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Chapter 1

Introduction

The context that embraces all the research presented in this thesis is Cache-Coherent

Shared Memory Multiprocessors.

“Multis are a new class of computers based on multiple microprocessors. The small
size, low cost, and high performance of microprocessors allow design and construction of
computer structures that offer significant advantages in manufacture, price-performance
ratio, and reliability over traditional computer families ... Multis are likely to be the basis
for the next, the fith, generation of computers” [Bel85].

1.1 Motivation

Shared Memory Multiprocessors offer the programmer a single memory address space that
all the processors share. Processors communicate through shared variables in memory,
with all processors capable of accessing any memory location via loads and stores. With
shared memory, since processors operate in parallel they need to coordinate when accessing
shared data. Thus, when sharing is supported with a single address space, a separate
mechanism for synchronization is provided. One approach is to use atomic read-modify
instructions operating on lock variables. With locks, only a processor can enter the critical
section, and the other processors interested in the shared data must wait until the winner

processor unlocks the variable.

Shared memory multiprocessors can have two different organizations. In the first one,
processors and memory are connected through an indirect interconnection network, typi-
cally a shared bus and main memory is physically centralized. In the second one, memory
is physically distributed in nodes containing one or more processors, and these nodes are

connected through a direct interconnection network, like a mesh or a hypercube. Dis-
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tributed memory multiprocessors are usually called DSM (Distributed Shared Memory)
machines [NAB'95] or CC-NUMA (Cache-Coherent Non Uniform Memory Access) ma-
chines [SJG92]. In this work, we will use the two terms indistinctly. In both organizations
caches are used to reduce the memory latency and increase the processor utilization. They
are kept coherent by means of coherence protocols: snoopy protocols in the first case, and
directory-based protocols in the second one. In the bus-based organization, the bus limits
the bandwidth to access the memory. Thus, this organization does not scale as the num-
ber of processors increase, unless we use very expensive networks like multistage networks
or crossbars. In the second organization, the memory is distributed, and the memory
bandwidth grows as the number of nodes increases, which makes this organization to be

scalable.

These multiprocessor systems were designed to reduce the execution time of a single
application containing parallel threads or tasks. However, up to now the most important
use of the multiprocessors has been the execution of a multiprogrammed workload where
independent processes execute in parallel instead of time-sharing a single processor. Sev-
eral reasons can explain why multiprocessors are not very often used to execute parallel
programs. The first one is that it is hard to find parallel programs. On one side, parallel
programming is not easy. Thus, only a few applications have been re-written so that they
can execute in parallel. On the other side, despite the advances in compiler technology,
there are still not many codes that the compiler can fully parallelize. The second rea-
son is that, when multiprocessors execute parallel programs, they usually deliver lower
speedups than expected. The main cause for this is the additional main-memory accesses
that programs running on a multiprocessor require. In addition, a main-memory access in
a multiprocessor is typically slower than in a uniprocessor: interconnection networks have

additional delays and the machine is physically bigger.

In this thesis, we address these two problems, and propose several extensions or mod-
ifications. Our goal is to reduce the execution time of a single application executing in a
shared memory multiprocessor. In particular, we have considered hardware prefetch and
reduction support for parallelized codes, and speculative execution support for sections of

parallel codes that the compiler could not parallelize.

Prefetch is a well known technique that can speed-up a program by preloading data
in cache before the processor needs them. Prefetch is only effective if the prefetcher
can learn and reproduce in advance the patterns that the program is following when
accessing memory. However, there is no systematic study of the data access patterns that
appear in parallel programs. In this thesis, we perform that study for a set of relevant

patterns. In addition, we measure if the distribution pattern distribution changes as the
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number of processors executing the application changes. We use this study as the starting
point for designing a low-cost hardware prefetch mechanism for bus-based multiprocessors.

Prefetching in this environment is difficult due to the limited bandwidth resources.

The second technique that we have selected to speed-up the execution of parallel
programs is to provide architectural support for parallel reductions. We have observed
that reduction operations appear in many scientific codes that the compiler can parallelize.
Reductions are important and time-consuming operations. However, finding the most
appropriate transformation for a given reduction is usually hard. This is even harder in
case of sparse, dynamic applications, where the compiler does not usually has knowledge
about the data that each processor needs to access. With DSM machines, things become
worse, because the latency to access memory is variable, and depends on the data layout.
In this context, we propose new architectural supports that speed-up parallel reduction
and make them scalable. These supports require small modifications to the directory of a
DSM machine.

Finally we consider speculative thread-level parallelization. Using this approach we
can extract tasks of sequential codes that the compiler cannot fully analyze, and specu-
latively execute them in parallel. The multiprocessor is modified with extra hardware to
dynamically detect dependences. If the speculative parallel execution is incorrect a combi-
nation of hardware and software repairs the state in memory and resume with the parallel
execution. In order to be able to repair the corrupted state in memory, the speculative
state produced by these parallel tasks needs to be kept. Given the distributed nature of
the memory and caches in a multiprocessor, this buffering is challenging. In this thesis
we address the problem of buffering speculative memory state in speculative thread-level

parallelization for DSM machines.

Note that this work considers two very different, but important, hardware environ-
ments. Prefetch is developed for bus-based multiprocessors, while parallel reduction sup-
port and speculative state buffering is developed for scalable DSM machines. Many com-
mercial designs follow nowadays the first trend, like the bus-based multiprocessor Sun
Enterprise E450 with up to 4 UltraSPARC processors, or the L2000 of HP with up to 4
PA8500 or PA8600 processors. On the other hand, despite their low commercial presence
(SGI Origin is the obliged reference), DSM machines seem to be the straightest way to
achieve significant speed-ups in applications requiring access to big amounts of shared
memory [BCO02].

Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM 3
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1.1.1 Hardware Prefetch

One of the mechanisms that we propose to increase the multiprocessor performance is the
ability to predict the addresses that the processor will issue in the near future. These
addresses are used to prefetch data into the levels of the memory hierarchy closer to the
processor. A well-managed data prefetching can hide the latency to access memory, and

thus speed-up the application.
Data prefetch can be software [KCPT95, MG91, TE95], when either the programmer

or the compiler add extra instructions to prefetch data. It can be hardware [DDS93,
CC98], when the hardware of the processor is modified to dynamically predict future
addresses. Finally, it can also be hybrid [CB94, ZT95] when hardware and software
collaborate in the data prefetch.

In this thesis we are interested in hardware mechanisms. These mechanisms were ini-
tially proposed for uni-processors. Simple mechanisms are those able to predict sequential
accesses [Smi78], or accesses that differ in a constant stride [CB94, FP92]. More complex
hardware mechanisms are able to detect the patterns of single loads that access records
chained by pointers and 4-bytes elements of an index list [IVBG98, MH96]. Recent pro-
posals, and also in the uniprocessor context, perform a dependence analysis to find a
relation between pairs of loads traversing a linked list [RIVL00, RMS98], or correlate a

sequence of misses for a particular miss reference address [JG99].

All previous proposals on hardware prefetch mechanisms track the regularity in the
address stream issued by the loads that the processor executed in the past, and based
in this regularity try to predict the future addresses. Thus, to guide the research of new
mechanisms for multiprocessor systems, it is important to know the data access patterns
that appear in parallel programs. It is also important to know how the access patterns
and its distribution changes as the number of processors executing the application changes.
No systematic study on pattern characterization has been done. The work in [DS96] did
some, and measured the burst length of certain patterns. However, no study on pattern
characterization that took into account the variation in the number of processors was done.

We study all these issues in Chapter 2.

On the other hand, little work has been done on hardware prefetch for bus-based mul-
tiprocessors. Sequential and stride-based mechanisms have been evaluated in the context
of multiprocessors [CB94, DDS93, DS96, DS98]. But in these works processors are con-
nected through a interconnection network, where latency is assumed to be low. Also,
results in [DS95, DS96] show that prefetch can increase the traffic significantly, which can

become a serious bottleneck in a bus-based multiprocessor where memory bandwidth is
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limited. In the context of bus-based multiprocessors, the most important work has been
presented in [TE95, TE93]. This work is based on software prefetch, and the evaluation

is done for a fixed number of processors.

In Chapter 3 we focus in hardware prefetch mechanisms for bus-based multiprocessors,
that are able to detect simple patterns like the sequential and stride one, and more complex
ones like single load linked list and index list traversal [IVBG98, MH96]. One of the
goals of this research is to correlate the variation in the number of processors with the

effectiveness of the prefetch.

1.1.2 Parallelizing Reductions

Reduction operations are frequently found at the core of many scientific applications. A
reduction occurs when an associative and commutative operator ® operates on a variable
z as in x = x ® expression. x is called the reduction variable, and it can be a scalar
or an array element. If the reduction operation is in a loop and certain conditions are
satisfied the loop can be parallelized. However, a loop with a reduction operation can
have complex flow dependences across iterations, and therefore special transformations
are required. Several transformations have been proposed, but it is usually hard to know
which of them is the most appropriate to parallelize the loop. The election depends
on many parameters like the degree of contention of the reduction element (number of
iterations referencing it) or the sparsity (ratio of referenced elements to the dimension of
the array) that can only be known at run-time. In addition, many of these transformations

do not scale as the number of processors increases.

For low-contention reductions, a common used mechanism is to enclose the access to
the reduction variable in an unordered critical section [EHLP91, Zim91], or with an atomic
fetch-and-op operation. The main drawback of this method is that it is not scalable, as

the contention for the critical section increases with the number of processors.

Another mechanism that has been used to parallelize reductions is based on the use
of inspector-executor loops. An approach based on this inspector-executor mechanism is
GatherScatter [DUSH94]. With the GatherScatter approach an inspector loop identifies
non-local data needed by each processor, and generates a communication schedule. Then, a
executor loop uses the communication schedule to gather nonlocal data, perform the com-
putation using local buffers, and scatters non local results to the appropriate processors.
Another different approach also based in the inspector-executor is LocalWrite [HH98].
With LocalWrite the computation partitioning is done so that each processor only com-
putes new values for locally owned data. By writing only to local data, LocalWrite avoids

the overhead of mapping nonlocal indices into local buffers (i.e. address translations), or
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mutual exclusion synchronization; however, LocalWrite must replicate computation when
an iteration writes to data placed in different nodes. In addition, both approaches incur
the overhead of executing the inspector loop. Usually, this overhead is amortized if the
loop is executed several times, but when the loop is adaptive the inspector has to be

executed every time that the access pattern changes.

Finally, another approach to parallelize reductions is to exploit the fact that a reduc-
tion is a commutative and associative recurrence, and thus it can be parallelized using
a recursive doubling algorithm [Kru86, Lei92]. Several implementations of this method
have been proposed [Pot97, LP98]. One of them is the Replicated Private Arrays. In
this implementation, the reduction variable is privatized using replicated arrays in all the
processors, and the partial results are accumulated on each processor. After the parallel
loop finishes, results from the replicated arrays are combined in a final merge step. This
merge step is usually implemented with a cross-processor algorithm, that suffers from
many remote misses. In addition, the execution time of this merge step is proportional
to the size of the array, and does not decrease when more processors are used. Some
approaches try to reduce the execution time of this merging phase by using a hash table
when accumulating partial results; however, then the overhead is displaced to the main
computation loop, because an indirect access is needed to access the appropriate entry in
the hash table. Some researchers like [YRO00] have developed an algorithm to characterize
at run-time the reduction access pattern and choose the most appropriate parallelizing
mechanism. However, as the inspector-executor mechanism, their mechanism also incurs
some extra overheads that can only be amortized if the reduction access pattern does not

change across loop invocations.

Thus, since reduction operations are very important and account for a large fraction
of the execution time of many scientific applications, in Chapter 4 we investigate on
new architectural support to speed-up parallel execution of reduction operations, and to
make them scalable. This support should significantly speed-up execution of irregular and
adaptive reduction, overcoming the situations where the software transformations did not
succeed. I order to use commodity processors, we will always avoid or minimize changes in
the processor, and concentrate the changes in the network/directory coherence controller

of the DSM multiprocessor.

1.1.3 State Buffering in Speculative Thread-Level Parallelization

Despite the advances in compiler technology [BDET96, HAA196, SSC99], there are still
many codes that cannot be successfully parallelized. These are codes that have complex

access patterns, like codes with subscripts of subscripts array accesses, pointers, complex
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function calls, or input-dependent access patterns. In these cases, the compiler cannot
safely parallelize these code sections, and they have to be executed serially. However,
if these codes could be executed in parallel a significant degree of parallelism could be

extracted.

To solve this problem, some work propose software solutions like the inspector-executor
mechanism [CTY94, RP94, ZY87]. In this approach an inspector loop executes first.
This loop gathers the data dependence structure of the code. This information will be
used by the executor loop to execute the loop with explicit synchronizations to guarantee
correct execution. Other software solutions [GN98, RP99]| assume that there are not
dependences and speculatively execute the code in parallel at the same time that collect
the data accessed at run time. When the code ends, there is a test to determine if the
parallel execution was correct or incorrect. If it was incorrect, the code must execute again
in parallel. While all these techniques are promising they all have some drawbacks that

limit their scalability.

Hardware based approaches assume that there are not dependences and let the compiler
to extract tasks and execute them in parallel [CMTO00, FF01, GVSS98, HWO098, Kni86,
KT99, MGT98, OWP*01, PGRT01, SBV95, SCZM00, THAT99, ZRT99]. These schemes
extend the invalidation-based cache coherence of the processor and check for dependences
at run-time. In case of a violation, a combination of hardware and software solves it. This
usually requires the squash of the tasks, the repair of the corrupted memory state and
the re-start of the tasks in parallel. These mechanisms have been proposed at the chip-
level multiprocessor [GVSS98, HWO098, KT99, MGT98, OWP101, SBV95, THAT99] or at
more scalable levels like [CMT00, FF01, GN98, PGRT01, RP95, RS00, SCZMO00, ZRT99].

In Chapter 5, we will focus on the study of mechanisms to buffer the speculative state
during speculative thread-level parallelization. Different approaches handle this issue dif-
ferently. Some times this speculative state is buffered in the write-buffers of the proces-
sor [HWO98, THA'99], caches [CMT00, FF01, GVSS98, KT99, OWP*01, SCZMO00],
or special buffers [FS96, PGRTO01] to avoid corrupting main memory. Other proposals
take a different approach and generate a log of updates that allows them to backtrack
execution [FLAOL, Zha99, ZRT99]. Often, there are differences in the way caches, buffers
and logs are used in the different schemes. However, there is no study that breaks down
the design space and identifies the major design decisions and tradeoffs, and provides a
performance and complexity comparison of important design points. We feel that such a
study is needed, specially given the high performance that stakes of choosing a particular

buffering scheme.

In addition, in this context of speculative thread-level parallelization, we also explore
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new buffering mechanisms. In particular, we are interested on the problem of keeping
multiple versions of the same variable. This problem appears when several tasks run in a
processor and remain speculative. In this case the processor has to buffer the state that all
these tasks produced. If these tasks wrote to different variables, then the processor must
keep different versions of the same variable. All the current proposals that handle this
problem require non-negligible modifications and additional hardware. Thus, in Chapter
6 we explore software algorithms to implement an efficient multi-version buffering scheme.
We evaluate the overheads that the software introduced, and which are the performance

benefits that this mechanism can deliver.

1.2 Thesis Contributions

This work makes several contributions in the context of shared memory multiprocessors.
The first contribution is the characterization of the data access patterns in parallel pro-
grams. We perform a systematic characterization of the applications , and we study for
first time the change in the program behaviour (pattern distribution and sequence length)
as the number of processors increases. Also, in the context of multiprocessors, we propose
a new performance model that facilitates the analysis of the demand and prefetch miss-
rations, and traffic between caches, and with main memory. We evaluate several hardware
prefetch mechanisms for a bus-based multiprocessor system, and we propose a new one.
Our proposed mechanism combine a Load Cache with an on-miss insertion policy plus
a sequential mechanism. Since bus-based multiprocessors have a limited bandwidth, we
propose that the sequential prefetcher can be connected or disconnected. This decision can
be taken by either the programmer or the compiler depending on the number of processors

executing the application, and the behaviour of the application.

The second contribution of this thesis is the design and evaluation of architectural sup-
port for parallel reductions. The idea is to use the caches of the processors as temporary
storage where processors accumulate their partial results. As cache lines are displaced,
their values are combined with the value in the shared memory location. The required
architectural changes are mostly confined to the directory controllers. Our design includes
naive hardware modifications to detect reduction accesses, as well as a more advance
scheme where the use of extra shadow addresses and the addition of operating system
support avoids modifications of the processor. It also identifies the atomicity problems
that appears, discuss the main tradeoffs of the different types of solutions, and propose two
solutions. Finally we present a scenario of dynamic last value assignment where this archi-
tectural support can also be used. The proposed support speeds-ups significantly parallel

reductions and makes them scalable when executing in shared-memory multiprocessors.
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The third contribution of the thesis is related with the buffering of state in speculative
thread-level parallelization. In this context, this thesis presents a novel taxonomy of
the different approaches to handle speculative state. Our taxonomy includes a novel
application of the concepts of architectural and future state to the memory state. It also
classifies the approaches based on the support for multiple tasks and versions, and the
main memory update policy. We perform a detailed tradeoff analysis and evaluate all
the different approaches under a single architectural framework. We characterize a set
of applications that are candidate for speculative thread-level parallelization. Our key
insights are useful to understand the main bottlenecks of speculative thread-level systems

based on the application characteristics.

Finally, for a particular type of approaches, we propose an effective software scheme
to buffer multi-version speculative state. For that, we take a speculative parallelization
protocol, and build all the software implementation of the buffering scheme on top of it.
We evaluate the performance of our proposed only-software scheme, and compare it to
a similar only-hardware one. Our study also includes a detailed evaluation of the major

issues of our software proposal like the filtering of first stores.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 performs a characterization of important
data access patterns that appear in parallel applications, and show several interesting
metrics which can be applied to evaluate the potential of hardware data prefetch. In
Chapter 3 we design and evaluate a low-cost Hardware Prefetch Mechanism for Bus-
based Multiprocessors. Chapter 4 shows an architectural support added to a Scalable
Shared Memory Multiprocessors to speed-up parallel reduction operations and make them
scalable. Chapter 5 presents tradeoffs in the Buffering of Speculative State in Speculative
Thread-Level Speculation. Chapter 6 presents a software scheme to buffer state from

multiple tasks and versions, and finally Chapter 7 summarizes and presents future work.
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Chapter 2

Pattern Characterization

Data prefetching has been widely studied as a technique to hide memory access latency
in multiprocessors. However, the effectiveness of a prefetch mechanism depends on the
regularity in the data access pattern of the program. Characterizing the patterns that
appear in the applications is very important, because this information can be very helpful
to guide the research of new prefetch mechanisms, and to highlight how a prefetcher should

behave for a particular application.

In this chapter we analyze the patterns that appear in a subset of the SPLASH-2
applications. We evaluate the percentage of loads that follow a specific pattern (scalar,
sequential, stride, linked list and index list), and the number of times in a row that a
load follows a particular pattern (sequence length). We also study the persistence of the
patterns and the sequence length as the number of processors executing the application
changes from 1 to 32. Our results reveal the dominance of sequential traversals and, to a
lesser extent, the presence of stride accesses. We also find that for most of the evaluated
applications, with the only exception of Cholesky and Radix, the pattern distribution
remains constant independently of the number of processors executing the application.

Also the sequence length scarcely changes with the number of processors.

2.1 Introduction

As the processor speed continues to increase, the performance of many applications is
limited by the high latency to access memory. If we consider multiprocessors, this latency
to access memory is even higher. In a bus-based multiprocessor many processors have
to compete for a shared bus, which increases the latency to access memory. In a more
scalable multiprocessor where processors are connected through a general network, remote

accesses to either main memory or a second processor’s cache can take hundreds (300 -
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800) of cycles. To cope with this problem a solution that many researchers have explored

is data prefetch.

Data prefetching has been proposed to hide read latencies in multiprocessors and
uniprocessors. Its effectiveness depends on the regularity in the access pattern of the
program, and can be done either in software or in hardware. Software approaches can
perform well whenever the programmer or the compiler can provide or extract information
about the data access pattern of an application [KCPT95, MG91, TE93]. However, they
add extra instructions to the code, and their automatic application may not be easy.
Hardware approaches add additional hardware to detect the data access patterns. Based
on the detected patterns, they are able to predict the next address that the processor
will issue in the near future (e.g [DS95, DS96, DS98]). In the next chapter, we focus
on hardware prefetching mechanisms. In this chapter we characterize the patterns that
appear in parallel programs. We only study load access patterns, since write latencies can
be easily hidden by the processor. We analyze the percentage of loads that follow one of
these five patterns: scalar, sequential, stride, linked list or index list traversal when the
traversal of the list is done with a single load, as described in [IVBG98, MH96].

We also study another metric. Hardware prefetch is hardly useful if once a pattern
is detected, the pattern does not appear again in the program. For that reason, we have
studied the sequence length. The sequence length is the number of times in a row that a
load follows a particular pattern. Hardware prefetchers will perform poorly if this number
if low. This is due to the learning time they need to get confidence. Furthermore, access
patterns or sequence lengths may change when the number of processors executing the
application changes. Previous works do not evaluate how this variation on the number
of processors executing the application may affect the distribution of the memory access
patterns. The length of memory accesses following a given pattern has been measured
in [DS96], but little systematic work on pattern characterization has taken into account

the number of processors.

In this chapter we use a subset of applications and kernels belonging to the SPLASH-
2 suite [WOTT95]. We study the data access patterns and the sequence lengths that
appear in these applications when the number of processors varies from 1 to 32. Our
results reveal the dominance of sequential traversals and, to a lesser extent, the presence
of stride accesses. Single load linked list or index list traversal almost does not appear
in these applications. We observe small differences in the access pattern distribution or
sequence length when the number of processors changes. But for Radix and Cholesky,
which are the applications with a higher communication-to-computation ratio, there is a

significative change on the access patterns as the number of processors increases. In the
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other cases, the sequence length changes relatively little with the number of processors.

This chapter is organized as follows: Section 2.2 presents the patterns measured, the
applications evaluated and the environmental setup; Section 2.3 shows the patterns dis-
tribution; Section 2.4 studies the sequence length for the different access patterns; Finally

Section 2.5 summarizes.

2.2 Measured Patterns and Environmental Setup

The prefetching techniques we use in the next chapter strongly rely on the existence of
predictable memory access patterns. As far as we know, there is no systematic study
of such patterns in parallel applications as the number of processors varies. Therefore,
we have analyzed load accesses for a subset of the SPLASH-2 suite [WOT95], using
sequential and non-sequential pattern detectors. We have also analyzed the sequence
length of loads. Section 2.2.1 presents these two measured patterns, while Section 2.2.2

presents the experimental setup and the applications we use for our experiments.

2.2.1 Measured Patterns

Access Patterns

We have looked for five load patterns which can potentially be recognized by the prefetch-
ing techniques we use later. These patterns, which we explain next, have been recognized

only when they appear in the stream of addresses issued by a single load.

e Stride (STR) This pattern appears when the distance between the objects accessed
is regular and larger than the block size. An example of this pattern appears when

traversing the column of a matrix that has been stored in memory by rows.

To detect this pattern we keep track of the addresses issued by each single load during
consecutive executions, and we compute the stride S as the difference between these

addresses. Thus, we can define:
Si = Ai — Ai—,
where A; and A; 1 are the addresses issued by a load during its i-th and (i-1)-th

execution. A pattern is detected when the stride matches the new stride computed

the following times that the load executes:
S;i=81=58 2=..= 8,

where k is a confidence counter. Once a pattern is detected, the adddres to prefetch

can be computed as:
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A1 = Ai + 5
We have also considered that a load is accessing memory with a stride pattern when

the stride S is negative or larger than the the block size.

Scalar (SCA) This pattern appears when accessing the same address. For instance,
when accessing the induction variable in a loop. For hardware prefetch, the detection
of this pattern is hardly useful. After the first cache miss the data will be usually
in the cache, unless it has been displaced because of cache conflicts or capacity
problems. This pattern is a particular case of the stride pattern that is detected

when the computed stride S is equal to zero.

Sequential (SEQ) This pattern appears when accessing objects that are contiguously
placed in memory. For instance, stack accesses or accesses to consecutive elements

in an array follow this pattern.

This pattern can be considered a particular case of the stride pattern, detected when

the stride S is larger than zero and smaller or equal to the block size.

Linked Data Structure (PTR) This pattern appears when traversing a list of records
chained by pointers, where one of the fields of the record is a mnext pointer to the

start address of the next record (e.g. p=p->next).

For the detection of this pattern the value read by the load needs to be tracked. If
we call d; to the value read by a load during its i-th execution, and A; to the address

issued also during it i-th execution, we can define Desp; as:
Desp; = A; —di—1

Thus, the linked list pattern is detected when
Desp; = Desp; 1 = Desp;_o9 = ... = Desp;_.

where k is also a confidence counter. The address to prefetch is computed as:
A; = d; + Desp;

Indez List (IND) This pattern appears in numeric codes and it is a mechanism used
by some methods to store vectors or sparse matrix. This pattern is similar to the
pointer list, but in this case we have an index vector that stores the index to the
next non-zero element of the index vector (e.g. i=index][i], instead of a pointer to

the next record).

Figure 2.1 shows the data of a sparse vector. In Figure 2.2, the same vector has
been stored using the LL (Linked List) format. With this format, only the non-zero
elements of the vector in Figure 2.1 need to be stored in the DATA vector. The
COLUMN vector keeps the column where each element of the DATA vector was
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placed in the initial vector. The in-order traversal of this vector requires the use
of the INDEX vector. The list starts with the element 0. The index to the next
non-zero element is in INDEX[0], and is 2. The next index to the next non-zero
element is in INDEX][2], and so on.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
DATA 0 0 0 71 84 0 86 27 0 0 48 0 0 0 66

Figure 2.1. Sparse vector.

COLUMN 3 6 4 10 14 7
DATA 71 86 84 48 66 27
INDEX 2 5 1 4 -1 3

Figure 2.2. Sparse vector stored using the LL format.

To detect this pattern we need to compute the initial address of the INDEX vector.
We call IV to this address, and Isize to the size of each index (integer) in bytes.
We can define IV; as:

IV, = A; — d;_1 * Isize
Thus, this pattern is detected when
IVi=1Vig=1Vig=...=1Viy
and the address to prefetch is computed as:

Aipr =1V + d; x Isize

The mechanism to detect sequential and stride pattern as described here was first
proposed in [BC91]. The mechanism to detect linked list and index list traversal was
proposed in [MH96].

Table 2.1 summarizes the recurrence conditions explained above for each particular
pattern. Remember that we track the stream of addresses issued by a single load. Ai in
Table 2.1 is the address generated by a load during its ¢-th execution, Ds is the value read
during its i-th execution, and Bsize is the block size [GBIVO1]. The first three patterns
(SCA, SEQ and STR) are particular cases of regular traversing, characterized by address-

address recurrences, whereas the next two (PTR, IND) are value-address recurrences that
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we classify as Irregular Traversing. When an instance of a load matches several patterns
at a time, it is first classified according to the pattern recognized in the previous instance.
If a load follows several patterns at the same time we classify it according to the following
priorities: SCA, PTR, IND, STR and SEQ.

|| Pattern | Acro. | Recurrence | Parameter ||
Regular Scalar SCA | A; = A;

Traversing Sequential SEQ | A; =A;_1 +s 0 < s <= Bsize

Stride STR | A; = A;_1 + S (S > Bsize) || (S<0)

Pointer List | PTR | A; = D;_1 +d record displacement = d
Irregular index integer size = 4
Traversing | Index List IND | A; =4*D;_; + K | base address of the
index array = k
Not Recognized NR Not Recognized as any of the previous ones

Table 2.1. The load patterns we consider and the recurrences defining them. A; and D; refer

respectively to the address and value of the i-th instance of a given load instruction.
Sequence length

We have also measured sequence lengths. Sequence length is defined as the number of
consecutive executions of a load following the same pattern. As an example, the address

stream
..., 10, 4, 68, 132, 196, 100, ...

contains a sequence of length 3, since the 3 bolded addresses differ from the previous ones

in the constant stride 64.

Sequence lengths are important because hardware prefetching mechanisms will be use-
ful only if they are long. Hardware prefetching detects that a particular load is accessing
memory following a certain pattern by recording the address issued by the load during a
minimum number of consecutive times. This is called learning time and is used to get con-
fidence. If the load does not execute again once the pattern it follows has been detected,

or if it only executes a few times, then the detected pattern will be hardly useful.

In our characterization the minimum length we detect is 2. Thus, the hardware
prefetchers we evaluate in the next chapter will need a load to execute 3 times before
the first prediction can be issued. If we look at the previous address stream, this means
that our hardware prefetcher will use addresses 4 and 68 to compute the stride 64; address
132 will confirm that the load is accessing memory with a stride of 64; then, address 196

will be issued to prefetch.
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2.2.2 Workload and Methodology

Table 2.2 shows the selected SPLASH-2 applications and some metrics for 16 processors.
The applications have been targeted to a MIPS-2 architecture and run until completion
by using MINT, an execution driven simulator for multiprocessors [VF94a]. Throughout

the chapter the analysis is constrained to the parallel section of the programs.

