the shared
cache block size. The number of sets in the local cache is doubled and the mapping to the
shared cache banks changes. Blocks located in two consecutive local cache sets are mapped
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Figure 2.2: Mapping of local cache blocks to shared cache banks and directories when the shared cache
and the local caches have the same block size.

to the same shared cache bank: the first two local sets are mapped to the first shared cache
bank, the second two local sets are mapped to the second shared cache bank, and so on.

Our CMP model has 8 shared cache banks interleaved by 64B blocks, and 8 local data
caches, each one with 128 sets of associativity 4, and block size of 16B (see Table 2.1). Blocks
located in four contiguous local cache sets are mapped to the same directory since the banks
are interleaved by 64B blocks and the local cache block size is 16B. The total number of
blocks mapped in a specific directory is 512 (4-way × 16 sets × 8 local caches).

Each directory puts together blocks located in the same set of all the local caches
because it is the minimum amount of blocks that need to be looked up in any directory
lookup. This number of blocks is 32 (4 blocks/set × 8 local caches). Moreover, the directory
is also organized in order to make easy to access blocks located in contiguous sets in the
local caches. The reason is that depending on the shared cache access, the corresponding
directory lookup can require to look up all these blocks. Figure 2.4 shows how the directory is
organized in 16 different panels (using SUN’s terminology [55]) of 32 entries which correspond
to the blocks located in the same set of all the local data caches. Each panel entry keeps
only the block located in a particular local cache and in a specific way of the local cache
set that the panel corresponds to. Any directory lookup determines the panel(s) which has
to be looked up using some address bits of the target block. Then, all the entries of the
panel(s) are compared to the target block. The local caches that keep a local copy and the
way where the copy is located are determined by the entries with a positive result from the
comparison.

In a similar way, the instruction directory of a shared cache bank tracks 512 blocks
(8-way × 8 sets × 8 local caches). It is also organized in panels of the same size as the data
directory. Differences are due to larger cache block size and higher associativity in the local
instruction caches.
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Figure 2.4: Data or instruction directory structure of Niagara 2 and how they are accessed.

Directory Operation

Any access to and any eviction from the shared cache performs a lookup in the directory.
Along this thesis, we call “memory operations” to all these accesses and evictions from the
shared cache, namely, loads and instruction fetches that miss in the local caches, stores
and evictions from the shared cache. If the shared cache and the local cache had the same
block size, the directory lookup for all memory operations would require the same number
of comparisons, involving all the elements of a specific local cache set in every local cache.
However, in our CMP model local and shared cache block sizes are different. Thus, some
lookups require twice or four times more comparisons.

Below we describe the memory operations and the actions performed in the directory
for each one:

• Load-miss: It is a load that miss in the local data cache. The directory entry that
corresponds to the local cache location in which the block will be allocated is updated
with the missing address tag. In order to assure instruction/data exclusivity, it is
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memory operation data directory instruction directory

load-miss update lookup (64)
ifetch-miss lookup (64) update

store lookup (32) lookup (64)
shared cache eviction lookup (128) lookup (128)

Table 2.2: Actions performed in the data and instruction directories for every memory operation in the
shared cache. For each lookup, the number of comparisons performed is enclosed. The shaded cells identify
the actions that are unnecessary in a system without data/instruction exclusivity.

necessary to invalidate all the copies of the 16B block (local data cache block size) in
all the local instruction caches. The address of this 16B block determines a specific set
in the local instruction caches. 64 comparisons are performed since there are 8 local
instruction 8-way associative caches.

• Ifetch-miss: It is an instruction fetch miss in the local instruction cache. The behavior
is the same as in a load-miss but, instead of the data directory, the instruction directory
is updated and all the copies of the 32B block (local instruction cache block size) are
invalidated in the local data caches. Thus, the blocks allocated in two local data cache
sets are looked up. 64 comparisons are performed since there are 8 local data 4-way
associative caches.

• Store: As the local data cache is write-through, every store accesses the shared cache.
The copy of the local tags in both directories, data and instruction, are looked up in
order to send invalidations to all the local caches that have the block. The address
of this block determines one local data cache set and one local instruction cache set.
Thus, 32 and 64 comparisons are performed in the data and the instruction directories
respectively.

• Eviction: It is an eviction from the shared cache. As inclusion is enforced in the system,
the shared cache victim block must be removed from the local caches. Instruction and
data directories are looked up in order to send invalidations to all the local caches that
have a copy of the 64B evicted block (shared cache block size). Thus, up to two 32B
blocks in the local instruction caches and four 16B blocks in the local data caches are
invalidated. So, 128 comparisons are performed in each directory.

Table 2.2 summarizes the actions performed for every memory operation and the num-
ber of comparisons performed by the lookup actions. The shaded cells identify the actions
that are unnecessary in a system without data/instruction exclusivity.

Update actions are mandatory in order to keep always an exact copy of the tags of the
local caches in the directory.

2.2 Simulation infrastructure

This section presents the simulator used to model the CMP described in the previous section
and the cache power model chosen to estimate the dynamic energy and the leakage power
of the directory and the proposed filters.
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2.2.1 Simics

We use a Simics-based simulator. Simics is a platform for full-system multiprocessor simu-
lation [36]. This thesis focuses on CMPs which are intended for multiprocessor workloads
such as databases or web servers. These applications highly depend on the operating system
memory management and scheduling, so they cannot be simulated independently from the
operating system. As a result, we chose Simics as simulation platform since it is capable of
running unmodified commercial OSs and applications.

Simics simulates processors at the instruction-set level, including the full supervisor
state. It supports a wide variety of processors such as UltraSparc, Alpha, x86, PowerPC,
MIPS, or ARM. We configured Simics to model a SPARC V9 target system running Solaris 9.
We simulated a system with 8 in-order, blocking, 1.2GHz processors with 4 threads each that
share a 8 GB memory. Due to simulation time restrictions, the non-numerical applications
are executed in a system with 8 non-multithreaded processors.

Simics is only a functional simulator by default, but it can be extended with detailed
processor and memory system timing models. We decide to use in-order, blocking processors
that perform one instruction per cycle. As all our contributions are intended to improve the
power consumption of the coherence directory, which is part of the memory hierarchy, we
require to model the timing of each memory system access.

We connect a timing model to the memory space of Simics accessed by all the instruc-
tion fetches and data accesses. We completely developed this timing model using the Simics
API. This timing model accurately models the memory hierarchy of our CMP model. We
model the different components of the hierarchy, their timing, and the contention in the
different shared components such as the interconnection network, the shared cache banks, or
the local caches shared by several threads. The main characteristics of this memory hierarchy
are detailed in Section 2.1 and its parameters are described in Table 2.1. The consistency
memory model of this memory hierarchy is Total Store Order (TSO).

2.2.2 CACTI

We use CACTI 6.5 [43] to estimate the dynamic energy and the leakage power for the
shared cache, the coherence directory and the proposed filters. CACTI is an integrated
cache and memory access time, cycle time, area, leakage, and dynamic power model. We
modified CACTI to model CAM structures because the coherence directory is implemented
as a CAM structure. These modifications were based in the CAM structures implemented
in McPAT. McPAT (Multicore Power, Area, and Timing) is an integrated power, area, and
timing modeling framework for multithreaded, multicore, and manycore architectures [35].

The shared cache, the coherence directory and the proposed filters were modeled using
a 65nm technology with a target frequency of 1.2 GHz. The average dynamic power con-
sumption is computed based on activity statistics of the shared cache, the filters, and the
data and instruction directories along the execution of the benchmarks.
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2.3 Bechmarks

We use SPLASH2 and Specweb2005 to evaluate the different filtering mechanisms proposed
in this thesis. Both SPLASH2 and Specweb2005 are benchmark suites that consists of several
workloads. Along this thesis, we show the different metrics for all the workloads and also
the average for all the workloads in each benchmark suite, that is, we compute the average
for SPLASH2 and for Specweb2005. Depending on the metric, the average is the arithmetic
or the geometric mean.

This section introduces the main characteristics of SPLASH2 and Specweb2005 and
how we configure them. We also present a characterization analysis of the Apache web server
using Specweb2005 as URL request generator.

2.3.1 SPLASH2

We use the applications of the SPLASH2 benchmark suite [50]. In order to adapt the
SPLASH2 workloads to our simulated scenario, we scaled the input dataset up as proposed
by Monchiero et al. [39]. For water-nsquared and water-spatial we were only able to scale
the datasets to 2k and 4k particles, respectively to bound the simulation time. We execute
the whole parallel section of each benchmark. Table 2.3 shows the applications used, the
corresponding datasets, the billions of cycles and executed instructions, the local data and
instruction cache miss rate (L1 data miss rate and L1 instr miss rate) per instruction, and
the shared cache miss rate (L2 miss rate) per instruction.

benchmark dataset
instr cycles L1 data

miss rate
L1 instr
miss rate

L2 miss
rate(109) (109)

barnes 64K particles 4.97 0.62 2.48 0.004 0.045
fmm 64K particles 9.57 1.20 1.51 0.016 0.052
ocean 1026x1026 5.99 0.91 6.21 0.008 1.746

radiosity
-largeroom,
-ae 5000 7.45 0.94 3.13 0.177 0.003
-en 0.050 -bf 0.1

raytrace balls4 5.77 0.79 9.44 0.008 0.001
volrend head 0.63 0.08 1.67 0.030 0.010
water-nsquared 2192 particles 13.79 1.72 0.80 0.001 0.004
water-spatial 4096 particles 4.02 0.50 1.32 0.001 0.002

Table 2.3: SPLASH2 benchmarks, the corresponding datasets, billions of cycles and instructions executed,
local data and instruction miss rate per instruction, and shared cache miss rate per instruction.

2.3.2 Specweb2005

Specweb2005 [27] is a URL request generator. We use Specweb2005 to analyze and evaluate
our proposals for the Apache web server. In this subsection we first describe Specweb2005
and the Apache web server configuration. Then, we explain how we run our simulations to
analyze only the behavior of the Apache web server. Finally, we show a characterization of
the Apache web server using Specweb2005.
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Specweb2005 description

Specweb2005 is a software benchmark product developed by SPEC. It is designed to measure
a system’s ability to act as a web server servicing static and dynamic page requests. It is
composed for three different workloads: banking, ecommerce, and support, in an attempt
to cover the different scenarios in which a web server is commonly used.

• Banking simulates a bank web site in which the clients, once logged in, are able to do
operations like getting the list of all the transactions done in the last month, checking
the state of a payment or transferring money. All requests in this workload are SSL
based (Secure Sockets Layer).

• Ecommerce is designed to simulate a Web server that sells computer systems. Each
client could pass by three different phases: browse, customization and purchase. Only
the last phase is SSL based.

• Support is to test the ability to download large files. It simulates a vendor’s support
web site. In this workload SSL is never used. The user will browse the catalog or
search in it until he/she finds the file of interest and then downloads it.

In Specweb2005 the sequence of operations made by a client is defined by a Markov
chain. Every operation is done in a different web page, that is, the web page in which the
login is done is different from the one in which the clients check the last transactions in their
bank accounts. The Markov chain states are the different web pages or operations, and the
transactions among them are the different options that the clients could take.

Another important parameter is the thinking time which is the time between two
consecutive requests made by the same client, that is, the time that the client needs to read
the web page that has just received before requesting the next one. In all the workloads of
Specweb2005 we set the thinking time to zero in order to be able to see a bigger number of
transactions in the few seconds of the benchmark that we are simulating.

Specweb2005 has four major logical components: the clients that send HTTP requests
to the server and receives the responses, the prime client that initializes and controls the
execution, and collects statistics, the web server that handles the requests of the clients, and
the back-end simulator (BeSim) that emulates a back-end application server.

Apache web server configuration

We use Apache 2.0.63 [26] configured with the process model worker, which implements a
hybrid multi-process multi-threaded server in which a single control process (the parent) is
responsible for launching child processes. Each child process creates a fixed number of server
threads as well as a listener thread which listens for connections and passes them to a server
thread for processing when they arrive. In our configuration the number of child processes
is fixed along the whole simulation to 4 with 150 server threads each. We also configured
Apache for using posix threads for all the synchronization tasks.
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Simulation environment

Simics is capable of running unmodified applications, so we only need to set up the same
environment of Specweb2005 as in a real machine. We require a machine for the Apache web
server, another one for the clients, and one more for the BeSim. Simics allows us to simulate
these machines and connect them by a simulated network. Table 2.4 describes the different
machines that we are simulating and also the software applications that are necessary in
each machine. We are only interested in the behavior of the Apache web server. Thus, we
only take statistics from the machine running the Apache web server.

Description Hardware Software
Clients The clients run in this machine 4 processors JRE HotSpot 1.5.0
Besim Back-end simulator that emulates

a back-end application server
4 processors Apache 2.0.55 + library

FastCGI 2.4.0
Web server System Under Test in which the

Apache web server is running
8 processors Apache 2.0.55 + libraries php

5.1.2 & OpenSSL 0.9.8a

Table 2.4: Simulated machines and software applications necessary for Specweb2005

Table 2.5 indicates how many simultaneous sessions are running for each workload.
Web servers present high time and space variability [3] and, on top of that, we cannot
simulate Specweb2005 workloads until their completion due to simulation time restrictions.
To minimize web server variability, we run several simulations for each workload performing
the same number of web transactions. All these simulations are run after fast forwarding
the period of ramp up of Specweb2005 [51]. To determine the number of web transactions in
each workload, we warm the caches for 0.75 billion cycles and then we measure the number
of web transactions for 2.25 billion cycles. Table 2.5 shows the number of web transactions
performed, the average billions of instructions executed for each workload, and the number
of simulation runs. We use the mean of the simulations in all the graphics in this thesis in
which Specweb2005 appears.

workload
simultaneous

sessions
web
trans.

instr simulation
runs(109)

banking 200 100 15.52 30
ecommerce 1000 1200 8.07 15
support 1400 2200 8.07 10

Table 2.5: Specweb2005 workloads, the corresponding simultaneous sessions, the number of web transac-
tions, billions of instructions executed and number of simulation runs.

Apache web server characterization with Specweb2005

A commercial workload like the Apache web server has a behavior different from more
traditional scientific applications. We decide to analyze the memory behavior of Apache
using Specweb2005 as URL request generator. We measure the shared cache miss rate per
data access, the breakdown of execution time, and the number of web pages requested.

As we do not require a detailed memory hierarchy, we decide to perform this characteri-
zation using Simics and VASA [58]. VASA is a configurable high-performance multiprocessor
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simulation package for Simics that can model all the components of the memory hierarchy,
but it does not model contention. The memory hierarchy is slightly different to the memory
hierarchy used in the rest of the thesis. Table 2.6 presents the most important parameters
of this memory hierarchy. All workloads were executed with 200 simultaneous clients and
only one simulation run per workload of 10 billion cycles was performed.

Processor speed 1.2 GHz
store buffer size 4 entries
store buffer line size 32 bytes
store buffer read latency 1 cycle
L1 instruction cache perfect
L1 data cache size 32 KB
L1 data cache associativity 4-way
L1 data cache line size 32 bytes
L1 data cache latency 1 cycle
L1 data cache write policy write-through
L2 data cache size 1 MB
L2 data cache associativity 4-way
L2 data cache line size 32 bytes
L2 data cache latency 12 cycles
L2 data cache write policy write-back
memory access latency 150 cycles
network bandwidth 8 bytes/cycle
network latency 12 cycles

Table 2.6: System on-chip parameters

Figure 2.5 shows the shared cache miss rate per instruction fetch and classifies the
misses into three basic categories based on the classification presented by Dubois et al. [13]:
cold, capacity (replacement), and sharing. A miss is classified as a cold miss if the block
has never been in this processor’s cache before. A miss is a sharing miss if the last time the
block was in the cache it was invalidated due to a store performed by another processor. All
other misses are capacity misses.
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Figure 2.5: Shared cache data miss rate for the three workloads of Specweb2005.

The classification between capacity and sharing depends on the size of the cache. As
we are interested in knowing the true communication in the application independent of the
cache size, we change a little the classification assuming an infinite cache for coherence. In
this classification a miss is a sharing miss if the block has been modified since the last time
it was in the processor’s cache. All other misses are capacity misses.

We decided to split the cold misses in two different categories: system cold misses and
processor cold misses. In the first ones, the block has never been written by any processor.
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We also split the sharing misses in two categories: true sharing and false sharing misses.
A sharing miss is classified as true sharing if the bytes accessed by the processor during the
lifetime of the block in the cache have been modified by another processor since the last time
the block was in the cache. It is classified as false sharing miss in any other case.

Figure 2.6 shows the breakdown of execution time into six components: cpu time,
shared cache hit access, memory access, cache to cache service, store buffer full stall cycles,
and emptying the store buffer due to the execution of atomic instructions. The upper part
of the graph shows the breakdown for the cycles executed in user level and the bottom part
presents the same data, but for privilege level. The number on top of the privilege level
cycles is the percentage of idle time. We get this number from the statistics of the mpstat
command. We use this command along the whole simulation since it report statistics about
the usage of the cpus: user, system, waiting, and idle time.
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Figure 2.6: Breakdown of cycles for the three workloads of Specweb2005.

Figure 2.7 shows the number of web pages requested by the clients and the number of
extra files included inside them. When a file is sent from the server to the client we always
call that a transaction without taking into account if it is the main page or just a file included
in it.
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Figure 2.7: Number of web pages and files included requested per 100 billion cycles for the three workloads
of Specweb2005.



Chapter 3

Reducing Directory Lookups

This chapter describes a filter which reduces the number of directory lookups per-
formed. This filter takes into account that, in general, the sets of memory addresses of
instructions and data are disjoint and it classifies blocks as data or instruction blocks.

We propose two different filter implementations:the Instruction-Data filter (ID filter)
and the Decoupled filter (DPL filter). The ID filter keeps explicit filtering information
for every block in the shared cache identifying it as a data or an instruction block.
The DPL filter keeps a superset of the blocks that belong to each stream (data or
instruction). We require a D-DPL filter for the data directory and a I-DPL filter for
the instruction directory. The information kept in these filters is decoupled from the
shared cache organization.

Our results show that, for SPLASH2, the proposed filters reduce the number of di-
rectory lookups performed by 60% while directory power consumption is reduced by
28%. For Specweb2005, the number of directory lookups performed is reduced by 68%
(44%), while directory power consumption is reduced by 19% (9%) using the ID filters
(the I-DPL filter).

This chapter is organized as follows. Section 3.1 motivates why the proposed filtering
mechanism can work. Section 3.2 describes the filtering mechanism and details the
proposed implementations. Section 3.3 evaluates the most important characteristics of
the proposed filters. Finally, Section 3.4 concludes this chapter.

3.1 Introduction

The sets of memory addresses of instructions and data (values of program counters of the
executed instructions and addresses of referenced data) are disjoint. The computer memory is
organized into segments: code segment, stack segment, and heap segment which are mapped
to different memory regions. The code of a program is allocated in the code segment, while

25
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the static and dynamic variables used in the functions of this program are allocated in the
stack segment and the heap segment, respectively. Thus, data and instructions addresses are
expected to be different. However, though it is the common situation, it is not always true.
There are special cases in which data and instructions are allocated to the same region so a
cache block belongs to the data and the instruction stream simultaneously. Two examples
of this situation are self-modifying code and constants located in the code segment:

• Self-modifying code Self-modifying code is code that alters its own instructions while
it is executing. This code performs stores over blocks that later will be accessed to
fetch the instructions to execute, that is, first it accesses a block as data and then as
an instruction.

• Constants located in the code segment Sometimes compilers locate program constants
along with the instructions that use them. Thus, a cached block could contain instruc-
tions and constants (data).

If any of the previous situations takes place, a block can be located simultaneously
in both the data and the instruction local caches. As a result, a directory lookup always
requires to look up both the data and the instruction directory.

The CMP model we are using along this thesis has a local instruction and data cache,
and an inclusive shared cache. In this CMP, coherence is maintained by a coherence directory
implemented as a duplicate of the local cache tags. Therefore, we can distinguish a data and
a instruction directory (see Section 2.1).

Stores and evictions from the shared cache should invalidate all the copies of the target
block in the local caches. In order to do that, the data and the instruction directory should
be looked up since the system cannot assure that the target block has only been accessed as
instruction or as data.

Instruction fetches (loads) that miss in the local caches should invalidate all the copies
of the target block in the local data (instruction) caches to maintain instruction/data exclu-
sivity (see Section 2.1). To carry out the corresponding invalidations, the data (instruction)
directory should be looked up.

Table 3.1 gathers together the actions performed in the directory by any memory
operation: loads and instruction fetches that miss in the local caches, stores, and evictions
from the shared cache.

memory operation
data

directory
instruction
directory

load-miss update lookup
ifetch-miss lookup update

store lookup lookup
eviction from the

shared cache
lookup lookup

Table 3.1: Actions performed in the data and instruction directories for any shared cache access or eviction
from the shared cache.
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Figure 3.1: The first column for each benchmark represents the billions of memory operations that access
the shared cache categorized as load-misses, ifetch-misses, stores and evictions. The second column collects
the billions of directory lookups in each directory. The third column represents the billions of “useful”
directory lookups in each directory

Any block cached in the shared cache has been usually accessed either as data or
as instructions since, as we explain before, in general, the sets of memory addresses of
instructions and data are disjoint. As a result, the local copies of a block cached in the
shared cache are located either in the local data caches or in the local instruction caches.
Therefore, a directory lookup performed in both the data and the instruction directory can
only “hit” in one of them, that is, only one of the directories looked up reports that there
are copies of the target block in the local caches that it represents. For example, an eviction
from the shared cache performs a directory lookup in the data and the instruction directory.
In general, if the directory lookup hits in the data directory, it misses in the instruction
directory, and the other way around. In the same way, most of the times, instruction fetches
(loads) that only require to lookup in the data (instruction) directory do not find a copy
of the target block in that directory since a block accessed by an instruction fetch (load)
generally has been previously accessed only by instruction fetches (loads or stores), and so,
there are copies of that block only in the local instruction (data) caches.

We call “useless lookups” to the directory lookups that miss in a directory since there
are no copies of the target block in any local cache represented by that directory. We call
“useful lookups” lo the directory lookups that hit, that is, at least one local cache represented
by the directory keeps a copy of the target block.

If we identify useless lookups in advance, we could prevent them to be performed.
If their number is significantly important, the energy consumed by the directory could be
reduced. Now, we analyze the number of useless lookups in the different benchmarks we use
(see Section 2.3).

Figure 3.1 shows the distribution of memory operations that access the shared cache
and the total and useful directory lookups in the modeled CMP. Figure 3.1 has three bars
for each benchmark. The first bar shows the memory operations performed categorized as
load-misses, ifetch-misses, stores and evictions (bottom-up). The second bar corresponds to
the data and instruction directory lookups generated by the memory operations in the first
bar. The last bar represents the number of useful data and instruction directory lookups.
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The number of directory lookups is, on average, almost twice the number of memory
operations. However, on average, only 35% and 25% of the directory lookups are useful for
SPLASH2 and Specweb2005, respectively. For SPLASH2, on average, the data directory
lookups represent 40% of the directory lookups performed and 80% of them are useful, and
60% of the directory lookups are performed in the instruction directory and only 1% of them
are useful. For Specweb2005, on average, the number of directory lookups are performed
in equal number in both directories. However, while 50% of the data directory lookups are
useful, only 2% of the instruction directory lookups are useful.1

Results from Figure 3.1 clearly indicate that if we know in advance whether a directory
lookup is useful or not, the number of performed lookups (and hence the energy consumption)
can be greatly reduced.

3.2 Filtering mechanism

Based on the results in the previous section, we propose to implement a filter that is able
to know if a block is in the data or the instruction directory. As a result, directory lookups
are only performed in one of the directories (data or instruction), thus reducing the energy
consumed. Figure 3.2 shows an scheme of the proposed filtering mechanism. We can see that
the proposed filter is accessed for any directory lookup before accessing the directory itself.
The filter determines if the target block is a data or an instruction block. In the former
case, the directory lookup is performed only in the data directory. In the later case, the
directory lookup is performed only in the instruction directory. For load-misses and ifetch-
misses which only require to perform a data or an instruction directory lookup, respectively
(see Section 2.1), the directory lookup can be completely avoided. For example, if the filter
determines that the target block of a load-miss (ifetch-miss) is a data (instruction) block,
no directory lookup is required.

filter

data DIR

instr DIR

directory

lookups

data block

instr block

local caches

with a copy

local caches

with a copy

Figure 3.2: Filtering mechanism overview.

We propose two different basic filter implementations. In the first one, filtering in-
formation is explicitly kept for every block in the shared cache. We exploit the inclusion
property of the shared cache to label each block with information about the stream it belongs
to (data or instruction). Thus, the filter is implemented as metadata associated with each

1Some directory lookups are performed to maintain instruction/data exclusivity. However, they represent
a small fraction of the total number of lookups: 15% and 12%, on average, for SPLASH2 and Specweb2005,
respectively.



CHAPTER 3. REDUCING DIRECTORY LOOKUPS 29

block in the shared cache, similar to the state bits of the block. We call this kind of filters
“instruction-data filter” (ID filter) (Figure 3.3(a)).

In the second basic implementation, filtering information is kept in structures decou-
pled from the shared cache organization. We use one structure for each stream (data or
instruction). These structures keep information about all blocks belonging to the specific
stream. We implement each structure with a bloom filter. Bloom filters [7] are space-efficient
probabilistic data structures used to test whether an element is a member of a set. We call
this kind of filter “Decoupled filter” (DPL filter). We can distinguish a Data-DPL filter
(D-DPL filter) for the data directory and a Instruction-DPL filter (I-DPL filter) for the
instruction directory (Figure 3.3(b)).

shared cache

tag array

ID

filter

tag type

miss

hit data

block

hit instr

block

data

DIR

instr

DIR

local caches

with a copy

local caches

with a copy

(a) ID filter

local caches

with a copy

local caches

with a copy

shared cache

tag array

miss

data

DIR

instr

DIR
I-DPL

filter

hit

hit

hit

miss
no copies

miss

D-DPL

filter

(b) DPL filter

Figure 3.3: Filter implementations.

Both proposed filters guarantee by their implementation that they do not produce false
negatives, that is, they never indicate that a block is not located in a directory when it is
there. In the first implementation, the metadata associated with each block only identifies
the stream the block belongs to when the block has belonged to the same stream along
the whole execution. When the block has belonged to both streams, depending on the
specific implementation, either the block is identified as unknown or the state of the system
is modified to guarantee that the block belongs to a specific stream. This will be covered
with more detail in Sections 3.2.1 and 3.2.2. In the second implementation, we use bloom
filters which guarantee that they never produce false negatives. As a result, we guarantee
that whenever the target block is located in the directory, the lookup is performed.

Both the ID-filter and the DPL-filter are read before the directory lookup is performed.
Then, if necessary, the directory is accessed in parallel with the shared cache data array.

3.2.1 ID Filter implementation

In this section we introduce three different implementations of the ID filter: two-bit ID
filter, one-bit ID filter, and one-bit improved ID filter. The difference among them is the
information that is maintained for each shared cache block.



30 CHAPTER 3. REDUCING DIRECTORY LOOKUPS

memory operation block type
data

directory
instruction
directory

load-miss

data update —
instr update lookup
mixed update lookup

no copies update —

ifetch-miss

data lookup update
instr — update
mixed lookup update

no copies — update

store

data lookup —
instr — lookup
mixed lookup lookup

no copies — —

eviction from the
shared cache

data lookup —
instr — lookup
mixed lookup lookup

no copies — —

Table 3.2: Actions performed in the data and instruction directories when using the two-bit ID filter for
each memory operation.

A simple implementation: the two-bit ID filter

The two-bit ID filter classifies the shared cache blocks as belonging either to the data stream,
instruction stream or both: blocks that have been accessed only by loads and stores will be
classified as data blocks; blocks that have been accessed only by instruction fetches will be
classified as instruction blocks; and blocks accessed by instruction fetches and stores or loads
will be classified as mixed blocks. Therefore, the filter contains two bits per shared cache
block.

Two-bits class identifier allows to classify blocks in four different categories. The basic
performance only requires 3 types: data, instruction, and mixed. We add a new category
called no copies. Local data caches are no write allocate (see Section 2.1), so blocks that
have been accessed only by stores are not located in any local cache. These blocks will be
classified as no copies.

The value of the filter bits is set every time that a new block is allocated in the shared
cache and it is updated only when the type of the block changes. A block classified as no
copies changes its type to data when it is accessed by a load-miss and to instruction when it
is accessed by an ifetch-miss. A data (instruction) block changes its type when it is accessed
by an ifetch-miss (load-miss). The type of the block changes to mixed in both cases.

Table 3.2 collects the actions performed in the directory depending on the memory
operation and the type of the target block. Comparing Table 3.1 and Table 3.2, we observe
the following differences: a) for load-misses and ifetch-misses, the lookup actions can be
eliminated for data and instruction blocks, respectively; and b) for stores and evictions, as
long as a block is classified as instruction or data, it is only necessary to look up in one
directory. For a data (instruction) block, all its copies must be in the local data (instruction)
caches, so only the data (instruction) directory is looked up. For a no copies block, directory
lookups are not required.

This filter implementation has two drawbacks: it requires two bits per shared cache
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memory operation block type
data

directory
instruction
directory

load-miss
data update —
instr — lookup

ifetch-miss
data lookup update
instr — update

store
data lookup —
instr — lookup

eviction from the
shared cache

data lookup —
instr — lookup

Table 3.3: Actions performed in the data and instruction directories when using the one-bit ID filter.

block, and its performance could be reduced if highly accessed blocks are classified as mixed.
A block classified as mixed, as long as it remains in the shared cache, cannot change its type.
The reason is that the filter itself does not keep information about the number of copies of
any block in the data and instruction local caches. So, after any access to the shared cache,
the filter has not enough information to revert the state of a block from mixed to instruction
or data. In the modeled CMP, this information is available in the directory but, as the
shared and the local caches block sizes are different, neither of the directory accesses looks
up enough information to decide whether a block can be classified as data or instruction. So,
for example, for an instruction block that is accessed as data once, even though hundreds
of instruction fetches are performed over it, it will not be considered an instruction block
anymore. Below we propose a different ID filter implementation to eliminate mixed blocks
and to reduce the filter size.

A smaller filter: the one-bit ID filter

As blocks in the shared cache barely change their type, we propose an ID filter that classifies
every block in the shared cache either as data or as instruction. This ID filter requires only
one bit per shared cache block, so the filter size is halved.

For a proper operation of the one-bit ID filter, it is necessary to modify the coherence
protocol to force instruction/data exclusivity at a granularity of the shared cache block size,
instead of the exclusivity at a granularity of the local data cache block size that has the
modeled CMP. So, each block in the shared cache is forced to be classified either as a data
or instruction block. Thus, there can be copies of a shared cache block either in the local
data caches or in the local instruction caches, but never in both of them.

Table 3.3 shows the actions performed in the directory for each memory operation
when using the one-bit ID filter. Comparing Table 3.2 and Table 3.3, we see that stores and
evictions from the shared cache either access the data directory or the instruction directory,
but they never look up both as it happens if a block is classified as mixed when using the
two-bit ID filter.

The filtering information, like in the two-bit ID filter, is set in the allocation of new
blocks in the shared cache and it is updated every time a block changes its type. Every time
a new block is allocated in the shared cache, the associated filter bit is set to instruction or
data depending on the current memory operation. When any block changes its type, the
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associated filter bit is updated to the new value.

A drawback of the one-bit ID filter is that every time a block in the shared cache
changes its type, all the copies of this block in the local caches must be invalidated. A block
that changes its type from data to instruction (instruction to data) needs to invalidate all
its copies in the local data (instruction) caches. This happens in three different situations:
a) a load-miss accesses an instruction block, b) an ifetch-miss accesses a data block, and c)
a store accesses an instruction block. In these situations, a directory lookup is needed to
carry out the invalidations. In the system without filter, a directory lookup was also required
when those memory operations were performed, but the directory lookup associativity was
smaller. In the system without filter, the target block size of the directory lookup is the
local data cache block size while, when using the one-bit ID filter, the target block size is
the shared cache block size which, in our CMP model (see Section 2.1), is twice and four
times the local instruction and data cache block size, respectively.

We analyze several workloads behavior and type block changes are rare so we expect
the number of comparisons performed in the directory every time a block changes its type
to be much smaller than the number of comparisons avoided when using the one-bit ID
filter. However, we will see in Section 3.3.1, that, for some benchmarks such as radiosity
or banking, the number of directory lookups performed in the data directory is bigger when
using the one-bit ID filter than in the system without filtering. This increase is due to the
existence of a few amount of highly accessed blocks which continuously change their type.
These blocks come from the compiler location of program constants in the code region. It
can happen, for example, that a shared cache block of 64B keeps instructions in its first 32B
and data in its last 32B. In the system without filter, there are copies of the first 32B in
the local instruction caches while there are copies of the last 32B in the local data caches.
Therefore, instruction fetches (loads) that access the first (last) 32B of the block hit in the
local instruction (data) caches and do not need to access the shared cache. However, in the
system with the one-bit ID filter, any ifetch-miss (load-miss) that accesses the first (last)
32B sets the block type to instruction and invalidates all the copies of the last (first) 32B
in the local data (instruction) caches. As a result, some loads and instruction fetches do
not find a copy of the block in the local caches, increasing the local cache miss rate. That
means that more memory operations access the shared cache and so, there is an increase in
the number of directory lookups (recall Table 3.1). Moreover, these extra directory lookups
require more comparisons than in the system without filter (since the directory target block
size is the shared cache block size) and the filter cannot filter them out because the type of
the block indicates that they should be performed (load-misses over instruction blocks and
ifetch-misses over data blocks). Below we propose a different ID filter implementation that
minimizes the block type changes.

Reducing invalidations: the one-bit improved ID filter

We propose the one-bit improved ID filter in order to avoid blocks that simultaneously keep
instructions and data to continuously change its type. This filter assures instruction/data
exclusivity by preventing a block classified as instruction block to change its type. Thus,
when a load-miss access a block classified as instruction block, the data is supplied to the
local data cache, but it is not allocated in the local data cache. In this way, the number of
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memory operation block type
data

directory
instruction
directory

load-miss
data update —
instr — —

ifetch-miss
data lookup update
instr — update

store
data lookup —
instr — lookup

eviction from the
shared cache

data lookup —
instr — lookup

Table 3.4: Actions performed in the data and instruction directories when using the one-bit improved ID
filter for each memory operation.

load-misses in the shared cache increases as with the one-bit ID filter, but neither directory
lookups nor invalidations are necessary. Moreover, the number of ifetch-misses is the same
as in the system without filtering.

Table 3.4 shows the actions performed in the directory for each memory operation
when using the one-bit improved ID filter. Comparing Table 3.3 and Table 3.4, we see
that, the only difference is that now a load-miss never requires a directory lookup. When
the target block is classified as data, a directory lookup is not necessary like in the system
without filter. When the target block is classified as instruction, a directory lookup is not
necessary since the block filter state does not change, so it is not necessary to invalidate the
copies in the local instruction caches.

The filtering information is updated like in the one-bit ID filter. The only difference
is that a block only changes its type from data to instruction when an ifetch-miss access a
data block. The filter state of any block remains the same in the rest of the cases.

3.2.2 DPL Filter implementation

In this section, we introduce the DPL filter implementation in which filtering information is
kept in structures decoupled from the shared cache organization (Figure 3.3(b)). There is
one DPL filter per each stream (data or instruction). Each of these filters keep information
about all blocks belonging to the corresponding stream. In our CMP model, this means that
we use a DPL filter for the data directory (D-DPL filter) and another one for the instruction
directory (I-DPL filter). Each of these filters keeps track of the shared cache block addresses
located in each directory. We use the lower bits of the shared cache index of a shared cache
block to do membership tests or updates in the filters.