SPLASH-2 programs have been classified into three classes according to the interaction
between their data structures and access patterns and the cache lines. We refer to these
classes as: a) Regular programs, based on contiguously allocated data structures (Ocean,
FFT, LU, Radix and Cholesky), b) Particle programs, based on particles, i.e. struc-
tures that can share the same cache line, and that are accessed by different processors
(FMM, Barnes); and c¢) Irreqular programs, with highly irregular data structures (Radios-
ity, Raytrace). The implementations of Ocean and LU used in [VF94b] corresponds to
those specified here as Non Contiguous: main data sets are 2-dimensional arrays where
sub-blocks are not contiguous in memory. Alternatively, Ocean and LU Contiguous im-
plementations allocate data as arrays of sub-blocks, in order to reduce or even eliminate
false sharing. Moreover, in the case of Ocean contiguous, a multi-grid (instead of a SOR)

solver is applied.

Program Parameters Inst. (M) | Reads (M) | Writes (M)
Cholesky tk15.0 584.4 201.8 27.7
FFT 64K points 32.9 8.1 5.8
LU 512x512 matrix, 16x16 blocks 340.6 97.6 47.8
regular LU non- 512x512 matrix, 16x16 blocks 340.9 97.5 47.8
Ocean 258x258, tolerance 10-7, steps 4 282.3 81.6 18.5
Ocean-non 258x258, tolerance 10-7, steps 4 477.4 101.8 17.8
Radix 1024 K keys, radix =1024 47.9 11.2 6.6
particle Barnes 16K particles 2569.0 861.0 575.1
FMM 16K particles 1035.7 232.8 38.7
irregular | Radiosity | room -ae 5000.0 -en 0.050 -bf 0.10 2878.5 574.8 305.8
Raytrace car 994.0 228.6 117.6

Table 2.2. Selected subset of SPLASH-2. Statistics are for 16 processors, compiled with cc -O2 -mips2
-non_shared (MIPS SGI v.7.1 compiler). Ints refers to the total number of executed instructions across

all processors. We also show the total number of Reads and Writes.

2.3 Pattern Distribution

Figure 2.3 shows the pattern distribution of all load addresses of the evaluated programs
running on a 16-processor system. This experiment has been carried out placing a pattern

detector in each simulated processor and then summing up the patterns detected for each
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one. The bars in the Figure 2.3 include all sequences of length greater or equal than 2.
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Figure 2.3. Breakdown of pattern distribution for 16 processors and Bsize = 32. Pointer and Index

patterns are not plotted due to their negligible contribution.

Figure 2.3 does not show the PTR or IND patterns. The reason is the practical
absence of these patterns in the whole set of programs evaluated, with measured percent-
ages always falling under 0.1%. This observation agree with previous characterizations
available for uniprocessor applications. For example, only Spice of Spec92 and health of
Olden show significant percentages of self-linked patterns (21% of self-index and 27% of
self-pointer, respectively), being these patterns irrelevant in the whole set of Spec95fp,
Perfect and NAS-serial suites and of little importance in Spec95int and OLDEN (un-
der 3% and 6%, respectively in average [RIVLO00]). Consequently, when experimenting
with hardware-based prefetchers in the next chapter , we shall not include PTR and IND

pattern detectors.

To a large extent, the results mirror the features of the application data structures.
Thus, reqular programs have a large fraction of SEQ pattern and -excluding Radix- a low
fraction of NR accesses (9.7% in average). In contrast SEQ is very uncommon in the other
two classes of programs. Moreover, contiguous implementations of LU and Ocean prove
to increase the percentage of SEQ pattern: in LU this increase adds regularity (the NR
group decreases); in Ocean STR disappears and SEQ increases but the overall regularity

remains unchanged.

Barnes and FMM are particle programs and most structures are linked lists. Neverthe-

less, a significant amount of the STR, SEQ and SCA patterns appear in FMM, because
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of the loops in its code that access 1-dimensional global arrays sequentially, and a 2-
dimensional global array following the STR. pattern. Moreover, the compiler unrolls loops,
converting many sequential accesses to arrays into STR accesses. In Barnes, integer and
float global variables are frequently loaded inside a recursive function that performs the
core computations, contributing in a remarkable way (76.2%) to the SCA pattern. Finally,
NR accesses are significant in particle and irregular programs (25% in average), suggest-
ing the existence of more complex patterns which presumably will not be exploitable from

simple hardware-based prefetchers.

Besides 16-processors runs, we have performed simulations for 1-, 2-; 4-, 8-, and 32-
processors. We have found that for most applications the sum of the loads executed by
all processors remains constant or increases ounly slightly with the number of processors.
In addition, the weights of the patterns observed do not change when we vary the number
of processors. The only exceptions are Cholesky and Radix. In these applications, the
sum of the loads increases with the number of processors (Figure 2.4). In Cholesky it can
be observed a slight transfer from SEQ to STR (ending with a 2% stride for 32 proc.)
and a remarkable increase in the number of scalar loads (a factor 20x from 1 to 32 proc.).

When adding processors in Radix, the additional loads split equal between SCA and SEC

patterns.
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Figure 2.4. Pattern Distribution (million loads) for Cholesky and Radix up to 32 processors. Scalar is

splitin Ordinary loads (regular and synchronizing) and Polling loads.

These two applications, Cholesky and Radix, have a high communication-to-
computation ratio, because each processor communicates some locally-computed data to

the rest of the processors:

e In Cholesky, in each iteration of the outermost loop, a processor computes the

pivot element of the diagonal and forwards it to the rest of processors. It has
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a structure and partitioning similar to the LU factorization kernel, but it is not
globally synchronized between steps, and the consumer processors wait for the pivot
spinning on two scalar variables. Consequently, processors do not synchronize using
synchronization variables only: they also synchronize by polling on regular variables.
In our simulations we are able to identify the synchronization variables, and any
spinning on them appears as a single load in our bars. However, all the loads
caused by the polling on regular variables are counted, and appear in the bars as
part of the Scalar pattern. To separate these polling loads from ordinary (regular
and synchronizing) loads, we break down the Scalar category into Poll-scalar and
Ord-scalar, respectively. As can be seen from Figure 2.4 the effect of such polling
loads heavily affects the pattern distribution as Nprocs increase. Even though SEQ
percentage decreases sharply (from 85.2% for 1 processor to 22.8% for 32), note that
the increasing Poll-scalar accesses come from only two scalar loads, so the influence

of this scalar stream over a LC-based prefetcher should be negligible.

e The goal of Radix algorithm is to sort N integers or keys of B bits using a radix
R. The algorithm proceeds in ((B/R) + 1) phases or iterations, and each iteration
has several steps. In each iteration, a processor has to sort N/Nprocs keys. In
the first step each processor uses a local data structure of R entries to compute an
histogram. This step is the main responsible of the high NR pattern, since the access
to the entries does not follow any pattern. Next, it traverses this local structure to
accumulate the values in order to form the local accumulative histogram. In the
second step, the local histograms are accumulated again into a global histogram.
The parallel algorithm requires logoNprocs stages to compute a global histogram
from the local ones. The amount of work in this second step depends on the size
of the radix (which is the size of the histograms) and on the number of processors.
Finally, the global histograms are used to copy the keys to the sorted position in the
output array. Thus, when increasing the processor count, the instructions devoted
to do the histogram reduction (which follow either the SCA or SEQ pattern) also

increase: a 14.9% load increase from 1 to 32 processors.

Therefore, the relative weight of patterns can vary in applications where a significant
overhead is added as the processor count grows (communication and synchronization). In
turn this can lead to applications that benefits from a prefetch predictor when executing
in a few processors, but which may not benefit when executing with more processors.
We feel this consideration is important, since applications obtained from sequential algo-
rithms by automatic parallelism extraction easily could fall in this class of poor-scalability

applications.
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2.4 Sequence Length

Figure 2.5 shows how the captured pattern distribution changes if we remove the first
three loads of each sequence that need to be executed before an address can be predicted
(Section 2.2.1). The left bar of each program shows the load pattern distribution when all
sequences of length greater or equal than 2 have been included (as in Figure 2.3), while
the right bar shows the pattern distribution if we remove the first three loads of each
sequence. The overall regularity (SCA+SEQ+STR) decreases for all programs (15.1%
loss in average), being noticeable the 45.9% loss in capturing the SEQ pattern of LU-non.
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Figure 2.5. Effect of removing the first three loads of each sequence. The left bar shows the pattern
distribution when all sequences of length greater or equal than 2 have been included. In the right bar,

the first three loads of each sequence are not included.

A finer analysis appears in Table 2.3, where the dominant sequence lengths are recorded
for 16 processors, along with the percentage of loads that follow them. We have lumped
the more than 7 together. The SEQ pattern has been split up into 4-, 8-, 16- and 32-byte
sequences, as if they were different patterns. Sequences with percentages below 2.0 are
excluded from the main columns and accumulated in the remaining (REM) column. The

length with the maximum percentage is featured in bold.

It can be observed that usually there are a just a few outstanding sequence lengths
per application. Moreover, the SCA pattern is nearly always executed in long bursts (>7),
and the same holds true for SEQ-4, -8 and -16. By contrast, STR and in a lesser extent
SEQ-32 patterns, use to execute in shorter bursts (e.g. length 4 (34.3% STR) in FMM and
length 3 (67% SEQ-32) in LU-non). As a rule SEQ patterns perform longer sequences than
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SCAL. STRIDE SEQUENTIAL REM | NR
I | s | 16 [ 32
Cholesky [>7 (62.9%) - - >7 (17.6%) | >7 (7.7%) - 7.6% | 4.3%
2 (5.0%)
FFT | >7 (10.5%) | 3 (7.6 %) 6 (7.4%) |3.3% [12.1%
>7 (14.2%) >7 (39.9%)
3(29.5%)
LU | >7 (5.8%) | >7 (2.9%) 7(47%) | 0.8% [12.4%
>7 (44.0%)
LU Non | 7 (5.7%) | >7 (2.9%) 5 - - 3(67.1%) | 0.7% |23.6%
Ocean | >7 (10.1%) - - >7 (31.1%) | >7 (25.2%) | >7 (28.0%) | 2.1% | 3.5%
Ocean Non| >7 (29.9%) [>7 (32.6%) - >7 (4.9%) | >7 (21.3%) | >7 (8.8%) | 0.3% | 2.3%
Radix | >7 (2.6%) - >7 (3.8%) - >7 (37.4%) - 02% |56.0%
6 (2.4%)
Barnes 7 (9.5%) - - - - - 10.3%20.2%
>7 (57.5%)
FMM | >7 (17.7%) | 4 (34.3%) |>7 (3.9%) - >7T (41%) | >7 (5.0%) | 5.3% |29.6%
2 (3.4%)
3 (2.7%)
Radiosity [>7 (33.2%)| 5 (2.8%) ; - - ; 10.0%|35.4%
>7 (12.5%)
Raytrace [>7 (61.2%) - >7 (3.4%) - 3 (11.8%) - 8.2% |15.3%

Table 2.3. Dominant sequence lengths in all patterns for 16 processors. Maximum values for each
application are shown in bold. Percentages below 2.0 are omitted and accumulated in the REM column.

the STR ones and 32B strides usually dominate over shorter ones. Note that sequential
tagged prefetching could yield good results here, because it can capture SEQ patterns
coming from small-length sequences which will not be fully profited by another hardware

predictor that has larger learning times.

We now consider varying the number of processors. Depending on the problem parti-
tion sequence lengths can decrease as the number of processors executing an application
increases. Figure 2.6 shows an example. The arrows on top show the traversal of the
data structure in the sequential code. The Figure shows two different ways to divide the
work among the processors executing the parallel application. The problem partition in
Figure 2.6-(a) causes a reduction in the sequence length, while the problem partition in
Figure 2.6-(b) keeps it constant. Furthermore, if the problem partition applied is the one

in Figure 2.6-(a), the sequence length decreases as the number of processors increases.

We also notice that as the processors increase, the number of loads executed by
each processor decreases. This is true even for the communication-intensive applications
Cholesky and Radix. Thus, the problem partition when a program is parallelized may
cause a reduction in the sequence lengths as the number of processors increases. This
would decrease the effectiveness of the hardware-prefetch mechanisms. However, we have

done simulations with 1, 4, 8, 16, and 32 processors and we have observed that the sequence
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Figure 2.6. Changes in sequence length depending on the problem partition and number of processors

executing the application.

length changes relatively little with the number of processors. We believe that SPLASH-2
applications are very well programmed and tuned, but changes in the sequence length will
appear in applications not so well programmed, or applications automatically parallelized

by the compiler.

2.5 Summary

In this chapter we have used a subset of the SPLASH-2 suite as workload, and we have
performed a characterization of the load memory access patterns and sequence lengths.

This characterization has been done when the number of processors changes from 1 to 32.

The pattern breakdown reveals a practical absence of list and chained index patterns,
a dominance of sequential traversals, and meaningful presence of stride accesses. The
fraction of accesses non recognized is big enough (for some applications) to indicate that
further research is needed on new cost-effective pattern recognizers. Although there were
sparse comments in the literature, we have observed for the first time the persistence
of the patterns when ranging from 1 to 32 processors, although with some exceptions
in applications with a high communication-to-computation ratio (Cholesky and Radix).
This implies that the dynamics of loads scarcely varies as the problem is spawned on more
processors. A similar conclusion arises when studying the sequence lengths of memory
accesses that follow a pattern: they concentrate on one or at most two values, and this

also hold when varying the number of processors.
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Chapter 3

Hardware Prefetch in Bus-based

Multiprocessors

In the previous chapter we have charaterized the load access patterns of a subset of
SPLASH-2 applications. In this chapter, we will focus on hardware prefetch mechanisms.
Most recent research on hardware prefetching focuses either on uniprocessors, or on dis-
tributed shared memory (DSM) and other non bus-based organizations. Little work has
been done in the context of bus-based multiprocessors. In this context prefetching poses a
number of problems related to the lack of scalability and limited bus bandwidth of these

modest-sized machines.

This chapter considers how the number of processors and the memory access patterns in
the program influence the relative performance of sequential and non-sequential hardware
prefetching mechanisms in a bus-based multiprocessor. We compare the performance of
four inexpensive hardware prefetching techniques, varying the number of processors. After
a breakdown of the results based on a novel performance model, we propose a cost-effective

hardware prefetching solution for implementing on such modest-sized multiprocessors.

3.1 Introduction

Applying data prefetching on modest-sized bus-based multiprocessors is challenging.
These machines are based on a cheap, but fixed and non-scalable organization, and have to
cope with the ever growing CPU and memory requirements of new applications. They need
to balance processor speed, cache sizes, bandwidth and final cost carefully. In this market
so sensitive to cost, yet so performance-driven, cost-effective performance optimizations

have a great interest.
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Data prefetching has been proposed to hide read latencies in multiprocessors and
uniprocessors. Prefetch can be implemented in software or in hardware. Hardware ap-
proaches look for regular patterns into the stream of memory references issued by the
processor, or into the stream of consecutive references issued individually by each memory
instruction (e.g. [DS98]). Lately, proposals based on dependence analysis among mem-
ory instructions [CC98, RMS98] and on Markovian predictors [JG99] have been sug-
gested for uniprocessors. Hybrid software/hardware schemes that decrease the instruction
overhead and improve the accuracy of predictions have been proposed for multiproces-
sors [CBY94, ZT95]. However, prefetching in shared memory multiprocessors is prone to
increasing memory traffic and false sharing. These problems are particularly important
in bus-based multiprocessors, due to their limited bandwidth [TE93, TE95]. Little work

has been done in recent years to study the impact of prefetching on this kind of machines.

This chapter focuses on how the number of processors and the memory access patterns
influence the performance of low-cost prefetching mechanisms in a bus-based multiproces-
sor. We compare four prefetchers coupled to the on-chip cache against a Base system
with no prefetch. We vary the number of processors from 1 to 32. The evaluated system
is based on a split-transaction bus, with two levels of cache (on- and off-chip) and with
prefetching tied to the first level. A subset of applications and kernels belonging to the
SPLASH-2 suite is used as the workload [WOT™95]. We found that the prefetcher based
on the use of a Load Cache managed in a non-conventional way (only the loads missing

in the data cache are inserted in it), appears to be a suitable prefetcher.

This chapter is organized as follows: Section 3.2 presents related work; Section 3.3
describes the environmental setup; Section 3.4 presents a novel performance model; Sec-
tion 3.5 evaluates different hardware prefetching alternatives through a detailed simulation
model, and proposes a new cost-effective hardware prefetch mechanism; Finally in Sec-

tion 3.6 conclusions are summarized.

3.2 Related Work

Prefetching is implemented in hardware [BC91, CB94, CC98, DDS93, DS95, DS96, DS98,
FP92, Iba, IVBG98, JG97, JG99, JT93, MH96, RMS98, Smi78, Smi82], when the hard-
ware alone decides what data to prefetch and when and where to prefetch the data. It
can also be software [CB94, KCPT95, MG91, TE95], when the hardware supports a
prefetching instruction. In this case, either the programmer or the compiler must insert
prefetching instructions in the code. Finally, it can be hybrid [CB94, ZT95], when a
combination of both hardware and software prefetching is used. Next we review past pro-

posals. We focus on hardware prefetching mechanisms, and on the evaluated system (uni-
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or multiprocessor).

Sequential prefetching is one of the simplest hardware prefetch mechanisms that has
been proposed. In this scheme, cache line [+ is considered for prefetching upon the
reference of cache line /. Three different mechanisms, always, on-miss, and tagged, have
been proposed [Smi78, Smi82]. With always, on each access to line [, line I+1 is always
prefetched. With on-miss, if the access to the line [ was a miss, then line [+1 is prefetched.
With tagged prefetch, in the first access to line [, line [+1 is prefetched. The implementation
of tagged prefetching requires an extra bit (tag) per cache line. This bit is used to know
if a cache line has been accessed by the processor while it was in the cache. This bit is
reset when the cache line is loaded in the cache by a prefetch action, and it is set when
the processor access it for first time. A prefetch of the next cache line is issued whenever
the bit of a block is set.

In [DDS93], an adaptive sequential prefetching mechanism was proposed. This mech-
anism dynamically changes the number of consecutive cache lines to prefetch (degree
of prefetching). This mechanism measures the effectiveness of the prefetch as the ratio
between the number of prefetched lines that are used at least once and the number of
prefetched lines. If the prefetch is effective, the degree increases; otherwise, it decreases.

This mechanism can reduce traffic by removing useless prefetches.

Other proposals try to predict both sequential and non-sequential accesses. A Load
Cache (LC) mechanism consists of a table relating the PC-address of a load instruction
with its individual addressing behaviour. Whenever a load that is not already in the LC
is executed, an LC miss arises and the instruction is inserted into the LC. Data addresses
issued by that load in successive executions are tracked down, in an attempt to recognize
the reference’s stride. If a stride is detected, a new prefetch address is computed and issued
when the load executes again. With the LC mechanism, sequential and stride patterns can
be detected. The original proposal (Reference Prediction Table) was introduced in [BC91]
and evaluated in [CB94] along with a mechanism based on a lookahead PC for issuing
just-in-time prefetches. Later proposals elaborate more on the topic, either evaluating,
simplifying the prefetch scheduling or adding recognizable patterns [DS96, FP92, JT93].
Note that both, the LC mechanism and [Smi82] can predict sequential accesses. However,
the LC mechanism only predicts the sequential accesses issued by a single load, while the
mechanism in [Smi82] can predict sequential accesses issued by different loads with spatial

locality.

Mehrotra [MH96] also uses a LC table, but introduces the concept of value-address
recurrence, enabling identification of the patterns that appear in the traversal of a linked

list and/or index list, when the traversal is done using a single load. To recognize these
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patterns the LC table must also track the value read by the load instruction [Iba, IVBG98],

as explained in the previous chapter (Section 2.2.1).

With the LC approach a load that misses in the LC is always inserted. With this
always insertion policy, the probability of finding a load in the LC table is proportional
to the number of times that the load executes. However, we are interested on prefetching
the addresses to be issued by those loads that will miss in the data cache. Therefore,
we would prefer that only those missing loads were inserted into the LC table. For that,
a LC with on-miss insertion policy (LCm) was proposed in [Iba, IVBG98]. Unlike the
conventional LC management, LCm only inserts in the table those loads missing in the
data cache, preventing loads with high-locality from polluting the LC table. On-miss
insertion is shown to be two-fold beneficial: it avoids useless cache lookups and achieves a
very good LC space efficiency, usually outperforming the conventional LC. For instance,
a LCm with 8 entries can perform even better than a conventional LC with 512 entries.
The same work pointed out that activating sequential tagged prefetching in parallel with
LCm (called LCms) can achieve the best results in many cases, because the spatial locality
coming from an interleaving of several load streams can not be captured by an LC-based
prefetcher. This LCm mechanism was proposed in an uniprocessor environment, and its

advantages have not been verified in a multiprocessor system.

Recent proposals can detect other more complex patterns. [RIVL00] and [RMS98]
extend the work of Mehrotra to recognize the linked list traversals when the traversal of
the list is done using a pair of loads. A different approach is taken in [JG97, JG99]. In
these proposals, a list with the next misses (successors) is kept for each missed reference.
When the processor issues a reference, it looks up for any successors of the referenced line.

If there are, it issues the prefetch of one or several of these successor lines.

Sequential and stride prefetching have been extensively studied on scalable
DSM [DS95, DS96, DS98, CB94| where processors and memory are connected through
a multi-path interconnection network. Results in [DS95, DS96] showed that sequential
prefetching can generally outperforms stride prefetching in a DSM environment, however
it increases false sharing, and also memory traffic. This additional traffic may not hurt
performance in a DSM environment, where memory contention is assumed to be low,
but it may become a serious issue in bus-based multiprocessor where memory bandwidth
is limited. There are two well-known works on bus-based shared memory multiproces-
sors [TE93, TE95]. However, these works use software prefetching and only consider a
single level of cache. In addition, they do not evaluate the effectiveness of the prefetch as

the number of processors increases.

We feel that an LCm is worth trying on a bus-based multiprocessor, because of several
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reasons: it could press the cache and the memory far less than sequential prefetchers do,
and its implementation cost is low. On the other hand, when adding tagged sequential
prefetching, LCms could outperform conventional mechanisms, particularly for those ap-
plications requiring moderate bandwidth. Since bandwidth can become a limitation as the
number of processors grows, we will consider its impact both on the addressing pattern

distribution and the LCm/LCms performance.

3.3 Environmental Setup

The system model we have considered is outlined in Figure 3.1, detailed for a single proces-
sor. We simulate a system with 800 MHz RISC processors executing a MIPS-2 ISA where
processors are connected through a split transaction bus. Due to the lengthy simula-
tions that our experiments require, we simulate a single-issue processor with blocking read
misses. Write latency is hidden by using a Coalescing Write Buffer (CWbuf) operating
as described in [VF94b]. According to [PTA97], the performance of a system with a
W-issue superscalar can be roughly approximated by simulating a single-issue processor
with W times higher frequency. Consequently, our speed results will roughly approximate

the speed of a system with 2-issue superscalar processors cycling at 400 MHz.

The bus has split transactions and is based on the DEC 7000 and 10000 AXP Fam-
ily [AI92]. It runs at 200 MHz, with 32 bits for addresses and 128 bits for data, which
yields 3.2 GBps of bandwidth. The pipelined bus protocol consists of four phases: 1)
Request & arbitration (4 CPU cycles), 2) Address & command issue (4 CPU cycles), 3)
Read bank & snoop (32 CPU cycles), 4) Transfer in chunks of 16B (4x4 = 16 CPU cycles).

Each processor has two levels of cache. The off-chip second-level cache memory (L2) is
copy-back and write-allocate; dirty victim blocks are placed into a copy-back Dirty Buffer
(Dbuf). L2 supports up to three concurrent misses: a read miss (L1 also missed and
processor stalls), a write miss (the top entry of CWbuf is not in L2) and a prefetch miss.
The first level (on chip) is composed of the CWbuf and of a write-through, no write-allocate
cache (L1). Table 3.1 shows sizing, timing and structure for all the hierarchy components.
Cache sizes will be detailed in Section 3.3.2. Coherence in L2 and Dbuf is kept using
an Illinois-based MESI invalidation protocol [PP84], which uses an additional shared
control line in the bus. Associativity, block size and number of sets of L2 and L1, along
with the replacement rule of L2, guarantee the inclusion property between cache levels.
The CWbuf can delay and aggregate writes belonging to the same L1 cache blocks, and
therefore other processors are not able to immediately observe those writes. This buffer is
emptied before releasing a lock or acquiring a barrier, and the processor stalls while the
CWbuf empties. This behaviour is based on the support the Alpha AXP Architecture
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provides for implementing release consistency [Cor96].
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Figure 3.1. Multiprocessor system used for comparing prefetching techniques. The Bases System (ho

prefetch) excludes the dashed components. (Address predictor and Prefetching Address Buffer).

3.3.1 System with prefetch

The Address Predictor (AP) and the Prefetch Address Buffer (PAbuf) make up the
prefetch subsystem. We consider the following four Address Predictors, presented in Sec-

tion 3.2:

e 1) Sequential Tagged (Ts)
This is the tagged sequential prefetching approach as proposed in [Smi78§]
e 2) Load Cache (LC)
This predictor is based on a conventional Load Cache [BC91]. The Load Cache can

record the needed information to recognize sequential, stride, single load linked list
and index list traversal accesses. However, as suggested in the previous chapter we
do not add any list prediction ability, due to the practical inexistence of the right

patterns in the applications that we use for our experimentation.
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Component Timing # Entries Structure
(CPU cycles) or size
Main Memory 32 8 banks 64B block, interleaved
Bus 4: 4: 32: 4x4 16B width split-transaction
L2 cache 4: rd/wr hit from L1 | see Table 5 4-way, 64B block
8: fill 64B from bus Data Only
Dbuf (Dirty L2+1: hit from L1 6 entr FIFO
Buffer) 64B/entry
CWhbuf (Coalescing 1: rd hit from L1 6 entr FIFO
Write Buff.) 6 entr 32B/entry
L1 cache 1: rd/wr hit; see Table 5 1-way, 32B block
2: fill from L2 Data Only
PAbuf (Prefetch 1 6 entr FIFO, filter addresses
Address Buff.) already present
Load Caches: 1 16 entr 1-way + data path for computing
LC, LCm, LCms address predictions

Table 3.1. Default sizings, basic timing and structure for memory, bus, caches and buffers.

e 3) Load Cache with on-miss insertion (LCm)

This mechanism is based on a conventional Load Cache but uses an on-miss insertion
policy [Iba, IVBGYS].

e /) Load Cache with on-miss insertion plus sequential tagged (LCms)

This mechanism was also proposed in [Iba, IVBG98]. It combines Ts and LCm to
operate in parallel. The advantage of combining both mechanisms is that we are
able to detect not only sequential and stride prefetches followed by a single load, but

also sequential accesses coming from different load streams.

The Prefetch Subsystem of this model is described in [GBIV01], and works as follows.
According to the internals of each address predictor, a particular stream of prefetch lookups
is issued to the first level. Dedicated ports allow CPU demands and prefetches to proceed
in parallel. A hit ends up the prefetching activity, whereas a miss (both in CWBuf and L1)
pushes the predicted address in the PAbuf, which will contend (with the lowest priority)
for the only port of the second level cache. No other prefetch request is issued to the
second level until the previous one is serviced. A block prefetched from main memory is

loaded in both cache levels.
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3.3.2 Workload and Methodology

We have selected a subset of the applications evaluated in the previous chapter (Section 2.3
and 2.4). We have focused on two kernels (FFT and Radix) and four applications (FMM,
Radiosity, Ocean and Ocean-non). The applications have been selected to have a mixed of
applications with different characteristics. For instance, Ocean has been chosen because
more than 80% of the executed loads follow a sequential pattern. In Ocean-non the
percentage of sequential decreases to a 30%, which is also the percentage of scalar and
stride patterns for this application. Radix and FMM are two of the applications with
the lower percentage of recognizable patterns (when considered the learning time, this
percentage is in both cases below 50%). Radix and Radiosity are the two remaining

applications with the larger percentage of stride pattern.

Since we concentrate on the effects of data prefetching, we disregard the time or band-
width invested in instruction processing, as in other related works (e.g. [DS96, TE93]).
We have arranged the experiments into two sets: Set 1 models a system that strongly
presses the memory system, while Set 2 features cache sizes closer to current organiza-
tions (see Table 3.2), WS1 and WS2 are respectively the primary and secondary working
sets stated in [WOTT95] for 32 processors. The size ratio between levels is 1:16 for Set 1
and 1:32 for Set 2.