We implement each DPL filter with a bloom filter. A bloom filter [7] is a space-efficient
probabilistic data structure that is used to test whether an element is a member of a group or
not. A bloom filter consists of a bit array that is accessed by several hash functions. To add
a block to the set represented by a bloom filter, all the positions determined by performing
the hash functions over the address bits of the block are set to 1. A target block is not in the
set when any of the positions determined by the hash functions (performed over the address
bits of the target block) is 0. Otherwise, there is a certain probability that the target block
is in the set. False positives are possible, but false negatives are not.
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We use Counting Bloom filters [17] in order to be able to remove elements from the
group. A Counting Bloom filter maintains for each location in the bit array a count of the
number of times that the bit is set to 1. The Counting Bloom filter we use is a Segmented
Bloom filter [22]. The counter array is decoupled from the bit vector and the hash functions
are duplicated. When an element has to be inserted/deleted it is sent to the counter array
while a membership test is performed in the bit vector.

Before performing a directory lookup the corresponding DPL filter is accessed. If
the membership test results negative, the directory lookup is useless. This lookup is not
performed and we know that neither invalidations nor updates are necessary in the local
caches. In case the test membership is positive, we cannot assure whether the directory
lookup is useless or not. Thus, the directory lookup is performed.

Each DPL filter is updated every time the corresponding directory is updated: a) a
new block is allocated in a local cache, b) a block is evicted from a local cache, and c) a
block is invalidated in a local cache from the shared cache due to a store, an eviction from
the shared cache, or a load-miss or ifetch-miss (this last case is to maintain instruction/data
exclusivity). Below we explain how the filter is updated:

• A new block is allocated in a local cache when a load-miss or an ifetch-miss access the
shared cache. This new block is inserted in the corresponding DPL using the address
of the block performing the load-miss or the ifetch-miss.

• A block is evicted from a local cache when a local cache miss occurs and the victim
block is a valid block. This block should be removed from the corresponding DPL filter.
The shared cache is informed about local cache evictions by load-misses and ifetch-
misses since the victim local cache line is sent together with the new block address that
has to be allocated in order to update the directory. The block cannot be removed
from the DPL filter knowing only the local cache line evicted. It is necessary to access
the directory to get the shared cache index of that block.

• A directory lookup identifies which blocks in the local caches should be invalidated.
Therefore, after performing a directory lookup, the corresponding DPL filter should
be updated removing the block that should be invalidated in the local caches.

We design DPL filters with bloom filters of different sizes and using different number of
hash functions in order to analyze their effectiveness and to determine the size and number
of hash functions of the bloom filters that we will use to implement the DPL filters. We
choose two types of hash functions: based on bit shifts and based on XOR (exclusive or)
operation [61]. The hash functions based on bit shifts shift the address bits of the block
accessing the filter a certain amount of bits and use the lower bits to access the bloom filter.
The hash functions that use an XOR operation split in half the address of the block accessing
the filter, perform an XOR operation, and use the lower bits to access the bloom filter. Based
on bit shifts, we use three different hash functions: shift zero bits (s0), shift three bits (s3),
and shift five bits (s5). Based on XOR operation, we use only one hash function (xor).

Figure 3.4 shows the percentage of directory lookups identified as useful for SPLASH2
by the Data-DPL (D-DPL in Figure 3.4(a)) and the Instruction-DPL (I-DPL in Figure 3.4(b))
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number of
hash functions

hash
functions

1 xor
2 s3, s5
3 xor, s0, s3
4 xor, s0, s3, s5

Table 3.5: Different combination of hash functions used to analyze the effectiveness of the DPL filters (both
the D-DPL and the I-DPL filters).

implemented using different bloom filters. We also include a perfect filter which really shows
how many useful directory lookups are both for the data and the instruction directory. In
Figure 3.4, the number of entries of the bloom filters used vary from 64 to 8192. The number
of hash functions varies between 1 and 4. There is an array of counters for each hash function
and all of them are accessed in parallel. An increase in the number of hash functions involves
an increase in the size of the bloom filter used. For example, when we use a 32-entry bloom
filter with 2 hash functions, 2 arrays of 32 entries each are used and each array is accessed
by just one hash function. Table 4.8 shows which hash functions are used when we indicate
1, 2, 3, or 4 in Figure 3.4.
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Figure 3.4: Percentage of useful directory lookups in the data and instruction directory in the system
without filtering respect to the total number of directory lookups performed and percentage of directory
lookups identified as useful by the DPL filters.

Figure 3.4(a) shows that the D-DPL filter is able to identify very few useless directory
lookups, even using bloom filters with a big number of entries. Figure 3.4(b) shows that
the effectiveness of the I-DPL filter is good using bloom filters with a quite small number of
entries and enough number of hash functions.
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Finally, we decide to use a bloom filter with 128 entries and 2 hash functions to
implement the DPL filters. The counter size is 10 bits because each directory has 512 entries
so 9 bit counters and a valid bit are needed. Thus, each DPL filter has a size of 320B.

3.3 Evaluation

This section shows the benefits of the proposed filters. Section 3.3.1 shows the number of
directory lookups performed when using the proposed filters, that is, the filter coverage.
Section 3.3.2 shows the number of comparisons avoided in the directory due to the different
filters. Section 3.3.3 analyzes how many operations are performed in the filter to reduce
the number of directory lookups performed and to keep the filtering information up-to-
date. Section 3.3.4 and 3.3.5 analyzes how many invalidations messages are sent and the
performance loss, respectively, when using filters that change the coherence protocol (one-bit
and one-bit improved ID filters). Section 3.3.6 shows the energy saving when using each of
the proposed filters. Finally, Section 3.3.7 shows the same results as Section 3.3.6 but for
different local and shared cache sizes and different technologies.

3.3.1 Coverage

In Figure 3.1, we showed that a big amount of directory lookups are useless. Now, we analyze
whether the proposed filters are able to identify the useless lookups in advance or not.

Figure 3.5 compares the number of directory lookups identified as useful by each pro-
posed filter with the number of directory lookups identified as useful by a perfect filter. A
perfect filter is a filter that is able to exactly identify useful directory lookups, that is, it ex-
actly knows how many directory lookups performed in the system without filtering are useful.
Figure 3.5(a) shows the percentage of useful instruction directory lookups and Figure 3.5(b)
shows the percentage of useful data directory lookups. Both in Figure 3.5(a) and 3.5(b), for
each benchmark, there are five bars. From left to right, the first three correspond to the ID
filters: two-bit ID filter, one-bit ID filter, and one-bit improved ID filter. The fourth bar
corresponds to the DPL filter: D-DPL for the data directory and I-DPL for the instruction
directory. Finally, the last bar corresponds to the perfect filter.

For both SPLASH2 and Specweb2005, Figure 3.5(a) shows that, on average, the num-
ber of useful instruction directory lookups is below 1% (perfect filter). Any of the ID filters
identifies almost all these cases. Thus, when using any of these filters, the instruction direc-
tory lookups performed are reduced, on average, to less than 1% of the instruction directory
lookups performed in the system without filters. The I-DPL filter does not achieve such
good results. For SPLASH2, the I-DPL filter reduces the instruction directory lookups to
4%, on average, but for Specweb2005, it only reduces the instruction directory lookups to
31%, on average.

The I-DPL filter has a bad performance for Specweb2005 because the bloom filter used
to implement the filter is tuned for SPLASH2. We do not dedicate any effort to tune the
I-DPL filter for Specweb2005 because later we show that, from a power consumption point
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Figure 3.5: Percentage of directory lookups identified as useful by each proposed filter and a perfect filter.
(a) corresponds to the instruction directory lookups and (b) corresponds to the data directory. In both
graphs, for every benchmark, each bar correspond to the system using a different filter: two-bit ID filter,
one-bit improved ID filter, DPL (D-DPL or I-DPL depending on the directory), and the perfect filter (from
left to right).

of view, the performance of the I-DPL filter for SPLASH2 is not better than the performance
of any of the ID filters. Moreover, to tune the I-DPL filter for Specweb2005 requires to use
more memory address bits in the hash functions. To get these bits the tag array should be
read and this will increase the energy consumption.

Comparing Figures 3.5(a) and 3.5(b), we see that the percentage of useful data direc-
tory lookups is far bigger than the percentage of useful instruction directory lookups. The
reason is that stores represent an important fraction of the memory operations in the shared
cache. We can see this in Table 3.6 which gathers together, for each benchmark, the number
of memory operations performed in the shared cache and the percentage that corresponds
to each memory operation type (load-misses, ifetch-misses, stores, and evictions from the
shared cache). Table 3.6 shows that, on average, 67% and 68% of the memory operations
performed are stores for SPLASH2 and Specweb2005, respectively. Most of the directory
lookups performed in both directories are performed by stores. As local data caches are
write-through (see Section 2.1), an important fraction of the stores are accessing private
data. This private data is located in the local data caches. As a result, instruction directory
lookups are useless and can be safely filtered out. Data directory lookups performed by
stores, on the other hand, are useful and should not be filtered out since directory lookups
are performed also to identify which way in the local data cache has to be updated by a
store.
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benchmark
memory

operations
load-miss ifetch-miss store

eviction from the
shared cache

barnes 894.61 13.67 0.02 86.12 0.17
fmm 959.79 14.85 0.16 84.60 0.37
ocean 754.82 41.79 0.06 47.58 10.56
radiosity 1114.08 20.93 1.18 77.87 0.004
raytrace 739.42 73.72 0.06 26.20 0.0003
volrend 50.74 21.04 0.44 78.50 0.001
water-ns 943.61 11.70 0.006 88.24 0.04
water-sp 391.14 13.56 0.007 86.42 0.001
banking 1422.16 1.57 0.79 97.46 0.17
ecommerce 780.38 25.52 15.36 55.88 3.21
support 865.79 22.61 15.44 58.79 3.14

Table 3.6: Millions of memory operations performed in the shared cache and its distribution in ifetch-misses,
stores, evictions from the shared cache, and load-misses.

Figure 3.5(b) shows that all SPLASH2 benchmarks except ocean behave similarly: on
average, 85% of the data directory lookups are useful and none of the proposed filters is able
to properly identify the useless directory lookups. The percentage of useless data directory
lookups identified using any of the proposed filters is less than 1% of the data directory
lookups in the system without filtering. The behavior of ocean is different: 50% of the data
directory lookups are useless and both the two-bit ID filter and the D-DPL filter are able
to identify most of them, reducing the number of lookups up to 64% and 62%, respectively.
Ocean differs from the rest of SPLASH2 benchmarks in that the number of evictions from
the shared cache is as important as the number of stores. Most of the data directory lookups
performed by evictions are useless and the proposed filters can identify them.

For Specweb2005, Figure 3.5(b) shows that, on average, 50% of data directory lookups
are useful, because an important number of data directory lookups are performed by ifetch-
misses. Lookups performed by ifetch-misses are, in general, useless and can be filtered out.
However, the proposed filters do not perform as well as in the instruction directory. The
two-bit ID filter is the best, but it is only able to reduce the number of data directory lookups
to 67% compared to the system without filtering.

Summing up, all filters reduce the instruction directory lookups between 69% and 99%.
However, data directory lookups are barely reduced. In the best case, for Specweb2005, they
are reduced to 67%.

The DPL filter requires a specific filter for each directory, that is, the D-DPL filter
to filter out data directory lookups and the I-DPL filter to filter out instruction directory
lookups. We propose to not use the D-DPL filter due to its poor performance and to only
filter out the instruction directory lookups using the I-DPL filter. From now on, we will
analyze the behavior of the whole DPL filter that uses both the I-DPL and the D-DPL and
the behavior only for the I-DPL that will only filter out the instruction directory lookups
while the data directory lookups will exactly remain the same as in the system without
filtering.
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3.3.2 Comparisons avoided in the directory

A directory lookup in the modeled CMP requires a different number of comparisons de-
pending on the memory operation that performs it (see Section 2.1.1). This is due to the
differences in the block size of the local caches and the shared cache. For example, a store
requires 32 comparisons in the data directory (8 local data caches x 4-way local data cache)
and 64 comparisons in the instruction directory (8 local instruction caches x 8-way local
instruction cache). However, an eviction requires 128 comparisons in each directory (8 local
data caches x 4 local data cache sets to invalidate x 4-way local data cache; 8 local instruction
caches x 2 local instruction cache sets to invalidate x 8-way local instruction cache).

Figure 3.6 shows the number of comparisons performed by directory lookups in a
system without filter and when using the different proposed filters. For each benchmark
there are six bars. From left to right, the first bar represents the number of comparisons
performed in the directory in a system without filtering. The next three bars show the
comparisons performed when using the ID filters: two-bit ID filter, one-bit ID filter, and
one-bit improved ID filter. The last two bars correspond to the DPL filter and the I-DPL
filter.

We can see, in Figure 3.6, that the two-bit and the one-bit improved ID filter outper-
form the rest of the filters since they are the ones in which less comparisons are performed
in the directories. The number of comparisons performed for both the two-bit and the one-
bit improved ID filters is reduced, on average, to 25% of the comparisons performed in the
system without filtering. Banking is the only benchmark in which there is a clear difference
between the number of comparisons performed by the two-bit and the one-bit improved ID
filters. In Banking, the two-bit ID filter reduces more the number of comparisons than the
one-bit improved ID filter. This benchmark is the only one that though all memory oper-
ations are stores, the two-bit ID filter is able to filter data directory lookups. These stores
are performed over blocks classified as no copies.
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Figure 3.6: Billions of comparisons performed by directory lookups in both directories. For each benchmark,
we show the number of comparisons in the system without filtering (base) and in the different proposed filters:
two-bit ID filter, one-bit ID filter, one-bit improved ID filter, DPL filter, and I-DPL filter (from left to right).

Figure 3.6 also shows that, as we expect, the difference between the DPL filter and
the I-DPL filter is very small. For SPLASH2, the DPL filter and the I-DPL filter reduce the
number of comparisons, on average, to 29% and 32%, respectively. For Specweb2005, the
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DPL filter and the I-DPL filter reduce the number of comparisons, on average, to 48% and
56%, respectively. The DPL filter consists of the I-DPL and the D-DPL filter. In the previous
section, we show that the D-DPL filter filters out a very small amount of data directory
lookups, so the number of comparisons avoided due to the D-DPL filter is also small. When
using the DPL filter, the number of comparisons avoided are mainly comparisons performed
in the instruction directory by instruction directory lookups filtered out by the I-DPL filter.

3.3.3 Operations performed by the filter

Figure 3.7 shows the number of reads and writes performed in the filter structure. Filter
reads 3.7(a) are performed before any directory lookup to decide whether the lookup is useful
or not. Filter writes 3.7(b) are necessary to keep the filtering information up-to-date. For
the two-bit, one-bit and one-bit improved ID filters, these operations are performed over
the filter bits allocated in the shared cache tag array structure. For the DPL filter and the
I-DPL filter, these operations are performed over the filter structure that is decoupled from
the shared cache organization.

Both Figure 3.7(a) and 3.7(b) show five bars for each benchmark. From left to right,
the first three bars correspond to the ID filters: two-bit, one-bit, and one-bit improved ID
filters. The two last bars corresponds to the DPL filter and the I-DPL filter.

We can see, in Figure 3.7(a) that the DPL filter requires more filter operations than
the rest of the proposed filters since it is the only proposed filter that requires to access
two different structures: the D-DPL filter and the I-DPL filter. For example, a store, when
using any of the ID filters, requires to read the filter bits attached to the shared cache block
tag to get the block type of the target block. Based on the block type, a directory lookup
in each directory is performed or avoided. In the same way, when using the I-DPL filter,
one membership test is performed over the I-DPL filter structure and it determines whether
the instruction directory is performed or not. A data directory lookup is always performed.
However, when using the DPL filter, two membership tests are performed: one over the D-
DPL filter and another one over the I-DPL filter. Based on the membership test performed
over the D-DPL (I-DPL) filter, a data (instruction) directory lookup is performed or not. For
the DPL filter, the only memory operations that only require to perform one membership
test either over the D-DPL or over the I-DPL are load-misses and ifetch-misses. However,
these operations represent a small percentage of the total number of memory operations
(26% for SPLASH2, and 17% for Specweb2005).

Figure 3.7(b) shows that the DPL filter is also the proposed filter that requires more
filter writes, that is, it is the filter that most often has to update its structure. ID filters
update the filter bits only when a new block is allocated in the shared cache and when a
block changes its type. Both situations are rare since the shared cache miss rate is low and,
in general, data and instruction streams are disjoint. As a result, ID filters rarely require
updates. However, the DPL filter requires to update its bloom filter any time a block is
allocated, evicted or invalidated from the shared cache in any local cache. One block is
allocated an another one is evicted from a local cache when a load-miss or an ifetch-miss
access the shared cache. Though the number of load-misses and ifetch-misses represents a
small fraction of the memory operations, it is far higher than the number of times a block
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Figure 3.7: Billions of operations performed in the filter structure (reads and writes) along the execution
of each benchmark to filter directory lookups out (reads) and to keep the filter structure up-to-date (writes).

changes its type in an ID filter.

The I-DPL filter suffers from the same problem as the DPL filter since it has to be
updated due to changes in the local caches, but it only needs to be updated with block
changes in the local instruction caches. Thus, it requires to be updated any time an ifetch-
miss access the shared cache or an invalidation from the shared cache is sent to a local
instruction cache. The number of ifetch-misses and invalidations sent to local instruction
caches is much smaller than the number of load-misses and invalidations sent to local data
caches. As a result, the number of updates of the I-DPL filter is not as high as the number
of updates of the DPL filter. For ecommerce and support, the number of ifetch-misses is
bigger than for the rest of the benchmarks (Table 3.6). Therefore, for these benchmarks the
I-DPL filter require more updates than for the rest of the benchmarks.