SET1 SET?2
L1 L2 L1 L2
FMM 2 KB < WS1 | 32 KB > WS1 8 KB < WS1 | 256 KB < WS2
FFT
Ocean 8 KB < WS1 | 128 KB > WS1 | 32 KB < WS2 1MB > WS2
Ocean-non
Radiosity 2 KB < WS1 32 KB > WS1 8 KB < WS1 256 KB > WS1
Radix 8KB < WS1 | 128 KB < WS1 | 32 KB < WS1 1MB > WS1

Table 3.2. Selected cache sizes for the two experimental sets and their relation with the working sets.
3.4 Performance Model

In order to evaluate a prefetching activity, the most important measure is the execution
time. However, to better understand the results, the study of other metrics is needed. In
this thesis we study the miss-ratio and we extend the performance model for uniprocessors
presented in [Iba, IVBGY98] to a multiprocessor system. This resulting model is useful to
analyze the behaviour of a prefetch mechanism in a multiprocessor system with a memory
hierarchy of two cache levels. The performance model is shown in Figure 3.2. All ratios

in the Figure are relative to the number of load instructions.
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Figure 3.2. Performance model showing the demand and prefetch miss ratios of interest.

The bar on the right of the zero axis is the L1 load miss ratio, split into the misses
serviced either from Main Memory or from L2 (L1 demand miss ratio = from M + from
L2).

The bar on the left is the L1 miss ratio for prefetch requests (LI prefetch miss ratio).
In this bar misses are first classified according to the supply source (Main Memory or
L2) and further divided by their utility (useful and useless): L1 prefetch miss ratio =
from M (useful + useless) + from L2 (useful + useless). A useless prefetch means data
prefetched but a) never demanded by the processor, or b) replaced or invalidated before

being requested.

Note that by adding the two from M miss ratios (demand and prefetch) we obtain the
main memory requests per read reference, or Main Memory traffic ratio from now on. On
the other hand, the total bar length (L1 demand + L1 prefetch miss ratio) equals the L2
requests per read reference, or L2 traffic ratio. Finally, the number P/N on the left is the

number of prefetch requests per every 100 loads, a measure of the lookup pressure on L1.

The ultimate goal of any prefetch system is to reduce the execution time. This goal

can be achieved by:

e Decreasing the L1 miss ratio due to CPU demands (L1 demand miss ratio).

e Keeping the L2 traffic ratio low.

e Keeping the Main Memory traffic ratio low.

In a real system with bandwidth restrictions, these three parameters must be balanced.

Prefetch mechanisms can be helpful at reducing the L1 demand miss ratio, but this may not

reduce the execution time of a program if they increase the L2 or main memory traffic ratio
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due to useless prefetches. In our model, an active prefetcher will appear as a prefetcher
with a long left-hand bar, in which case the useless areas must be considered carefully.
For a particular prefetcher, if the right bar appears shifted to the left when compared to
the bar without prefetching, it means that the prefetchers reduces L1 demand miss ratio.
All these three parameters can easily be identified with our miss-ratio performance model.
Therefore, we consider our model to be useful to highlight what we can expect from a

particular prefetcher.

3.5 Evaluation

3.5.1 Base System

Before evaluating the prefetching mechanisms, we show results for the system without
prefetch. Table 3.3 shows the (L1 demand miss ratio), while Figure 3.3 shows (Speedup,
average read access time (Ta) in CPU cycles and bus utilization (BU)). The number of

processors ranges from 1 to 32.

The data displayed in the Table 3.3 and Figure 3.3 show the scenario where we are
going to apply prefetch. It can be observed that the operating point in Set 1 has been
selected in order to get substantial miss ratios. When rising the number of processors, BU
almost saturates in several cases, particularly in FMM and Ocean. On the contrary, miss
ratios and BU are much lower in Set 2. Ta increases with the number of processors in most
cases, because more processors compete for the shared bus and same number of memory
banks. The progressive saturation of the bus dominates the effect of having a greater
global cache size when we have more processors. We have also calculated the invalidation
rates with respect to the total number of memory references, for each program and varying
the number of processors. Differences are negligible when prefetching is applied, and we

will not devote further attention to them.

The Base system miss ratios (Table 3.3), shows a marked stability with independence
of the processor count. This allow us to concentrate in a 16 processor system to analyze

the miss ratios of the whole set of prefetching alternatives.

3.5.2 Discussion of Prefetching Alternatives

Miss Ratios

Firstly, we will analyze the miss ratios. Figure 3.4 shows the miss-ratios of the applications
in Section 3.3.2, using the performance model described in Section 3.4. We show results for

the four considered prefetching alternatives against the Base system, and for 16 processors.
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Figure 3.3. Speedup, Ta (cycles) and BU (in %) vs. number of processors, for the Base system.
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Number of processors

32 |16 [ 8 | 4 ] 1

FMM Set 1 | 21.8 | 22.3 | 22.4 | 22.7 | 23.8
Set 2 8.0 8.1 8.2 8.2 8.7
FFT Set 1 | 4.8 4.8 4.8 4.8 4.0
Set 2 2.9 2.9 2.9 2.9 2.9
Ocean Set 1 | 13.5 | 13.4 | 13.7 | 14.0 | 13.5
Set 2 7.6 9.9 123 | 11.7 | 124
Ocean non | Set 1 | 11.0 | 11.4 | 11.2 | 11.8 | 14.5
Set 2 8.4 9.5 9.9 10.5 | 13.2
Radiosity Set 1 | 12.2 | 12.1 | 12.6 | 11.6 | 12.0
Set 2 5.4 5.3 4.9 4.8 4.3
Radix Set 1 8.5 7.8 74 7.1 7.1
Set 2 | 5.6 5.6 5.6 5.5 5.5

Table 3.3. L1 demand miss ratios of loads for the Base system.

Our observations are:

When compared against the Base system, the Main Memory traffic ratio shifts to
the left. Tagged- Sequential prefetchers (T's and LCms) increase this traffic in FFT

and Ocean Non.

With respect to L1 demand miss ratio, the prefetch mechanisms can be divided into
two groups: a) LC and LCm and b) Ts and LCms. The second group achieves
stronger reductions, except for FMM and Ocean Non, the two programs with higher

percentages of STR pattern.

LC and LCm generate a small number of useless prefetch requests. On the other
hand, the Ts and LCms can trigger many useless prefetches, specially for those
applications with a small fraction of sequential pattern (FMM and Radiosity in
Figure 2.3 in previous chapter), where traffic from L2 to L1 due to prefetching is

similar and high for these prefetchers.

LCms, which combines requests from two predictors, usually makes the highest pres-
sure on L1 (P/N). On the other hand, P/N in LC only depends on the recognized
patterns and on the number of entries. Thus, note that P/N is the same in both
Sets for this prefetcher, even though cache sizes are very different. Remember, how-
ever, that in our system prefetch requests do not stall the processor, since we have

a dedicated prefetch port in L1.
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Figure 3.4. Demand and prefetch miss ratios, showing the behaviour of the Base system and Ts, LC,
LCm, LCms Prefetchers for 16 processors. On the left, we report the number of prefetch request per

every 100 loads (p/n)
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Execution Time

Now, let us focus on the performance of prefetchers against the Base System. Table 3.4
shows the speedups (percentage) relative to the Base System achieved by LCm, LCms
and Ts for 1, 4, 8, 16 and 32 processors respectively. Note that the speedup numbers in
Table 3.4 show the execution time improvement of the system with prefetch with respect
to the same system without prefetch and with the same number of processors. Thus,
speedups for a given number of processors are not comparable with those for other number
of processors. Numbers in bold indicate the best speedup for a given number of processors.
However, we do not show results for L.C, since it is the best prefetcher only in Radiosity
(16 processors, Set 1) and it degrades performance less than the others only in Radix (32

processors, Set 1).

Relations between pattern distribution and performance can be clearly observed only
in certain cases. Thus, in the two programs with the higher percentage of stride pattern
(FMM and Ocean Non), either LCm, LCms or both achieve stronger reductions in demand
miss ratio and perform always better than Ts (Table 3.3). In Ocean (the application
with a higher percentage of sequential patterns) Ts eliminates more demand misses, but
outperforms LCm and LCms only in 4 over 10 cases, yet differences in the speedups relative
to the Base System (Table 3.4) are often negligible. For the other three applications, these
relations are not so clear. Looking at LCm and LCms, one of the two is the best prefetcher
in 83% of cases, improving performance with respect to the Base System in 70% of cases.
LCm, LCms and Ts yield negative speedups respectively in 8.3%, 9% and 12% of cases.
There are 5 cases (3%) where all prefetchers degrade performance respect to the Base

System.

Summing up, if we take the best one from LCm and LCms in each case, we obtain in
average relative speedups of 9.97%, 5.03%, 2.54% and 0.43% for 4, 8, 16, and 32 processors
respectively, where Ts yields 9.25%, 4%, 0.17% and -5.22%. The implementation cost of
LCms is less than 24 B per LC entry [IVBGY8], totalizing less than 400 B, plus the control
logic, and a bit per L1 line for supporting Ts. This represents a little cost regarding
the cache sizes we have dealt with in Set 1, and a negligible one considering the (more
realistic) sizes used in Set 2. Consequently, we believe it is worth incorporating a LCms
mechanism, where the sequential tagged predictor could be disconnected by software,
either by the programmer or the compiler. This decision could be taken based in the
number of processors executing the application, or the characteristics of the application.
In those cases where the sequential prefetcher gets disengaged there will be some unused

hardware, but of very low cost.
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I SET 1 SET?2 |
LCm | LCms Ts LCm | LCms Ts
1 3.82 1.92 -1.47 1.51 1.74 0.97
4 4.90 0.95 -1.19 1.47 1.45 0.62
FMM 8 4.34 0.33 -2.12 1.31 0.62 -0.09
16 4.35 -4.53 -7.04 1.07 -0.68 -0.62
32 1.19 -17.10 | -17.38 | 0.93 -2.04 -1.94
1 7.00 8.99 8.29 6.80 7.88 6.86
4 1.42 5.91 5.76 1.81 5.25 4.82
FFT 8 2.51 3.70 4.10 0.51 1.71 1.71
16 1.10 1.10 1.76 0.31 -4.35 -3.11
32 -0.43 -17.45 | -17.02 | 0.98 | -14.15 | -14.63
1 16.65 22.97 | 23.02 | 18.35 24.07 | 24.31
4 12.23 15.47 | 15.28 16.29 19.57 | 20.58
OCEAN 8 2.90 4.85 6.13 8.42 11.26 11.03
16 8.58 9.02 6.41 5.07 2.63 2.63
32 -1.27 -3.68 -2.11 2.41 -2.58 -1.85
1 28.58 | 25.07 19.29 24.96 | 28.27 | 24.53
4 20.32 22.77 | 21.35 17.56 | 21.63 | 20.85
OC NON 8 6.84 6.36 6.54 10.86 | 12.57 | 12.24
16 2.00 -2.41 -2.56 2.23 1.12 1.61
32 -0.09 -4.78 -3.84 -1.44 -3.80 -2.34
1 0.79 3.33 2.41 0.39 1.41 1.05
4 3.54 3.65 3.58 2.10 1.26 0.90
RADIOSITY | 8 1.04 2.80 1.83 0.90 1.47 0.88
16 -0.54 0.24 -0.17 0.65 1.06 1.61
32 | 0.77 -0.31 -1.40 0.63 1.02 -0.25
8.67 12.74 | 12.39 13.65 20.10 | 20.15
4.03 6.49 6.09 7.86 12.46 12.32
RADIX 8 2.01 3.07 1.39 0.18 6.42 4.31
16 | -0.63 -0.69 -0.85 1.66 4.66 2.33
32 -1.28 -2.29 -2.22 0.55 2.39 2.39

Table 3.4. Speedups of LCm and LCms and Ts relative to the Base System
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3.6 Summary

In this chapter, we have analyzed four cost-effective hardware prefetching techniques that
can succeed in a bus-based multiprocessor. These four hardware prefetching approaches
have been tested against a system with no prefetch, varying the number of processors from
1 to 32. For the experiments a subset of the SPLASH-2 applications have been used, and
two experimental sets have been arranged for a two-level cache system. Our results show
that the the performance of the different prefetchers depend more on the characteristics of
the applications than on the cache sizes. LCms appears to be a suitable prefetcher, even
though it degrades performance in some cases where bus utilization is near saturation and

any moderate increase in the traffic negatively affects global performance.

Observing results from LCm and LCms together, we suggest considering an LCms
mechanism where sequential prefetching can be activated or disconnected by software when
compiling or by the programmer. Taking the best from the two prefetchers, we obtain in
average relative speedups of 9.97%, 5.03%, 2.54% and 0.43% for 4, 8, 16, and 32 processors
respectively, at a truly low cost, considering a bus with a reasonable bandwidth for a

modern modest-sized bus-based multiprocessor, where a traditional sequential prefetcher
yields 9.25%, 4%, 0.17% and -5.22%.
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Chapter 4

Support for Parallel Reductions in
Scalable Shared-Memory

Multiprocessors

Reductions are important and time-consuming operations in many scientific codes. Ef-
fective parallelization of reductions is a critical transformation for loop parallelization,
especially for sparse, dynamic applications. Unfortunately, conventional reduction paral-

lelization algorithms are not scalable.

In this chapter, we present new architectural support that significantly speeds-up par-
allel reduction and makes it scalable in shared-memory multiprocessors. The required ar-
chitectural changes are mostly confined to the directory controllers. Experimental results
based on simulations show that the proposed support is very effective. While conven-
tional software-only reduction parallelization delivers average speedups of only 2.7 for 16

processors, our scheme delivers average speedups of 7.6.

4.1 Introduction

During the last decade, programmers have obtained increasing help from parallelizing
compilers. Such compilers help detect and exploit parallelism in sequential programs.
They also perform other transformations to reduce or hide memory latency, which is

crucial in modern parallel machines.

In scientific codes, an important class of operations that compilers have attempted to

parallelize is reduction operations. A reduction operation occurs when an associative and
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commutative operator ® operates on a variable z as in z = x ® expression, where x does

not occur in expression or in any other place in the loop.

Parallelization of reductions is crucial to the overall performance of many parallel codes.
Transforming reductions for parallel execution requires two steps. First, data dependence
or equivalent analysis is needed to prove that the operation is indeed a reduction. Second,

the sequential computation of the reduction must be replaced with a parallel algorithm.

In parallel machines of medium to large size, the reduction algorithm is often replaced
by a parallel prefix or recursive doubling computation [Kru86, Lei92]. For reductions
on array elements, a typical implementation is to have each processor accumulate partial
reduction results in a private array. Then, after the loop is executed, a cross-processor
merging phase combines the partial results of all the processors into the original, shared

array.

Unfortunately, such an algorithm can be very inefficient in scalable shared-memory
machines when the reduction array is large and sparsely accessed. Indeed, the merging
phase of the algorithm induces many remote memory accesses and its work does not
decrease with the number of processors. As a result, parallel reduction is slow and not

scalable.

In this chapter, we propose new architectural support to speed-up parallel reductions in
scalable shared-memory multiprocessors. Our support eliminates the need for the costly
merging phase, and effectively realizes truly-scalable parallel reduction. The proposed
support consists of architectural modifications that are mostly confined to the directory

controllers.

Results based on simulations show that the proposed support is very effective. While
conventional software-only parallelization delivers an average speedup of 2.7 for 16 proces-

sors, the proposed scheme delivers an average speedup of 7.6.

This chapter is organized as follows: Section 4.2 discusses the parallelization of reduc-
tions in software, Section 4.3 presents our new architectural support, Section 4.4 describes
our evaluation methodology, Section 4.5 evaluates our proposed support, Section 4.6 out-
lines how the support can also be used for another problem, Section 4.7 presents related

work, and Section 4.8 concludes.
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4.2 Parallelization of Reductions in Software

4.2.1 Background Concepts

A loop can be executed in parallel without synchronization only if its outcome does not
depend upon the execution order of different iterations. To determine whether or not
the order of iterations affects the semantics of the loop, we need to analyze the data
dependences across iterations (or cross-iteration dependences) [Ban88]. There are three
types of data dependences: flow (read after write), anti (write after read), and output

(write after write).

If there are no dependences across iterations, the loop can be executed in parallel.
Such a loop is called a doall loop. If there are cross-iteration dependences, we must insert

synchronization or eliminate the dependences before we can execute the loop in parallel.

If there are only anti or output dependences in the loop, we can eliminate them by
applying privatization. With privatization, each processor creates a private copy of the
variables that cause anti or output dependences. During the parallel execution, each

processor operates on its own private copy.

Figure 4.1(a) shows an example of a loop that can be parallelized through privatization.
There is an anti dependence between the read to variable Temp in line 4 and the write to
Temp in line 2 in the next iteration. Furthermore, there is an output dependence between
the write to Temp in line 2 in one iteration and the next one. By privatizing Temp, these

dependences are removed and the loop can be executed in parallel.

1 for(i=0;i<n;i+=2){ 1 for(i=1;i<n;i++)

2 Temp=al[i+1]; 2 Afi]4+=A[i-1];
3 a[i+1]=ali];

4 a[ij=Temp;

5 }

(a) (b)

Figure 4.1. Loops with anti and output dependences (a) and flow dependences (b).

If there are flow dependences across iterations, the loop cannot generally be executed
in parallel. For example, the loop in Figure 4.1(b) has a flow dependence in line 2 between
consecutive iterations. In this case, iteration ¢ needs the value that is produced in iteration

1 — 1. As a result, the loop cannot be executed in parallel.
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4.2.2 Parallelizing Reductions

A special and frequent case of flow dependence occurs in loops that perform reduction
operations. A reduction operation occurs when an associative and commutative operator
® operates on a variable z as in x = z ® expression, where x does not occur in expression

or in any other place in the loop. In such a case, = is a reduction variable.

A simplified example of reduction is shown in Figure 4.2. In the figure, array w is
a reduction variable. Note that the pattern of access to a reduction variable is a read
followed by a write. Therefore, there may be flow dependences across iterations. As a

result, the loop cannot be run in parallel.

1 for(i=0;i<Nodes;i++)

2 w[x[i]] +=expression;

Figure 4.2. Loop with a reduction operation.

Parallelizing loops with reductions involves two steps: recognizing the reduction vari-
able and transforming the loop for parallelism. Recognizing the reduction variable involves
several steps [Zim91]. First, the compiler syntactically pattern-matches the loop state-
ments with the template of a general reduction (z = x ® expression). In our example,
the statement in line 2 matches the pattern. Then, the operator (+ in our example) is
checked to determine if it is commutative and associative. Finally, data dependence or
equivalent analysis is performed to verify that the suspected reduction variable is not ac-
cessed anywhere else in the loop. In our example, all of these conditions are satisfied for

w.

Once the reduction variable is recognized, the loop is transformed by replacing the
reduction statement with an equivalent parallel algorithm. For this, there are several

known methods. The two most common ones are as follows:

e Enclose the access to the reduction variable in an unordered critical sec-
tion [EHLP91, Zim91]. Alternatively, we can access the variable with an atomic
fetch-and-op operation. The main drawback of this method is that it is not scalable,
as the contention for the critical section increases with the number of processors.

Thus, it is recommended only for low-contention reductions.

e Exploit the fact that a reduction operation is an associative and commutative recur-
rence. Therefore, it can be parallelized using a parallel prefix or a recursive doubling

algorithm [Kru86, Lei92]. This approach is more scalable.
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For reductions on array elements, a commonly-used implementation of the second
method is to create, for each processor, a private version of the reduction array initialized
with the neutral element of the reduction operator. During the execution of the parallelized
loop, each processor accumulates partial results in its private array. Then, after the loop is
executed, a cross-processor merging phase combines the partial results of all the processors

into the shared array.

Using this approach, our example loop from Figure 4.2 gets transformed into the
parallel loop of Figure 4.3. For simplicity, static scheduling is used and the code for

forking and joining is omitted. Thus, we show only the code executed by each processor.

In the parallelized loop, each processor has its own array w_priv/PID], where PID is
the processor ID. First, each processor initializes its array with the neutral element of
the reduction operator (lines 1-2). In our example, the neutral element is 0 because the
reduction operator is addition. Next, each processor gets a portion of the loop and executes
it, performing the reduction operation on its array w_priv/PID] (lines 3-4). After that, all
processors synchronize (line 5). Then, they all perform a Merging step, where the partial
results accumulated in the different w_priv/PID] arrays are merged into the shared array

w.

// Initialize the private reduction array

1 for(i=0;i<NumCols;i++)

2 w_priv[PID][i]=0;

// The range 0..Nodes is split among the processors
3 for(i=MyNodesBegin;i<MyNodesEnd;i++)

4 w_priv[PID][x[i]]4+=expression;

5 barrier();

//The range of indices of w is split among processors
6 for(i=MyColsBegin;i<MyColsEnd;i++)

7 for(p=0;p<NumProcessors;p++)

8 wli]+=w_priv[p][i};

9 barrier();

Figure 4.3. Code resulting from parallelizing the loop in Figure 4.2.

In the case of scalars, this merging step can be parallelized through recursive doubling.
In the case of arrays, however, it is more efficient to parallelize it by having each processor
perform merging for a sub-range of the shared array. Thus, in our example each processor
processes a portion of w element by element (line 6). For each element, the processor in

charge of processing it takes the partial result of each processor (line 7) and combines it
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into its shared counterpart (line 8). Finally, another global synchronization is performed

(line 9), to guarantee that the subsequent code accesses see only the fully merged array w.

4.2.3 Drawbacks in Scalable Multiprocessors

This implementation of reduction parallelization has two important drawbacks in scalable
shared-memory multiprocessors with large memory access latencies: many remote misses

in the merging phase and cache sweeping in the initialization and merging phases.

The merging phase necessarily suffers many remote misses. Indeed, for each shared
array element that a processor accesses in line 8, all but one of the corresponding private
array elements are in remote memory locations. Because of this, the merging operation

(also called merge-out) can be very time consuming.

Note that the time needed to perform the merging does not decrease when more proces-
sors are used. With more processors, each processor has to perform combining for fewer
elements of the shared array. However, each element requires more work because more
partial results need to be combined. Specifically, consider an array of size s and p proces-
sors. The merging step requires that each processor combine p sub-arrays of size s/p. As
a result, the total merging time is proportional to p * s/p = s, which does not depend on

the number of processors.

The problem gets worse when the access pattern of the reduction is sparse. In this
case, the merging operation performs a lot of unnecessary work, since it operates on many
elements that still contain the neutral element. To improve this case, each processor could
use a compact private data structure such as a hash table instead of a full private array.
With this approach, however, improving the merging phase comes at the cost of slowing
down the main computation phase. The reason is that addressing this compact structure

requires indirection, which is more expensive than the simple addressing of array elements.

The second problem, namely cache sweeping, occurs in the initialization (lines 1-2)
and merging (lines 6-8) phases. Cache sweeping in the initialization may cause additional
cache misses in the main computation phase (lines 3-4). Cache sweeping in the merging

phase may cause additional misses in the code that follows the reduction loop.

4.3 Private Cache-Line Reduction (PCLR)

To address the problems discussed in Section 4.2.3, we propose to add new architectural
support to scalable shared-memory multiprocessors [DGP102, GPZ"01]. We call the new

scheme Private Cache-Line Reduction (PCLR). In this section, we give an overview of the
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scheme and then propose an implementation.

4.3.1 Overview of PCLR

The essence of PCLR is that each processor participating in the reduction uses non-
coherent lines in its cache as temporary private storage to accumulate its partial results
of the reduction. Moreover, if these lines are displaced from the cache, their value is
automatically accumulated onto the shared reduction variable in memory. Finally, since
the cache lines are non-coherent, cache misses are satisfied from within the local node
by returning a line filled with neutral elements. Figure 4.4 shows a representation of the

scheme.

Displace

Neutral
Element

O

Directory
\
Memory Shared S SaSuuAASSy
Reduction
Line

Figure 4.4. Representation of how PCLR works.

With this approach, the processors are relieved of the initialization and merge-out
work, therefore eliminating the two problems pointed out in Section 4.2.3. Also, since the
approach is still based on computing partial results and combining them, the reduction is

performed with no critical sections.

The initialization phase is avoided by initializing the reduction lines on demand, as
they are brought into the cache on cache misses. Since the cache is used as private storage
to accumulate the partial results, there is no need to allocate any private array in memory.
On a cache miss to a reduction line, the local directory controller intercepts the request

and services it by supplying a line of neutral elements.

The merging phase is avoided by combining the reduction cache lines in the back-
ground, as they are displaced from the cache during parallel loop execution. As each
displaced reduction line reaches the home of the shared reduction variable, the directory
controller combines its contents with the shared reduction variable in memory. Meanwhile,

the processors continue processing the loop without any interruption.
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When the parallel loop ends, some partial results may still remain in the caches. They
must be explicitly flushed so that they are correctly combined with the shared data before
any further code is executed. This flush step takes much less time than the ordinary
merging phase of Figure 4.3. There are two reasons for it. First, it has less combining
to perform, as most of it has already been performed through displacements during the
loop execution. In fact, the work to do is at worst proportional to the size of the cache,
rather than to the size of the shared array. The second reason is that the processor issues
no remote loads. Instead, it simply sends all the partial results to their homes, where the

directory controller combines the data.

With PCLR support, the code in Figure 4.2 becomes the one in Figure 4.5. Note
that we have added a call to a function that configures the machine for PCLR before the
loop execution. As in Figure 4.3, this example is also simplified by using static scheduling
and omitting the forking and joining code. In the rest of this section, we present an

implementation of PCLR.

1 ConfigHardware(arguments);

// The range 0..Nodes is split among the processors
2 for(i=MyNodesBegin;i<MyNodesEnd;i++)

3 w(x[i]]4+-=expression;

4 CacheFlush();
5

barrier();

Figure 4.5. Parallelized reduction code under PCLR.

4.3.2 Implementation of PCLR

Any implementation of PCLR has to consider the following issues: differentiation of reduc-
tion data (Sections 4.3.2 and 4.3.2), support for on-demand initialization (Section 4.3.2)
and combining (Section 4.3.2) of lines, configuration of the hardware (Section 4.3.2), and

atomicity guarantees (Section 4.3.2). We discuss these issues in this section.

In the following discussion, we assume a CC-NUMA architecture such as the one in
Figure 4.4. Each node in the machine has a directory controller that snoops and potentially
intervenes on all requests and write-backs issued by the local cache, even if they are directed

to remote nodes.
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Differentiating Reduction Data

While the data used in reduction operations remain in the cache, they are read and written
just like regular, non-reduction data. However cache misses and displacements of reduction
data require special treatment. Consequently, any implementation of PCLR has to provide

a way to distinguish reduction data from regular data.

A simple way of doing so is to use special load and store instructions for “reduction”
accesses. Cache lines accessed by these special instructions are marked as containing
reduction data by putting them into a special “reduction” state. In this state, a processor
can read and write the line without sending invalidations, even though other processors
may be caching the same memory line. Misses by reduction loads and displacements of
lines in the reduction state cause special transactions that are recognized by the local and

home directories, respectively.

Note that we assume that reduction and regular data never share a cache line. Al-
though it would be possible to enhance our scheme to support line sharing, alignment of
reduction data on cache line boundaries is beneficial even without PCLR. Consequently,

we assume that the compiler guarantees no line sharing.

In the following, we explain the rest of PCLR assuming this simple approach to dif-
ferentiating reduction data. In Section 4.3.2, we propose a more advanced scheme for
reduction data differentiation that allows using unmodified or slightly modified processors

and caches.

On-Demand Initialization of Reduction Lines

When a reduction load misses in the cache, a specially-marked cache line read transaction
is issued to the memory system. The local directory controller intercepts the request and
satisfies it by returning a line initialized with neutral elements for the particular reduction

operation. The line is loaded into the cache in the reduction state.

A reduction load may hit in the cache on a line that is not in the reduction state. This
may occur if the line had been accessed prior to the reduction loop with plain accesses
and happened to linger in the cache. In this case, if the line is in state dirty, it is written
back to memory in a plain write-back. Irrespective of its state, the line is then invalidated.

Finally, the cache issues a reduction read miss as indicated above.
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On-Demand Combining of Partial Results

When a line in the reduction state is displaced from the cache, a specially-marked write-
back transaction is issued to the memory system. Once the write-back arrives at its home,
the directory controller reads the previous contents of the line from memory, combines it
with the newly-arrived partial result, and stores the updated line back to memory. The
combining of the lines is done according to the reduction operator in the code, and is
performed for every single element in the line. Note that those elements of the displaced
line that were not accessed by the processor still contain the neutral element, so the effect

of merging them with memory content is that the memory content is unchanged.

To combine the lines, the directory controller has to be enhanced with execution units
that support the required reduction operators. Since a cache line contains several individ-
ual data elements, such execution units may become a bottleneck if their performance is
too low. Luckily, all the elements of a line can be processed in parallel or in a pipelined
fashion. Consequently, it is not too difficult to improve the performance by pipelining

these execution units or adding more units.

These execution units should include an integer ALU for integer operations. For
floating-point operations, having a full floating-point unit would be more general, but
would also increase the complexity of the directory controller significantly. Our experi-
ence with the applications in Section 4.4.2 suggests that multiplication is rarely used as a
reduction operator. Thus, for floating-point operations, having a floating-point adder and

comparator is sufficient.

Finally, it is possible that the reduction data had been accessed prior to the reduction
loop with plain accesses, and still lingers in several caches when the reduction loop starts.
To handle this case, when the home directory controller receives a write-back for the line,
it always checks the list of sharer processors for the line in the directory. Note that misses
due to the reduction accesses do not go to the home. Thus, the home only has sharing
information about non-reduction sharers. If the line is in a (non-reduction) dirty state
in a cache, the controller recalls the line and writes it back to shared memory before
performing any combining. The controller also sends invalidations to all (non-reduction)
sharer processors. After the first reduction write-back of a line, the list of sharers at its
home is empty for the remainder of the reduction loop and causes no further invalidation

or recall messages.
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Configuring the Hardware

Before executing a reduction loop, each processor issues a system call to inform the direc-
tory controller in its node about the data type and the operation of the reduction. This
is shown in line 1 of Figure 4.5. With this simple approach, we can only support one type
of reduction operation per parallel section. In our example of Figure 4.5, the controller
must be configured to perform double-precision floating-point addition when it receives a

reduction write-back.

Any loop that performs several types of reduction operation must be distributed into
multiple loops, so that each loop performs only one type of reduction operation. Fortu-

nately, loops with multiple types of reduction operation are rare.

Finally, the operating system knows if different, time-shared processes want to use
different types of reduction operations. If this is the case, the operating system flushes the
reduction data from the caches when a process is preempted, and reprograms the directory

controller when the process is re-scheduled.

Advanced Differentiation of Reduction Data

In Section 4.3.2 we explained a simple mechanism to distinguish reduction data from
regular data and then explained the rest of PCLR using that simple mechanism. Now we
propose a more advanced, but equivalent, mechanism that eliminates the need to modify

the processor, the caches, or the coherence protocol.

In this scheme, instead of using special instructions, cache states, and protocol
transactions to identify reduction data, such data are identified by using Shadow Ad-
dresses [CHST99]. The scheme works as follows. In the reduction code, we use a Shadow
Array instead of the original reduction array. For example, in Figure 4.5, we would use
array w_redu instead of w. This shadow array is mapped to physical addresses that do not
contain physical memory. However, such addresses differ from the corresponding physical
addresses of the original array in a known manner. For example, they can have their
most significant bit flipped. As a result, when a directory controller sees an access that
addresses nonexistent memory, it will know two things. First, it will know that it is a
reduction access. Second, from the physical address, it will know what location of the

original array it refers to.

With this approach, we do not need to modify the hardware of the processor, caches,
or coherence protocol. The only requirement is that the machine must be able to address
more memory than physically installed. Then, when a directory controller sees a read

miss from the local processor to nonexistent memory, it simply returns a line of neutral
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elements to the processor. Furthermore, when a directory controller sees the write-back of
a line from the local processor to nonexistent memory, it will forward it to the home of the
corresponding element of the original array. Finally, when a directory controller receives
the write-back of a line from a remote processor, it translates its address to the address
of the corresponding element in the original array and combines the incoming data with

the data in memory.

This approach requires modest compiler and operating system support. The compiler
modifies the reduction code to access a shadow array instead of the original array. It also
declares the shadow array and inserts a system call to tell the operating system which
array is shadow of which. The operating system has to support the mapping of pages for
the shadow array. Specifically, on a page fault in the shadow array, it assigns a nonexistent
physical page whose number bears the expected relation to the number assigned to the
corresponding original array page. Moreover, if the latter does not exist yet, it is allocated

at this time.

Atomicity Concerns and Solutions

In PCLR, a problem occurs if a line with reduction data is displaced from the cache
between a read and the corresponding write of the reduction operation. As an example,
assume that the value of a variable in the line is X. This value is read into a register and
updated to X +Y. However, before the result register is written to the cache, the line gets
displaced from the cache. In this case, the partial result X will be sent to memory and
accumulated onto the shared data. Then, the cache miss will be serviced with the neutral
element and the variable in the line will be updated to X + Y. Later, a displacement of
this line will cause X 4+ Y to be accumulated onto the shared data in memory. Thus, the

partial result X will be accumulated onto the shared data twice.

We can solve this problem through recovery or prevention. Recovery solutions attempt
to recover the correct state of computation after the problem has already occurred. Unfor-
tunately, the problem can generally be detected only when the store misses in the cache.
In our example, the recovery would involve subtracting X from either the register involved
in the miss or the shared location. However, X is unknown at the time the problem is
detected, as the shared location contains the combined result of other computations and
X, while the offending store has X + Y. Instead of attempting to checkpoint the partial
results or the shared value in order to enable recovery, we choose to prevent the occurrence

of the problem.

Note that reduction lines in a cache do not receive external invalidations or downgrade

requests that force them to write-back. Therefore, a miss on a store to a reduction line

64 Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM



Private Cache-Line Reduction (PCLR)

can only occur because, between the load and the store, the local processor has brought
in a second line that has displaced the one with reduction data. If we ensure that the
processor does not perform any access between the load and the store to the reduction
variable, the displacement problem should not happen. Unfortunately, modern processors
reorder independent memory accesses like those to different words of the same line and,
therefore, may induce the problem. Preventing this reordering involves putting a memory
fence before the load and after the corresponding store to the reduction variable. This
approach is unacceptable because it would limit the performance of PCLR on modern

Processors.

We propose two different solutions. The first one uses a swap instruction and does not
modify the processor hardware. The second one, instead, does not require the ISA of the
processor to have a swap instruction, but requires small modifications to pin line caches.

We explain each of them in turn.
1) Swap Approach

The idea of this approach is to atomically exchange the neutral element with the memory
contents as Figure 4.6 shows. The compiler can replace the load to the reduction variable
from the original code in Figure 4.6-(a) with the two instructions of Figure 4.6-(b). The
first instruction charges into the register the neutral element, and the swap, instruction
atomically exchanges the register contents with the memory contents. With this simple
modification, if the cache line containing the reduction variable gets displaced before the
store executes, the data in the home will not suffer any modification, since it will be
operated with the neutral element. Of course, for this mechanism to perform well, the

swap instruction should not be implemented as a fence.

mov rl, neutral
load r1, addr

add L. 11, 3 swap rl, addr

store rl, addr

(a) (b)

Figure 4.6. Original reduction code (a), and instructions that replace the load to solve the atomicity

problem (b).

2) Pin Approach

The second approach that we propose is the pinning of a line in the cache between a
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reduction load to the line and the corresponding store. We introduce two new instructions,
namely load&pin and storeunpin, and add a small number of Cache Pin Registers (CPRs)
to the processor. Each CPR has two fields: the tag field which holds the tag of the pinned

line, and a pin count counter.

When a load&pin instruction is executed, a read from the cache is performed. At the
same time, a CPR is allocated, its tag is set to the tag of the cache line, and the pin count is
set to one. If one of the CPRs already has the tag of the line, its pin count is incremented.
When a storefunpin instruction is executed, a store to the cache is performed. At the
same time, the pin count for the matching CPR is decremented. If after this the pin count
is zero, the CPR. is freed. Before a displacement of a cache line is allowed, the tags of
the CPRs are checked. If any of the active CPRs has a matching tag, the displacement is

prevented until the line is no longer pinned in the cache.

With this support, all micro-architectural features found in modern microprocessors
can still be used, including out-of-order instruction issue, speculative execution, instruction
squashing, and memory renaming. However, care must be taken to keep the CPRs up-to-
date. For example, if a speculatively executed loadépin has to be squashed, the hardware
needs to decrement the corresponding pin count and possibly free the CPR. Similarly,
consider memory renaming from a storefSunpin to a loadépin of the same address. In this
case, even though the load is transformed into a register-to-register transfer, the CPR for

the loadépin still needs to be operated on.

Finally, if all CPRs are in use when one more is needed, or a pin counter saturates,
the instruction is delayed until a CPR is free or the counter is decremented. Because
CPRs are needed to allow instruction reordering by the processor, this delay cannot cause
deadlocks. In fact, even if a processor has only one CPR, it can correctly execute any code.
With more CPRs, the compiler can be more aggressive about instruction scheduling. In
practice, we have found that a small number of CPRs (8) is sufficient to maintain good

performance.

4.3.3 Summary

The PCLR scheme addresses the problems of parallel reductions in scalable shared-memory
multiprocessors as discussed in Section 4.2.3. PCLR has two main advantages. First,
it uses cache lines as the only private storage and initializes them on demand. As a
result, there is no need to allocate private data structures or to perform a cache-sweeping
initialization loop. Second, it performs the combining of the partial results with their
shared counterparts on demand, as the reduction loop executes. As a result, there is no

need for a costly merging step that involves sweeping the cache and many remote misses.
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All that is needed is to flush the reduction data from the caches at the end of the loop.
These two advantages are particularly important when the reduction access patterns are

sparse.

Most PCLR modifications are in the directory controllers, which perform special ac-
tions on read misses and write backs. With the use of shadow addresses, if the ISA of the
processor has a swap or similar instruction no modification is needed to the hardware of
the processor. If not, the only modification modification that we introduced to the proces-
sor and caches is the ability to pin and unpin lines in the caches through the loadépin and
store€Sunpin instructions. It can be argued that these instructions could also be useful for

other functions in modern processors.

4.4 Evaluation Methodology

We evaluate the PCLR scheme using simulations driven by several applications. In this

section, we describe the simulation environment and the applications.

4.4.1 Simulation Environment

We use an execution-driven simulation environment based on an extension to
MINT [VF9%4a] that includes a dynamic superscalar processor model  [KT98]. The
architecture modelled is a CC-NUMA multiprocessor with up to 16 nodes. Each node
contains a fraction of the shared memory and the directory, as well as a processor and
a two-level cache hierarchy with a write-back policy. The processor is a 4-issue dynamic
superscalar with register renaming, branch prediction, and non-blocking memory opera-
tions. Table 4.1 lists the main characteristics of the architecture. Contention is accurately
modelled in the entire system, except in the network, where it is modelled only at the

source and destination ports.

H Processor Parameters ‘ Memory Parameters H
4-issue dynamic, 1 GHz L1, L2 size: 32 KB, 512 KB
Int, fp, 1d/st FU: 4, 2, 2 L1, L2 assoc: 2 way, 4 way
Inst. window: 64 L1, L2 size: 64 B, 64 B
Pending Id, st: 8, 16 L1, L2 latency: 2, 10 cycles
Branch penalty: 4 cycles Local memory latency: 104 cycles
Int, fp rename regs: 64, 64 | 2-hop memory latency: 297 cycles

Table 4.1. Architectural characteristics of the modelled CC-NUMA. The latencies shown measure

contention-free round trips from the processor in processor cycles.
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The system uses a directory-based cache coherence protocol along the lines of
DASH [LLG"92]. Each directory controller has been enhanced with a single double-
precision floating-point add unit. Both the directory controller and the floating point-unit
are clocked at 1/3 of the processor’s frequency. The floating-point unit is fully pipelined,
so it can start a new addition every three processor cycles. Its latency is 2 cycles (6
processor cycles). Floating-point addition is the only reduction operation that appears in

our applications (Section 4.4.2).

Private data are allocated locally. Pages of shared data are allocated in the memory
module of the first processor that accesses them. Our experiments show that this allocation
policy for shared data achieves the best performance results for both the baseline and the
PCLR system.

4.4.2 Applications

Appl. Names of Loops % of | # of | #Iters | #Instr | Red. Ops. | Red. Array
Tseq | Invoc | Invoc Iter per Iter Size (KB)

dfluz_do[100,200]

Euler psmoo_do20 84.7 120 59863 118 14 686.6
efluz_do[100,200,300]

Equake smup 50.0 | 3855 | 30169 550 22 707.1

Vml VecMult_CAB 89.4 1 4929 135 6 40.0

Charmm || dynamc_-do 82.8 1 82944 420 54 1947.0

Nbf nbf-do50 99.1 1 128000 1880 200 1000.0

[ Average || | 81.2 | 795 | 61181 | 620 | 59 | 8710 |

Table 4.2. Application characteristics. In Fuler, we only simulate dflux_do100, and all the
numbers except Tseq correspond to this loop.

To evaluate the PCLR. system, we use a set of C and Fortran scientific codes. Two of
them are applications: Euler from HPF-2 [DSH94] and Equake from SPEC{p2000 [Hen00].
The three other codes are kernels: Vml from Sparse BLAS [DMRVY95], Charmm
from [BBO™83], and Nbf from the GROMOS molecular dynamics benchmark [GB88].

Out of them, Equake and Vml are written in C, while the rest are written in Fortran.

All of these codes have loops with reduction operations. Table 4.2 lists the loops that
we simulate in each application and their weight relative to the total sequential execution
time of the application (%Tseq). This value is obtained by profiling the applications
on a single-processor Sun Ultra 5 workstation.The table also shows the number of loop
invocations during program execution, the average number of iterations per invocation,
the average number of instructions per iteration, the average dynamic number of reduction

operations per iteration, and the size of the reduction array. Next, a brief description of
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each application:

e Fuler is a 3-D hydrodynamics code that models transient flows involving multiple

immiscible fluids.

e FEquake models earthquake-induced ground motions using an unstructured 3-D finite
element model of the area under test. The loop performs a sparse matrix-vector

multiplication using subscripted subscripts.
e Vmlis a kernel for a multiplication of a dense vector and a sparse matrix.

e Charmm is a N-body simulation to model macromolecular dynamics, including en-
ergy minimization, and Monte Carlo simulations. In this code, each node interacts
only with its neighbours. The list of neighbours changes at various times because of

the forces applied to them.

e Nbfis also a N-body simulation quite similar to Charmm in the sense that each node
only interacts with its neighbours. At every step forces are evaluated at each node

and applied through a reduction operation.

The loops in Table 4.2 are analyzed by the Polaris parallelizing compiler [BDE™96] or
by hand to identify the reduction statements. Then, we modify the code to implement the
parallel reduction code for the software and PCLR algorithms, as shown in Sections 4.2.2
and 4.3, respectively. For PCLR, reduction accesses are also marked with special load and

store instructions to trigger special PCLR operations (Section 4.3.2) in our simulator.

The data shown in the next section, including speedups, refer only the sections of code
described in Table 4.2. Also, since there is a significant variation in speedup figures across

applications, average results are reported using the harmonic mean.

4.5 Evaluation

4.5.1 Impact of PCLR

We evaluate two different implementations of our PCLR scheme. The first one is an
implementation where the directory controller is hardwired. The second implementation
utilizes a programmable directory controller, similar to the MAGIC micro-controller in the
FLASH multiprocessor [KOH"94]. A programmable controller can provide the function-
ality required by PCLR without requiring hardware changes. These two implementations

of PCLR are compared against a baseline system, which uses a software-only approach
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to parallelize reductions. The software-only approach utilizes an algorithm that accumu-
lates partial results in private arrays and merges the data out when the loop is done, as
described in Section 4.2.2.

Figure 4.7 compares the execution time of these three systems. The baseline software-
only system is Sw. The PCLR implementation with a hardwired directory controller is
Hw, and the implementation with a flexible programmable directory controller is Flez.
The simulated system is a 16-node multiprocessor. For each application, the bars are
normalized to Sw, and broken down into time spent in the initialization phase of the Sw
scheme (Init), loop body execution (Loop), and time spent merging the partial results at
the end of the loop in Sw or flushing the caches in Hw and Flex (Merge). The numbers
above each bar show the speedup relative to the sequential execution of the code. In
the sequential execution, all data were placed on the local memory of the single active

processor.
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Figure 4.7. Execution time under different schemes for a 16-node multiprocessor. The numbers above
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the bars are speedups relative to the sequential execution.

The performance of Hw and Flex improves significantly over Sw. This improvement is
mainly due to the elimination of the final cross-processor merging step that is required in
the software-only implementation. In Sw, the work in this merging step is proportional to
the size of the reduction array and does not decrease when more processors are available.
When this time is significant relative to the time spent in the execution of the main loop,
the benefits of PCLR become substantial. For example, in Charmm the main parallel loop
alone executes with Sw 9 times faster than the sequential loop. However, the merging
step is responsible for the poor final speedup of Sw (1.9 on 16 processors). As mentioned
in Section 4.3, a second benefit of PCLR is that the initialization phase is removed. In

general, this phase accounts for a relatively small fraction of the Sw execution time.

The Hw and Flex systems always spend less time in Merge than the Sw system. In
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PCLR, Merge only accounts for the time spent flushing the caches after the last processor
has finished the execution of the parallel loop. When using PCLR, processors do not have
to synchronize after the parallel loop. They can start flushing their caches as soon as they

finish, and overlap this flush with the execution of the loop on other processors.

In our experiments, it is not not assumed special support to flush only the reduction
data. Thus, the L2 cache is traversed and all the dirty lines (reduction or not) are written
back to memory. In Table 4.3, the column Lines Flushed shows the average number of
cache lines flushed by each processor. Most of these lines contain reduction data. The
column Lines Displaced shows the average number of lines with reduction data displaced

by each processor during the execution of the main reduction loop.

Appl. Names of Loops Lines Lines
Flushed | Displaced

Euler dfluz_do100 3261 2117
Equake smup 742 580

Vml VecMult_.CAB 168 0
Charmm || dynamc_-do 1849 330

Nbf nbf-do50 238 1774

[ Average | 1251 960 |

Table 4.3. Cache lines flushed at the loop’s end or displaced during loop execution. The data

correspond to a single loop and are collected through simulation of a 16-processor system.

The differences between the Hw and the Flex schemes are mainly due to two reasons.
First, with a software directory controller, all the transactions in the node have to go
through the node controller, increasing the contention. Second, the software directory
controller takes longer to process individual transactions. To accurately simulate these
two effects, in our simulations of Flex we have used the cycle counts for response time and
occupancy reported for the FLASH directory controller [HKD94]. For example, a clean
read miss is serviced in 11 cycles of the directory controller. Since we assume that the
directory controller is clocked at 1/3 of the processor’s frequency, this corresponds to 33

cycles of the main processor. The directory controller is occupied during that time.

The figure shows that the speedups in Flex are, on the average, only 16% lower than in
Hw and 136% higher than in Sw. Therefore, implementing PCLR using a programmable

directory controller is a good trade-off.

Overall, for a 16-node multiprocessor, the Hw PCLR scheme achieves an average
speedup of 7.6, while the software-only system delivers an average speedup of only 2.7. If

PCLR is implemented with a programmable directory controller the average speedup is
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6.4.

4.5.2 Scalability of PCLR

To evaluate the scalability of PCLR, a multiprocessor system with 4, 8, and 16 processors is
simulated. Figure 4.8 shows the harmonic mean of the speedups delivered by the different
mechanisms. It can be seen that PCLR (both Hw and Flez) scale well. However, the Sw
scheme scales poorly. As explained in Section 4.2.2, the time of the merging step in Sw
does not decrease when more processors are available. If the main loop scales well, the

merging step limits the achievable speedups according to Amdahl’s law.

Speedup

1 4 8 16
Number of Processors

Figure 4.8. Speedups delivered by the different mechanisms (harmonic mean).

4.5.3 Impact of FP-Unit Speed

In previous sections it is assumed that the floating-point unit in the directory controller
was clocked at 1/3 of the processor’s frequency. To determine whether this unit is a point
of contention in our PCLR system, a system with a faster unit is evaluated in this section.
Thus, Figure 4.9 compares the previous system (Hw) with a system where the floating-
point unit in the directory is clocked at the full frequency of the processor (Fast). It can
be seen from the Figure that, although the execution times of some applications improve,
the improvements are not significant. Therefore, even the relatively slow floating-point

unit is not a bottleneck in this system.

72 Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM



Additional Use of PCLR

Euler Equake vml Charmm Nbf
1 —
o 0.8 : H
E
= 06
S
3 04
<
% 0.2
0
ER ER R R ER
I © I © I © I © T ©
w w w w w
OLoop M Merge

Figure 4.9. Comparing the performance with floating-point units of different frequencies.

4.6 Additional Use of PCLR

The PCLR scheme can also be used to speed-up another algorithm, namely the dynamic
last value assignment. In this section, we explain the dynamic last value assignment
problem (Section 4.6.1) and show how PCLR can be used (Section 4.6.2).

4.6.1 Dynamic Last Value Assignment in Software

As explained in Section 4.2, privatization is a common technique used to parallelize loops
with anti and output dependences. When privatization is used, if the value of the privatized
variable is needed after the parallel loop, a last value assignment has to be performed.
Specifically, after the loop execution is complete, the shared counterpart of the privatized
variable has to be updated with the value produced by the highest writing iteration. If
the compiler can determine which iteration is that, it generates the code that puts this
value in the shared variable. In the common case when all iterations write to the privatized
variable, the last writing iteration is the last iteration of the loop. In this case, the compiler

can simply peel off this last iteration and make it write directly to the shared variable.

However, when the last writing iteration cannot be determined at compile time, dy-
namic last value assignment has to be performed. In this case, the main parallel loop is
followed by a copy-out phase. This phase identifies, for each element of the shared variable,

the processor that ran the highest iteration that wrote to that element.

Figure 4.10 shows an example of a loop that is parallelized through the privatization
of array A. It also needs dynamic last value assignment if the elements of array A are read

after the loop, or the compiler cannot prove they are not read.

Figure 4.11 shows the parallel version of the loop, with the copy-out phase. The figure

assumes that array A contains NumFElement elements. As usual, static scheduling is used
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for (i=0;i<N;i++)
if(fli){
Alglil= . .
- =Algli]];

Tt s W N

Figure 4.10. Loop to be parallelized with privatization and dynamic last value assignment.

for simplicity. As can be seen, together with the private array A_priv/PID], each processor
also has a private time-stamp array A_ts/PID]. Whenever a processor writes to an element
of the private array, it also updates the corresponding element in the private time-stamp
array with the number of the iteration it is executing. When the loop is done, the copy-out
phase compares the private time-stamps of all the processors. Each element of the shared
array is updated with the private copy of the processor where the maximum time-stamp

is found.

Note that the private time-stamps A_ts/PID] have to be initialized to a number that is
smaller that any possible iteration number (-1 in the example). Also, note that when static
scheduling is used, as in the example, the processor ID can be used to update the time-
stamps (A_ts/PID][g[i]] in line 6) instead of the iteration number, assuming that scheduling

is done so that processors with increasing PIDs get iteration ranges with increasing indices.

4.6.2 Using PCLR for Last Value Assignment

Note that Figure 4.11 uses the private time-stamp arrays as reduction data, where the
reduction operation is mazimum. During the execution of the main loop, the updates to
the private time-stamps compute the partial results, while the search for the maximum
during the copy-out phase corresponds to the merge-out. Thus, the PCLR mechanism
as explained in Section 4.3, can be used to speed-up the dynamic last value assignment
operation. Figure 4.12 shows the code that results when PCLR support is applied to the
code in Figure 4.11. Since PCLR performs reductions without declaring private reduction
arrays, we only need to declare one shared time-stamp array (line 1). Its elements have

to be initialized to a number lower than any possible iteration or processor ID (line 2).

During the execution of the main loop, the time-stamps are updated using the maxi-
mum operator. After the parallel loop is finished and the caches are flushed, each element
of the shared time-stamp array will contain the maximum time-stamp for that element.
Note that in the example, since static scheduling is used, the time-stamp array is updated

with the PID of the process instead of the maximum (line 8). However, when these time-
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// Initialize the private time-stamp array

1 for(i=0;i<NumElement;i++)

2 A _ts[PID][i]=-1;

// The range 0..N is split among the processors

3 for(i=MyNBegin;i<MyNEnd;i++)

1 i£(1i]){

5 A _priv[PID][g[i]]= . . 3

6 A _ts[PID][g[i]]=PID;

8 .. .=A_priv[PID][g[i]];

9 ¥

10  barrier();

// Copy-out. Range 0..NumElement is split among procs
11 for(i=MyNumElemBegin;i<MyNumElemEnd;i++){

12 x=-1;

13 for(p=0;p<NumProcessors;p++)
14 x=max(x,A_ts[p][i]);

15 if(x>-1)

16 Ali]=A_priv[x][i];

17}

18  barrier();

Figure 4.11. Code resulting from parallelizing the loop in Figure 4.10 with dynamic last value assign-

ment.

stamps are displaced or flushed from the cache, the shared counterpart in main memory
will be updated with the maximum value, as the hardware directory controller was con-
figured in line 4. Finally, each of these maxima will be used to identify the correct private

version to copy into the corresponding element of the shared array (line 15).

Thus, using PCLR speeds-up dynamic last value assignment and makes it scalable

with the number of processors.

4.6.3 Advanced Support

A further speedup could be obtained if the final copy-out phase was eliminated. To do
so, we could extend PCLR with additional support. Currently, PCLR speeds-up the
computation of the maximum time-stamp for each data element. However, we still have

to explicitly perform the copy-out.
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// Declare and initialize the shared time-stamp array
1 int A_ts[NumElement];
2 for(i=0;i<MyNumELi++)

3 A _ts[i]=-1;
// Configure the hardware
4 ConfigHardware(maximum_operation, int_type, A_ts,NumElement);

// The range 0..N is split among the processors
5 for(i=MyNBegin;i<MyNEnd;i++)

6 (i) {

7 A _priv[PID][gli]]l= . . ;

8 A _ts[gli]]=PID;

9 .. .=A_priv[PID][g[i]];

10 }

11 CacheFlush();

12 barrier();

// Copy-out

13 for(i=MyNumElemBegin;i<MyNumElemEnd;i++){
14 if(A_ts[i]>-1)

15 Ali]=A_priv[A _ts[i]][i];

16}

17 barrier();

Figure 4.12. Parallelized reduction code with dynamic last value assignment under PCLR.

With advanced support, caches and directory controllers could help eliminate the copy-
out as follows. Every time that a line from the privatized array is displaced from the cache,
the cache could also force the displacement of the corresponding time-stamps. When
the displaced privatized line and time-stamps arrived at the home directory controller, a
comparison would take place. An element in the privatized line would update the shared
data in memory only if its time-stamp was higher than the one in shared-memory. At the
end of the loop execution, a cache flush step would flush the remaining private array lines
and time-stamps. Again, the home directory controller would only conditionally accept
the incoming private data based on a time-stamp comparison. Overall, with this support,
at the end of execution, the shared array would have the last values and no copy-out would

have been necessary.
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4.7 Related Work

Nearly all of the past work on reduction parallelization has been based on software-only
transformations [EHLP91, YR00]. The most related architectural work that we are aware
of is the work of Larus et al. [LRV94], Zhang et al. [ZPG199], and the work on advanced
synchronization mechanisms [BMW85, GVWS89, GGK 183, KRS88, KDLS87, KDL 193,
PBG*85, PN85, Smi81, ZY87].

Larus et al. briefly mention an idea similar to PCLR as one application of their
Reconcilable Shared Memory (RSM) [LRV94]. RSM is a family of memory systems whose
behaviour can be controlled by the compiler. They use RSM to support programming
language constructs. The paper only mentions the applicability to reduction very briefly

and provides no evaluation.

Zhang et al. propose a modified shared-memory architecture that combines both spec-
ulative parallelization and reduction optimization [ZPG199]. In contrast to that work,
which relies on a significantly modified multiprocessor architecture, we have presented
relatively simple architectural support to optimize reduction parallelization. In addition,
unlike in [ZPG199], our scheme assumes that the compiler has already proved that our

transformation is legal.

Finally, the combining support that we propose for the directory controller is related to
the existing body of work on hardware support for synchronization and combining trees.
Synchronizations mechanisms are relevant to reduction optimizations because, when im-
plemented with critical sections, they can improve performance by allowing very efficient
atomic Read-Modify-Write access to a shared variable. Such synchronization work in-
cludes the full/empty bit of the HEP multiprocessor [Smi81], Fetch&Add primitive of the
NYU Ultracomputer [GGK'83], the Fetch&Op synchronization primitives of the IBM
RP3 [BMWS85, PBG'85], support for combining trees [KRS88, PN85], the memory-
based synchronization primitives in Cedar [KDLS87, KDL193, ZY87], and the set of
synchronization primitives proposed by Goodman et al. [GVW89].

4.8 Summary

In this chapter, a new architectural support to speed-up parallel reductions in scalable
shared-memory multiprocessors has been proposed. The support consists of architectural
modifications that are mostly confined to the directory controllers. With this support,
we eliminate the final merging phase that typically appears in conventional algorithms

for parallel reduction. This phase takes time that is proportional to the data size in the
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dense case, or to the data structure dimensions in the sparse case. With the proposed
support, parallel reduction only needs a final cache flush step that takes time proportional
only to the cache size. Overall, this scheme realizes truly scalable parallel reduction.
While conventional software-only parallelization delivers average speedups of 2.7 for 16

processors, the proposed scheme delivers average speedups of 7.6.
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Chapter 5

Tradeofls in State Buffering for
Speculative Thread-Level

Parallelization

Speculative thread-level parallelization aggressively runs hard-to-analyze codes in parallel.
As speculative tasks run concurrently, they generate unsafe or speculative memory state
that needs to be separately buffered and carefully managed. Such state may even contain
multiple versions of the same variable. A multiprocessor must buffer and automatically

manage this state despite its distributed caches, buffers, and memories.