3.3.4 Invalidation messages

The two-bit ID filter, the DPL filter, and the I-DPL filter do not modify at all the coherence
mechanism. Thus, the number of invalidation messages sent to the local caches is the same
as in the system without filters. The one-bit and the one-bit improved ID filters modify
the coherence protocol since the instruction/data exclusivity is maintained at shared cache
block size granularity. When using these filters, load-misses and ifetch-misses can invalidate
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several consecutive blocks in the local caches. All invalidations required by a load-miss or an
ifetch-miss can be encapsulated in one single invalidation message (like for an eviction from
the shared cache). However, depending on the number of processors that have to invalidate
a copy in their local caches, more channels of the crossbar will be used and the power
consumption will be higher. As several consecutive blocks in the local cache are invalidated,
it is likely that more processors get involved.

Figure 3.8 shows the percentage of invalidation messages sent to the local caches when
using the one-bit and the one-bit improved ID filter with respect to the system without
filters. The number of invalidation messages is computed as the total invalidation messages
multiplied by the number of processors involved in each of them.
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Figure 3.8: Percentage of invalidations messages sent (invalidation messages multiplied by the number of
processors involved in each of them) for the one-bit and the one-bit improved ID filters with respect to the
system without any filter.

When the one-bit ID filter is used, the number of invalidation messages increases for
half of the benchmarks, reaching, for some of them, a huge value. Such an increase is
due to the fact that several shared cache blocks highly accessed and shared by almost all
processors contain simultaneously data and instruction. In the system without filters, as the
data/instruction exclusivity was kept at local data cache block size, a part of these shared
cache blocks was located in the data local caches and the other part in the instruction local
caches and none of the memory operations performed requires to invalidate those copies.

The one-bit improved ID filter requires less invalidation messages than the one-bit ID
filter since a shared cache block shared by instruction and data does not change its type
continuously: it is classified as an instruction block and it is not allocated in the local data
caches. Thus, the number of load-misses increases between 1% and 3% for the benchmarks
that require a huge amount of invalidation messages when using the one-bit ID filter.

Figure 3.8 shows that when using the one-bit improved ID filter all benchmarks reduce
the number of invalidation messages. As the data/instruction granularity is maintained at
shared cache block size granularity, several consecutive local cache blocks can be invalidated
together due to a load-miss or an ifetch-miss (all the invalidations are encapsulated in one
invalidation message). Thus, accesses to the local cache blocks next to the block accessed by
the load-miss or the ifetch-miss do not require any invalidation as invalidations have been
already performed. As a result, invalidation messages are reduced.
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3.3.5 Performance

The two-bit ID filter, the DPL filter, and the I-DPL filter do not modify the coherence
protocol so benchmarks’ performance is not altered. On the contrary, the one-bit and one-
bit improved ID filters modify the coherence protocol forcing the instruction/data exclusivity
at a shared cache block size granularity. It is then necessary to check that the performance
of the benchmarks is the same as before.

Figure 3.9 shows the normalized execution time of the one bit and the one-bit improved
ID filters with regard to the system without filtering. For Specweb2005, it is interesting to
compare both the mean and the standard deviation of the different simulations that we have
run (see Section 2.3.2) for the system with and without the ID filters. Because of this, we
show three bars: the first one represents the mean and standard deviation for the system
without filtering, and the other two correspond to the mean and the standard deviation in
the system using the one-bit and the one-bit improved ID filter, respectively.
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Figure 3.9: Normalized execution time of the one-bit and the one-bit improved ID filters with regard to
the system without filtering.

For SPLASH2, Figure 3.9 shows that, on average, the system is 0.8% and 0.3% slower
when using the one-bit and the one-bit improved ID filter, respectively. Radiosity is the
benchmark with the worst performance. It has a performance loss of 4% and 0.9% for one-
bit and one-bit improved ID filter, respectively. In this benchmark, the compiler locates
frequently accessed constants in the code region. Therefore, some shared cache blocks are
accessed simultaneously by loads and instruction fetches. In the original coherence protocol,
the subblocks accessed only by instruction fetches or only by loads are cached in the local
caches. In contrast, when forcing the instruction/data exclusivity at a shared cache block
size granularity, not all those subblocks are locally cached. Thus, some loads or instruction
fetches need to access the shared cache instead of only the local caches.

Figure 3.9 shows that in Specweb2005 we can differentiate two groups: for banking
and ecommerce the mean execution time is bigger when using the one-bit ID filter than when
using the one-bit improved ID filter; for support the mean execution time is bigger when
using the one-bit improved ID filter. However, in both groups the confidence interval shows
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that the execution time is not statistically different.

For banking, the variability is higher because we cannot simulate enough web trans-
actions due to simulation time restrictions. As the number of web transactions is low, the
cold-start and end-effect may influence the results. The first transaction to complete within
the interval would have started before the interval began. Similarly, when the last transac-
tion completes, the next ones would have already started. In order to reduce the confidence
intervals, we executed more simulation runs of banking than of the rest of Specweb2005
workloads (see Table 2.5).

3.3.6 Power reduction

We use CACTI [43] to estimate the dynamic energy and leakage power for the cache tag
array, the directory, and the proposed filters (see Section 2.2 for more details).

The average dynamic power consumption is computed based on activity statistics of
the shared cache, the filters, and the data and instruction directories along the execution of
the benchmarks. The average dynamic power consumption of the directory is 1.5 times the
average dynamic power consumed by the tag array of the shared cache. However, the leakage
power of the tag array is 2.2 times the directories leakage since the tag array is bigger than
the directory structure.

Figure 3.10 shows the percentage of power reduction in the directory using the different
proposed filters. The directory power consumption includes the dynamic power and the
leakage power in both the data and the instruction directories. There are five bars for each
benchmark. From left to right, the first three bars correspond to the ID filters: two-bit ID
filter, one-bit ID filter, and one-bit improved ID filter. The last two bars correspond to the
DPL filter and the I-DPL filter.
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Figure 3.10: Percentage of power reduction in the directory when using the different proposed filters. For
each benchmark, we show the power reduction for the two-bit ID filter, the one-bit ID filter, the one-bit
improved ID filter, the DPL filter, and the I-DPL filter (from left to right).

The DPL filter shows, as we expect, the lower directory power reduction. The reason of
the poor performance in power terms of the DPL filter is that it does not reduce the number
of comparisons in the directory more than the rest of the proposed filters, but it requires to
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perform more filter operations for its correct operation. For the rest of the discussion in this
section we do not take into account the DPL-filter.

For SPLASH2, on average, the power reduction is quite similar when using any of the
proposed filters. The two-bit , the one-bit and the one-bit improved ID filters, on average,
reduce the power consumption by 28%, 29%, and 29.5%, respectively. The I-DPL filter
shows a slightly poorer performance in power terms. It reduces the directory power by 27%.

In contrast, for Specweb2005, there is an important difference between the reduction
got by the ID filters and the I-DPL filter. Figure 3.5 shows that the I-DPL filter identifies
less useless directory lookups than the other proposed filters. Thus, the directory power is
only reduced by 9% when using the I-DPL filter. On the other hand, any of the ID filters,
on average, reduce the directory power by 19%.

There are important differences on average power reduction between SPLASH2 (28%)
and Specweb2005 (19%), though Figure 3.5 shows that the ID filters are as effective for
SPLASH2 as for Specweb2005. For banking the average power reduction is similar to the
reduction observed for SPLASH2, but ecommerce and support experience a lower reduction.
The differences are due to simulating Specweb2005 in single-threaded processors. Ecommerce
and support have a high shared cache miss rate. This high miss rate, together with the
existence of just one thread per core, give rise to frequent core stalls in which no request is sent
to the shared cache. As long as the core is stalled, no directory lookups are performed. Thus,
during core stalls, filters are not filtering out directory lookups to reduce power consumption.
However, the filter consumes leakage power. The dynamic power reduction in the directory is
smaller due to less accesses, but the increase in the leakage power due to the filter remains the
same. To prove this argument we simulate SPLASH2 suite in a system with single-threaded
cores and we observe a similar reduction in saved power.

On average, the one-bit improved ID filter gets a slightly bigger reduction than the
rest of the proposed filters. The drawback of this filter is that there is a small performance
loss (Figure 3.9), but this performance loss is smaller than when using the one-bit ID filter.

3.3.7 Other cache sizes and new generation technologies

The size of the ID filters is directly proportional to the number of blocks in the shared cache.
An increase in the shared cache size, keeping the same block size, increases the number of
blocks and so the number of entries of the ID filters. Therefore, the leakage and dynamic
power consumption of the filter also increase.

A DPL filter size is determined by three parameters of the bloom filter it uses: the
number of entries, the number of hash functions, and the number of bits of each entry
(counter bits). The counter bits should be enough to count all blocks mapped in the directory
the DPL filter is associated to. Thus, an increase in the number of blocks mapped to the
directory will increase the counter bits. The number of entries and the number of hash
functions should be big enough to keep the number of false positives low. An increase in the
directory size increases the number of blocks represented by the bloom filter. As a result,
the number of false positives of a DPL filter with a specific bloom filter size increases. It is
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then necessary to check that the accuracy loss in the DPL filter does not affect the results.

In Section 3.2.2, we decide to use an I-DPL filter implemented with a bloom filter
of 128 entries and 2 hash functions. For SPLASH2, this I-DPL filter reduces the number
of comparisons performed to 4.7% with respect to the system without filtering. When the
size of the local caches is doubled, the number of comparisons is reduced to 7%, and when
both the size of the local caches and shared cache are doubled, the number of comparisons
is only reduced to 8.7%. We can see that the effectiveness of the I-DPL filter is significantly
reduced. As a result, we decide to analyze the behavior of two different I-DPL filters when
the size of the caches is modified: an I-DPL filter implemented with a bloom filter of 128
entries and 2 hash functions, and an I-DPL filter implemented with a bloom filter of 256
entries and 2 hash functions. An I-DPL filter implemented with a bloom filter of 256 entries
and 2 hash functions reduces the number of comparisons to 2.3%, 2.7%, 3%, and 3.7% in our
CMP model, when the size of the shared cache is doubled, when the size of the local caches
is doubled, and when both the size of the local and shared caches is doubled, respectively.

For Specweb2005, an I-DPL filter implemented with a bloom filter of 128 entries and
2 hash functions reduces the number of comparisons performed to 32%, but it only reduces
the number of comparisons to 53.4% when both the size of the local and shared caches is
doubled. An I-DPL filter implemented with a bloom filter of 256 entries and 2 hash functions
reduces the number of comparisons performed to 13.8%, 14.4%, 24.3%, and 26.1% in our
CMP, when the size of the shared cache is doubled, when the size of the local caches is
doubled, and when both the size of the local and shared caches is doubled, respectively.

Figure 3.11 shows the average percentage of power reduction for SPLASH2 and for
Specweb2005 for different cache sizes for each proposed filter. There are five groups of
bars for each benchmark suite. For both benchmark suites, the two-bit ID filter is used for
the results in the first group, the one-bit ID filter is used in the second group, the one-bit
improved ID filter is used in the third group, and the fourth and fifth group correspond to
the results for an I-DPL filter with 128 entries and 2 hash functions and an I-DPL filter with
256 entries and 2 hash functions, respectively. There are 4 bars in each group. The first
one shows the average numbers presented in Figure 3.10 that are for the memory hierarchy
parameters defined in Table 2.1. For the next bars, the size of the local and shared caches
is increased, but the rest of their parameters remain the same as before. In the second bar,
only the shared cache size is doubled, in the third bar only the size of the local caches is
doubled and in the fourth one both local and shared cache sizes are doubled.

The number of shared cache evictions is reduced when the shared cache size is doubled.
Thus, the energy consumed by the directory is reduced, so the percentage of power reduction
is also reduced. In Figure 3.11, we can see that our workloads are barely affected by this
effect since the number of evictions with both shared cache sizes is small.

When the shared cache size is increased, the power consumption of the ID filters
increases. We expect the percentage of power reduction to decrease. Figure 3.11 shows that
the percentage of power reduction is only reduced for the two-bit ID filter. The one-bit and
one-bit improved ID filters barely increase the leakage and power consumption of the tag
array, so an increase in the shared cache size does not affect the percentage of directory
power reduction.
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Figure 3.11: Percentage of power reduction in the directory for the different proposed filters when we vary
the size of the caches.

Figure 3.11 also shows that the percentage of power reduction when using the I-DPL
filters is not affected when the shared cache is doubled as it was expected.

For SPLASH2, we can see in Figure 3.11 that the I-DPL filter with a bloom filter of
128 entries is slightly better than the I-DPL filter with a bloom filter of 256 in our CMP
model and also when the shared cache size is doubled. The effectiveness of the I-DPL filter
with a bloom filter of 256 entries is better than the I-DPL filter with a bloom filter of 128
entries, but the energy consumed by the former is higher than the energy consumed by the
latter. However, when the size of the local caches is doubled, the I-DPL filter with a bloom
filter of 256 entries outperforms the other I-DPL filter. Therefore, it is important to perform
effectiveness analysis when the memory hierarchy parameters change.

For Specweb2005, the I-DPL filter with a bloom filter of 256 entries always outperforms
the I-DPL filter with a bloom filter of 128 entries since the effectiveness of the latter is not
good enough. We explained before that the I-DPL filter was only tuned for SPLASH2 since
in our evaluation we showed that, from a power consumption point of view, the performance
of the I-DPL filter for SPLASH2 is not better than the performance of any of the ID filters.

When the local caches size is doubled, Figure 3.11 shows that all filters decrease the
percentage of power reduction. When the local caches size is doubled, both the directory
leakage and dynamic power increase. However, the directory leakage is almost multiplied by
a factor of 3 while the dynamic power is only multiplied by a factor of 2. Such an important
increase in the leakage power affects the percentage of power reduction in the directory for
all filters.

Finally, we analyze how the percentage of power reduction is affected for new generation
technologies. Figure 3.12 compares the percentage of power reduction when using 65nm and
22nm technologies. We use the memory hierarchy parameters described in Table 2.1 and an
I-DPL filter that uses a bloom filter with 128 entries and 2 hash functions.

Figure 3.12 shows average numbers for SPLASH2 and Specweb2005. There are four
groups of bars for each benchmark suite. For both benchmark suites, the two-bit ID filter is
used for the results in the first group, the one-bit ID filter is used in the second group, the
one-bit improved ID filter is used in the third group, and the fourth group corresponds to
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the results for the I-DPL filter with a bloom filter of 128 entries and 2 hash functions. There
are 2 bars in each group. The first one shows numbers for 65nm technology with a target
frequency of 1.2GHz and the second bar shows numbers for 22nm technology with a target
frequency of 2.75GHz.
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Figure 3.12: Percentage of power reduction in the directory modeling all the structures with a 65nm
technology or a 22nm technology.

Figure 3.12 shows that the power reduction when using the different filters is smaller for
a 22nm technology than for a 65nm technology. In SPLASH2, the power reduction attained
is still quite interesting for all the proposed filters. The I-DPL filter shows the worse result
reducing the power by 17%, and the one-bit improved ID filter gets the best result reducing
by 20% the power. In Specweb2005, the power is reduced by 11% when using the two-bit
and one-bit improved ID filters. However, the I-DPL filter does not get such good results.
It only reduces the power by 2%.

3.4 Conclusions

An important fraction of directory lookups are useless because there are no copies of the
target block in any local cache in the system. We could decide not to perform these directory
lookups and program execution would remain correct. These useless directory lookups waste
energy, but in a directory coherence mechanism there is no way to avoid them. We propose
to use a filter before accessing the directory which is able to identify in advance whether a
lookup is useless or not.

We propose two basic filter implementations. In the first implementation, we exploit
the inclusion property of the shared cache to label each block with the stream it belongs
to (data or instruction). The filters based on this implementation are called ID filters. In
the second one, we keep the information of all blocks belonging to a stream together using
a separate filter structure based on a bloom filter for each directory (data and instruction).
The filters based on this second implementation are called DPL filters.

We propose several different filters based on the two implementations described. For
the first implementation, we introduce three filters: the two-bit ID filter, the one-bit ID filter,
and the one-bit improved ID filter. For the second implementation, we analyze two DPL
filters: the DPL filter, and the I-DPL filter. Using any of these filters, on average, more than
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60% of the directory lookups are avoided for SPLASH2. For Specweb2005, the ID filters
reduce the directory lookups by more than 60%, but the DPL filters only reduces them by
45%. The ID filters achieve ∼28% and ∼19% reduction in directory power consumption
for SPLASH2 and Specweb2005, respectively. The DPL filter achieves the lower directory
power reduction of all the filters since it requires to perform more filter operations than the
rest of them. It reduces the directory power consumption by 20% and 5% for SPLASH2 and
Specweb2005, respectively. Finally, when using the I-DPL filter, the power consumption is
reduced by 26% and 8% for SPLASH2 and Specweb2005, respectively.

The results shown in this chapter lead to the conclusion that ID filters perform better
than DPL filters. The DPL filter requires more filter operations for its correct operation,
so its energy consumption is higher than the rest of the proposed filters. The I-DPL has a
similar energy consumption by construction to the ID filters, but ID filters are able to avoid
more directory lookups. A good advantage of the I-DPL filter over ID filters is that its size
do not grow with the size of the shared cache. However, when analyzing power consumption
for large shared cache sizes, we see that attained power consumption of the one-bit improved
ID filter is independent of the shared cache size. As a result, the one-bit improved ID filter
is the best solution proposed, outperforming the other analyzed implementations both in
terms of performance and energy consumption.
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Chapter 4

Reducing Directory Lookup Associativity

This chapter describes a group of filters which reduce the associativity of the directory
lookups performed in a CMP with write-through local caches. These filters are intended
for a directory implemented as a duplicate of the local cache tags that require a high
associative directory lookups. An important fraction of the target blocks of directory
lookups are shared by a small number of processors so they are only located in a small
subset of local caches or even in one specific local cache. Based on this, the proposed
filters limit the associativity of any directory lookup.

We propose two different filter implementations: the Owner filter and the Array of
Bloom Filters filter (ABF filter). The Owner filter keeps explicit information for every
block in the shared cache identifying either the owner of the block (processor that keeps
in its local cache the only local copy of the block) or the group of processors that share
the block. The ABF filter keeps a superset of locations where the local copies of any
target block can be located.