This chapter presents a novel taxonomy of approaches to buffer and manage such state.
The taxonomy includes a novel application of the concepts of architectural and future
register state to memory state. We perform a tradeoff analysis and a detailed performance
evaluation of the different approaches under a single DSM architectural framework. Our
key insights are that support for buffering the state of multiple speculative tasks and
versions in a processor is more cost-effective than support for merging the state of tasks
with memory lazily. Moreover, both supports have orthogonal effectiveness and can be
gainfully combined. Finally, a system with future state in main memory is more robust

than one with architectural state, but more expensive to implement.

5.1 Introduction

Speculative thread-level parallelization attempts to extract parallelism from hard-to-
analyze codes like those with pointers, indirectly-indexed structures, interprocedural
dependences, or input-dependent patterns. The approach is to build tasks from the

code and speculatively run them in parallel, hoping not to violate sequential seman-
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tics. As tasks execute, special software or hardware supports check that no dependence
across tasks is being eluded. If a infraction occurs, the state polluted by the offending
tasks is repaired and the tasks are resumed. Many different schemes have been pro-
posed, ranging from hardware-based [CMT00, FS96, FF01, GVSS98, HWO098, Kni86,
KT99, MG99, OWP*01, PGRTO01, SBV95, SCM97, SCZM00, THA'99, Zha99, ZRT99]
to software-only [FLAO1, GN98, RP95, RS00] schemes, and targeting small ma-
chines [FS96, GVSS98, HWO098, KT99, MG99, OWP*01, SBV95, THA'99] or scalable
ones [CMT00, FF01, GN98, PGRTO01, RP95, RS00, SCM97, SCZMO00, Zha99, ZRT99].

As a speculative task executes, it generates speculative memory state. Such state is
unsafe and, typically, is temporarily kept separated from the safe state of the memory
system and the state of other speculative tasks. Moreover, in programs with dependences
between tasks, different speculative tasks running concurrently may generate different
versions of the same variable. In this case, reader tasks must have a way to identify the
correct version, and the merging of versions with main memory state must be done in the
correct order. Finally, the cache of a processor that has been running multiple tasks may
end up holding speculative state from multiple tasks, and maybe even multiple versions
of the same variable. Clearly, given the distribution of caches, buffers, and memories in
shared-memory multiprocessors, buffering and automatically managing all this state in

these machines is challenging.

Buffering schemes proposed in the literature manage this memory state in differ-
ent ways. In some proposals, speculative tasks buffer unsafe state dynamically in
caches [CMT00, FF01, GVSS98, KT99, OWP*01, SCZMO00], write buffers [HWO9S,
THA199] or special buffers [FS96, PGRTO01] to avoid corrupting main memory. In other
proposals, speculative tasks generate a log of updates that allows backtracking execution
in case of an infraction [FLAO1, GPLT01, Zha99, ZRT99]. Often, there are noticeable

differences in the way caches, buffers, and logs are used in the different schemes.

Unfortunately, despite the popularization of speculative parallelization, there is no sys-
tematic classification and tradeoff analysis of possible buffering approaches. Understand-
ing the involved design choices and issues is crucial, given the high fraction of performance

typically lost in the memory hierarchy of multiprocessors.

This chapter addresses this issue and makes two contributions. First, it introduces
a novel taxonomy of approaches to buffer and manage multi-version speculative memory
state in multiprocessors. The taxonomy includes a novel application of the well-known
concepts of architectural and future register state from Smith and Pleszkun [SP88] to

memory state. On this taxonomy, we map the buffering schemes proposed in the literature.

The second contribution is a tradeoff analysis and a detailed performance evaluation
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of the different buffering approaches under a single baseline architectural framework. Our
key insights are that support for buffering the state of multiple speculative tasks and
versions per processor is more cost-effective than support for merging the state of tasks
with main memory lazily. Moreover, both supports have largely orthogonal effectiveness
and can be gainfully combined. Finally, a buffering system with architectural state in main
memory is not as robust as one with future state there. The latter handles the buffering

of demanding applications better, although it is more expensive to implement.

This chapter is organized as follows: Section 5.2 introduces the challenges of buffering;
Section 5.3 presents our taxonomy of approaches; Section 5.4 explains the main implemen-
tation issues: Section 5.5 performs a tradeoff analysis; Section 5.6 describes our evaluation
methodology; Section 5.7 evaluates the different buffering approaches; and Section 5.8 con-
cludes. Three appendices A, B, and C complement the chapter with background material,
and extra explanations. These appendices can be skipped if the reader is familiar with

thread-level speculation topics.

5.2 Buffering State Under Speculative Parallelization

5.2.1 Basics of Speculative Parallelization

Speculative thread-level parallelization extracts tasks from sequential codes and executes
them in parallel hoping not to violate any sequential semantics. Under speculative thread-
level parallelization, potentially dependent tasks execute in parallel. At run time, data
references from a task may generate cross-task data dependences with references from
other tasks. Thus, special software or hardware must ensure that those data references
are handled properly and enforce the expected sequential semantics of the original code.
At any time, tasks have a relative order imposed by the sequential code they come from.
Consequently, we use the terms predecessor and successor tasks. If we give increasing IDs
to successor tasks, the lowest-ID task still running is called the non-speculative, while the

others are called speculative.

When a speculative task finishes, it cannot commit until all its predecessors have
finished and committed. However, to better tolerate load imbalance, when a speculative
task finishes, the processor that ran it can start to execute another speculative task. At
any time, the system contains many speculative tasks, either finished or unfinished, and
one unfinished non-speculative task. The set of all these tasks is called the window of

uncommitted tasks.

If the task that finishes execution is the non-speculative one, it commits. Committing

at least involves updating a variable called the Commit Point (CP), which identifies the
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committed task with the highest ID, and making another task non-speculative. Figure 5.1
shows an example of several tasks running on four processors. In this example, when task
T3 executing in processor 4 finishes the execution, it cannot commit. It has to wait until
the predecessors tasks T2 and T3 also finish and commit. However, processor 4 can start
to execute task TH. The example also shows how the non-speculative task status changes
as tasks finish and commit (non-spec task timeline). In the example we assume that the

comimit is instantaneous.

Proc# 1 2 3 4
Time B R b
T0 7 -
T1 _
T2
T3
CP=0
s
T4
T5
ChP=1
— CP=2
v T6
T
-— ||
CP=3
Non-spec CP = Commit Point
Tak Timeline

Figure 5.1. A set of tasks executing in four processors. The commit point (CP) advance is shown

inside the non-speculative task timeline.

As speculative tasks execute in parallel, special software or a speculative coherence
protocol checks for dependence infractions. Its function is to track memory references
to identify any cross-task data dependence infractions. The possible data dependences
are WAR (Write-After-Read), WAW (Write-After-Write) and RAW (Read-After-Write),
and they can execute in-order or out-of-order. Typically, an error will occur if these
dependences execute out-of-order. However, out-of-order WAR and WAW dependences
can be handled at run-time and not induce errors in systems with support for multiple
versions of the same datum. In these systems, as tasks execute they generate versions that
are usually kept separate from the main memory, and tagged with the ID of the task that
produced them. WAR and WAW dependences in these systems are handled by carefully

merging the versions from the different tasks.

RAW dependences are more problematic. In an in-order RAW the speculation protocol

must find the correct version and supply it to the reader task. However, in an out-of-order
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RAW, a task reads a value that is subsequently modified by a predecessor task. A task
has prematurely loaded a value. The speculation protocol must detect this error and the
reader task needs to be squashed. Ordinarily, all the successors tasks are also squashed
because they may have consumed versions produced by the squashed task. While it is
possible to resolve reference chains and selectively squash only tasks at fault, it involves
extra complexity. In any case, when a task is squashed, all its speculatively produced data

must be purged. Then, tasks can resume the parallel execution.

Many different schemes have been proposed for speculative thread-level paralleliza-
tion. They range from hardware-based to software-only. Some of these schemes work
at the chip level, while others target larger Distributed Shared Memory machines. In
hardware-based approaches, a special table records task memory references and checks for
data dependences. For that, memory references that can cause dependences are marked
with special codes of operation. When these specially marked load and store instructions
execute, an extra coherence message is sent. This message must at least contain the type
of operation, the ID of the task that executed the operation, and the referenced mem-
ory address. The message needs to reach the special table where all this information is
recorded. In addition, the table is looked-up to find out if other tasks have accessed the
same memory address before. If they have, the speculation protocol must check whether
special actions must be undertaken. If for example the message was a write and the table
has recorded that a successor task had previously read the same data (out-of-order RAW)
the reader task and its successor ones need to be squashed. However, if the message was
due to a read and the information in the table says that this data was previously written
by another task (in-order RAW), the speculation protocol must find the correct version.
In this case, the table can point-out to the processor that keeps the version produced by
the writer task [CMTO0], or it may send a message to all the sharers to find out which
one has the correct version [PGRTO01]. Finally, notice that for a large DSM machine, this
table should be distributed and located close to the directory controller, while in the case
of a small machine like an on-chip multiprocessor, it can be located between the private
L1-caches and the shared L2-cache. The extra coherence transactions need to be designed
such that they get correctly seriallized, as the baseline coherence messages get seriallized
in the directory controller. This helps minimizing races in the protocol. As an example,
Appendix A presents in detail the speculation protocol proposed in [Zha99]. It supports
multiple versions an falls into the schemes named later in Section 5.3.3 as MultiT&MV
lazy FMM schemes.

Next we describe the difficulties involved on buffering state under the previous condi-
tions (Section 5.2.2), present some supporting application data (Section 5.2.3), and discuss

an analogy to gain insight into how to improve buffering (Section 5.2.4).
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5.2.2 Challenges in Buffering State

We identify three main difficulties in buffering state in a multiprocessor memory system.
Separation and Merging of Task State

Since a speculative task may be squashed, its updates are unsafe. Therefore, they
are typically kept in caches [CMTO00, FF01, GVSS98, KT99, OWP*01, SCZMO00] or
buffers [FS96, HWO098, PGRT01, THA99], and not merged with the safe state of the
memory system or the state of other tasks. Typically, when the task finally becomes
non-speculative, its updates are merged with the safe memory state. Consequently, the
multiprocessor must use its distributed caches, buffers, and memories to keep the state
of the different speculative tasks separate, and merge them at the right times so that the

system can always revert to a safe state.
Multiple Versions of the Same Variable in the System

A new wversion of a variable appears in the system when a task writes for the first time to
that variable. Thus, when two speculative tasks running on different processors create two
different versions of the same variable [CMTO00, GVSS98], there is at least a WAW de-
pendence between them. In addition to WAW dependences, WAR and RAW dependences
may also exist between tasks that have created different versions of the same variable. For
example, in Figure 5.2 a RAW dependence appears between task T1 and T2 when task
T2 reads the variable x that previously was written by task T1. Since, later task T2 also

writes to the variable x, T1 and T2 have two different versions of the same variable.

WAW dependences among tasks appear in applications that exhibit mostly-
privatization patterns. Under such patterns, each task creates a new version of the variable
without first reading an older version. Of course, this pattern should not be fully compiler-
analyzable or the variable would have been privatized. Figure 5.2 shows an example of

WAW dependences where tasks T0 - T3 write the same variable x.

Notice that to the rest of the system, a task appears as having at most a single version
of any given variable at a time. Therefore, a task can write several times to the same
variable, but the processor only needs to keep the last version produced by that task. The
reason is that on a dependence infraction we undo the whole task, we never undo half a
task. In the example in Figure 5.2, task T3 writes twice to the same variable. However,

the processor only buffers the value written by the last write (4 in the example).

Buffering state under these conditions is hard. Specifically, versions from different
processors must be merged with the safe memory state in correct task order. Furthermore,
when a task executes a load involved in an in-order RAW dependence, obtaining the correct

version is harder. The speculation protocol must find the correct version out of the several
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Figure 5.2. Multiple versions of the same variable in the system. Examples of in-order RAW, out-of-

order WAR, and WAW dependences.

co-existing in the system and provide it to the reader task. An example of this problem

appears in Figure 5.2 when task T2 reads the variable x.
Multiple Versions of the Same Variable in a Cache

When a processor finishes a task that cannot commit because it is still speculative, the
processor may be forced to stall. Alternatively, and to better tolerate task load imbalance,
it may be allowed to start a new task. In this case, the processor’s cache may have to
hold speculative versions from multiple tasks. Such versions are tagged with the owner
task ID (Figure 5.3-(a)). Moreover, it is possible that the cache may even have to hold
multiple versions of the same variable (Figure 5.3-(b)). This may occur in load-imbalanced

applications that exhibit the mostly-privatization patterns discussed above.

Task-1D Tag Data Task-1D Tag Data
i | 0x600 2 i |0x400 2
i |0x400 2 j | 0x400 4
j | 0x800 2 k | 0x400 6

(a) (b)

Figure 5.3. Example of a cache keeping versions from different tasks and different addresses (a) or

different tasks and the same address (b).

Among all the speculative versions that a processor needs to buffer, we can distinguish
the last version from the non-last versions. The last version is the one generated by the
youngest task that ran (or is still running) in a processor and wrote the variable. It is the
version that will be used to satisfy any subsequent load from the task that generated it,
and possibly younger ones. All the previous overwritten versions are non-last versions. In

the example in Figure 5.4, at time ¢ the last version in processor 4 is the one with value 5
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produced by task T5. Any subsequent load of this variable by task T5 will read this last

version. A non-last version in processor 4 is the one with value 4.

Access to non-last versions should occur less frequently. They may occur when a task
executes a read involved in an in-order RAW dependence, and the version produced by
the writing task has been overwritten. For example, when task T4 in Figure 5.4 executes
a read, the version supplied is the one produced by task T3, buffered in processor 4. This
version is a non-last version. Note, however, that in-order RAW may equally be satisfied
with last versions. Remember the example in Figure 5.2 where task 2 also executed a read
involved in an in-order RAW dependence. In this case, the version provided was a last

version.

Proc# 1 2 3 4
Time B o i
TO _

T4 o=
/ T5|| x=5

Figure 5.4. Multiple local speculative versions. Last versions and non-last versions.

Managing state under these conditions, where versions from multiple tasks can coexist
in a processor, is even harder. On a read, several entries can match the address requested.
Consider first a read from the processor. The cache will provide the data only if address tag
and task-ID match with the requested address and ID of the requester task, respectively.
On a external read to a cache, the cache provides the data and task ID of all the entries
that match the address requested. The correct version is the one with the highest task ID
that is still lower than the requester’s task ID.

5.2.3 Application Behaviour

Table 5.1 illustrates the three difficulties described in Section 5.2.2. The applications
(discussed in Section 5.6.2) execute speculatively parallelized loops on a simulated 16-
processor CC-NUMA (discussed in Section 5.6.1). Column 2 in the table shows that,
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in most applications, there are around 18-29 speculative tasks in the system at a time,
although for very load-imbalanced loops as in P3m, the number is higher. Moreover,
Column 3 shows that each processor may need to buffer the state of more than 1 speculative

task at a time.

Average Written Footprint

Application Average # Spec Tasks per Spec Tas|_<
In System | Per Proc Total (KB) Priv %
P3m 800.0 50.0 1.7 87.9
Tree 32.0 2.0 0.9 99.5
Bdna 25.6 1.6 23.7 99.4
Apsi 28.8 1.8 20.0 60.0
Track 20.8 13 2.3 0.6
Dsmc3d 17.6 1.1 0.8 0.5

Table 5.1. Application characteristics that illustrate the difficulties of buffering.

Figure 5.5 shows simplified loops taken from the applications in Table 5.1, where each
task generates a new version of the same variable without first reading older versions. In
these examples, the arrays zdt(), work(), and stack() are accessed with mostly-privatization
patterns. For instance, in Apsi, each task creates its own work(k) elements without first
reading any previous version of them. The elements of work(f(i,j,j)) that a task reads
without first writing are never written by a task. Thus, this loop is found to be fully
parallel at run-time. However, since the compiler is unable to guarantee that there are
no intersections between the values of k and the values of f(i,5,k), this loop has to be
speculatively executed in parallel. Similar reasonings could be given for the loops of the

other applications.

In Table 5.1, columns 4 and 5 show the size of the written footprint per speculative task
and the percentage of it that is accessed with mostly-privatization patterns, respectively.
The percentage in the last column (Priv) has been obtained by measuring how much data
generated by task i-1 was also written by task ¢ without first reading it. For P3m, Tree,
Bdna, and Apsi this percentage is high. Thus, for these applications the buffer system
must support the two multi-version issues of Section 5.2.2: multiple versions of the same
variable in the system, and in case of imbalance (Column 3 of Table 5.1) multiple versions

of the same variable in the same processor.
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speculative_parallel do i speculative_parallel do i speculative_parallel do i

doj=1,i-1 do j while (sptr > 0) do
zdt(j) = ... do k ... = stack(sptr)

enddo work(k) = work (f(i,5,k)) do j
Compute L enddo if (cond)
doj=1,L call foo(work(7)) stack(sptr) = ...
enddo enddo enddo

enddo enddo

enddo
(a) Bdna (b) Apsi (c) Tree

Figure 5.5. Examples of non-analyzable loops that exhibit mostly-privatization access patterns. The

outermost loop is speculatively parallelized.

5.2.4 Analogy to Register File Management

To better understand multi-version buffering for speculative parallelization, we propose to
use the concepts proposed by Smith and Pleszkun for register file management in pipelined
processors with precise exceptions [SP88]: architectural file, reorder buffer, future file, and

history buffer.
The Architectural File (AF) refers to the safe contents of the register file. The AF is

updated with the result of an instruction only when the instruction has completed and
all previous instructions have already updated the AF. Exceptions do not affect the AF

state.

The Reorder Buffer (ROB) allows instructions to execute speculatively without mod-
ifying the AF. The ROB keeps the register updates generated by instructions that have
finished but are still speculative. When an instruction commits, its result is moved into

the AF. If an exception occurs, some ROB entries may be invalidated.

The Future File (FF) refers to the most recent contents of the register file. A FF
entry is updated by the youngest instruction in program order updating that register.
The FF is used as the working file by later instructions. When an instruction commits, no
copying is needed. However, the FF is unsafe because it has been updated by uncommitted

instructions. Therefore, in an exception, we have to revert the FF to the AF.

The History Buffer (HB) allows the FF to be speculatively updated. The HB stores the
previous contents of registers updated by speculative instructions. When an instruction

commits, its HB entry can be freed up. In an exception, the HB is used to revert the FF
to the AF.

We see an analogy between managing register file state for speculative instructions
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and managing memory system state for speculative parallelization. Instruction comple-
tion, commit, and squash are now task completion, commit, and squash. Exceptions are
now dependence violations. Finally, multiple instructions creating multiple versions of a

register are now multiple tasks creating multiple versions of a variable.

5.3 Taxonomy of Approaches

5.3.1 Speculative State Composition

To optimize the buffering of multi-version speculative state, we examine its composition.
Figure 5.6 shows a snapshot of the memory state of a program using the ROB or HB

analogies.

Using the ROB analogy (Figure 5.6-(a)), we see the architectural memory system
state of the program as being composed of unmodified variables (black region) and the
committed versions of modified variables (white region). The remaining memory system
state is comprised of speculative versions that have not yet committed. These versions
form a Memory-System Reorder Buffer (MROB) distributed across the memory system.
Among these versions, we distinguish between the last version of each variable (striped
region) and the other, non-last speculative versions that have been overwritten (shaded
region).

Younger
versions

Future memory
system state /7)) Last speculative version

Memory-system
B [)e(?frder Memory—system I Non-last speculative version
% 7 uner histor
y . .
ﬁ %. ehitoctural Older buffer [] Committed version
memory system versions Il Unmodified
S state —
Variables Variables

(a) (b)

Figure 5.6. Snapshot of the memory system state of a program during speculative parallel execution.

We use the ROB and HB analogies in (a) and (b), respectively.

Using the HB analogy (Figure 5.6-(b)), we see the future memory system state of
the program as being composed of: unmodified variables, last speculative versions, and
committed versions of modified variables that have no speculative version. The remain-
ing non-last speculative versions and committed versions form a Memory-System History
Buffer (MHB) distributed across the memory system.

Depending on how these versions are managed, we can classify the approaches to
buffer multi-version speculative state. In the following, we present a novel taxonomy of

approaches (Section 5.3.2), and map existing schemes to the taxonomy (Section 5.3.3).
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5.3.2 Novel Taxonomy of Approaches

We propose two axes to classify the different approaches to buffer and manage speculative
state in the memory system of multiprocessors (Figure 5.7-(a)). The first axis applies the
concepts of Section 5.2.4 to main memory update and classifies the approaches based on
whether main memory keeps the architectural (safe) state or the future (unsafe) state of

the program.

Satein Memory—System Memory—System
Main Reorder Buffer (MROB) History Buffer (MHB)
Tasks & Memory?
Versions .
Per Processor? Architectural  Future
Main Mem  Main Mem
Eager Lazy Eager Lazy m m m
i | T 2 i H
Versions | ¢ | [Memery-sem
Multiple | of Same 5| & |History Buffer Caches Caches
Spec Tasks e tE T
Single Ib } 5
Version gl g Main Memory Main Memory
2 i Future
Single Single s } é—\tl;teutectural State
Spec Task ~ Version }
(b) System with Architectural (c) System with Future
@ Main Memory (AMM) Main Memory (FMM)

Figure 5.7. Different approaches to manage multi-version speculative state: taxonomy (a), keeping

the architectural state in main memory (b), and keeping the future state in main memory (c).

In systems with Architectural Main Memory (AMM), all speculative versions remain
in caches or buffers that are kept separate from the coherent main memory state. Only
when a task becomes non-speculative can its updates in cache or buffer be merged with
the main memory state. In this approach, caches or buffers become a distributed MROB
(Figure 5.7-(b)).

In systems with Future Main Memory (FMM), versions from speculative tasks can be
merged with the coherent main memory state. However, to enable recovery from task
squashes, before a task generates a speculative version of a variable, the previous version
of the variable is saved in the cache or a buffer. Such state is kept separate from the main

memory state. In this approach, caches or buffers become a distributed MHB (Figure 5.7-
().

Note that in both AMM and FMM systems, part of the coherent main memory state
can temporarily reside in caches (Figures 5.7-(b) and (c)). This is because caches also

function in their traditional role as extensions of main memory.

AMM and FMM systems can each be further subdivided into Eager and Lazy depend-
ing on how fast eligible versions are merged with the coherent state of main memory. In

eager schemes, a task eagerly merges all its versions with main memory when it commits
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(in AMM systems) or eagerly merges every speculative version as it generates it (in FMM
systems). Merging may involve a write back to memory [CMTO00] or an ownership request
to obtain coherence with main memory [SCZMO00]. Lazy schemes, instead, merge lazily,
usually on line replacement from the cache or on external request. As a result, several
different committed versions of the same variable may temporarily co-exist in different
locations. However, a variable only has a single committed version at any time. There-
fore, the remaining previous versions can be thought as garbage versions whose future is

certainly to disappear as soon as the space they occupy is needed [GVSS98].

The second axis in Figure 5.7-(a) classifies the approaches based on what type of
speculative state can the private cache hierarchy of a processor hold at a time. One
approach is to hold only the state of a single speculative task (SingleT) while the other is
to support multiple speculative tasks (MultiT).

In SingleT systems, when a processor finishes a speculative task, it has to stall until
the task becomes non-speculative and can commit. Only then can the processor start a
new speculative task. In MultiT systems, when a processor finishes a speculative task, it

can immediately start a new one.

One issue in MultiT systems is whether the private cache hierarchy of a processor
is designed to hold multiple speculative versions of the same variable (MultiTé&MV) or
only a single one (MultiTéSV). If multiple, each of these versions necessarily belongs to
a different task. This division is shown in Figure 5.7-(a). Under MultiT€éSV, a processor
stalls when a task is about to create a second local speculative version of a variable.
Intuitively, MultiTéMV support is analogous to supporting multiple versions of the same

logical register in the processor.

Finally, we shade an area in Figure 5.7-(a) to indicate that these schemes are relatively

less interesting. We explain why in Section 5.4.
5.3.3 Mapping Proposed Schemes to the Taxonomy

Figure 5.8 maps existing schemes for speculative parallelization in multiprocessors onto

our taxonomy.
1 AMM schemes
1.1 SingleT AMM schemes

Schemes such as Multiscalar with hierarchical ARB [FS96], Superthreaded [THAT99],
MDT [KT99], Marcuello99 [MG99], SVC [GVSS98], and DDSM [FF01] belong to
this category. These schemes are SingleT because before a processor starts to run a new

speculative task, it waits until the task that it has just run has become non-speculative
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and committed.

Out of all these schemes, Multiscalar with hierarchical ARB, Superthreaded, MDT, and
Marcuello99 are eager because versions are merged with the main memory state eagerly at
task commit. The buffering in these schemes differs on what part of the cache hierarchy
holds the speculative state of a task: one stage in the global ARB of a hierarchical ARB
in Multiscalar, the Memory Buffer in Superthreaded, the L1 in MDT, and the register file
(plus a shared Multi-Value cache) in Marcuello99.

Architectural Main Memory (AMM) Future Main Memory (FMM)

Eager Lazy Eager Lazy
Multiple I I
Versions Hydra 1 i Zhanggg_
of Same Steffan97&00 : Prvulovic0l : ZhangThesis
Multiple (MultiT&MV) Cintra00 1 1 Garzaran01
SpecTasks | = jrem———————— i i e
(MultiT) Single |
Version Steffan00 |
(MultiT&SV) :
1
Single Multiscalar (with 1
Spe% Task Single hierarchical ARB) | . COARSE RECOVERY:
(SingleT) Version Superthreaded  MDT : Multiscalar(SVC) SUDS and similar
Marcuello99 DDSM

Figure 5.8. Mapping schemes for speculative parallelization in multiprocessors onto our taxonomy.

Multiscalar with SVC is lazy because committed versions linger in the cache after
the owner task commits. Several different committed versions of the same variable can
concurrently exist in different caches. They are only written back or invalidated when a
new task somewhere accesses the variable. For example, on a load, a Version Ordering
List (VOL) is used to find the last committed version, which is supplied to the requester.

All the previous versions no need to be written back and are invalidated.

Finally, in DDSM, speculative versions are also kept in caches. However, work is
partitioned so that each processor only executes a single task in the speculative section.

For this reason, the distinction between eager and lazy does not apply.

1.2 MultiT AMM schemes

We start with the more aggressive MultiT&MV schemes: Hydra [HWOY8], Stef-
fan97&00 [SCM97, SCZMO00], Cintra00 [CMTO00], and PrvulovicOl [PGRTO01]. Hydra
stores speculative state in buffers between L1 and L2, while the others store it in L1, and
possibly L2 and local memory. In all these schemes, a processor can start a new speculative

task without waiting for the task that it has just run to become non-speculative!.

'"While this statement is true for Hydra in concept, the evaluation in [HWQ98] assumes the hardware

limitation of only as many buffers as processors, which makes the system SingleT.
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The private cache or memory hierarchy of a processor may contain state from multi-
ple speculative tasks, including multiple speculative versions of the same variable. This
requires appropriate cache design in Steffan97&00, Cintra00, and PrvulovicOl. In Hydra,
the implementation is easier because the state of each speculative task goes to a different
buffer. For example, a processor may be filling a buffer while the buffer that it filled with
the previous task is not fully merged with memory. In this case, any two versions of the

same variable will appear in different buffers.

In Steffan97&00, Cintra00 and PrvulovicOl versions in cache or overflow area are
tagged with the owner task ID. In Steffan97&00 all these versions are in L1. In Cin-
tra00, where each node of the Distributed Shared Memory Multiprocessor is an on-chip
multiprocessor, speculative state produced by the task executing in each processor is hold
in its L1 cache. Only when the task becomes the non-speculative task of the chip, can its
speculative state be merged with the speculative state in L2 cache. Both, Steffan97&00

and Cintra00 use a victim cache to avoid or reduce stalls due to speculative state overflows.

In Prvulovic01, versions are kept in caches and overflow areas in the local memory of
each processor. In absence of conflicts or capacity problems, two versions can be kept in L1
and L2. L1 always keeps a younger version (a last one), while L2 keeps an older one (a non-
last version). This is an intelligent design choice since the oldest one (a non-last version)
will never be required by the local processor. External requests can require last or non-last
versions. However, the processor is already prepared to access L1 on an external request,
since a normal coherent request of a data dirty in L1 also requires a L1 access. Note that
this approach uses the inclusion property of the multi-level caches to keep two versions of
the same variable (or cache line), which avoids cache pollution. Finally, an overflow area
in the local memory of each processor is provided to buffer speculative versions in case of
conflicts, capacity problems, or if more than two speculative versions need to be buffered.

This overflow area is organized and accessed as a cache.

Of these schemes, Hydra, Steffan97&00, and Cintra00 eagerly merge versions with the
coherent main memory state. Merging involves writing the versions to main memory in
Hydra and Cintra00, or asking the directory for owner state in Steffan97&00. Prvulovic01
is lazy: committed versions remain in caches and are merged when they are displaced or
when caches receive an external request. For lazy commit, they use a Version Combining

Register (VCR) in the directory controller of each node.

One of the designs in Steffan00 [SCZMO00] is MultiT&SV. Such a design is like
Steffan97&00 except that the L1 is not designed to hold multiple speculative versions of
the same variable. When a task is about to create a second local speculative version

of a variable, it stalls. However, since the applications that they evaluate do not have
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privatization pattern, this issues does not seem to affect their performance results. This

schemes eagerly merges versions by asking the directory for ownership at commit time.
2 FMM schemes
2.1 SingleT FMM schemes

There is a class of schemes labeled Coarse Recovery in Figure 5.8. These schemes only
support coarse-grain recovery. The MHB can only contain the state that existed before
the speculative section. Such state is not overwritten with any other version throughout
the section. In these schemes, if a violation occurs, the state reverts to the beginning of

the entire speculative section.

These schemes typically use no hardware support for buffering beyond plain caches.
They rely on software copies. They are effectively SingleT due to their coarse recovery, and
are usually eager because it is the most straight-forward approach in software. Examples
of such schemes are [FLA0O1, GN98, RP95, RS00, ZRT98].

The work in SUDS [FLAO1] has two unusual characteristics. One is that no caches
are used and, therefore, all versioning is done at the shared memory. All writes proceed
directly to the shared memory. The second characteristic is that at run-time they build a
MHB. Indeed, the MHB is a software array called log where each memory location can at

most save one older version, namely the one existing before speculation started.
2.2 MultiT FMM schemes
All the schemes proposed, such as Zhang99 [ZRT99], ZhangThesis [Zha99], and

Garzaran01l [GPL7101] are lazy. Their laziness comes from keeping in caches specula-
tive versions that belong to the future state; they are merged with main memory only if

they are displaced.

Zhang99 and ZhangThesis keep the MHB in hardware structures called logs. In
ZhangThesis, a multi-version speculative protocol is able to handle all the dependences
but the out-of-order RAW ones. Logs are kept in the local memory of each processor and
are managed from a hardware controller. They are accessed in an in-order RAW depen-
dence requiring a non-last version, or in an out-of-order RAW dependence to revert the
system to a safe state. Logs can be recycled when the task that created it commits. This
system also has a page-based overflow area in the local memory of each processor. This is

explained with more detail in Appendix A.

In Zhang99, two different speculation protocols are proposed. The choice of the pro-
tocol will depend on the appearance of privatization access patterns in the executed ap-

plication. For the applications without privatization access patterns, a Non-Privatization

*The work in [RS00] has some differences but can be shown to fall into this class.
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protocol is proposed. In this Non-Privatization protocol, for each variable, its last version
in the system is kept in main memory or cache of the last processor that wrote to it.
All previous speculative versions of that variable in the system are kept in a hardware-
managed log which is placed in the home memory of the variable. In this system, logs are
only used to revert the system to a safe state in case of a dependence infraction. This sys-
tem is very similar to SUDSO01, with two main differences. First, in Zhang99 speculation
is supported in hardware, and the logs can keep multiple versions of the same variable.
Thus, Zhang99 does not need to synchronize after each processor executes a task. Second,
the system in Zhang99 is a cache-based Distributed Shared Memory, while SUDS does not

use caches.

In Garzaran01, the MHB is a set of software log structures, which can stay in caches
or be displaced to memory. This system is based on the speculation protocol proposed in
ZhangThesis. This scheme is a contribution of this thesis, and will be described in detail

in the next chapter.

5.4 Implementation Issues

Before we examine the trade-offs associated with the different axes described, we discuss
how to implement a Distributed MROB and MHB, and the main issues that appear. These

issues will clarify why we shaded the single version area for FMM in the taxonomy.

5.4.1 Implementing a Distributed MROB

Consider a trivial example where every task creates a new version of variable X at address
0x400 without first reading an older version of it. Figure 5.9-(a) shows the code for 2 tasks
that run on the same processor. Building a distributed MROB using cache or write buffer
space is easy. Each task generates its version locally and keeps it in the cache or write
buffer. Multiple speculative tasks running on a processor simply tag their versions with
their task IDs and stack them up in the cache or write buffers. Versions will eventually be
merged with the architectural state in main memory when the task that produced them
commits. Figure 5.9-(b) shows an example where the MROB is built in the cache of the

processor.

If the execution of a task causes the displacement of a speculative version, the task
has to stall since main memory in AMM systems is designed only to contain architectural
state. The stalled task will be able to resume when the task that has created the version
that needs to be displaced becomes non-speculative. Since tasks commit in order, stopping

a task may force its successors to remain stopped for a longer time. In this case, cache or
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Cache
Task ID Tag Data
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(a) Code (b) MROB in a processor

Figure 5.9. Implementing a distributed MROB.

speculative buffers accumulate more speculative state, which can cause further stalls. In

systems with many processors, these stalls may be a serious bottleneck.

In order to avoid task stalls we need to have an unlimited-sized area where the cache
can safely overflow into. The design of such an overflow area will largely depend on the
requirements of the underlying speculation protocol. A possible design is the one proposed
by PrvulovicOl [PGRTO01]. In this case, the overflow area is organized and accessed as
a cache, but uses the node main memory as a storage media. Thus, it can be considered
as a slow unlimited-size cache, where versions also need to be tagged with task-IDs. This

overflow area is used only in case of overflow of the speculative state in cache.

An alternative solution to reduce the amount of speculative state in caches, and thus
reduce the possibility of task stalls, is to remap non-last versions. This solution works
as follows. When a processor generates a new version of a variable, the cache line that
contains the older version is remapped or copied to a structure at a new address. The
remapped non-last versions can be displaced from the cache because such write-backs do
not affect the versions in the architectural state. As before, these remapped versions can
be organized as a cache. They can also be organized by grouping records according to the
ID of the task that produced the version. Figure 5.10-(b) shows an example where non-last
versions are remapped, when tasks 4, j, and k execute the code in Figure 5.10-(a). In the
example, versions are contiguously placed in memory, and grouped under the Producer
Task-ID. Note that this approach by itself does not solve the speculative state overflow
problem since last versions are still kept in cache, and if one of these last versions needs

to be displaced, the processor has to stall. This is the approach used in [GPL™02]

5.4.2 Implementing a Distributed MHB

A distributed MHB should ideally work as follows. Task ¢+1 saves task #’s version of X in
its MHB and makes its own version of X visible to the rest of the memory system. Then,
task i+2, possibly running on another processor, saves i+1’s version in its own MHB

and makes its own version visible to the memory system. Unfortunately, this approach
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Structure in memory or in cache

Cache with last versions with non—last versions
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i 4 0x600 i 0x400 | 12 [ i |ox00 | 2
i 6 0xB00 k | oxe00| 14 0x600 | 4
i 12 0x400 k| 0x800 | 16
k 14 0x600 0x800 | 6
k 16 0x800 I
(a) Code (b MROB

Figure 5.10. Data structure organization where non-last versions are remapped. Speculative tasks
%, J, and k execute the events in (a) while running on the same processor and using a reorder buffer
approach (b) where cache keeps the last versions, and the non-last versions are remapped in a data
structure in cache or memory. When task 7 commits, the versions it produced will be sent to main

memory and the data structure space released.

requires much communication between processors. Furthermore, since a task must save
its immediate predecessor’s version, this scheme disables concurrency, even in the absence

of true dependences as in the example.

To mitigate this problem, the MHB is made to work differently. Specifically, when
a task is about to generate a new version, the task saves in its MHB the most recent
version of the variable generated by a previous local task. With this approach, when there
are no true dependences as in the example, processors do not communicate, tasks run
concurrently, and the distributed MHB works in parallel. Of course, true dependences

require communication between processors.

The resulting MHB in a node is shown in Figure 5.11-(b) when tasks execute the same
code than before (Figure 5.11-(a)). The MHB itself is a structure in memory or in the
cache. A consequence of this MHB implementation is that the MHB entry created by a
task does not store the most recent version that globally precedes that task. Thus, each
MHB entry must be tagged with the ID of the task that generated the version (task ID i
in the figure). To see why, consider the following example. Assume that two speculative
tasks p and p+q running on different processors have each pushed into their MHB two
different committed versions of the same variable. Since each task pushes local versions,
the version pushed by p+¢ may be younger or older than the one pushed by p. Thus, we
need to tag versions with task ID in order to maintain a total order of all the versions of
a variable in the distributed buffers. This information will be needed in case a infraction

occurs and recovery is necessary.

Unfortunately, such per-entry tagging is needed even in SingleT schemes. This is unlike
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Figure 5.11. Distributed MHB when tasks 4, 7, and k execute in the same node.

in the MROB, where SingleT schemes only need a single, per-processor task ID. Therefore,
SingleT FMM schemes have nearly as much hardware as MultiT FMM schemes without
the latter’s performance advantages (as we will see in Section 5.7). A similar argument
can be made for MultiT&SV FMM relative to MultiT&MV FMM. For this reason, we

claim that the shaded area in Figure 5.7-(a) is uninteresting (except for coarse recovery).

Finally, note that in the MHB versions are also grouped under the the Ouerwriting
task-ID (task-ID i and k in the example). As in a register HB, when the overwriting
task commits, its overwritten versions become obsolete and can be deallocated. Thus,
grouping together all the versions that a task overwrote is very useful, because they all
can be deallocated at the same time once the task has committed. Note that this MHB
implementation is very similar to the previous MROB one, where non-last versions are

remapped. The difference comes from the different organization of the remapped versions.

Another implementation issue that appears in FMM systems comes from the fact that
versions of a given variable can be displaced from different caches to main memory out of
task-ID order. Main memory always keeps the most advanced future state possible. As a
result, it must reject write-backs of older versions that try to overwrite younger versions
of variables already present in main memory. To do so, FMM systems associate a task-ID
tag with each variable under speculation present in main memory. This tag identifies the
version currently in memory. In addition, main memory needs support to compare the

task-IDs of incoming and existing versions.

Finally, another source of complexity in FMM systems appears if speculative state can
overflow caches. As we have just explained, in an FMM system, any version can be evicted
to main memory, which always will grab the youngest evicted one. However, speculative
systems that only cause squashes under out-of-order RAW dependences must always keep
all speculative versions of a variable (last and non-last ones), and the committed version.

These versions can be needed in an in-order RAW dependence, to supply the correct
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version. In addition, the committed version of a variable will be needed on an out-of-order
RAW, to revert the system to a safe state. Keeping all this state in a FMM system needs
additional support to the one already described. Suppose that a task wants to evict the
speculative version 4, and the home memory already has a younger version j. Since version
j is younger than version i, the home memory will reject version i. However, by doing so
we can loose the speculative version 7. The processor has evicted it, and since version i
was not overwritten (it is a last version), it did not save a copy in the MHB. The main
memory does not keep it because it is not the youngest version. Next, we explain two

different solutions.

One solution to this problem was proposed in ZhangThesis [Zha99], and consists of a
page-based overflow area, where versions in the cache can flow into. Under this scheme,
the first time a node displaces a line of a cache that has been speculatively modified, a page
is placed in the local memory node and the displaced line is saved in it. This overflow
page is allocated only if at least one cache line of a shared page has been displaced in
dirty state from a local cache. Only the dirty lines need to be valid in the overflow page.
This mechanism guarantees that we are always able to revert the system to a safe state,
and all the speculative and the committed versions are kept. This solution requires an
additional per-node Address Mapping Module that is somewhat similar to the one in
Prism [ELPS98], WildFire [HK99], and S3.MP [NAB*95]. See Appendix A for a more

detailed explanation.

An alternative approach to the overflow area would be to build the MHB in the home
memory. With this approach, the memory will keep the youngest displaced version, as
before. The MHB will keep older displaced versions. The MHB can keep the last commit
version plus all the displaced speculative versions that are older than the one in memory.
However, no proposal has addressed this alternative, probably due to the high traffic it

may require.

5.4.3 Operations To Support in a Distributed MROB and MHB

All buffering schemes must support five important operations, namely Accesses to Own
Versions, Accesses to Non-Last Versions, Version Commit, Version Recovery, and Obsolete

Version Elimination.

Accesses to the Versions of the Current Task are satisfied from the cache or buffer.
Identifying such versions is easy: their task ID should match the ID of the requester.
Since such accesses are frequent, they should be satisfied efficiently. Note that these local

versions are always the last ones.
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Accesses to Versions Produced by a Task Previous to the Current One are not inter-
cepted by the cache. They need to reach a directory or similar structure that can point to
the correct version. This version can be found in the cache or buffer, overflow area, MHB,
or MROB. Identifying such correct version may involve non-trivial comparisons involving
several task ID tags. In most cases, a processor only really executes these accesses in RAW

dependences, which are hopefully not very frequent.

Version commit is the merging of the version with the architectural state of the pro-
gram. Versions commit when the task that generated them commits. Committing may
involve explicit data movement or state change like in eager AMM systems. Since version

commit is a frequent operation, it should be efficiently supported.

Version recovery is needed to revert the memory system back to a correct state after a
dependence infraction (an out-of order RAW). Recovery may involve discarding versions
from the MROB or copying back versions from the MHB. Hopefully, recovery is not very

frequent.

Obsolete version elimination involves expunging from the system committed versions
that have become useless. They are useless because other copies exist in the system
or because a different, younger version has also committed. It is hardly a time-critical

operation and can usually be done lazily or in the background.

5.5 Tradeoff Analysis

We analyze the impact of the three degrees of freedom in Figure 5.7-(a) in the following
subsections: Architectural vs Future Main Memory System, Single vs Multiple Speculative

Tasks & Versions per Processor, and Eager vs Lazy Merging with Main Memory State.

5.5.1 Architectural vs Future Main Memory

The tradeoff is that FMM systems handles version commit better, while AMM systems

make version recovery easier. Moreover, FMM systems have a higher implementation cost.
Version Commit and Recovery

In FMM systems, Version commit does not require any special operation. When a task
generates a new version, the older version is saved in the MHB and the new one takes its
place. The new version can be written back to main memory either eagerly or lazily. The
older versions can have been remapped to the MHB and, therefore, they cannot overwrite

memory. In either case, when the task commits, the version simply commits.
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Consider now an AMM system. Versions must be kept buffered in the MROB until the
task that produced them becomes non-speculative to prevent overwriting the architectural
state in main memory. Versions commit after the task that generated them commits.
Version commit requires an additional access to each one of the versions generated by the
task. This access takes place at task commit time in eager protocols, or it can be delayed
in lazy protocols. Since cache access is fast, committing versions in cache should also be
fast. However, committing versions in an overflow area in the local memory may be slower.

First, we need to find the version, and then access it.

On the other hand, Version Recovery is more natural under AMM. Recovery under
AMM simply involves discarding from the distributed MROB the speculative versions
generated by the offending task and successors. In contrast, recovery under FMM in-
volves copying all the versions over-written by the offending task and successors from the
distributed MHB to main memory. During this recovery procedure, different versions of
the same variable may be sent to the home. The home must be selective, and choose
the version with the largest task-ID which is smaller than the ID of the Commit Point.
This process may also require selective access to the overflow areas, where versions not
present anywhere else can be kept. Note that bringing the distributed memory system of
a multiprocessor to a consistent state is harder under FMM because main memory may

have a lot of non-architectural state.

Version commit and version recovery are the two operations that are intrinsically dif-

ferent in AMM and FMM schemes. Next we will discuss about the other operations.
Obsolete version elimination

It is equally cheap in AMM or FMM schemes. In AMM schemes, the entries in the
MROB are eliminated when the corresponding task commits and its versions are merged
with memory. In FMM schemes, the entries in the MHB become obsolete when the task
that produced them (the overwriting task) commits. Grouping all these entries together
allows to deallocate all of them at a time. These version can be freed either immediately

or lazily at regular intervals.
Accesses to the Versions of the Current Task

It is similar in both cases. In the case of AMM systems, the cache can have multiple
versions of the same variable tagged with a different task-ID; while in the FMM systems,
the cache only has the last version. In any case, under a request from the processor, the

ID of the requester task and the task-ID in cache have to match.
Accesses to Versions Produced by a Task Previous to the Current One

This type of access is required in an in-order RAW dependence. In AMM schemes, all
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the speculative versions (last and non-last ones) are kept in the MROB, and it has to be
accessed. If the MROB, is only built in the cache, this access is relatively fast. However,
if the MROB is also in the overflow area in the local memory, its access will be slower.
Since the request asks for an specific address, a cache-organized overflow area will speed
up this access. In a FMM system, last versions are in the cache and overflow areas, while
the non-last versions are in the MHB, which has to be searched. If data in the MHB are
not organized by address, access to a particular version requires a serial traversal and may

be slow. Fortunately, in practice non-last versions are rarely accessed.

Finally, recall from Section 5.4.1 that we propose an approach to build a MROB where
non-last versions in the cache are remapped to a different address, like in the MHB. If
non-last versions are remapped, the cache only needs to keep last versions, which are
the only ones that will be requested by the local processor. In addition, removing non-
last versions from cache may have an advantage, since the effective capacity of the cache
increases, which may increase the hit ratio. While this remapping or copying could be
expensive if implemented in hardware, it can also be done inexpensively in software. The
disadvantages of this approach, is that on an in-order RAW access, the data structure
where non-last versions are remapped may need to be accessed. At version commit, AMM

systems also need to access this data structure.

Implementation Complexity

FMM systems are more complex than AMM systems. One source of complexity of
FMM systems comes from the need of tagging main memory with the task-ID to allow

out of task-ID order displacement.

Such support in main memory is unnecessary in AMM systems because version merging
with main memory state can always be forced to occur in task order. Indeed, in eager
systems (Section 5.3.2), versions are trivially combined with main memory state in order
as they commit. In lazy systems, a scheme as proposed in [PGRTO01] can be used to write

back versions in order.

Another source of complexity under FMM systems comes from the difficulties of build-
ing a distributed MHB. One solution to this problem that keeps traffic low, requires an
overflow area in the local memory of the processor where displaced versions can be saved.
An alternative solution is to build the MHB in the home memory node. The main draw-
back of this alternative is that the traffic may increase significantly. No solution has been
provided so far for FMM systems with limited capacity to keep the speculative state. The
study of such solutions that would probably require task stalls and squashes are out of
the scope of this thesis. On the other hand, AMM systems also need an overflow area to

prevent tasks from stalling if speculative state overflow occurs. In AMM systems without
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an overflow area, tasks have to stall until the task that produced the version that needs

to be displaced commits.

There are other complexities in FMM and AMM systems. In FMM systems, when a
new version is created, the old one has to be copied to the MHB. In reality, while special
hardware for copying could be provided, low-overhead copying can be done completely in
software (next Chapter). In AMM systems, a cache may contain several versions with the
same address tag. Thus, to find the correct version we require some serial comparisons

that may increase cache occupancy, or more hardware for parallel comparisons.

5.5.2 Single vs Multiple Speculative Tasks & Versions per Processor

The tradeoff is higher performance and higher implementation cost as we go from single-
task (SingleT) to multiple-task (MultiT) schemes and, within the latter, from single-
version (MultiT&SV) to multiple-version support (MultiT&MV). MultiT schemes are
typically faster in the presence of task load imbalance. The exception is MultiT&SV
which may loose performance with load imbalance if mostly-privatization patterns are

dominant.
Task Load Imbalance and Mostly-Privatization Patterns

SingleT schemes perform poorly if tasks have load imbalance. In this case, a processor that
has completed a short speculative task may have to wait for the completion of a long, non-
speculative task running elsewhere. Only when the short task becomes non-speculative
and, typically, commits can the processor start a new task. For example, consider Fig-
ure 5.12-(a), where T; and ¢; represent task execution and commit, respectively. The figure
corresponds to an eager AMM system. In the figure, processor 1 completes task 71 and
waits. When it receives the commit token, it commits 77 and can start 7'3. Summarizing,
in SingleT schemes, version commit needs to be done before a new task can start to exe-
cute. This implies that version commit cannot take place in the background while another

task is executing.

MultiT schemes can better tolerate load imbalance because processors that complete a
speculative task can immediately start a new one. However, MultiT&SV schemes can run
slowly if tasks have load imbalance and create multiple versions per variable. The latter

occurs, for example, under mostly-privatization patterns (Section 5.2.2).

Under such circumstances, a processor executing a second speculative task stalls when
the task is about to create a second local speculative version of a variable. The processor
remains stalled until the first task becomes non-speculative and, as a result, the first

version of the variable can merge with memory. For example, in Figure 5.12-(b) processor
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Figure 5.12. Example of four tasks executing under SingleT (a), MultiT&SV (b), and MultiT&MV (c).

1 generates a version of X in task T'1. Then, it executes task T2 and stalls when trying
to generate a new version of X. When processor I receives the commit token for 71, the
first version of X can be displaced from the cache and T2 can restart. Notice that in the
example version commit happens in the background, since caches are prepared to keep
multiple versions from different tasks. Thus, as soon as a task receives the commit token,

a new task can start to execute in that processor.
All these stalls are eliminated with MultiT&MYV schemes (Figure 5.12-(c)).
Implementation Complexity

In SingleT schemes, the private cache hierarchy of a processor is simple. Indeed, since
it can only hold state from a single speculative task, there is no need to tag each line or

variable with a task ID. It is enough for the processor to know what task it is executing.

In MultiT schemes, the private cache hierarchy of a processor is more expensive to
build and, in addition, requires additional comparisons to access. Indeed, it can hold
versions from the multiple speculative tasks that the processor is (or has been) executing.
As a result, each line or variable is tagged with a task ID. Furthermore, when a cache is
accessed, the address tag and task ID of the chosen entry are compared to the requested
address and the ID of the requester task, respectively. An access from the local processor
hits only if both comparisons succeed. In an access from a remote processor, the action
depends on whether the scheme is MultiT&SV or MultiT&MV.

In a MultiT&SV scheme, the cache hierarchy can only keep a single version of a given
variable. Therefore, an external access to a cache can trigger at most one address match.
In this case, the relative value of the IDs tells if the external access is out of order. If it

is, a squash may be required. Otherwise, the data may be safely returned.

In a MultiT&MYV scheme, the cache hierarchy of a processor can keep multiple versions

of the same variable. This complicates both the design and the processing of external
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accesses. Specifically, a cache must support multiple entries with the same address tag
and different task ID. Some proposed designs put such entries in different lines of the
same set [CMT00, SCM97]. In this case, an access to the cache retrieves all the lines in
a set. Consider the case of an external read. The cache controller has to identify which
of the matching entries has the highest task ID that is still lower than the requester’s
task ID. That one is the correct version to return. This operation may require some
serial comparisons that may increase cache occupancy. Alternatively, it may need more

hardware for parallel comparisons.

5.5.3 Eager vs Lazy Merging with Main Memory State

The tradeoff is the higher performance and implementation complexity of lazy schemes.

Eager schemes are slower because they slow down the commit or the execution wavefront.
Commit and Execution Wavefronts

Program execution under speculative parallelization involves the concurrent advance of
two wavefronts: one for task execution and one for task commit. Figure 5.13 shows the
wavefronts for a lazy scheme. The Ezecution Wavefront advances as processors execute
tasks in parallel (T;); the Commit Wavefront advances as tasks commit in strict sequence
(c;) by passing the commit token. In a lazy scheme, at the end of the speculative sec-
tion all the versions remaining in the caches are written back and merged with main
memory [PGRTO1]. This is shown with bolded lines in the figure.
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Figure 5.13. Progress of the execution and commit wavefronts for a lazy AMM/FMM system.

Eager schemes eagerly merge versions during execution. This eliminates the global
write-back at the end of execution. However, it slows down one of the two wavefronts: the
commit wavefront in AMM systems and the execution one in FMM systems. The result

may be a slower program.

Consider AMM schemes first. Eager schemes require explicit data write-
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backs [CMTO00] or ownership transfers [SCZMO00] before the commit token can be passed
from the non-speculative task to its successor. These operations slow down the commit
wavefront. If the commit wavefront appears in the critical path of program execution, the

slowdown will be visible to the program, becoming a scalability bottleneck [PGRTO1].
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Figure 5.14. Progress of the execution and commit wavefronts in different schemes: eager AMM (a),
lazy AMM with stalls (b), eager AMM with stalls (c), and eager FMM (d).

There are two cases when the commit wavefront is in the critical path. In one case,
it appears at the end of the speculative section (Figure 5.13). To understand this case,
we introduce the Task Commit Ratio as the ratio between the average duration of a task
commit and a task execution. For a given machine, this ratio is a program characteristic
that measures how much state the program generates per execution unit. The commit
wavefront appears at the end of the speculative section if the task commit ratio of the

program times the number of processors is higher than 1.

The second case when the commit wavefront is in the critical path can appear when
there is load imbalance in MultiT&SV or SingleT systems. In these schemes, a processor
may have to stall until it receives commit token due to their single version or single task
limitations. Figure 5.14-(b) shows one example for a lazy AMM scheme. Clearly, if the
scheme is eager as shown in Figure 5.14-(c), the commit wavefront affects the critical path

even more.

Now consider an eager FMM scheme. Figure 5.14-(d) shows such a scheme, which is
the FMM equivalent to the AMM scheme of Figure 5.13. In such a scheme, a task merges
every speculative version that it generates with the coherent state of main memory as soon
as it creates it. Again, this can be done through data write-backs (effectively creating a
write-through cache) or ownership transfers. Note that a task cannot complete until
all its transactions complete. Consequently, the resulting extra write-back or ownership
transactions (shown in dashes in Figure 5.14-(d)) slow down the completion of the task.

As a result, the progress of the execution wavefront slows down.
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Finally, note that, to a lesser extent, eager schemes also slow down the execution
wavefront in AMM schemes and the commit wavefront in FMM schemes. The reason
is that they induce higher traffic than lazy schemes. Specifically, lazy schemes minimize
traffic by exploiting version obsolescence. They lazily leave committed versions in caches.
Younger tasks may eventually create younger, committed versions of these variables. In
this case, if the old versions have not yet been displaced from the caches, they have become
obsolete. They do not need to be merged with the main memory state and can simply be

silently discarded without creating traffic.
Implementation Complexity

Two effects make lazy schemes more complex. The first one is the need to ensure that
versions of the same variable are merged into the main memory state in task order. Failure
to do so could result in version loss. In-order merging is supported by construction only in
eager AMM systems. Lazy schemes and even eager FMM schemes need special support.
Specifically, lazy and eager FMM systems associate a task-ID tag with each variable under
speculation in main memory and use a comparator to discard incoming older versions

(Section 5.5.1).

Lazy AMM systems may use the same support or a simpler, yet non-trivial support. For
example, Prvulovic0l [PGRTO01] and Multiscalar with SVC [GVSS98] extend the write-
back transaction of a committed version with the invalidation of all previous versions.
Since Prvulovic0l uses multi-word cache lines, the transaction also collects committed

versions from the other words in the line.

The second source of complexity in lazy schemes is that we may need to search in
order to find the latest architectural (in AMM) or the latest future (in FMM) version
of a variable. For example, several different committed versions of the same variable
can co-exist. To find the latest version, Multiscalar with SVC uses the VOL Linked
List [GVSS98] while PrvulovicOl [PGRTO01], Zhang99 [ZRT99], ZhangThesis [Zha99],
and Garzaran0l [GPL7T01] tag versions with a task ID.

In eager schemes, all the versions that a task produced need to be accessed at commit
time. If no support is provided caches and overflow areas need to be traversed. To
reduce the commit time, a table in each level of the memory hierarchy can be used. This
table keeps the list of addresses that each task must commit. Notice that grouping the
versions that a task produced in write-buffers or remapping non-last versions in consecutive

positions in memory may also help to reduce version commit.
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Effect of Application Characteristics

Based on our discussion, Figure 5.15 shows the main application characteristics that limit
performance in each case. Of course, the simpler the mechanism, the higher the number

of factors that will limit performance.
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Figure 5.15. Application characteristics that limit performance in each approach.

If we compare AMM systems vs FMM systems, true data dependences (RAW) is the
main application characteristic that can result in lower performance of a FMM system
when compared to an AMM system. The reason is that if RAW dependences execute
out-of-order, they cause task squashes and recoveries, which are more expensive under
FMM systems. However, RAW dependences should be rare for the applications executing
under speculative thread-level parallelization. The main reason is that RAW dependences
between nearby tasks could easily execute out-of-order. If this was the case, the resulting
squash overhead would seriously hurt performance in both AMM and FMM systems. In
addition, even if RAW dependences executed in-order, they would induce much commu-
nication across tasks. Since AMM and FMM are distributed systems, the time needed to
satisfy read misses will be high. Thus, we expect that the applications executing under
speculative thread level parallelism will have a high degree of parallelism and not many
RAW dependences. Otherwise, the additional overheads of these systems (task squashes

and extra memory latency) will not be able to speedup the sequential execution.