Our results show that, on average, the Owner filter reduces the number of compar-
isons performed by 97% and 93% for SPLASH2 and Specweb2005, respectively. As a
result, the directory power is reduced, on average, by 31% and 22% for SPLASH2 and
Specweb2005, respectively. On the other hand, the ABF filter does not get such good
results since it has a good coverage but the energy consumed by the filter structure is
too high compared to the energy consumed by the directory.

This chapter is organized as follows. Section 4.1 motivates why the proposed filtering
mechanism works. Section 4.2 presents the filtering mechanism. Section 4.3 describes
the Owner filter and evaluates its behavior. Section 4.4 details the different ABF filter
proposals and evaluates them. Finally, Section 4.5 concludes this chapter.

51



52 CHAPTER 4. REDUCING DIRECTORY LOOKUP ASSOCIATIVITY

4.1 Introduction

In a directory-based protocol, any store that access the shared cache requires a directory
lookup in order to invalidate the copies of the target block in the local caches. Depending
on the write policy of the local caches, the number of stores that access the shared cache
varies. In a CMP with write-back local caches, stores access the shared cache either on a
miss in the local data cache or to get the block ownership and change the coherence state of
the block to Modified. However, if local caches are write-through, all the stores must access
the shared cache. Thus, the number of stores performed in the shared cache is bigger in a
CMP with write-through local caches than in a CMP with write-back local caches. However,
write-through local caches offer several advantages against write-back local caches.

The coherence protocol in a CMP with write-through local caches is simplified for
several reasons. First of all, data is always up-to-date in the shared cache or the shared
memory. Thus, any write request always access the shared cache or memory in the same
way. This guarantees that any access to shared data is served in a specific amount of time.
It does not depend on the number of local copies in the system, or the state of these copies.
Moreover, it is easier to build bigger systems based on clustering several chips with write-
through local caches as any request from a foreign chip can be solved directly from the
shared cache. It would be only necessary to send the corresponding invalidations to the local
caches, but writebacks from local caches are not necessary. In the same way, evictions from
the shared cache in an inclusive system do not require to wait for any writeback from the
local caches. They only need to send the corresponding invalidations to invalidate the local
copies of the target block.

In a CMP with write-back local caches, the number of stores that access the shared
cache or memory are smaller since only local data cache misses or ownership requests access
the shared cache or memory. Any request performed by a specific processor to a block
that only contains data private to that processor is solved locally. Only the first access to
that block and the first store performed over it access the shared cache. After that, only
if the block is evicted or invalidated, a new access to the shared cache would be necessary.
However, an ownership request could either be served from the shared cache or require to
access data kept in the local cache of other processor. For example, a store performed over
a block that has been modified in advance by another processor. The value of the block has
to be read from that local cache, perhaps be written in the shared cache or memory, and
then served to the processor currently accessing it. As a result, a processor request timing
depends on the state of the target block in the system. This complicates the coherence
problem since more block states have to be taken into account and more race conditions can
take place. Moreover, CMPs with write-back local caches can be seen its benefits reduced
when the programs present false sharing.

The CMP model described in Section 2.1 has write-through local caches. In our work-
loads (Section 2.3) we found that only 1 out of 100,000 stores access true shared data. The
rest of the stores are accessing data that is local to the processor performing the store. In
a CMP with write-back local caches, most of these stores would be performed locally (as
long as the processor has a copy in exclusive state). On the contrary, in a CMP with write-
through local caches and a directory based coherence protocol, every store access the shared
cache and performs a directory lookup. Most of the times, the only copy of the target block
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of the directory lookup performed by a store is located in the local caches of the proces-
sor performing the store. Therefore, most of the directory lookups performed by stores are
useless and it is possible to improve directory energy-efficiency by filtering them out.

Figure 4.1 presents a detailed analysis of directory lookups performed by stores and
evictions: from left to right, the first bar shows the number of directory lookups due to stores
and evictions (directory lookups), the second bar shows the number of these directory
lookups that find at least one copy of the cache block in any local cache (at least one

copy), and the third bar shows the number of directory lookups due to stores that only
find a copy of the cache block and this copy is located in the local cache of the processor
performing the store (only itself).
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Figure 4.1: Number of directory lookups due to stores and evictions (directory lookups), number of
directory lookups due to stores and evictions that find at least a copy of the cache block in any local cache
(at least one copy), and number of directory lookups due to stores that only find a copy just in the local
cache of the processor that performs the current store (only itself).

The difference between the first two bars in Figure 4.1 indicates the number of times
that there are no copies of the cache block in any local cache. On average, this difference
represents 20% and 50% of the directory lookups performed by SPLASH2 and Specweb2005,
respectively. The difference between the second and the third bar represents all cases that
require to invalidate local copies of the target block. These cases are: a) evictions performed
over shared cache blocks which have local copies, and b) stores performed over shared cache
blocks that are located at least in a local cache different from the local cache of the processor
performing the store. On average, this difference represents less than 1% of the directory
lookups for both SPLASH2 and Specweb2005. The remaining directory lookups (80% and
49% for SPLASH2 and Specweb2005, respectively) are performed by private stores, i. e.
stores that access cache blocks without copies in any other processor’s local cache.

We propose a filtering mechanism that filters out stores over private data, so that they
do not perform expensive and useless directory lookups. Thus, the proposed mechanism
reduces the associativity of the directory lookups shown in the third bar in Figure 4.1.
Additionally, the filter is enhanced in order to also avoid the 30% of directory lookups that
do not find any copy in the local caches, and that are also useless. In Figure 4.1, these
directory lookups are represented by the difference between the first two bars.

This filtering mechanism is limited since it only reduces energy when specific situations
take place: an owner exists, or there are no copies of the target block in any local cache. We
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propose a second filtering mechanism which can reduce the directory lookup associativity
to the real number of local copies of the target block under any circumstance. This filter is
based on an array of bloom filters.

4.2 Filtering mechanism

Based on the results in the previous section, we propose two filtering mechanisms to reduce
the directory lookup associativity. Using the proposed filters, directory lookups require
less comparisons than in the system without filtering and so, the energy consumed by the
directory is reduced.

The first mechanism we will describe in this chapter is focused in filtering out directory
lookups performed by stores over private data. We call it ”Owner” filter. Figure 4.1 shows
that, on average, 80% and 49% of the directory lookups in SPLASH2 and Specweb2005,
respectively, are performed by stores that access blocks in the shared cache that are only
replicated in the local cache of the processor performing those stores. These stores do not
require to send invalidations to the rest of the processors in the system. However, it is
necessary to inform the local cache of the local way that has to be updated. The lookup in
the duplicate tag directory could be restricted to the copy of the tag array of the processor
performing the store if we know beforehand that this processor has in its local cache the
only copy of the block in the system.

Figure 4.2 shows how the Owner filter works. The filter is accessed before performing
a directory lookup. The filter logic determines which part of the directory must be accessed
based on the information read. If the filter identifies the owner of the target block, only the
copy of the tag array of the local cache of the owner processor must be looked up. As a
result, the associativity of the corresponding directory lookup is reduced.

index

address

filter

...

P0 P1 P2 P3 Pn

duplicate tag

directory

combinational

logic

Figure 4.2: Scheme of the Owner filter

The Owner filter has as many entries as cache blocks in the shared cache, and each
entry has log2P bits plus a valid bit, being P the number of processors in the system. As it
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is described until now, this filter is only useful when the target block has an owner (there
is only one local copy). This is a common situation, but it does not happen always. For
example, Figure 4.1 shows that 20% and 50% of the directory lookups for SPLASH2 and
Specweb2005, respectively, are performed over blocks that have no local copies. Moreover,
we will see later in Section 4.3 that the Owner filter keeps imprecise information since it does
not always identifies the owner of a block even if it exists. To improve the performance of
the filter, we propose to change the owner identifier bits (bits that identify the owner when
the valid bit is set) when the valid bit is unset to a coarse granularity [25, 34]. Consequently,
it is possible to identify other situations and get benefit from the filter even when the owner
is unknown by the filter, or when more than one local cache keeps copies of the block (there
is no owner).

The performance of the Owner filter is limited since it only reduces energy when specific
situations take place: an owner exists, or there are no copies of the target block in any local
cache. We propose a second filtering mechanism that can identify where the copies of a
target block are located, and so, the filter reduces directory lookup associativity under any
circumstances. The location of the local copies is maintained by means of an Array of Bloom
Filters. We call this filter ”ABF” filter.

The ABF filter is accessed before performing a directory lookup and it reduces the
directory lookup associativity. Figure 4.3 shows an example of this type of filter in a system
with 4 processors. In this case, the filter consists of a bloom filter per processor, that is, each
bloom filter represents the blocks located in the local tag array cache of a specific processor.
For every directory lookup, all the bloom filters are accessed and only when the result is
positive, the corresponding part of the directory is looked up.

block address

ABF-P

filter

duplicate tag

directory

P0 P1 P2 P3

bloom

filters

Figure 4.3: Scheme of an ABF filter that consists of a Bloom Filter per processor

Different ABF filter designs can be implemented depending on the part of the directory
represented by each bloom filter. Section 4.4 describes the different designs and the benefits
and drawbacks of each proposal.

4.3 Owner Filter implementation

In this section we describe the Owner filter implementation: how the number of directory
lookups is reduced, which modifications are necessary in the coherence protocol, and the
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operations performed in the filter to maintain it up-to-date. Finally, we evaluate this filter.

Each line in the shared cache has associated one entry in the filter. For every memory
operation, the filter entry is read together with the state bits of the line. Depending on
the value stored in the filter, the directory lookup performed by any memory operation
accessing that line can be either eliminated or performed over a smaller number of entries
in the directory structure.

First, we describe the filter structure assuming that the local cache and the shared
cache block sizes are the same. Then, we describe the specific characteristics of the filter for
a CMP with different local cache and shared cache block sizes.

4.3.1 Owner Filter states

The CMP model described in Section 2.1 has 8 cores, so 3 bits are necessary to code the
owner identifier. Table 4.1 shows how the owner identifier and the valid bit are used to
encode information useful to avoid directory lookups or reduce the number of entries looked
up in a directory lookup. Table 4.1 also includes the filter state name, which is used from
now on to refer to each combination of the owner identifier and the valid bit values.

valid bit owner identifier information filter state

1 xxx xxx is the only processor that can have
a local copy of the block in its local data
cache

valid owner

0 000 there are no copies of the block no copies
0 001 block cached only in the local data caches

of processors identified as 0xx
data block (subgroup0)

0 010 block cached only in the local data caches
of processors identified as 1xx

data block (subgroup1)

0 011 data block data block (all)
0 100 unused
0 101 block cached only in the local instruction

caches of processors identified as 0xx
instruction block (subgroup0)

0 110 block cached only in the local instruction
caches of processors identified as 1xx

instruction block (subgroup1)

0 111 instruction block instruction block (all)

Table 4.1: Filter states

When the valid bit is set, the owner identifier bits codify the identifier of the processor
that keeps in its local data cache the only local copy of the target block. A directory lookup
is restricted to the directory entries that correspond to the local data cache of the owner.
When the valid bit is unset, the filter does not identify the owner either because it does not
exist or because the filter update mechanism cannot identify it. Table 4.1 shows that, in this
situation, we identify 7 different filter states and there is still one empty codification.

The first codification in Table 4.1 when the valid bit is unset, which is called no copies,
identifies when there are no local copies of the target block. In this situation, a directory
lookup is not performed independently of the memory operation performed in the shared
cache.

The rest of the codifications identify, among other things, whether the local copies are
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located only in the local data caches or only in the local instruction caches. In the former
case, any directory lookup will be only performed in the data directory while, in the latter
case, any directory lookup will be only performed in the instruction directory.

Other thing that the filter tries to identify when it does not identify the owner is the
group of processors that keep a local copy of the target block. We distinguish two groups of
processors using the most significant bit of the identifier of a processor: subgroup0 consists
of the processors identified as 0, 1, 2, and 3, while subgroup1 consists of the processors
identified as 4, 5, 6, and 7. When the filter identifies that all the local copies are located in
the local caches of the processors that belong to that subgroup, only the directory entries
that correspond to the local caches of the processors in the identified subgroup are looked
up when a directory lookup is performed.

Table 4.1 shows that for a data block we distinguish three possible states depending on
whether the filter identifies a subgroup (data block (subgroup0) and data block (subgroup1))
or not (data block (all)). For an instruction block we also distinguish three different filter
states.

In the proposed coding of the filter bits, we do not consider classifying a cache block
as both data and instruction. This situation might happen, for instance, when compilers
include read only data in instruction memory regions. However, since the baseline CMP
model chosen already forces instruction/data exclusivity, we also force it in the proposed
filter. In order to reduce directory lookups and invalidation messages, we prevent that a block
classified as instruction block changes its type. When a load accesses a block classified as
instruction block, the data is supplied to the local data cache, but the block is not allocated in
to the local data cache. Hence, the number of load-misses can increase, but neither directory
lookups nor invalidations are necessary.

4.3.2 Owner Filter update

A filter entry state is updated using only the following information: the memory operation
type, the identifier of the processor performing the memory operation, and the previous filter
state. We also know the evictions from local caches. Using them the filter information will
be precise, but extra and costly directory lookups will be required. Consequently, we decide
to use not precise filter information, that is, to only know a superset of the copies in the
local caches.

The filter state valid owner is set on three cases: a) load-miss to a block in the shared
cache without copies in the local caches (no copies), b) load-miss that also misses in the
shared cache and c) store to a block in the shared cache which may have copies in the
local data cache of the processor performing the store (valid owner equal to the processor
performing the store, data block (all), or data block (subgroupX) where ’X’ is the subgroup
which the processor performing the store belongs to).

The filter state is set to no copies in two cases: a) store to a cache block in the shared
cache which is not present in the local data cache of the processor performing the store
(no copies, instruction block, or data block (subgroupX) where ’X’ is not the subgroup the
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processor performing the store belongs to), and b) store that misses in the shared cache.

Both ifetch-misses and load-misses modify the filter state to add the processor per-
forming them as one of the processors that can have a copy of the accessed block in its local
caches. When a load-miss accesses a block whose filter state is instruction block, the filter
state is not modified.

4.3.3 Owner Filter entry granularity

In the CMP modeled, the local cache and the shared cache block sizes are different. The
shared cache block size is four times the local data cache block size and twice the local
instruction cache block size. Keeping a filter entry per local cache block involves very high
storage requirements, so we chose the size of the shared cache block as the filter granularity.

We do not want to modify the filter state diagram described in Section 4.3.2, so it is
necessary to slightly modify the coherence protocol in order to: a) increase the number of
invalidations a store can generate, and b) increase the granularity of the data/instruction
exclusivity. Both modifications require that some memory operations perform more invali-
dations than before. All these invalidations only use one invalidation message per processor
as it happens with evictions from the shared cache.

A store will invalidate not only the copies of the subblock accessed, but all the copies of
the shared cache block that may exist in the local caches. As this may increase false sharing,
we calculated how many processors, on average, share a subblock and also share the whole
shared cache block. Our results show that more than 99.9% stores are performed to shared
cache blocks which have copies of any of their subblocks in just one of the local caches. Less
than 0.01% stores access a shared cache block that is shared by several processors while
the specific subblock accessed by the store is not shared by the same amount of processors.
Therefore, false sharing is not expected to increase.

4.3.4 Owner Filter operation

Any access or eviction performed in the shared cache reads the filter state (valid bit + owner
bits) for the target block. This information is used to reduce the number of directory lookups
required or to reduce the number of entries looked up by a directory lookup (directory lookup
associativity).

The number of directory lookups is reduced when the filter state indicates that there
are no copies of the target block in the data or instruction local cache, e.g., a data block
(instruction block) that indicates that there are no copies in the instruction (data) local
cache or a block labeled as no copies which has no local copies.

The directory lookup associativity is reduced when the filter state identifies either the
owner (valid owner) or the subgroup of processors which can have a copy of the block in their
local caches ((subgroupX)). In the former case, the associativity is divided by the number of
processors. In the latter case, as processors are split into two subgroups, the associativity is
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memory
operation

valid
bit

owner identifier filter state
data

directory
instruction
directory

load-miss

1 xxx valid owner —
0 0xx data block or no copies —
0 101 or 110 instruction block (subgroupX) —
0 111 instruction block (all) —

ifetch-miss

1 xxx valid owner (128/8)
0 000 no copies —
0 001 or 010 data block (subgroupX) (128/2)
0 011 data block (all) (128)

store

1 processor performing store valid owner (32/8) —
1 other processor valid owner (128/8) —
0 000 no copies — —
0 001 or 010 data block (subgroupX) (128/2) —
0 011 data block (all) (4) —
0 101 or 110 instruction block (subgroupX) — (128/2)
0 111 instruction block (all) — (128)

eviction

1 xxx valid owner (128/8) —
0 000 no copies — —
0 001 or 010 data block (subgroupX) (128/2) —
0 011 data block (all) (128) —
0 101 or 110 instruction block (subgroupX) — (128/2)
0 111 instruction block (all) — (128)

Table 4.2: Lookups performed in the directories for every memory operation that access the shared cache.
The number of entries looked up is enclosed. When the number of entries is a fraction, it indicates that the
number of directory lookups is not reduced, but the number of entries looked up in each lookup is reduced.

halved.

As the filter granularity is the shared cache block size, all the subblocks of the target
shared cache block are looked up in every directory lookup. Consequently, all directory
lookups involve 128 comparisons (either in the data or the instruction directory). Stores
that access valid owner blocks are the only exception: as the directory lookup is performed
to know the way of the subblock to update in the local data cache, the directory lookup is
limited to 32 comparisons in the data directory.

Table 4.2 summarizes the number of directory entries that are looked up for every
memory operation that requires a lookup, depending on the filter state. Table entries with a
dash indicate that a directory lookup is not required. For instance, comparing Table 2.2 and
Table 4.2, we can conclude that a directory lookup performed by an eviction is eliminated
when the filter state is no copies. Table entries labeled X/Y mean that the directory lookup
involves X entries, but only a fraction of the entries equal to 1/Y are looked up. For example,
an ifetch-miss to a valid owner block performs a directory lookup over 128/8 entries, that is,
only the entries corresponding to the owner processor are looked up.