If we focus on AMM systems, its performance can degrade if the amount of speculative
state is high. The speculative state can be high, because the working set of each particular
task is already high. Also, under MultiT schemes the amount of speculative state may
grow significantly when the application has task load imbalance, and as a result some

processors end up holding the speculative state from several tasks while others are busy
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with long tasks. Under these circumstances, the speculative state can overflow caches,
and the tasks will have to stall. Adding an overflow area in the local memory to hold the
speculative state is only a partial solution, because versions still need to be accessed at
commit time. Since accessing the local memory is slower than accessing the cache, the

commit wavefront can be delayed and appear in the critical path.

Performance of SingleT AMM schemes will be limited by task load imbalance. This
limitation can be removed with MultiT schemes. However, if the support only includes
MultiT&SV, and the application hast mostly-privatization access patterns, the perfor-
mance will be similar to the one achieved by SingleT schemes. With MultiT&SV, a
processor can start to execute a new speculative task before the previous executed one has
committed. However, the new task will almost inmediately stall if it tries to produce a
new version of an uncommitted variable which is already buffered by the local processor.
This problem can be removed by adding the MultiT&MYV support.

If we compare Eager vs Lazy AMM schemes, Eager AMM schemes will suffer in per-
formance when the Task Commit Wavefront appears in the critical path. This can occurs
between tasks under SingleT, and MultiT&SV if the applications have mostly privatization
access; if not, the Task Commit Wavefront can appear at the end of the task execution
under MultiT&MYV schemes.

All these tradeoffs are evaluated in Section 5.7.

5.6 Evaluation Methodology

5.6.1 Simulation Environment

To evaluate the performance of the different buffering schemes, we use an execution-
driven simulation system based on MINT [VF94a] that supports out-of-order superscalar
processors executing MIPS-2 binaries. We model a 16-node CC-NUMA where each node
contains a fraction of the shared memory and directory, and a 4-issue processor. The
processor has a 64-entry instruction window and 4 Int, 2 FP, and 2 Ld/St units. It
supports 8 pending loads and 16 stores. It has a branch penalty of 8 cycles and has 64
Int and 64 FP rename registers (96-entry physical registers). It also has a 2K-entry BTB

with 2-bit saturating counters.

Each node has a 2-way 32-Kbyte L1 D-cache and a 4-way 512-Kbyte L2, both with 64-
byte lines and a write-back policy. We use a small L2 because the applications are small.
The average no-contention round-trip latencies from the processor to the on-chip L1 cache,
L2 cache, and memory in the local node are 2, 12, 75 cycles, respectively. When accessing

the memory in a remote node this latency is 208 cycles, and when an additional access

Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM 113



Chapter 5. Tradeoffs in State Buffering for Speculative Thread-Level Parallelization

to a processor’s cache is required, then the latency is 291 cycles. Contention is accurately
modelled in the whole system, except in the global network where we only model the source
and destination ports. The caches are kept coherent with a release-consistent protocol like
that of DASH [LLG"90]. Pages of shared data are allocated round-robin across the nodes.
We choose this allocation because our applications have irregular access patterns. Private

data are allocated locally.

We model all the non-shaded buffering approaches in our taxonomy of Figure 5.7-(a).
The only exceptions are: eager FMM (which is effectively a cache write-through scheme
and causes so much traffic that results in very low performance) and coarse-recovery
schemes (which are different than the rest). To detect dependences, we use the speculative
protocol in [Zha99], which is also described in Appendix A. The protocol is appropriately
modified to adapt to each box in Figure 5.7-(a). Using the same base protocol for all
the cases makes it easier to identify the true differences between the schemes. Recall
that this protocol supports multiple concurrent versions of the same variable and triggers
squashes only on out-of-order RAWSs to the same word. We avoid processor stalls due to
L2 conflict or capacity limitations using a per-node overflow area in local memory. We
support multiple versions in AMM systems using the 4 ways of the L2 and the overflow
area. For FMM systems, the per-node MHB is allocated in the local memories. Cache

lines displaced from L2 are sent to both local and home memory.

To avoid tagging the L1 with task IDs, in all schemes, the L1 is traversed when a
task execution ends and the dirty lines are written back to L2. For task commit in eager
AMM systems, we use a hardware table that identifies the lines in the L2 cache and
overflow area that need to be written back to main memory [PGRTO01, SCZMO00]. For
lazy AMM systems and FMM systems, main memory is tagged with task IDs used to
collect the youngest versions. In MultiT eager AMM systems, version merging is done in
the background. Our simulations model all overheads, including dynamic scheduling of
tasks to processors, task commit, and recovery from violations. In FMM systems, recovery

from violations is performed using software handlers whose execution is fully simulated.

5.6.2 Applications

We use a set of scientific applications where a large fraction of the code is not fully analyz-
able by a parallelizing compiler. These applications are: Apsi from SPEC{p2000 [J.L00],
Track and Bdna from Perfect [B*89], Dsmc3d from HPF-2 [DSH94|, P3m from NCSA,
and Tree from [J. 94]. Appendix B gives a brief description of each one. We use the Po-
laris parallelizing compiler [BDET96] to identify the non-analyzable sections and prepare
them for speculative parallelization. The source of non-analyzability is that the depen-

dence structure is either too complicated or unknown because it depends on input data
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or control flow. For example, the code often has indirect indexing to arrays and complex
conditionals that depend on array values. In these sections, Polaris marks the accesses to

non-analyzable data, which will trigger speculation protocol actions.

Table 5.2 shows the non-analyzable sections in each application. These sections are
loops, and the speculative tasks are chunks of consecutive iterations. The chunks of
iterations are dynamically scheduled. The table lists the weight of these loops relative to
Tseq, the total sequential execution time of the application with I/O excluded. This value,
which is obtained on a Sun Ultra 5 workstation, is on average 51.4%. Note that the average
weight (45.5%) would be even higher in a parallel execution, where the other sections of
the code are parallelized. The table also shows the number of invocations of these loops
during execution, the number of tasks per invocation, the number of instructions per task,
and the ratio between the time it takes for a task to commit and to execute (Task Commit
Ratio). This ratio was computed under an eager MultiT&MYV system where tasks never
stall. All the data presented in the evaluation, including speedups, refer only to the code

sections in the table.

Appl Non-Analyz % of | # Invoc | # Tasks # Instr Task
Sections Tseq per Invoc | per Task | Commit
(Loops) (Thous) Ratio
P3m pp-do100 56.5 1 97336 69.1 0.003
Tree trwalk 92.2 41 4096 28.7 0.014
Bdna actfor_do240 44.2 1 1499 103.3 0.060
Apsi run_do[20,30, 29.3 900 63 102.6 0.114
40,50,60,100]
Track nlfilt_do300 58.1 56 126 22.3 0.084
Dsmec3d || move3_goto100 | 41.2 80 46777 5.4 0.062
[ Average | | 514 | 180 24470 | 553 | 0.056 |

Table 5.2. Application characteristics. Each task is one iteration, exceptin Track and Dsmc3d, where
itis 4 and 16 consecutive iterations, respectively.

Finally, Table 5.3 give a qualitative indication of the behaviour of the applications.
The first column refers to the load imbalance between nearby tasks. The second one refers
to the importance of mostly-privatization patterns. We estimate it by counting what
fraction of the tasks overwrite a version generated by a predecessor without first reading
it. The next column refers to how critical can be the commit wavefront in the parallel
execution. This column refers to the size of The Task Commit Ratio in last column in
Table 5.2. Remember that when the task commit ratio times the number of processors is
greater than 1, the task commit wavefront appears in the critical path. Finally, the last
column refers to the frequency of task squashes. Run-time dependence violations occur

only in Track and Dsmc3d. In Track, one violation occurs in 3 of the 56 loop invocations.
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In Dsmc3d, an average of 30 violations occur in each of the 80 loop invocations.

Appl Appl Characteristics
Load Priv Critical Task
Imbal | Pattern | Commit | Squash

P3m High Med No None
Tree Med High No None
Bdna Low High Maybe None
Apsi Low High Yes None
Track Med Low Yes Low

Dsmc3d Low Low Maybe Low

Table 5.3. Qualitative characteristics of the Applications.

5.7 Evaluation

5.7.1 Single vs Multiple Speculative Tasks/Versions per Processor

Figure 5.16 compares the execution time of the applications under schemes where indi-
vidual processors can support: a single speculative task (SingleT), multiple speculative
tasks but only single versions (MultiTé/SV), and multiple speculative tasks and multiple
versions (MultiT&MYV). All schemes are Eager AMM. The bars are normalized to SingleT
and broken down into instruction execution plus non-memory pipeline hazards (Busy),
and stalls due to memory access, not enough task/version support, and end-of-loop stall
due to the commit wavefront or load imbalance (Stall). The numbers on top of the bars

show the speedup relative to sequential execution.

The most advanced scheme (MultiTéMYV) should perform much better than the sim-
plest one (SingleT) under two conditions. One is in highly load-imbalanced applications.
According to Table 5.3, this is the case for P3m, which reflects in Figure 5.16.

The other condition is when the load imbalance is modest but the task commit ratio
is sizable. In this case, commits are in the critical path of restarting stalled processors
(Figure 5.14-(c)). Note that the task commit ratio should not be too high. If it is,
the end-of-loop stall due to the commit wavefront (Figure 5.14-(a)) will be the one to
determine the execution time in both MultiT&MV and Single T. According to Table 5.3, the
applications with modest imbalance and sizable task commit ratio are Bdna and Dsmc3d.
In these applications, MultiTé&MYV in Figure 5.16 is much faster than SingleT. For the
other applications, the task commit ratio is either too high or too low for MultiTé&MV to
be much faster than SingleT.
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Figure 5.16. Effect of supporting single or multiple speculative tasks or versions per processor.

MultiTESV should match Multi Té/MV unless mostly-privatization patterns dominate,
in which case it should resemble SingleT. According to Table 5.3, Track and Dsmc3d do
not have such patterns. Consequently, MultiTéSV and MultiTEMV in Figure 5.16 are

similar for them. P3m has some of these patterns, and so MultiTéSV is between the other
two bars.

The remaining applications (Tree, Bdna, and Apsi) have such patterns. MultiTéSV
should have no advantage over SingleT: in practice, a processor cannot make progress
until the task that it has just executed becomes non-speculative. This means that in
both schemes only P tasks can make progress at a time, where P is number of processors.
Under SingleT, since tasks are effectively assigned round-robin, there is a window of only
P assigned speculative tasks at any time. However, under MultiTéSV, since tasks are
greedily assigned, the window can grow longer than P. In this case, there is no control of
which tasks are making progress. It may be that some tasks far away from the commit
point are executing, while other tasks closer to it are temporarily stalled. This effect
delays the commit wavefront and therefore slows down MultiTéSV for these applications

in Figure 5.16. More details together with an example is shown in Appendix C.

Overall, MultiTEMYV is a good scheme: the average execution time of the applications
is 35% lower than under SingleT.

5.7.2 [Eager vs Lazy Merging with Main Memory State

Figure 5.17 compares the execution time under eager and lazy merging schemes. The

figure repeats Figure 5.16 but adds a Lazy bar to each scheme. As usual, all schemes are
AMM.
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Figure 5.17. Effect of supporting eager or lazy merging with main memory state.

A lazy scheme can only speed-up execution if the corresponding eager scheme has
the commit wavefront in its critical path of execution. As discussed in Section 5.5.3,
the commit wavefront can appear in the critical path either between task execution (Fig-
ure 5.14-(c)) or at the end of the speculative execution (Figure 5.14-(a)). The first sce-
nario appears when processors stall during task execution, typically under SingleT and, if
mostly-privatization patterns dominate, under MultiTéSV. The second scenario appears
when processors do not stall during task execution but the task commit ratio times the

number of processors is higher than 1.

The first scenario occurs frequently in our applications: in all cases under eager Sin-
gleT and for the privatization applications (P3m, Tree, Bdna, and Apsi) under eager
MultiTESV. In all these cases, the impact of laziness will be proportional to the appli-
cation’s task commit ratio. From Table 5.2, we see that the ratio is significant for all
applications except P3m and Tree. Consequently, for this first scenario, laziness should
improve SingleT for Bdna, Apsi, Track, and Dsmc3d, and MultiTéSV for Bdna and Apsi.
This is consistent with Figure 5.17.

The second scenario could appear for all applications under MultiTéMYV, and for the
non-privatization ones (Track and Dsmc8d) under MultiT€&SV. However, according to
Table 5.2, only Apsi and Track have a task commit ratio sufficiently high such that, when
multiplied by 16, it is clearly over 1. Consequently, laziness should improve MultiTéMV
for Apsi and Track, and MultiT€SV for Track. This is consistent with Figure 5.173.

30ur conclusions on laziness agree with [PGRTO01] for 16 processors for the common applications: Tree,

Bdna, and Track (Apsi cannot be compared because the problem sizes are different). Our MultiT&MV
eager and lazy schemes correspond to their Opt and something in between OptNoCT and OptNoCTLI,

respectively. Overall speedup figures are somewhat different because the speculation protocols used here
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Overall, laziness is effective across the board. For the simpler schemes (SingleT and
MultiTé4SV), it reduces the average execution time of the applications by 25%, while for
MultiTéEMV the reduction is 20%. In particular, lazy SingleT schemes constitute a cost-

effective design point for lightly-imbalance applications (all our applications but P3m).

Finally, we have also evaluated a MultiTé&MYV system where the number of supported
versions is limited by the size and associativity of the L2 cache: 512-Kbyte and 4, re-
spectively, in our experiments. Figure 5.18 shows results for an eager and a lazy scheme.
For each scheme there are two bars. The first one supports unlimited number of ver-
sions (Infinite), and repeats the bar from Figure 5.17. In the second one, a task stalls
in case of displacement of a cache line with uncommitted data (4vers). The stalled task
proceeds when the task that produced the data that is about to be displaced becomes

non-speculative. The Figure show differences only for P8m and Bdna.

In P3m, which is a highly imbalanced application, limiting the amount of speculative
versions hurts performance seriously in both Eager and Lazy schemes. In Bdna, 4vers runs
16% slower than Infinite with an eager system. However, the difference between 4vers and
Infinite with a lazy system is only 7%. The reason is that with a lazy scheme, commit is
faster. This speeds-up the transfer of the commit token, reducing the probability of task
stall. For the rest of our applications, since they are only slightly imbalanced and their

working sets fit in the cache, there are almost no differences between Infinite and 4vers.

Thus, a conclusion of this experiment is that when speculative state overflows mod-
erately, laziness helps reducing the stall time. However, in case of high imbalance where
speculative state overflows significantly, laziness has no effect, as the execution time is

dominated by the task stall time.
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Figure 5.18. Effect of limited support for eager or lazy merging with main memory state.

5.7.3 Architectural vs Future Main Memory System

Figure 5.19 compares the execution time under architectural and future main memory

system schemes. All bars use MultiTé&MYV support. For the AMM system, we repeat the

and in [PGRTO01] have differences.
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eager and lazy bars from Figure 5.17. For the FMM system, we show the baseline lazy
scheme (Lazy) and the same scheme but where the copying of versions to the memory
history buffer is done in software (Lazy.SW). In such a scheme, which was presented
in Garzaran0l [GPLT01], the application includes extra instructions that perform the
copying. A detailed explanation of this software scheme follows in the next chapter. As

indicated in Section 6.5.1, we do not evaluate an eager FMM design.
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Figure 5.19. Effect of supporting an architectural or a future main memory system.

FMM schemes are better suited to version commit, while AMM schemes to version
recovery. In our applications, dependence violations are not especially frequent (Ta-

ble 5.3).Therefore, we would expect AMM schemes to be slower.

In practice, while the figure shows that the simple Eager AMM scheme is slow, the
more sophisticated Lazy AMM has a performance very close to Lazy FMM. The average
execution time on Lazy FMM is only 7% shorter than on Lazy AMM. We conclude,
therefore, that the additional hardware added to support laziness in AMM is effective.

Examining the differences between Lazy FMM and Lazy AMM, we see that the re-
coveries required in Dsmc3d and Track do not affect the schemes much. The only major
difference between the two schemes occurs in P8m, where Lazy AMM is slower. P3m has
load imbalance and mostly-privatization patterns. As a result, under AMM, the memory
reorder buffer in a processor keeps the state of numerous speculative tasks, with multiple
versions of the same variable. The large size of the state induces cache displacements due
to capacity to the overflow area. Furthermore, since all versions of the same variable map
into the same set, 1.2 also suffers displacements due to conflicts. Overall, the resulting loss

of locality slows down P&m.

To eliminate this problem, we have increased L2’s size and associativity to 4 Mbytes
and 16 ways, respectively (Lazy.L2 bar in P3m). In this case, AMM performs just as well
as FMM.

Finally, Figure 5.19 agrees with [GPL™01] in that the performance hit of copying
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versions to the memory history buffer in software (Lazy.SW) is modest. Lazy.SW takes
only 7% longer than Lazy FMM to run the average application. While it eliminates some
hardware, it still needs the most complex Lazy FMM hardware, namely the tagging of

versions in memory.

5.7.4 Summary

These results lead us to several conclusions. First, the analysis of the multiple
tasks/versions per processor indicates that MultiTéSV is undesirable: its performance

is similar to SingleT while its complexity is nearly as high as MultiT&MYV.

Starting from the simplest scheme (Single T Eager AMM), we have the choice of adding
support for multiple tasks&versions or for laziness. Our second conclusion is that adding
multiple tasks&versions is more cost-effective. Indeed, the reduction in execution time is
higher: 35% versus 25% for laziness. Furthermore, the hardware complexity is lower for
adding multiple tasks&versions. Specifically, MultiTE&EMYV requires task IDs in caches and
logic to manipulate them. Laziness requires supports to know the order of the committed
versions left in caches, and to collect them correctly in memory. The order can be known
with task IDs in caches [PGRTO1] or with a linked list [GVSS98]. Collection in memory
requires support for merging on displacement [PGRTO1] or tags in memory [Zha99].

A third conclusion is that the improvements due to multiple tasks&versions and due
to laziness are fairly orthogonal. Indeed, adding laziness to the MultiTésMV Eager AMM
scheme reduces the execution time by an additional 20%, resulting in a high-performance

system.

Finally, the resulting system (MultiTé/MV Lazy AMM) is shown to have sufficient
features to be generally competitive against the most expensive and fastest system (Mul-
tiTEMV Lazy FMM). The AMM scheme is usually as fast as the FMM scheme. Its
only weakness is that it is not as robust. Indeed, applications with sizable working sets,
significant load imbalance and, possibly, mostly-privatization patterns put stress on the
cache hierarchy of MultiT¢&MV Lazy AMM. The MultiT&MYV Lazy FMM scheme does
not have this problem. However, it is more expensive, mostly because it needs memory
tags [Zha99].

5.8 Conclusion
This chapter made two main contributions. First, it introduced a novel taxonomy of

approaches to buffer multi-version memory state for speculative parallelization in multi-

processors. We applied three criteria: a novel application to memory state of the concept
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of architectural vs future state, lazy vs eager merging, and multiple vs single specula-
tive tasks and versions per processor. On this taxonomy, we mapped buffering schemes

proposed elsewhere.

The second contribution was a tradeoff analysis and a detailed performance evaluation
of the different degrees of freedom in our taxonomy. The performance evaluation was based

on simulations of all the approaches under a single baseline architectural framework.

Our key insights are that support for multiple speculative tasks&versions is more cost-
effective than support for lazy merging. Moreover, both supports have largely orthogonal
effectiveness and can be combined. A lazy, multi-task&version scheme under AMM is
nearly as fast as the same scheme under FMM. However, it is not as robust as the latter
under applications that stress the cache hierarchy. Overall, the lazy, multi-task&version

FMM scheme is the fastest and most robust. However, it is also the most expensive.

Our future work is two-fold. First, we are examining software solutions to simplify
the hardware of the lazy, multi-task&version FMM scheme. Second, we are examining

applications that have frequent violations, where AMM may have an edge.
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Chapter 6

Software Buffering Under
Speculative Thread-Level

Parallelization

Future Main Memory state buffering appears to be a good solution for speculative thread-
level parallelization. However, systems based in this approach have a high hardware com-
plexity, that comes in part, from the need of buffering speculative state. This complexity

could be removed if buffering were triggered by software actions.

In this chapter, we explore a software-only implementation to buffer speculative state
for lazy Future Main Memory systems. We take a speculation protocol, and build a
software-only buffering scheme with support to buffer state from multiple tasks and mul-
tiple versions. Our design examines the major issues like software access to task-IDs, and

overhead reduction by filtering first stores, bypassing the cache, or using predication.

Our simulations of a 16-processor CC-NUMA show very promising results. Our soft-
ware implementation only adds an overhead of a 7% over a similar hardware-only scheme,

while it removes most of the hardware complexity.

6.1 Introduction

In the previous chapter, we have studied the main tradeoffs to buffer the speculative
memory state from multiple tasks and multiple versions (MultiT&MYV) under speculative
thread-level parallelization. We have also presented a novel taxonomy that classifies exis-
tent schemes based on the approach taken to buffer this speculative memory state. Our

taxonomy differentiates between Architectural Main Memory (AMM) Systems and Fu-
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ture Main Memory (FMM) Systems. With AMM systems, caches, write buffers or special
buffers keep speculative state to prevent the architectural state in main memory to be
corrupted. However, with FMM systems main memory keeps the most advanced specula-
tive state, while distributed memory history buffers (MHB) keep the previous state (either
architectural or speculative), so that if errors are found at run-time, the architectural state
of main memory can be restored. Our experiments have shown that FMM systems appear

to be a robust system, but have the inconvenience of a higher hardware complexity.

The hardware complexity of FMM systems comes from different places. Part of it is
shared with AMM systems, and refers to the speculation engine that checks for dependence
errors and the need for task squashes, or finds the correct version in an in-order RAW
dependence. However, FMM systems have extra complexity to buffer speculative state.
On one side, they need to tag main memory with task-IDs to allow out-of order version
displacement. On the other side, implementing a distributed MHB for a MultiT&MV
speculative system where only out-of-order RAW dependences cause errors is complex.
Each processor needs to keep a MHB where previous updates are recorded. Moreover, if
speculative state can overflow caches, extra support is needed. This extra support may be
an overflow area in the local memory of the processor where speculative state can overflow

nto.

As suggested at the end of the previous chapter, we feel that exploring solutions to
simplify the hardware complexity of lazy FMM systems is worthwhile. Thus, in this
chapter we explore memory state buffering scheme for such MultiT&MV systems. Our
proposed scheme is implemented through software-only algorithms. In particular, we
design, implement and evaluate a software-only MultiT&MV buffering scheme that runs
on top of the speculation protocol presented in [Zha99, ZPG199] (and explained in detail
in Appendix A). In our designs, we examine the major issues like software access to task-
IDs, overhead reduction by filtering first stores, bypassing the cache, or using predication.
We evaluate the whole scheme with simulations, and we find that the implementation of
our software MultiT&MYV buffering scheme is very effective. For a 16-processor CC-NUMA
running speculatively parallelized applications, our scheme adds an overhead of only 7%
to the execution time of a similar hardware-only scheme. We also evaluate performance

of several alternative designs.

This chapter is organized as follows: Section 6.2 sketches the speculative protocol
that we use; Section 6.3 present an overview of the history buffer operation; Section 6.4
presents our implementation; Section 6.5 describes our evaluation methodology; Sec-

tion 6.6 presents the evaluation; and Section 6.7 summarizes.
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6.2 Speculation Protocol Used

To give a concrete example of how a software implementation of a buffering scheme
for a lazy FMM system could be used, we use the speculative parallelization protocol
from [Zha99, ZPGT99]. That protocol included a MHB or log managed in hardware
with support to buffer MultiT&MV memory state. For that, each node had a hardware
controller embedded in the directory module that worked in the background with very
small overhead. In this chapter, we take that protocol and explore an inexpensive soft-
ware implementation of the MHB. We now briefly describe some details of the protocol.
More details of the protocol and the hardware-based buffering scheme can be found in

Appendix A.

The architectural platform assumed in [Zha99, ZPG199] is a CC-NUMA machine.
In this system, only out-of-order RAW dependences cause the squash of the tasks. The
rest of the dependences can be detected and solved at run-time. Speculative accesses are
marked with special load and store instructions that trigger the protocol. When one of
these accesses reaches a shared data page for the first time, a page of shared task IDs is
allocated. This page, which is kept in the home memory contains a MazWDisp task-1D
per word in the data page. MazWDisp will record the version of the word in the memory,
which is the ID of the youngest task that wrote the word and displaced it to the home. At
any time, the home only accepts incoming versions of words that are younger than those

it already has.

In addition, to avoid task squashes due to cache conflicts or capacity problems, this
protocol uses an overflow area in the local memory of the processor, where versions in
the cache can flow into. Thus, the first time a node displaces a cache line that has
speculatively been modified, the OS places a new page in the node’s local memory, where
the displaced line is saved. The node’s local memory also keeps a page of local task IDs
for each page of data that has been speculatively accessed. These task IDs will record,
for each word, the ID of the youngest local task that writes the word (PmazW), and the
ID of the youngest local task that reads it without writing it first (PmazR1st). The latter
operation is an exposed load. These task IDs are automatically updated by a dependence-
detecting hardware engine with small overhead. For a given task and variable, PmazR1st
and PmazW serve as a filter. They detect events that must be communicated to the home,
namely when a version from outside the node is needed and when a successor task may

have to be squashed respectively.

As a summary of the local time stamps, the L1 and L2 cache tags keep a Readlst and a

Write bit per word. They indicate whether the current task has issued an exposed load or

Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM 129



Chapter 6. Software Buffering Under Speculative Thread-Level Parallelization

has written the word, respectively. These bits, which are cleared when a new task starts,

are used to reduce messaging to the task IDs in the local memory.

6.3 Overview of the History Buffer Operation

In this section, we give an overview of a MultiT&MYV buffering scheme based in a history
buffer approach. A possible organization of the MHB for a lazy FMM system supporting
multiple tasks and multiple versions is shown in Figure 6.1. Each processor in the CC-
NUMA machine allocates one history buffer in its local memory. The compiler estimates
the size of the sectors and history buffer based on the number of writes in a task and the
number of tasks per processor that are likely to be uncommitted at a time, respectively.
The history buffer is broken down into fixed-sized sectors that keep the state overwritten

by individual tasks.

When a task starts running, it is dynamically assigned an entry in the Task Pointer
Table and one sector in the history buffer. Free sectors are obtained from the Free Sector
Stack. Two pointers in the Task Pointer Table point to the Next entry to fill and the End
entry to check for overflow. If the task needs more entries than a sector, another sector is

dynamically assigned and linked to the previous one, while the Overflow bit is set.

Task Pointer Table History Buffer

Producer
Overwriting Addr TaskID Value

Valid Task ID Ovflw End Next \§ Task i
R

i 1 -

j 0 - Z s

Free
Sector Sector
Stack —»|

Figure 6.1. Per-processor structures that we use for the history buffer.

N
\

A history buffer supports four operations: saving a record in the history buffer (Inser-
tion), freeing up the entries in the history buffer that are useless (Recycle), unwinding the
history buffer to restore the architectural state after a violation (Recovery), and finding a

record in the history buffer (Retrieval).

Insertion. Before a version of a variable is overwritten by a new one, the old version is
saved into the history buffer. A record includes the following information about the old
version: its virtual address (the only one the software knows), its value before the update,

and the its producer task ID. After the record is inserted at run time, the Next pointer
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is incremented. At the end of a task, all the versions that it overwrote are in contiguous
locations in one or more sectors, easily retrievable through the Task Pointer Table with
the task ID.

Recycle. After a task has committed, all the versions in its sector become obsolete.
Therefore, the sector can be recycled. This is done by invalidating the corresponding Task

Pointer Table entry and returning the sector to the Free Sector Stack.

Recovery. When an out-of-order RAW dependence between tasks is detected, we recover
by undoing the version updates performed by the successor tasks to the writing task. This
process is done in parallel by a software handler running on each of the processors that

ran any of the tasks that needs to be undone.

The process involves two actions. First, the cached versions belonging to these tasks are
written back to memory with their task IDs. Second, the history buffer sectors belonging
to these tasks are traversed in decreasing task ID order to recover versions, addresses, and
producer task IDs. These versions are also written back to memory with their task IDs.
In all write backs, the memory only accepts the versions whose task ID is higher than or
equal to the task ID of its current version and at the same time smaller than the ID of
the offending reader task. This is required because the write backs reach memory out of

order. At the end, the memory recovers the architectural state.

Retrieval. Retrieval may be required when a exposed load involved in an in-order RAW
dependence require to access a non-last version. In this case, a read by a task running on
a processor cannot be satisfied by the cache of the second processor where the producer
task executed. The reason is that a newer task on the second processor has overwritten
the variable and pushed the required version into the history buffer. In this case, we search
the history buffer in the producer processor in decreasing task ID order, looking for the

version overwritten by the oldest task still younger than the reader task.

Since these two cases happen infrequently, they can be solved with software exception
handlers that access the history buffers.The algorithms for Recovery and Retrieval are

discussed with more detail in Appendix A.