4.3.5 Owner Filter overhead

The filter proposed requires (1 + log2P) number of bits per shared cache line, being P the
number of cores in the CMP. For the CMP described in Section 2.1, as it has 8 cores, four
extra bits per shared cache line are required. For each 512KB, 64B block-size shared cache
bank, the filter implementation requires 4KB. This represents 12% of the shared cache bank
tag array size (including the state bits in the tag array) and 0.7% of the total shared cache
bank size (tag array + data array).
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Figure 4.4: Percentage of directory comparisons performed by directory lookups when using the Owner
filter compared to the system without filtering.

4.3.6 Owner Filter evaluation

In this section, we evaluate the coverage of the Owner filter, the number of filter operations
that the filter requires for its correct operation, the number of messages sent through the
crossbar when the filter is working, the performance of the system with the filter compared
to the system without filtering, the reduction in the directory power consumption, and the
directory power reduction when using other cache sizes and future technologies.

Coverage

The Owner filter tries to reduce the directory lookups associativity. Thus, we define the
Owner filter coverage as the number of comparisons that are avoided with respect to the
system without filtering.

Figure 4.4 shows the percentage of comparisons performed in the directory when using
the proposed filter with respect to the comparisons performed in the system without filtering.
Figure 4.4(a) shows the percentage of comparisons in the data directory and Figure 4.4(b)
shows the percentage of comparisons in the instruction directory. Table 4.3 shows, for both
directories, the number of comparisons performed in the system without filtering and the
percentage due to each memory operation type.

Figure 4.4 shows that the number of comparisons performed by directory lookups is
greatly reduced. The reduction is more important in the instruction directory than in the
data directory: for all the benchmarks, more than 99% of the comparisons performed in the
instruction directory are avoided while, on average, only 88% and 81% of the comparisons
performed in the data directory are avoided for SPLASH2 and Specweb2005, respectively.
Table 4.3 shows that the number of comparisons performed in the instruction directory is,
in general, twice the number of comparisons performed in the data directory. As a result,
the number of avoided comparisons in the instruction directory is much bigger than in the
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benchmark
data directory instruction directory

TOTAL
(billions)

stores
(%)

ifetch-miss
(%)

eviction
(%)

TOTAL
(billions)

stores
(%)

load-miss
(%)

eviction
(%)

barnes 24.87 99.13 0.05 0.81 57.34 85.99 13.65 0.35
fmm 26.54 97.87 0.37 1.75 61.56 84.42 14.82 0.75
ocean 21.73 52.88 0.13 46.98 53.38 43.05 37.81 19.12
radiosity 28.61 97.02 2.95 0.02 70.45 78.80 21.18 0.01
raytrace 6.23 99.51 0.48 0.00 47.29 26.22 73.77 0.00
volrend 1.28 98.86 1.12 0.01 3.23 78.85 21.13 0.00
water-ns 26.70 99.79 0.01 0.19 60.41 88.21 11.70 0.08
water-sp 10.82 99.97 0.02 0.00 25.03 86.43 13.56 0.00
banking 45.21 97.71 1.58 0.70 90.09 98.06 1.58 0.35
ecommerce 24.84 56.18 30.89 12.92 43.87 63.62 29.05 7.31
support 28.33 57.49 30.19 12.31 48.59 67.03 25.78 7.17

Table 4.3: Billions of data and instruction directory comparisons in a system without filtering performed
by directory lookups and the percentage that corresponds to each memory operation.

data directory. This is due to the fact that the most common memory operation is a store
(see Table 4.3) that requires 32 comparisons in the data directory and 64 comparisons in
the instruction directory. Moreover, in general, the filter identifies the owner of the blocks
accessed by stores so an instruction directory is completely avoided but a data directory
lookup is required (though its associativity is smaller than the original). It is important to
remember that even if the filter identifies the owner of a block that is accessed by a store
and the owner is the processor performing the store, a data directory lookup is necessary to
determine the local data cache way that has to be updated.

In general, the number of comparisons performed in the directories is reduced quite
similarly for all benchmarks, except for ecommerce and support. The difference between
these two benchmarks and the rest is not significant in the instruction directory since the
number of comparisons is reduced to less than 0.4% for all the benchmarks. However,
the difference is important in the data directory. The number of comparisons in the data
directory is reduced to 29% and 28% for ecommerce and support, respectively, while it is
reduced below 14% for the rest of the benchmarks.

Using Table 4.3, that shows how many comparisons in the directory are performed
by each memory operation, and Figure 4.5, that shows, for each memory operation, the
percentage of directory lookup target blocks that are in each filter state, we see that the
difference between ecommerce and support, and the rest of the benchmarks is due to two
reasons: a) blocks in ecommerce and support are shared for more processors than in the rest
of the benchmarks, and b) more evictions from the shared cache are performed in ecommerce

and support than in the rest of the benchmarks and an important fraction of the evictions
performed (more than 25%) access blocks that are shared among several processors.

Table 4.3 shows that for every benchmark more than 50% of the comparisons performed
in the directory are due to stores. Stores require a data directory lookup that performs 32
comparisons (8 processors x 4-way associative local data caches) and an instruction directory
lookup that performs 64 comparisons (8 processors x 8-way associative local instruction
cache). Figure 4.5(a) shows the percentage of target blocks accessed by stores that are in
each filter state. We can see that ecommerce and support are the only benchmarks in which
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Figure 4.5: Filter states
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more than 10% of the blocks accessed by stores are identified as data blocks by the filter,
that is, 10% of the stores have more than one local copy. For the rest of the benchmarks,
the filter identifies that more than 99% of the stores are performed over blocks that have
an owner and the owner is the processor performing the store (valid owner). As a result,
ecommerce and support perform stores that require directory lookups with the original data
directory lookup associativity (32 comparisons) while the rest of the benchmarks only require
to perform a data directory lookup which associativity is the original associativity divided by
P, being P the number of processors (4 comparisons). Therefore, for ecommerce and support

the number of comparisons performed by stores is reduced less than for other benchmarks
when using the Owner filter.

Figures 4.5(b) and 4.5(c) show that, for ifetch-misses and load-misses, all the bench-
marks behave similarly since all of them identify target blocks as instruction (for ifetch-
misses) or data (for load-misses) blocks. Figure 4.5(c) shows that target blocks are classified
as valid owner (same or different), no copies, or data block (all), but all of them have the same
meaning: an instruction directory lookup is not required. Therefore, for ifetch-misses and
load-misses, the filter reduces the number of comparisons performed by directory lookups in
the same way for all the benchmarks.

Finally, Figure 4.5(d) shows that for all the benchmarks an important fraction (from
10% to 40%) of evictions access blocks that are classified either as data or instruction blocks.
In these cases, the number of comparisons performed by a directory lookup is only halved
since only one directory is accessed. Table 4.3 shows that ocean, ecommerce, and support

are the only benchmarks that perform a significant fraction of evictions, therefore, we can
conclude that for evictions the filter does not work as nicely as for other memory operations,
but, as it is not an important memory operation, in general, we do not notice it. For ocean,
that performs an important number of evictions, Figure 4.5(d) shows that it is the only
benchmark in which the fraction of data or instruction blocks is below 1% of the blocks
accessed by evictions. Ecommerce and support perform more evictions than the rest of the
benchmarks and so, they are affected by the low performance of the filter for evictions.

Operations performed by the filter

Figure 4.6 shows the number of reads (Figure 4.6(a)) and writes (Figure 4.6(b)) performed
in the Owner filter structure. These operations are performed over the filter bits located in
the shared cache tag array structure. Comparing Figure 4.6(a) and Figure 4.6(b) we can see
that the number of reads is much bigger than the number of writes. Reads are performed for
any memory operation, while writes are only performed in a shared cache miss (a new block
is allocated in the shared cache) or when a block changes its state. In general, the number
of filter writes is below 0.01 billions, except for ocean, ecommerce, and support which are
the benchmarks with the highest shared cache miss rate. The number of filter reads is, on
average, 0.7 billions for SPLASH2 and 1.0 billions for Specweb2005.
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Figure 4.6: Billions of operations performed in the filter structure (reads and writes).

Crossbar messages

The Owner filter modifies the coherence mechanism since data/instruction exclusivity is
maintained at the shared cache block size (64B) instead of keeping data/instruction exclu-
sivity at the local data cache block size (16B). Moreover, a block classified by the filter as an
instruction block never changes its state. Thus, a load-miss that access an instruction block
never allocates that block in the local data cache of the processor performing the load. As
a result, the number of invalidations messages performed by stores, load-misses, and ifetch-
misses can be modified together with the number of load-misses and ifetch-misses performed
in the shared cache.

The number of invalidations messages performed by stores can be modified in two
different directions since an invalidation involves all the subblocks (16B) of a shared cache
block (64B): a) more subblocks are simultaneously invalidated so more caches can be involved
and more messages are required, and b) just with one message several subblocks located in
the same cache can be simultaneously invalidated so next stores to those subblocks do not
require to send invalidations.

The number of invalidation messages performed by load-misses and ifetch-misses to-
gether with the number of load-misses and ifetch-misses is modified due to two different
reasons: a) since an instruction block never modifies its filter state, the continuous change
of type of several blocks that contain simultaneously data and instructions is eliminated,
reducing the number of invalidation messages necessary and modifying the number of load-
misses and ifetch-misses that access the shared cache, and b) to maintain data/instruction
exclusivity at the shared cache block size the number of invalidation messages is modified like
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the number of invalidations messages performed by stores and this can increase the number
of load-misses in the shared cache.

Figures 4.7(a) and 4.7(b) show the percentage of messages to and from the shared cache
when using the Owner filter with respect to the system without filtering for SPLASH2 and
Specweb2005, respectively. Figure 4.7(a) shows that, for SPLASH2, the number of messages
is less than 0.1% bigger for all benchmarks, except for radiosity. Radiosity has several
blocks that contain simultaneously data and instruction. In the system without filtering,
when an ifetch-miss access the shared cache, the local data copies are invalidated and a local
copy is located in the local instruction cache. Then, a subsequent load-miss invalidates the
local copy in the instruction cache. As a result, there are a lot of invalidation messages
performed by ifetch-misses and load-misses. When using the Owner filter, this situation is
avoided since a block with such characteristics is only kept in the local instruction caches
so invalidations are not required and the number of ifetch-misses that access that block are
reduced.
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Figure 4.7: Percentage of messages in the crossbar when using an owner filter with respect to the system
without filtering.

Figure 4.7(b) shows the number of messages in the crossbar for Specweb2005. For
all the workloads of Specweb2005 we run several simulations to minimize variability (see
Section 2.3.2) and so, in Figure 4.7(b), we show the average percentage and the standard
deviation with respect to the system without filtering for all the workloads. The number
of messages is, on average, increased for banking and reduced for ecommerce and support.
However, statistically the number of messages in the system with the Owner filter and the
system without filtering is the same.

Performance

The Owner filter modifies the coherence protocol forcing the instruction/data exclusivity at
the shared cache block size granularity. Thus, we need to check that the performance remains
unchanged. Figure 4.8 shows the normalized execution time of the CMP with the proposed
filter with respect to the baseline CMP. For Specweb2005, it is interesting to compare both
the mean and the standard deviation of the different simulations that we run (see Sec-
tion 2.3.2) for the system with and without the Owner filter. Due to this, for Specweb2005,
we show two bars: the first one represents the mean and standard deviation for the system
without filtering, and the other corresponds to the mean and the standard deviation in the
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system using the Owner filter. In SPLASH2 all benchmarks show a performance loss below
0.5%, except raytrace, which has a performance loss of 1.5% due to the increase in the lo-
cal data cache miss rate. In Specweb2005 we can differentiate two groups: for banking and
ecommerce, the mean execution time shows an increase of 1.4% and 1.1%, respectively, in
support, the mean shows an execution time decrease of 4.3%. In both groups the confidence
interval shows that the execution time is not statistically different.
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Figure 4.8: Normalized execution time

Power reduction

We use CACTI [43] to estimate the dynamic energy and leakage power for the cache tag
array, and the directory (see Section 2.2 for more details). The Owner filter is embedded in
the shared cache tag array since it is implemented by increasing the number of bits of each
shared cache tag array entry. As a result, it is not necessary to model the filter structure
(only to increase the size of the shared cache tag array).

The average dynamic power consumption is computed based on activity statistics of the
shared cache, the filter, and the data and instruction directories collected during benchmark
execution. The average dynamic power consumption of the directory is 1.5 times the average
dynamic power consumed by the tags of the shared cache. However, the leakage power of
the tags is 2.2 times the directories leakage since these structures are smaller than the tags
of the local caches.

Figure 4.9 shows the percentage of power reduction in the directory using the Owner
filter. It takes into account the power consumption reduced in the directory as well as
additional power consumption due to the filter structure embedded into the shared cache
tags. The directory power consumption includes the dynamic power and the leakage power
in both data and instruction directories. The Owner filter is placed together with the shared
cache tags, so tags and filter state bits are read together in every access to the shared cache.
This means that both the energy consumed by the shared cache tag array on any operation
and its leakage power increase. These increases affect the energy reduction in the directory.
The energy to update the filter state also decreases the dynamic energy reduction in the
directory.
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Figure 4.9: Percentage of power reduction in the directory.

On average, the directory power is reduced by 30.8% for SPLASH2 and by 22.42%
for Specweb2005. The difference between SPLASH2 and Specweb2005 is due to simulating
Specweb2005 in single-thread processors. Ecommerce and support show a shared cache miss
rate higher than the rest of benchmarks. As there is only 1 thread per core, every shared
cache miss stalls a core and, as a result, the number of accesses to the shared cache and
directory lookups are smaller than in the rest of benchmarks. Thus, the dynamic power
reduction in the directory is smaller, but the increase in the leakage power due to the filter
remains the same. To prove this argument we simulate SPLASH2 suite in a system with
single-threaded cores and we observe a similar reduction in saved power.

Other cache sizes and new generation technologies

The size of the Owner filter is directly proportional to the number of shared cache lines.
Moreover, the energy consumed by the directory depends on the number of directory lookups
performed which is determined by the memory operations performed in the shared cache.
If the size of the local caches is increased, the memory operations performed are modified.
Thus, we decide to analyze the reduction of power for different shared and local cache sizes.
We simulate a CMP in which the sizes of the shared cache and the local caches are doubled.

Figure 4.10 shows the percentage of power reduction with different local and shared
cache sizes for each benchmark and the average for SPLASH2 and Specweb2005. The per-
centage of power reduction is smaller than in the baseline system due to the increase in
the power consumption of the proposed filter (bigger shared cache) and the decrease in the
number of directory lookups performed (bigger local caches). On average, in the worst case,
the percentage of power reduction is 24% for SPLASH2 and 10% for Specweb2005.

Finally, we analyze how the percentage of power reduction is affected for new generation
technologies. We model all structures using a 22nm technology with a target frequency of
2.75GHz. Figure 4.11 shows the percentage of power reduction when using 65nm and 22nm
technologies. On average, when using a 22nm technology, the percentage of power reduction
is 19.5% for SPLASH2 and 10.5% for Specweb2005.
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Figure 4.10: Percentage of power reduction in the directory with different local and shared cache sizes.
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Figure 4.11: Percentage of power reduction in the directory when using 65nm and 22nm technologies.

4.4 ABF Filter implementation

In this section we introduce four different implementations of the ABF filter. The difference
among them is the number of bloom filters used and the specific part of the directory that
is represented by each bloom filter. The four implementations described in this section are:
a) using one bloom filter for each directory (data or instruction) (ABF1 filter), b) using one
bloom filter for each directory and processor (ABF-P filter), c) using one bloom filter per
directory, processor, and local cache way (ABF-PW filter), and d) using one bloom Filter
per directory, processor, and local cache set (ABF-PS filter).

Along this section we analyze that an ABF filter has a good coverage. ABF filters
can greatly reduce the number of comparisons performed by directory lookups. In fact,
the number of comparisons performed by some designs exactly corresponds to the number
of useful comparisons, that is, the number of comparisons that have a positive result (the
target block is in the directory entry checked). However, as we will see later, it is not a
power efficient design since some proposals require significantly big structures due to the
large number of bloom filters required by the design or the size of the bloom filters required
to get a good coverage. These structures have a high energy consumption.
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Figure 4.12: ABF filter designs

4.4.1 ABF Filter Designs

An ABF filter consists of several counting bloom filters and each of these bloom filters
represents the blocks located in a specific part of the directory. The set of blocks represented
by a bloom filter is disjoint from the set of blocks represented by any other bloom filter
inside the ABF filter. All the bloom filters together represent the whole directory. Different
ABF filter designs can be made depending on how we split the directory. There is always an
ABF filter for the data directory (D-ABF filter) and another one for the instruction directory
(I-ABF filter). Before performing a data (instruction) directory lookup, the D-ABF (I-ABF)
filter is accessed, that is, a membership test of the local cache block address is performed in
the corresponding bloom filters. Any positive result in the membership test of a bloom filter
indicates that the part of the directory represented by that bloom filter must be accessed by
the directory lookup. 1

We propose four different ABF filters both for the data directory (D-ABF filters) and
the instruction directory (I-ABF filters) based on how we split the directory among the
bloom filters. From now on, we will talk about ABF filters to refer both to D-ABF filters
and I-ABF filters.

Below we introduce the different designs proposed:

1The bloom filters used to implement the ABF filters are Segmented Bloom filters [22], like the bloom
filters used for the DPL filter that we introduced in Section 3.2.2.
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• ABF1 filter In this design, there is just one bloom filter for the whole directory
(data or instruction) (Figure 4.12(a)). The bloom filter represents the total number
of blocks in the directory (NP x LA x NLS, being NP the number of processors, LA the
local cache associativity, and NLS the number of local cache sets mapped to each shared
cache bank).

For any positive membership test, a directory lookup of the whole directory is required.
If there were no false positives, the only directory lookups performed would be the
useful ones, but the directory lookup associativity would remain the same as in a
system without filtering.

This filter is a DPL filter (see Section 3.2.2), but we also introduce it here to compare
with the rest of the ABF filter designs.

• ABF-P filter The ABF-P filter requires one bloom filter per each processor (Fig-
ure 4.12(b)). Each bloom filter represents the blocks located in the local cache of
a specific processor that are mapped to the shared cache bank (LA x NLS, being LA

the local cache associativity, and NLS the number of local cache sets mapped to each
shared cache bank). If we compare the ABF1 filter (Figure 4.12(a)) with the ABF-P
filter (Figure 4.12(b)), we see that more bloom filters are necessary, but less blocks are
represented by each of them. As a result, the bloom filters will be smaller than in the
ABF1 filter to get the same effectiveness (same probability of a false positive) [17].

An access to the ABF-P filter requires to perform a membership test in all its bloom
filters. A positive membership test in a bloom filter indicates that the processor that
corresponds to that bloom filter could be sharing the target block and a directory
lookup is performed. The directory lookup associativity depends on the number of
positive results in an access to the ABF-P filter since only the directory entries that
correspond to the processors that the ABF-P filter have identified as sharers are ac-
cessed.

This design is similar to Jetty [41]. Jetty is a filter intended to reduce the energy con-
sumed by snoop requests in snoopy bus-based SMPs. The include-Jetty filter contains
information to identify which blocks are located in the local cache of a processor by
means of a Counting Bloom Filter [17]. The ABF-P filter keeps information about the
blocks located in a local cache that are mapped in a shared cache bank.

• ABF-PW filter The ABF-PW filter consists of one bloom filter per each processor
and local cache way (Figure 4.12(c)). Each bloom filter represents all the blocks located
in a specific way of the local cache of a specific processor and mapped to the shared
cache bank (NLS, being NLS the number of local cache sets mapped to each shared
cache bank). Comparing the ABF-PW filter (Figure 4.12(c)) with the ABF-P and the
ABF1 filters (Figures 4.12(b) and 4.12(a)), we can see that the ABF-PW filter is the
one that requires more bloom filters, but the number of blocks represented by each
of them is smaller. So, the bloom filters required in the ABF-PW to keep the same
effectiveness as in ABF1 and ABF-P filters are smaller than the ones used in ABF1
and ABF-P filters.

A membership test is performed in all the bloom filters that form a part of the ABF-
PW filter. A positive membership test in a bloom filter indicates that a local copy
could be located in the specific local way and processor corresponding to that bloom
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filter, that is, a positive membership test determines a specific directory entry in which
a local copy could be located (a target block can be located only in a specific local
cache set). The associativity of the directory lookups performed when using the ABF-
PW is the number of positive membership tests got from the different bloom filters for
the target block. If there were no false positives, all the directory entries determined
by the ABF-PW filter would keep the target block. This design is the one that could
exactly adjust the directory lookup associativity to the real number of local copies of
the target block.

Ghosh et al. [21] proposed a similar mechanism to reduce the lookup associativity in a
large set-associative cache. They propose to use a segmented counting bloom filter for
each way of a cache. Before performing a cache lookup, a membership test is performed
on the bloom filters attached to each cache way. The cache lookup associativity is then
reduced since only the cache ways that correspond to the bloom filters with a positive
result are accessed.

• ABF-PS filter The ABF-PS filter consists of one bloom filter per processor and
local cache set mapped to the shared cache bank (Figure 4.12(d)). Each bloom filter
represents the blocks located in a set of the local cache of a specific processor (LA, being
LA the local cache associativity). Compared with the rest of the designs, the ABF-PS
filter (Figure 4.12(d)) is the one that requires more bloom filters, so less blocks than
in the rest are represented by each bloom filter.

This is the only design in which an access to the filter does not perform a membership
test in every bloom filter since the target block can only be located in a specific local
cache set. As long as the local and shared cache block sizes are the same, for every
memory operation, only the bloom filters that represent blocks of the local cache set
in which the target block is located are accessed. Thus, the number of bloom filters
accessed is the same as in the ABF-P filter (the number of processors). Any positive
membership test indicates that a directory lookup is required. Like in the ABF-P filter,
the directory lookup associativity depends on the number of positive membership tests.

This design is similar to the one used for the Tagless Directory [61]. The Tagless Direc-
tory is a directory structure that uses an implicit and conservative representation of the
blocks located in the local caches instead of the explicit representation used in conven-
tional directory schemes. The structure organization is like a duplicate tag directory
but the blocks located in each set of the local caches are represented using a bloom
filter (without counters). The directory is a structure smaller than in conventional
directory organizations, so it scales nicely with the number of cores but it requires to
introduce several extensions to a base coherence protocol. Moreover, to maintain the
directory up-to-date, it is necessary to add new coherence messages or at least to add
more information to the coherence messages performed by a directory-based protocol
since the Tagless Directory does not use a Counting Bloom Filter

Table 4.4 summarizes the main characteristics of the ABF filter designs described: the
number of bloom filters, the number of directory entries represented by a bloom filter, the
number of bloom filters accessed before performing a directory lookup, and the number of
comparisons a directory lookup would perform if there were no false positives. We assume
that the local cache and the shared cache block sizes are the same.
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number bloom
filters

directory entries
per bloom

bloom filter
checked per
directory

directory entries
looked up per
positive result

ABF1 filter 1 NP x LA x NLS all all
ABF-P filter NP LA x NLS all LA
ABF-PW filter NP x LA NLS all 1
ABF-PS filter NP x NLS LA NP LA

Table 4.4: Number of bloom filters, number of directory entries represented by a bloom filter, number of
bloom filters accessed before performing a directory lookup, and number of comparisons a directory lookup
would perform if there were no false positives for each proposed design. (NP is the number of processors in
the system, LA is the local cache associativity, and NLS is the number of local cache sets that are mapped to
a shared cache bank.)

Table 4.5 shows the same information as Table 4.4 but for the CMP model we are
using (Section 2.1). As we mention before, in our CMP model, we can distinguish a data
and an instruction directory and an ABF filter is necessary for both of them. The ABF
filter for the data directory is called D-ABF filter and the one for the instruction directory is
called I-ABF filter. In this CMP model, the local and shared cache block sizes are different
and so, the number of comparisons performed by a directory lookup depends on the memory
operation, (Section 2.1). In Table 4.5, we assume that the directory lookup is performed by
a store which is the memory operation that requires less comparisons to perform a directory
lookup.

number
bloom filters

directory entries
per bloom

bloom filter
checked per
directory

directory entries
looked up per
positive result

D-ABF1 filter 1 512 1 32
D-ABF-P filter 8 64 8 4
D-ABF-PW filter 32 16 32 1
D-ABF-PS filter 128 4 8 4

I-ABF1 filter 1 512 1 64
I-ABF-P filter 8 64 8 8
I-ABF-PW filter 64 8 64 1
I-ABF-PS filter 64 8 8 8

Table 4.5: Number of bloom filters, number of directory entries represented by a bloom filter, number of
bloom filters accessed before performing a directory lookup, and number of comparisons a directory lookup
would perform for a store if there were no false positives for each ABF filter for the data (D-ABF filter) and
the instruction (I-ABF filter) directory of the CMP model used.

4.4.2 ABF Filters update

We said that we use Counting Bloom filters [17] in order to be able to remove elements from
the ABF filter. The counters must be updated every time that the blocks located in the
local caches change: a) a new block is allocated in the local cache, b) a block is evicted from
the local cache, and c) a block is invalidated in a local cache by the shared cache. In any
of these situations, only one bloom filter is affected, so only one counter has to be modified
(we assume that the local and the shared cache blocks size are the same).

In the modeled CMP, the shared cache is informed simultaneously of the allocation
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of a new block and the eviction of another in a local cache. The only problem is that only
the address of the new block is known since the local cache only indicates where the block
evicted was located. The block evicted was located in the same set where the new block will
be allocated, so both blocks share a part of the address. However, these bits are not enough
to access the ABF filter (otherwise, both blocks would access exactly the same locations of
the bloom filters that form a part of the ABF filter). The update of the evicted block should
be delayed until the corresponding directory entry is read. In the system without filters,
the directory is only accessed to write the information of the new block allocated. Now,
it will be necessary to read first the data of the evicted block and then to write the data
corresponding to the new block.

After performing a directory lookup it is known which local cache blocks will be inval-
idated. In the system with an ABF filter, despite of sending the corresponding invalidations
to the local caches, the bloom filter counters must be updated. An invalidation only affects
a specific bloom filter in any ABF filter. However, any directory lookup can determine more
than one invalidation. Depending on the design chosen, all the invalidations can affect only
one bloom filter or several of them. At least, all invalidations that affect the same bloom
filter, need to modify exactly the same bloom filter entry (the block invalidated is always
the same), so it will be necessary to be able to modify the counters by any amount.

4.4.3 ABF Filters granularity

The local cache and the shared cache block sizes are different in the modeled CMP. The
shared cache block size is four times the local data cache block size and twice the local
instruction cache block size. As a result, several memory operations involve more than one
local cache block (for example, an eviction from the shared cache). These memory operations
require several consecutive accesses to the ABF filter (one for each local cache block) and the
invalidations performed by them in the local caches affect more than just one bloom filter.

As an example of the problem, Table 4.6 shows how many bloom filters are checked and
the maximum number of bloom filters that have to be modified for any memory operation
in a D-ABF filter. It is also included the number of entries accessed of each bloom filter,
and with which number can be modified the counter of the bloom filter entry accessed.

A load-miss does not require any membership test since it does not perform a data
directory lookup. However, it is necessary to include the new block and delete the evicted
block from the corresponding bloom filter. As these two blocks share the same local way and
set, and the modified copies are located in the same processor, these operations are always
performed in the same bloom filter regardless of the ABF filter design. As a result, any
counter bloom filter requires, at least, two ports.

An ifetch-miss requires to eliminate any copy of the block from the local data caches.
As the local instruction block size is twice the local data block size, two different local data
cache blocks have to be checked. Depending on the design, both blocks can belong to the
same bloom filter (ABF-P filter) or to different bloom filters (ABF-PS).

A store only requires to eliminate the copies of the target local data cache block.
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checked modified
bloom
filters

entries per
bloom filter

bloom
filters

entries per
bloom filter

value
reduced

D-ABF1 filter

load-miss 0 0 1 2 1
ifetch-miss 1 2 1 2 8
store 1 1 1 1 7
eviction 1 4 1 1 8

D-ABF-P filter

load-miss 0 0 1 2 1
ifetch-miss 8 2 8 2 1
store 8 1 7 1 1
eviction 8 4 8 4 1

D-ABF-PW filter

load-miss 0 0 1 2 1
ifetch-miss 32 2 16 1 1
store 32 1 7 1 1
eviction 32 4 32 4 1

D-ABF-PS filter

load-miss 0 0 1 2 1
ifetch-miss 16 1 16 1 1
store 8 1 7 1 1
eviction 32 1 32 1 1

Table 4.6: Number of bloom filter checked and modified by the different memory operation in each D-ABF
filter. It is also included the number of entries accessed and the value by which the counter bloom filter can
be modified.

The number of bloom filters to be checked and modified depends on the ABF filter design.
However, only one entry per bloom filter needs to be accessed.

As the shared cache is inclusive, an eviction from the shared cache requires to eliminate
all the local copies of the target block. The shared cache block size is four times the local
data cache block size. As a result, four different local data cache blocks have to be checked in
the ABF filter, and later, if the local copies exist, the same bloom filters should be modified.
Depending on the design, all the blocks can belong to the same bloom filter or to different
bloom filters.

In Table 4.6 we can observe that if we use the local cache block address to access
the ABF1, the ABF-P, or the ABF-PW filters, more than one bloom filter entry has to be
accessed for some memory operations either to perform membership tests or to update the
information in the bloom filter. In order to do this, we have two solutions: a) to implement
ABF filters with several ports, or b) to allow the design to perform several consecutive
accesses to the ABF filter for one memory operation (delaying the directory lookup and
future memory operations). Both solutions increase the power consumed by the ABF filter.

We propose to use the shared cache block address to access the ABF filters. By doing
this, the number of bloom filter entries accessed in each access is limited to 1. The only
drawback is that the filter accuracy could be reduced since the number of false positives
could increase, for example, if there is a local copy of any subblock of a shared cache block
in a processor, any check of any other subblock of the same shared cache block will produce
a positive result.

Table 4.7 shows the same information as Table 4.6 when using the shared cache block
address to access the D-ABF filters. We do not include the D-ABF-PS filter since it is the



CHAPTER 4. REDUCING DIRECTORY LOOKUP ASSOCIATIVITY 75

only one that can not be benefitted from using the shared cache block to access the ABF
filter.

checked modified
bloom
filters

entries per
bloom filter

bloom
filters

entries per
bloom filter

value
reduced

ABF1 filter

load-miss 0 0 1 2 1
ifetch-miss 1 1 1 1 16
store 1 1 1 1 7
eviction 1 1 1 1 32

ABF-P filter

load-miss 0 0 1 2 1
ifetch-miss 8 1 8 1 2
store 8 1 7 1 1
eviction 8 1 8 1 4

ABF-PW filter

load-miss 0 0 1 2 1
ifetch-miss 32 1 16 1 2
store 32 1 7 1 1
eviction 32 1 32 1 4

Table 4.7: Number of bloom filter checked and modified by the different memory operation when using
the shared cache block address to index the different D-ABF filter designs (except for the D-ABF-PS filter).
It is also included the number of entries accessed and the value by which the counter bloom filter can be
modified.

4.4.4 ABF Filters effectiveness

The effectiveness of any of the proposed designs depends on keeping the number of false
positives low. A false positive wrongly reports that the directory part represented by a
bloom filter contains a copy of the block. Thus, the directory lookup has to check that
part of the directory in which there is no copy of the target block. If the number of false
positives is high, the ABF filters would be useless since they would not reduce the number
of comparisons performed by directory lookups.

For all the ABF filters, we try several bloom filters of different sizes and with different
hash functions (type and number) in order to analyze their effectiveness. We choose two
types of hash functions: based on bit shifts and based on XOR (exclusive or) operation [61].
The hash functions based on bit shifts shift the address bits of the block accessing the filter
a certain amount of bits and use the lower bits to access the bloom filter. The hash functions
that use an XOR operation split in half the address of the block accessing the filter, perform
an exclusive or operation, and use the lower bits to access the bloom filter. Based on bit
shifts, we use three different hash functions: shift zero bits (s0), shift three bits (s3), and
shift five bits (s5). Based on XOR operation, we use only one hash function (xor).

Figure 4.13 shows the percentage of comparisons performed by directory lookups in
the data directory for each workload of the SPLASH2 suite when using the different D-ABF
filters compared to the system without filtering. Each line in each graph corresponds to a
benchmark in the SPLASH2 suite. For the D-ABF1, the D-ABF-P, and the D-ABF-PW
filters, there are two graphs: one for the results when accessing the D-ABF filter with the
local cache block address and one for the results when accessing the D-ABF filter with the
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number of
hash

functions

hash
functions

1 xor
2 xor, s0
3 xor, s0, s3
4 xor, s0, s3, s5

Table 4.8: Different combination of hash functions used to analyze the effectiveness of the ABF filters.

shared cache block address. For the D-ABF-PS filter, there is just one graph since this filter
does not get any benefit from using the shared cache block address to access it. We use
different bloom filter sizes and hash functions for every proposed D-ABF filter. The number
of entries of the bloom filters used varies from 16 to 4096. The number of hash functions
varies between 1 and 4 (Table 4.8 shows how we combine the hash functions when we use
1, 2, 3, or 4 hash functions.). There is an array of counters for each hash function and all
of them are accessed in parallel. An increase in the number of hash functions involves an
increase in the size of the bloom filters used. For example, when we use a 32-entry bloom
filter with 2 hash functions, 2 arrays of 32 entries each are used and each array is accessed
by just one hash function.

In Figure 4.13, we can observe that all benchmarks have a similar behavior except
ocean when using the D-ABF1 filter. Table 4.3 shows that, in general, most of the com-
parisons performed in the data directory are due to stores. By contrast, in ocean, stores
and evictions perform 53% and 47% of the comparisons in the data directory, respectively.
A membership test of the bloom filter of a D-ABF1 filter of a target block accessed by a
store is positive since most of the stores are performed over private data (see Figure 4.1).
Thus, the data directory lookups performed by stores cannot be filtered out (even if there is
just one copy of the target block). A membership test of a block accessed by an eviction, in
ocean, generally produces negative results, and so, lookups performed by evictions might be
avoided using the D-ABF1 filter. Therefore, the behavior of ocean when using the D-ABF1
filter is different from the rest of the benchmarks.

The D-ABF1 filter (Figures 4.13(a) and 4.13(b)) is not useful since it only reduces the
number of comparisons performed for ocean. For the rest of the benchmarks, even using
significantly big bloom filters, the number of comparisons performed is reduced to 85% of the
comparisons performed in the system without filters. The rest of the D-ABF filters reduce
the number of comparisons below 15% for any benchmark.

In general, it is better to use D-ABF filters with bloom filters that use three or four
hash functions instead of increasing the bloom filter size by three or four. As we expect, the
D-ABF filters that use bloom filters that represent a bigger fraction of the directory, require
to use bigger bloom filters to get the same effectiveness (reduce the number of comparisons
in the same percentage). For example, the D-ABF-P filter using bloom filters of 2048 entries
and 4 hash functions reduces the number of data directory comparisons to 10%, on average,
while the D-ABF-PS filter using bloom filters of 128 entries and 4 hash functions reduces the
number of data directory comparisons to 10.7%, on average. Each bloom filter of a D-ABF-
P filter represents 64 blocks while each bloom filter of a D-ABF-PS filter only represents 4
blocks.

If we compare each D-ABF filter when using the shared or the local cache block address
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(d) ABF-P filter accessed by the shared
cache block address
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(e) ABF-PW filter accessed by the local
cache block address
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(f) ABF-PW filter accessed by the shared
cache block address
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Figure 4.13: Percentage of comparisons performed in the data directory when using the different D-ABF
filters compared to the system without filtering.
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to access the filter, we observe that the number of comparisons performed for the same bloom
filter size is smaller when using the shared cache block address (Figure 4.13(d) compared to
Figure 4.13(c) or Figure 4.13(f) compared to Figure 4.13(e)). Therefore, the D-ABF filters
accessed using the shared cache block address require smaller bloom filters. The reason is
that when using the shared cache block address, the number of comparisons that have to be
performed per positive result in any bloom filter is sometimes bigger, however, the number
of times that any bloom filter is checked is reduced. For example, in the D-ABF-PW filter,
an ifetch-miss requires two accesses to each bloom filter when using the local data cache
block address (the local instruction cache block size is twice the local data cache block size).
For every positive result, a directory entry has to be accessed to check if the target block
is located there. If the shared cache block address is used to index the bloom filters, each
bloom filter of the D-ABF-PW filter is accessed just once. However, for every positive result,
two directory entries have to be checked. So, though the number of comparisons can not
be reduced in the same way, when using the shared cache block address to index the bloom
filters, the energy consumed by the filter will be lower. Moreover, as the number of blocks
represented by any bloom filter is sometimes reduced (different subblocks of the same shared
cache block are kept in the local caches), the conflicts in the bloom filters are reduced, so
the D-ABF filter effectiveness increases.

Figure 4.14 shows the same information as Figure 4.13 for the I-ABF filters. We can
see that all the I-ABF filters reduce the number of comparisons performed in the instruction
directory, unlike the D-ABF1 filter that was not useful to reduce the number of comparisons
in the data directory.

Figure 4.14 shows that, like in the data directory, those filters in which a bloom filter
represents less blocks of the directory require smaller bloom filters. For example, the I-ABF-
P filter requires bloom filters with 512 entries and 4 hash functions (see Figure 4.14(c)) to
reduce the number of comparisons in the instruction directory to 0.2% with respect to the
system without filtering. The I-ABF-PS and the I-ABF-PW filters using bloom filters with
64 entries and 4 hash functions also reduce the number of comparisons in the instruction
directory to 0.2%. Like for the D-ABF filters, when using the shared cache block address to
access the I-ABF filters, the effectiveness of the filter improves.

We decide to choose the bloom filter sizes and the number of hash functions that
either reduce the number of comparisons to the lower limit or that taking a bigger bloom
filter barely reduces more the number of comparisons. In Figures 4.13 and 4.14, we indicate
the bloom filter size chosen for each ABF filter.

4.4.5 ABF Filters overhead

The bloom filters used in the different ABF filters consist of a bit vector and a counter
array. The size of the whole bit vector of any ABF filter is the number of bloom filters
used multiplied by the number of entries they have and the number of hash functions used.
The size of the whole counter array is the size of the bit vector multiplied by the number of
bits that the counter requires (log2(number of blocks represented by the bloom filter) +
1validbit). Table 4.9 indicates, for each ABF filter, the bloom filter size and number of hash
functions chosen (Figures 4.13 and 4.14), and the size of the bit vector and the counter array
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(c) I-ABF-P filter accessed by the local
cache block address
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(d) I-ABF-P filter accessed by the shared
cache block address
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(e) I-ABF-PW filter accessed by the local
cache block address
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Figure 4.14: Percentage of comparisons performed in the instruction directory when using the different
I-ABF filters compared to the system without filtering.
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that form a part of any ABF filter.

cache block
address used

number of
bloom filters

number of
entries

number of
hash functions

size (Bytes)
bit vector

size (Bytes)
counter array

D-ABF1 filter local 1 4096 4 2KB 20KB
D-ABF1 filter shared 1 4096 4 2KB 20KB
D-ABF-P filter local 8 2048 4 8KB 56KB
D-ABF-P filter shared 8 512 4 2KB 14KB
D-ABF-PW filter local 32 512 4 8KB 40KB
D-ABF-PW filter shared 32 256 4 4KB 20KB
D-ABF-PS filter local 128 128 4 8KB 24KB

I-ABF1 filter local 1 512 4 256B 2.5KB
I-ABF1 filter shared 1 256 4 128B 1.25KB
I-ABF-P filter local 8 512 4 2KB 14KB
I-ABF-P filter shared 8 256 4 1KB 7KB
I-ABF-PW filter local 64 64 4 2KB 8KB
I-ABF-PW filter shared 64 32 4 1KB 4KB
I-ABF-PS filter local 64 64 4 2KB 6KB

Table 4.9: Number of bloom filters of each ABF filter, bloom filters size and hash functions chosen in the
previous section for each design, and the size in bytes of the bit vector and the counter array of each ABF
filter per shared cache bank.

Table 4.9 shows that the size of both the counter array and the bit vector is always
bigger than the data or instruction directory. (The size of the data or instruction directory
is 1KB per shared cache bank.) The only exception is the I-ABF1 filter when it is accessed
by the shared cache block address. The size of the counter array of the I-ABF1 filter is
approximately the size of the instruction directory and the bit vector is the smallest one.
The rest of the filters are significantly big.

It is interesting to notice that, except the ABF1 filter, the bit vector of all the ABF
filters have the same size if they are accessed in the same way (either with the local cache
block address or the shared cache block address). When the number of bloom filters in a
filter is bigger that in other, the number of blocks represented by each bloom filter is reduced,
so a bloom filter with less entries keeps the effectiveness of the ABF filter.

To decide which design is better we can consider not only the size it requires, but the
number of bloom filters that have to be accessed each time. For example, when using the
ABF-P filter only 8 bloom filters might be accessed per directory lookup. However, when
using the D-ABF-PW (I-ABF-PW) filter, 32 (64) bloom filters must be accessed. Moreover,
it is more interesting to use the filters that are accessed using the shared cache block address
since they achieve the same effectiveness with smaller bloom filters.

We do not expect these designs to reduce the power in the directory since the size
of the structures is significantly big. All the ABF filters filter out approximately the same
amount of comparisons and their sizes are of the same order. Thus, in the next section, we
measure the power reduction attained with one of the ABF filters as an example of the power
reduction that we could get with the rest of the designs. For these preliminary results, for the
data directory, we choose the D-ABF-P filter accessed by the shared cache block address,
and, for the instruction directory, we choose the I-ABF1 filter accessed using the shared
cache block address.
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4.4.6 ABF Filters power reduction

We use CACTI [43] to estimate the dynamic energy and leakage power for the cache tag
array, the directory, and the proposed ABF filters (see Section 2.2 for more details).

As we said before, in this section, we measure the power reduction attained with one
of the ABF filters as an example of the results we can get with these kind of filters. For
the instruction directory, we choose the I-ABF1 filter. This design was evaluated previously
in Section 3.3.6. The only difference was the hash functions used. In Section 3.3.6, we
combine the functions s3 and s4, reducing the size of the bloom filter and the number of
hash functions used. As it was a better hash function combination, we do not repeat here
the same results.

For the data directory, we choose the D-ABF-P filter accessed by the shared cache
block address. Figure 4.15 shows the percentage of the data directory consumed when using
the D-ABF-P filter compared to the system without filtering. To simplify the design, for the
D-ABF-P filter we only count the power consumed by the bit vector and we do not measure
the power consumed by the counter array (which is a significantly bigger structure).
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Figure 4.15: Percentage of data directory power when using the D-ABF-P filter accessed using the shared
cache block address compared to the system without filtering. For the D-ABF-P filter, we only count the
power consumed by the bit vector.

Figure 4.15 shows that, on average, the data directory power consumption is only
reduced, on average, to 96% compared to the system without filtering. This reduction is too
small. Moreover, in some benchmarks, this filter increases the power consumption. Numbers
in Figure 4.15 only take into account the power consumed by the bit vector of the filter. We
do not measure the power consumption of the counter array which is an structure bigger than
the bit vector. If we count the power consumed by the whole filter (bit vector and counter
array), the filter will increase the power consumed by the directory for all the benchmarks.

4.5 Conclusions

We have observed that in CMPs with write-through caches, a big fraction of directory lookups
is due to stores performed over data that is private to the processor performing the store
instruction. In such a situation, a directory lookup is performed but no invalidations are
necessary. This needless directory lookup wastes energy. We propose to use a filter before



82 CHAPTER 4. REDUCING DIRECTORY LOOKUP ASSOCIATIVITY

accessing the directory: the Owner filter. This filter is able to identify private stores and
reduce the number of directory lookups performed or the number of directory entries looked
up in a directory lookup.

The Owner filter has an entry for each line in the shared cache. For every shared cache
access, a filter entry is read together with the state bits of the block accessed. Every filter
entry keeps either the owner of the corresponding block or some useful information to limit
the associativity of a directory lookup performed over the corresponding block. Using this
information the number of comparisons performed by directory lookups in the directory is
greatly reduced.

The proposed filter area is 12% the tag array area and 0.7% the total shared cache
area, and filtering is performed on every access to the shared cache. Our results show that,
on average, the proposed filter reduces the number of comparisons performed by directory
lookups by 95%, and reduces the directory power by 28.2% for all the benchmarks.

The performance of the Owner filter is limited since it only reduces energy when specific
situations take place: an owner exists, or there are no copies in any local cache. We propose
to extend the filter so it can determine which local caches keep copies of a target block. In
order to keep the filter structure small, we keep a superset of the local copies located in the
local caches. We propose to use a filter implemented as an Array of Bloom Filters: ABF
filter. Each bloom filter represents a part of the directory. For every directory lookup, the
ABF filter is accessed and only when there is a positive result in the bloom filters that form
a part of the ABF filter, the corresponding part of the directory is looked up. We propose
different designs depending on the part of the directory represented by each bloom filter.
We conclude that the ABF filters coverage is really good, but the energy consumed by the
directory is not reduced since the filter structures are significantly big.
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Conclusions

This chapter summarizes the main contributions of this thesis and describes the pub-
lications derived from this thesis’ research. It also includes some of the future lines of
research arising from this thesis.

Along this thesis we have analyzed different solutions to reduce the power consumed
by a coherence directory implemented as a duplicate tag directory in a CMP with write-
through local caches. We have focused in two basic filtering mechanisms. The first filtering
mechanism reduces the number of directory lookups performed while the second one reduces
the directory lookup associativity.

We propose the first filtering mechanism because we realize that an important fraction
of directory lookups are useless since there are no copies of the target block in any local
cache in the system. We could decide not to perform these directory lookups and program
execution would remain correct. These useless directory lookups waste energy, but in a
directory coherence mechanism there is no way to avoid them. To reduce the energy wasted
by useless directory lookups, we propose to use a filter before accessing the directory which
is able to identify in advance whether a lookup is useless or not.

In a CMP with local caches split in data and instruction and a coherence directory
implemented as a duplicate tag, we can distinguish a data and an instruction directory. Any
store that access the shared cache or any eviction from the shared cache (inclusive shared
cache) require to perform a data and an instruction directory lookup. However, the sets of
memory addresses of instructions and data are, in general, disjoint. As a result, the local
copies of a target block are located either in the local data caches or the local instruction
caches, but rarely in both of them. As the data and instruction directory are a duplicate of
the local cache tag arrays, only the data directory or the instruction directory can be useful
for the same target block.

We propose two implementations of the first filtering mechanism: the ID filter and the
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DPL filter. The ID filter exploits the inclusion property of the shared cache to label each
block in the shared cache with the stream it belongs to (data or instruction). A directory
lookup performed over a block labeled as data (instruction) only performs a data (instruction)
directory lookup. The DPL filter keeps the information of all blocks belonging to a stream
together using a filter structure decoupled from the shared cache size. A DPL filter consists
of an I-DPL filter that keeps a superset of the blocks located in the instruction directory and
a D-DPL filter that keeps a superset of the blocks located in the data directory. Both the
I-DPL filter and the D-DPL filter are based on a bloom filter. Before performing a directory
lookup, the I-DPL filter and the D-DPL filter are accessed and they determine if a data or
instruction directory lookup must be performed (instruction fetches (loads) that miss in the
local instruction (data) cache only require to access the D-DPL (I-DPL) filter).

We propose several ID filter implementations and any of these ID filters reduce the
power consumed by the directory by 28% and 19% for SPLASH2 and Specweb2005, respec-
tively, taking into account both the dynamic energy and the leakage power of the directory
and the filter. A DPL filter that uses both an I-DPL filter and a D-DPL filter is not an
interesting design since the D-DPL filter has a low coverage. Due to that, we decide to
implement a design using only an I-DPL filter (it does not filter out data directory lookups).
The I-DPL filter reduces the power consumed by the whole directory (data and instruction
directories) by 27% and 9% for SPLASH2 and Specweb2005, respectively.

We describe and analyze the ID filter in the following paper:

• Ana Bosque, Vı́ctor Viñals, Pablo Ibáñez, and José M. Llabeŕıa, ”Filtering Directory
Lookups in CMPs”, in Proceedings of the 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools (DSD), pp. 207-216, September 2010.

The DPL filter is described and analyzed together with a deeper analysis of the ID
filter in the following paper:

• Ana Bosque, Vı́ctor Viñals, Pablo Ibáñez, and José M. Llabeŕıa, ”Filtering Directory
Lookups in CMPs”, in Microprocessors and Microsystems (accepted for publication).

The second filtering mechanism is proposed because we realize that, in general, the
directory lookups that are useful are performed over blocks that are shared by a small
number of processors. A coherence directory implemented as a duplicate tag require a high
associative directory lookup that consumes a significant amount of energy. If we identify
which local caches are sharing a target block before accessing the directory, the directory
lookup associativity would be much smaller, reducing the energy consumed by the directory.

We propose two implementations of the second filtering mechanism: the Owner filter
and the ABF filter. The Owner filter keeps explicit information for every block in the shared
cache identifying the owner of the block (processor that keeps in its local cache the only
local copy of the block) whenever it exists. If the owner of a target block is known before
performing a directory lookup, only the directory entries that correspond to that processor
are accessed.
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The ABF filter, using an Array of Bloom Filters, keeps a superset of the local copies of
any block located in any specific part of the directory. Before performing a directory lookup,
the ABF filter is accessed and it determines which directory entries must be checked during
the directory lookup. The number of directory entries determined by the ABF filter is much
smaller than the total number of entries where the local copies of the target block can be
located.

The Owner filter reduces the power consumed by the directory by 31% and 22% for
SPLASH2 and for Specweb2005, respectively, taking into account both the dynamic energy
and the leakage power of the directory and the filter. We propose several ABF filter designs.
All of them have a good coverage, however, they are not power efficient designs due to the
large size of their filtering structures.

We describe and evaluate the Owner filter in the following paper:

• Ana Bosque, Vı́ctor Viñals, Pablo Ibáñez, and José M. Llabeŕıa, ”Filtering Directory
Lookups in CMPs with Write-through Caches”, in Proceedings of the 2011 Euro-Par
Conference, pp. 267-279, August 2011.

Before implementing and evaluating the proposed filtering mechanisms, we had to
develop a simulator detailed enough for the kind of mechanisms we wanted to evaluate. We
also needed to analyze in detail the benchmarks we would use to evaluate our proposals.
SPLASH2 was analyzed with great detail by Woo et al. [50], but Specweb2005 has not been
analyzed. We analyzed it in the following paper:

• Ana Bosque, Pablo Ibáñez, Vı́ctor Viñals, Per Stenström, and José M. Llabeŕıa, ”Char-
acterization of Apache web server with Specweb2005”, in Proceedings of the 2007
workshop on MEmory performance (MEDEA ’07), pp. 65-72, September 2007.

Now, we will compare the proposed filtering mechanisms. Figure 5.1 shows the average
power reduction achieved by each proposed filter and the filter size for the whole system
(adding the filter size in each shared cache bank). We show three points for each proposed
filter: i) the directory dynamic power reduction without taking into account the filter power
consumption (dynamic and leakage), ii) the directory dynamic power reduction considering
the dynamic power consumed by the filter, and iii) the directory power reduction (dynamic
and leakage) taking into account the power consumed by the filter (dynamic and leakage).
Figure 5.1 does not show the power reduction for the ABF filters since the numbers shown
in this thesis for those filters are only an optimistic approximation. Moreover, the size of
any ABF filter design is much bigger than the rest of the proposals and it does not achieve
a directory power reduction as good as other filters.

We can see in Figure 5.1 that the Owner filter achieves the biggest directory power
reduction. However, the difference between the Owner filter and the rest of the proposed
filters is small when we take into account the filter power consumption and the leakage power
(iii). This is due to the big size of the Owner filter. It is also interesting to observe that
the two-bit ID filter reduces more than the one-bit or the one-bit improved ID filters the
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dynamic power consumption of the directory. However, when we take into account the filter
power consumption and the leakage (iii), the one-bit and the one-bit improved ID filters
reduce more the directory power consumption since the two-bit ID filter size is twice the
one-bit ID filter size. In the same way, the DPL filter reduces more the directory dynamic
power consumption, but the I-DPL filter achieves better results when we take into account
the filter power consumption.

A future line of research is to reduce the power consumed by the coherence protocols
in many-core systems, that is, in systems with hundreds or even thousands of cores. As
have been mentioned along this thesis, a practical implementation of a many-core system
would be to organize it in small clusters and perform a two-level cache coherency: one inside
each cluster and another one among clusters. Each of these clusters would be the CMP
modeled in this thesis, which uses write-through local caches. The shared cache inside each
cluster would be write-back and private for that particular cluster. The second coherency
level needs to be implemented to keep coherence among clusters.

Filters proposed in this thesis could therefore be implemented inside each cluster, but
it would be necessary to asses their performance in such a new environment. The coherence
protocol among clusters will probably have a different behavior compared to the coherence
protocol inside the cluster, so further analysis would be necessary in order to propose a filter
that reduces the energy consumption of the coherence protocol among clusters.
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Figure 5.1: Percentage of power reduction achieved by the proposed filters and the filter size. (a) shows
the average power reduction for SPLASH2 and (b) shows the average power reduction for Specweb2005. All
the points linked by a dot line correspond to the same filter.
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