6.4 Efficient Software Implementation

The system that we have just described can be implemented by constructing the MHB and
all the operations of Section 6.3 in hardware [Zha99, ZPG199]. In this section, we explore
a software-based implementation [GPL*00, GPL*01]. Our solution is to implement

the MHB as a plain software data structure. We now examine the design of a software
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MultiT&MYV buffering scheme built on top of the speculation protocol presented in 6.2 (and
extended in Appendix A). In the following, we examine several challenging design issues:
accessing task IDs from software (Section 6.4.1), caching task IDs (Section 6.4.2), main
overheads (Section 6.4.3), filtering first stores (Section 6.4.4), filtering using predication
(Section 6.4.4), exposed loads (Section 6.4.5), and other issues (Section 6.4.6). Finally, we
explain the atomicity (Section 6.4.7) that can appear in other speculation protocols, and

we compare our software solution with the hardware-only implementation (Section 6.4.8).

6.4.1 Accessing Local Task-IDs in Software

The task IDs associated with each cached word are allocated in local memory pages. They
are read and updated automatically by the dependence-detecting hardware as part of the
speculation protocol. In fact, these pages containing task-IDs are not even mapped in the
virtual address space of the tasks. Nevertheless, we must find a way to make them visible

to the software.

To this end, when a processor access speculatively for the first time a page of shared
data, the OS copies it to the node’s overflow area. For that, it uses an even-numbered
physical page number. Then, it allocates the task IDs in the immediately following odd

physical page. With this setup, we can access a task ID in software with a special load:
Ih_-TID Reg, AddrVar

where AddrVar is the virtual address of the variable. When this instruction executes, the
hardware takes the physical page number as it comes out from the TLB and flips the least
significant bit. The result is that the address issued to memory is that of the task IDs
associated with the variable. That location contains the 16-bit PmazR1st and the 16-bit
PmazW task IDs. Since we only want to load the least significant 16 bits, where Pmaz W is
stored, the instruction works as a half-word load (Ih). Overall, with this modest support,
the software can read the Pmax W task IDs as data, while needing only the virtual address

of the variable. Figure 6.2 shows an example of how this mechanism works.

Notice that the TLB translates the shared virtual address of the data that are specu-
latively accessed into the local physical address in the overflow area. This local physical
address is also used to tag caches. However, to access the data in the home we need the
shared physical address. To that end, the Address Traslation Module in Figure 6.2 is
used. This table takes the local physical address, and returns the shared physical one.
This translation will be needed on the first exposed load and first write in a task, when
a special message needs to be sent to the home. In addition, this table also contains the

reverse translation, from the shared physical address to the local physical one. This will
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Figure 6.2. Special mapping to access task-IDs from software and Address Translation Module.

be needed on a remote access from the home node that tries, for example, to find the
correct version in an in-order RAW dependence. This translation module is similar to
that in Prism [ELPS98], WildFire [HK99], or S3.MP [NAB*95].

This particular implementation allows the software to access the task IDs when using
the speculation protocol sketched in Section 6.2 that has an overflow area in the local
memory node. However, we can also address the task IDs from software in a speculation
protocol that does not support an overflow area. Conceptually, the solution is to add an
extra field to each TLB entry. The new field contains the frame number of the task IDs. A
TLB entry now points to the physical pages of both data and task IDs. Then, we can use
the same load instruction we have just described. When Ih_TID Reg, AddrVar is executed,
the TLB delivers the corresponding page of task IDs.

Fortunately, this idea can be implemented without modifying the TLB. Specifically,
when a data page is speculatively accessed for the first time, a page of task IDs is allocated,
and the TLB mapping of the data page is changed. The new mapping is a non-existent local
physical page located at a fixed address offset from the task ID physical page. Subsequent
accesses to the data will obtain from the TLB such (non-existent) local physical addresses,
which will be used to tag caches. In case of a cache miss, the shared address at the home
node is obtained from the Address Translation Module we just explained. On the other
hand, Ih_TID instructions to the virtual address of the data obtain the non-existent local
physical addresses from the TLB and automatically subtract the offset. The result is an

access to the task IDs, as intended.
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6.4.2 Caching Task-IDs

We want a [h_-TID to bring copies of PmaxzW into the cache and access them from there
with the subsequent [h_TID. However, the Pmaxz W master copies in the local memory may
be modified in hardware by the speculation protocol at speculative accesses. Consequently,
to keep the cached copies up to date, we treat them as reagular data and we update them

in software to the same value that the hardware updates the master copies to.

This is accomplished with a store half-word task ID (sh_TID) instruction. After the
record is created, we take the ID of the executing task and write it on the cached copy
of PmaxW using sh_TID. This operation updates the cached copy to the correct version
number. As in [h_-TID, sh_TID takes as argument the virtual address of the variable and
only updates the half word where the PmaxW copy is, leaving the adjacent PmaxzR1st
unaffected. Such an update does not affect the page with the task IDs in memory. The
task IDs pages are read-only for the software, so that the displacement of dirty task IDs

lines from the cache does not overwrite them.

Overall, we are allowing software-updated task IDs in the cache while keeping the
hardware-managed master copy in memory. This is a trade-off decision that maximizes
performance while minimizing the additional support required. The coherence of cached
data is ensured, even in the presence of cache displacements, if we issue sh_TID at every
instrumented store. Note also that the hardware guarantees that accesses to a variable
and to its task ID are always issued to the memory system in order. This is because all

these instructions use the same virtual address.

6.4.3 Quantifying Insertion Overhead.

Insertion is the most overhead-sensitive operation since it occurs frequently. At compile
time, the compiler instruments individual stores with instructions to save a record in the
MHB. Inserting a record in the buffer of Figure 6.1 involves collecting the items to save,
saving them in sequence using the Nezt pointer, and advancing the pointer. As a result,
the records are organized in simple sequence in the order in which they were created.
While such an organization makes it harder to search for a given address in a retrieve

operation, retrieve operations are much less frequent than insertions.

Figure 6.3 shows the MIPS assembly instructions added before every speculative store
that we want to buffer. All memory accesses are ordinary ones and do not trigger de-
pendence checking. We can see that we need a total of 9 instructions: 1 to check for
sector overflow, 6 to collect and insert the information, 1 to increment the pointer, and 1
to update the cached task ID. Note that the load task ID instruction ({h-TID) loads the
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16-bit Pmax W, which is later stored in a full word.

; r1 = upper limit of the sector
; r2 = address in memory to insert the record
; offset(r3) = address of the variable to update

bgt rl, r2, insertion
.. allocate another sector
insertion:

addu 14, r3, offset ; compute address of variable
sW r4, 0(r2) ; store in history buffer
Ih_ID r4, offset(r3) ; load PmazW task ID

swW r4, 4(r2) ; store in history buffer

Iw r4, offset(r3) ; load value of variable

sW r4, 8(r2) ; store in history buffer

addu r2, r2, record_size
sh_TID r5, offset(r3) ; update cached Pmaz W task ID

Figure 6.3. Instructions added before a speculative store.

Occasionally, some of the instructions can be eliminated. For example, if the compiler
knows the maximum number of stores to buffer in a region, it may only need to check for
overflow once at the beginning of the region: if there is enough space left, there is no need
to check again. Furthermore, if the compiler knows the exact number and order of the
stores to buffer, it can hardwire the offsets in the instructions that store to the buffer and

avoid incrementing the pointer every time.

Finally, to be able to undo tasks, the history buffer also has to contain versions of
variables overwritten by non-speculative stores, like stores to the array B in the example of
Figure 6.4. B[i] stores are not speculative, since the compiler can identify that they do not
have dependences with the memory references of other tasks. However, their updates need
to be buffered, because in case of infraction their modifications need to be undone. In our
instrumentation, we also instrument these plain stores. However, the instrumentation does
not need to insert task IDs because these variables do not have them. A difference between
hardware buffering schemes and our software one is that hardware schemes require special
operation codes to mark that these stores need to be buffered, although no dependence
detection mechanism needs to be applied. Finally, notice that these stores that cannot
cause dependence infractions, but need to be buffered, may already be in the sequential
code, or may appear as a result of a transformation (e. g. a privatization transformation)

that the compiler has applied to parallelize the loop.

Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM 135



Chapter 6. Software Buffering Under Speculative Thread-Level Parallelization

for (i=1; i<n; i++)
{
. = AL

A[K[i])= .o
B[i] = B[i] + A[[i]];
}

Figure 6.4. Stores to the array B are non-speculative but need to be buffered.

6.4.4 Filtering the First Store

As pointed out in the previous chapter, a processor only needs to keep the last version
produced by each task, that is, although a task can write several times to the same variable,

the processor only keeps the version with the value written by the last write.

As a result, the MHB only needs to save the value overwritten by the first store to
the variable in the task. Consequently, to reduce overhead, the compiler should identify
first stores and instrument only those. Furthermore, variables that are provably written

in every task before being read do not need to be buffered.

Identifying first stores is easy for variables accessed with plain accesses, since the
dependence structure is usually analyzable. However, it is not easy for variables accessed
with speculative accesses because their dependence structure is non-analyzable. For the
latter variables, we usually need to modify the instrumentation presented in Section 6.4.3
to dynamically test whether or not a store is a first store, and save it into the buffer
or not based on the result. Since the testing code has some overhead, the compiler may
sometimes decide not to perform this run-time test and buffer unconditionally. Correctness

is unaffected by this unnecessary buffering, although performance may suffer.

To identify first speculative stores, we propose to use one of two possible approaches,
based on task IDs or extended loads, respectively. Both approaches can be further en-

hanced with the use of predication. We consider all these issues next.

Filtering Using Task-IDs

One way to identify first stores is to use the PmaxzW task IDs, which is the ID of the
youngest local task that updated the variable. Consequently, on a store, we compare
PmazW to the ID of the currently-executing task. If they are the same, there is no need

to save a record into the buffer because this is not a first store.

This approach is used in Figure 6.5-(a), which repeats the example in Figure 6.3 with
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the new extension. For simplicity, the code does not include the check for sector overflow.

; r2 = address in memory to insert the record
; offset(r3) = address of the variable to write
; rb = ID of the executing task

Ih_TID r6, offset(r3) ; load PmazW xlw 6, rl, of fset(r3) ; Write bit into r6
beq r6, r5, no_insert ; first store? bgtz r6, no_insert ; first store?
addu r4, r3, offset ; insert as usual addu 14, r3, offset ; insert as usual
sW r4, 0(r2) swW r4, 0(r 2)
sW 6, 4(r2) 1Ih_TID r4, offset(r3)
Iw r4, offset(r3) swW r4, 4(r 2)
sW r4, 8(r2) swW rl, 8(r 2)
addu 2, r2,record_size addu r2, r2, record_size
sh_TID r5, offset(r3) ; update cached sh_TID r5, offset(r3)
no_insert: ; PmazW no_insert:
(a) (b)

Figure 6.5. Filtering first stores using task IDs (a) and extended loads (b). For simplicity, we do not

include the check for sector overflow.

Filtering Using Extended Loads

The second way to test for first stores is to use the Write bit present in the tags of the
L1 and L2 caches. As indicated in Section 6.2, this bit is set for a word when the current

task updates the word for the first time.

This approach pollutes the cache less than the previous one. Indeed, in the previous
approach, every instrumented store involves loading the task ID, irrespective of whether
the latter will be buffered. In this approach, instead, every instrumented store only involves
loading the Write bit into a register. The task ID is only loaded if it needs to be buffered.

The disadvantage of this approach, however, is that it needs all the hardware support of
the previous one plus an extended load. An Eztended Load is a load that loads a variable
into a register and its Write bit into another one. This second register is immediately

checked in software. Based on the result, we can save it or not.

The resulting per-store instrumentation using extended loads is shown in Figure 6.5-
(b). In the figure, we use zlw Ri Rj Addr for an extended load that loads the Write bit

into register Ri.
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Using Predication

The default implementation of the two mechanisms described uses a branch instruction
(Figures 6.5-(a) and (b)). Branches are undesirable because they can limit ILP. We now
show how to eliminate the branches with a simple and a more advanced use of predica-
tion [PS91]. In our examples, we use the extended load, although the task ID approach

can be similarly used.

In a simple use of predication, we load the Write bit using an extended load and
then set a predicate register if the bit is zero. After this, we predicate all the buffering
instructions on this predicate register. Figure 6.6-(a) shows the code. In the figure, pred_eq
sets predicate pI to true unconditionally if Write is zero, and all the instructions that follow

it are predicated on p1.

; 12 = address in memory to insert the record

; offset(r3) = address of the variable to write ; p2 is true if the task is spec ulative
; tb = ID of the executing task ; following two instructions predi cated on p2
xlw 6, 11, offset(r3) ;Write bit goes to r6 xlw 6, rl, off set(r3) (p2)
pred_eq ply, 6,0 ; set pl pred_eq ply , 6,0 (p2)
; following instructions predicated on pl ; following instructions predicated on pl
addu r4, 13, offset (pl) ; insert as usual addu r4, r3, offset (pl) ; insert as usual
sW r4, 0(r2) (pl) sw r4, 0(r2) (pl)
Ih_TID 4, offset(r3) (pl) Ih_TID r4, offset(r3) (pl)
swW r4, 4(r2) (pl) sw r4, 4(r2) (pl)
sW rl, 8(r2) (pl) swW rl, 8(r2) (pl)
sh_TID 15, offset(r3) (pl) sh_TID r5, offset(r 3) (pl)
no_insert: no_insert:
(a) (b)

Figure 6.6. Eliminating the branches with the use of simple (a) and more advanced (b) predication.

With this approach, the branch disappears. Every instrumented store involves the
execution of at least the two unpredicated instructions. The predicated instructions are
also fetched. If the predicate is true, they execute normally. Otherwise, they are prevented
from modifying any state when they execute or, if the predicate is false before they issue,

they are not even issued. The result is a potentially faster execution.

A more advanced use of predication additionally uses the information of whether or
not the task is speculative. The non-speculative task does not need to save an entry
in the history buffer because its updates are safe. Consequently, we set up a second
predicate p2 to be true if the task is speculative. We use p2 to predicate the first two

instructions of Figure 6.6-(a), which include the setting of p1. The rest of the instructions
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are predicated on pI. The resulting code is shown in Figure 6.6-(b). With this approach,
a non-speculative task does not have to execute a single instruction: p2 is false and, as a

result, pI too.

The setting of p2 proceeds as follows. Typically, when a task starts, its p2 is 1 because
the task is speculative. At a certain time, all its predecessor tasks finish and commit, and
the task becomes non-speculative. At this point, the task must be notified, so that it can
clear its p2. An obvious way of notifying the task is to send it an interrupt. Consequently,
when a task finishes, if it is able to advance the commit point, it can send an interrupt to

the new non-speculative task.

Unfortunately, this approach has significant overhead. It should not be used for work-
loads with largely-balanced tasks: a given task spends little time as non-speculative and
processing an interrupt is too costly relative to the savings in buffering. This approach
should only be used when there is significant imbalance: some tasks spend much time as
non-speculative and can benefit significantly from not having to save records in the history
buffer. It is therefore important to identify situations with high load imbalance with low

overhead.

We use two simple ways to identify load imbalance. The first one is to check the size
of the window of uncommitted tasks. Specifically, when a processor finishes a task, it
checks the size of the window. If it is larger than a threshold, it sends an interrupt to the

non-speculative task so that the latter can clear its p2.

A second way to estimate if there is load imbalance is to detect if a task needs to allocate
extra sectors for its history buffer. If a task needs more sectors, it probably means that
it is larger than the average task and that there is load imbalance. Consequently, in the
code that allocates new sectors, we can insert code for a task to check if it is the current

non-speculative task and, if so, clear its p2. This approach is interrupt free.

6.4.5 Exposed Loads that Need to Be Buffered

When we insert a record in the history buffer we are saving local versions of variables
before they are killed. While versions are usually killed with writes, there is one case
where a local version may be killed with a load: an exposed load. An exposed load can
bring into a task a version of a variable generated by another task, therefore killing the
local version. Consequently, we may need to buffer the previous version before exposed

loads.

Fortunately, not all exposed loads require that we save a record. We only need to

buffer when the exposed load kills a version generated locally that has not been saved

Hardware Prefetch, Reduction Support and Speculative State Buffering in SMM 139



Chapter 6. Software Buffering Under Speculative Thread-Level Parallelization

locally yet. This is the case where, at the time of the exposed load, PmazR1st <= PmazW.
With this condition, we are eliminating the case where the local version was brought in
from the outside with another exposed load and has not been written since (PmazR1st >
PmazW).

In practice, instrumenting the code to perform this buffering is hard. The reason is
that it is often very difficult for the compiler to distinguish exposed loads from the other
loads in these hard-to-analyze codes. Often, the only safe approach is to conservatively

instrument a large fraction of the loads, which induces high overhead.

Consequently, we choose not to instrument any loads in the code. Instead, we note
that the local dependence-detecting hardware engine already detects exposed loads that
send a request to the home to get a new version (Section 6.2). Consequently, when this
happens, we also have the engine send an interrupt to the processor. In the processor, a
software handler checks the previous condition and saves the version if the condition is

true.

Clearly, if these interrupts happened frequently, this scheme would be impractical. In
practice, there usually are very few exposed loads that are propagated to the home to find
a version. The reason is that these transactions, which involve a transfer of information
from one task to another, constitute the RAW dependences. If they were not rare, unless
the RAW dependences were between far-off tasks, there would likely be frequent violations.

The resulting squash overhead would seriously hurt speedups anyway.

Note that we are not including in this case exposed loads to variables that have only
been read, not written. Such loads may be common, for example when there are read-only
data structures. However, exposed loads to these variables do not trigger a transaction
to the home to get a version. Instead, exposed loads to lines marked as not written by
any processor so far are not propagated to the home memory; the local copy of the page
is accessed. Not receiving an interrupt in this case is exactly what we want: there is no

need to buffer anything because no version gets killed.

6.4.6 Other Issues

The only problem left here is how to back up the initial value of the shared element. The
first time that a thread makes a private copy of the page, the processor where this thread
executes owns the master copy. The Operating System marks in the home which processor
is the master, and initializes its page of task IDs with 0; for the rest of processors, the
page of task IDs will be initialized with -1. When a thread overwrites the initial value, it

will buffer the initial task ID from its local page, 0 or -1. In case of an out-of-order RAW
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dependence, if during the recovery procedure the version with the task ID -1 arrives to
the home, the home will know that the version is not reliable and it will copy the version
from the master processor. In the master processor, the version can be found in the local

memory or in an entry of the log with a 0 in the task ID.

A final issue related to using task IDs to filter writes has to do with page faults. Recall
from Section 6.4.1 that first-time speculative accesses to a page of shared data trigger
special events, including the allocation of task ID pages and of local copies of the data
page. Now that stores are preceded by task ID accesses with the same virtual address,
task-ID loads may be the first ones to access the virtual numbers of pages with speculative
data. Consequently, the OS must be modified to support the same allocation and copying

operations in a faulting [h_TID instruction as in a faulting speculative load or store.

6.4.7 Correct Interleaving

A final issue in MHB insertion is that the algorithm has to guarantee that the value buffered
is the same as the value overwritten. Otherwise, correct recovery may be impossible. This
issue is not a problem in a speculation protocol like ours. Our protocol allows different
versions of the same variable to exist in the different caches, and each processor buffers
its local version, unaffected by another processor’s write. However, in protocols that allow

only a single version of each variable like [ZRT98], this is a problem.

In [ZRT98] speculative versions are shared between all the processors, as a regular
coherent variable. As an example, Figure 6.7 shows two tasks that speculatively store to
the same variable. The dots plus the logging load represent the instructions that insert a
record in the log. Depending on the timing of the execution, it is possible that the two
logging loads read the same value, which is then stored in the two logs. However, the
store in Task(i) may invalidate the copy in Task(i+j), forcing the store in Task(i+j) to
re-request the data and overwrite the value generated by Task(i). The MHB in Task(i+j)

would then have a wrong value.

For these single version speculative protocols, where correct interleaving is not guaran-
teed, we offer two solutions. The first one is to use speculative load instructions in place of
the plain loads for buffering. When these speculative loads execute the hardware performs
dependence checking. Consider Figure 6.7 again. Using speculative loads guarantees that,
for each task, the saved data is the same as the overwritten one. The reason is that the
load that saves an entry in the history buffer in Task(i+j) must read the value written by
the speculative store in Task(i): if the load occurs earlier, an out-of-order RAW is detected
and Task(i+j) is squashed and restarted. The result, therefore, is a full serialization of

the two pairs of accesses.
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Task i Task i+ j
Iw rl, offset(r2) ; buffering load Iw rl, offset(r2) ; buffering load
sw 13, offset(r2) ; speculative store

sw r3, offset(r2) ; speculative store

Figure 6.7. Example that may result in incorrectly-buffered information.

This approach is simple and does not require any extra hardware support. However, its
main disadvantage is that it introduces artificial RAW dependences between speculative
stores and later buffering loads. This leads to unnecessary restrictions. Specifically, sup-
pose that the original speculation protocol was able to handle WAW dependence violations
gracefully without squashing. This means that Task(i+j) and Task(i) could have executed
out of order. However, by also marking buffering loads as speculative, we introduce a
RAW and force Task(i) and Task(i+j) to execute in order. Finally, note that, although
by marking buffering loads as speculative we may introduce exposed loads, single-version
protocols do not need special actions for exposed loads: there is only a single version of

the variable to access anyway.

Overall, while this first approach effectively ensures atomicity, it has the shortcoming

of sometimes causing task squashing and recovery, which is slow (Section 6.3).

The second approach to ensure correct buffering is to replace the speculative stores
by enhanced implementations of existing synchronization instructions that also perform
dependence checking. We examine the Swap instruction of SPARC processors [WG94] and
the Load Linked and Store Conditional of MIPS processors [Pri95]. Consider Swap first,
which atomically exchanges the contents of a register with those of a memory location.
We use it to perform the speculative store with the usual dependence checking while, at
the same time, returning the old value in a register. Because the instruction is atomic, the
value returned is the one we are interested in. We then insert a record using the returned

value.

For the MIPS primitive, we use a plain load-linked instruction in place of the buffering
load. It returns the value from the location that will be overwritten. We immediately
follow it with the enhanced store conditional, which takes the place of our speculative

store. If another processor has issued a store conditional to the same location in between
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our load linked and store conditional, the latter fails and does not perform dependence
checking. In this case, we retry starting from the load linked. Otherwise, the store
conditional performs the checking and the value overwritten is guaranteed to be the one
that was read with the load linked. Again, after the store conditional succeeds, we insert

a record using the returned value.

The advantage of this second approach is that it does not introduce any RAW de-
pendences. Therefore, the extra instrumentation will never cause any task squash. A
second, related advantage is that, by not making the buffering load speculative, we save
some messages on the network required for dependence checking. Unfortunately, the main

disadvantage of this approach is that we need to enhance synchronization instructions.

6.4.8 Hardware-Intensive Solution

The operations described in 6.3 were implemented in hardware in [Zha99, ZPG*99] using
a hardware History Buffer Controller embedded in the directory module of each node.

Next, we compare it against our software-only implementation.

To insert a new record in hardware, the underlying speculation protocol detects the
first update to a word and saves a new record into the MHB. For the detection, the Write
bit in cache, or the PmaxW task-ID in the local memory are checked. A message with
the old value before being destroyed needs to be sent to the hardware History Buffer
Controller in each node. The History Buffer Controller will insert a new entry into the
MHB, and will update the corresponding pointers. In this hardware implementation, the
MHB is kept in the local memory in each node, which avoids cache pollution. Our software
implementation does not require any History Buffer Controller, since all the operations
are handled in software. It does not require special hardware to detect the first update
to a word in a task either. However, it still requires the hardware that detects when an
entry needs to be inserted under an exposed load. On the other hand, since the MHB of
our software implementation is considered a plain data structure, it pollutes L1 and L2
caches. We evaluate in our simulations the difference in performance when the MHB is

forced to bypass the L1 cache.

Notice, that the hardware management of the MHB adds little overhead to the ex-
ecution of the program, but has two drawbacks. First, if the history buffer runs out of
space, an interrupt must be enforced to request the OS the allocation of additional physical
pages. Second, since a hardware implementation can only record the physical addresses of
the saved variable, the recovery must be performed by exception handlers with privilege

to write directly to physical addresses.
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On the other hand, we have introduced some changes in the Address Mapping scheme
used by the protocol in [Zha99, ZPG199], since we needed a mechanism to access the
task-IDs from software. That protocol uses an Address Mapping Module containing two
tables. The first table is used to obtain the physical address in the overflow area and local
task-IDs. The second table is used to obtain the shared task-IDs. Both tables are indexed
with the shared physical address of the variable, which is also used to tag caches (Appendix
A). Our mechanism still needs the second table, but not the first one. We have changed
the translation of the virtual address into the local and shared physical addresses, and
the memory mapping of the local task-IDs. In particular, using our software scheme, the
OS must place the page of data speculatively accessed in an even-numbered physical page
number, so that the next page is used for the task-IDs. After the TLB translation, our
proposed solution needs no extra translation to access the local data or task-IDs. However,
the access to the shared data in the home node and the incoming transactions willing to
access the local task-ID, or searching for a particular version in cache or overflow area
will require and extra translation through the Address Translation Module of Figure 6.2
and explained in Section 6.4.1. Finally, notice that the protocol in [Zha99, ZPGT99],
only allocates a page of data in the overflow area in the local node if the processor’s node
speculatively writes to a cache line of the shared page, and displaces it. Thus, pages of
data that a processor reads but does not write, do not need to be allocated in the local
node. On the contrary, with our scheme under the first speculative access (read or write)
to a shared page of data, the requesting processor must place a new page of data in its
node’s memory, or at least reserve its corresponding even page. In any case, we do not see
this to be an important issue, because the page with the local task-IDs needs to be placed

under the first access in both schemes.

6.5 Evaluation Methodology

We evaluate the performance of the software multi-version buffering scheme for a FMM
system using a history buffer like that one we have just described. For that we use
simulations driven by several applications. In this section, we describe the simulation

environment and the applications.
6.5.1 Simulation Environment

We use an execution-driven simulation system based on MINT [VF94a] to model in detail
a CC-NUMA with 16 nodes like the one used in the previous chapter. We repeat here its

main characteristics and give some additional details of the software buffering scheme.

Each node of the CC-NUMA machine contains a fraction of the shared memory and
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directory, and a 4-issue dynamic superscalar. The processor has a 64-entry instruction
window and 4 Int, 2 FP, and 2 Ld/St units. It supports 8 pending loads and 16 stores. It
has a branch penalty of 8 cycles and has 64 Int and 64 FP rename registers. It also has
a 2K-entry BTB with 2-bit saturating counters. Each node has a 2-way 32-Kbyte L1 D-
cache and a 4-way 512-Kbyte L2, both with 64-byte lines and a write-back policy. We use
a small L2 because the applications are small. The nodes are connected with a 2D mesh.
The average no-contention round-trip latencies from the processor to the on-chip L1 cache,
L2 cache, memory in the local node, and memory in a remote node 2 and 3 protocol hops
away are 2, 12, 75, 208 and 291 cycles, respectively. Contention is accurately modelled
in the whole system, except in the global network where we only model the source and
destination ports. The caches are kept coherent with a release-consistent protocol like that
of DASH. For speculation, we use the protocol of Section 6.2. Pages of shared data are
allocated round-robin across the nodes. We choose this allocation because our applications

have irregular access patterns. Private data are allocated locally.

In the evaluation, we simulate all software overheads, including allocation and recycling
of history buffer sectors, and the dynamic scheduling and committing of tasks. We wrote
software handlers for parallel recovery after a dependence violation (Section 6.3), deciding
whether an exposed load needs to be buffered (Section 6.4.5), and retrieving data from
the history buffer (Section 6.3). A processor receiving an interrupt is penalized with an
additional 300 cycles over the running of the software handlers for miscellaneous overheads,

and a page fault costs 4,000 cycles.

6.5.2 Applications

We use a set of scientific applications where a large fraction of the code is not fully analyz-
able by a parallelizing compiler. These applications are: Apsi from SPECfp2000 [Hen00],
Track and Bdna from Perfect [B*89], Dsmc3d from HPF-2 [DSH94|, P3m from NCSA,
and Tree from [J. 94]. We use the Polaris parallelizing compiler [BDE*96] to identify the
non-analyzable sections and prepare them for speculative parallelization. The source of
non-analyzability is that the dependence structure is either too complicated or unknown
because it depends on input data. For example, the code often has indirect indexing to
arrays. The code also has sections that have complex control flow, with conditionals that
depend on array values and jump to code sections that modify the same or other arrays.
In these sections, Polaris marks the accesses to non-analyzable data, which we call specu-
lative references and will trigger speculation protocol actions. Polaris also identifies other
plain updates that may need to be saved into the history buffer and we also instrument
them.

Table 6.1 shows the non-analyzable sections in each application. These sections are
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loops that a state-of-the-art parallelizing compiler like Polaris cannot decide whether or
not they have dependences. The table lists the weight of these loops relative to the total
sequential execution time of the application (%Tseq), with I/O excluded. This value, which
is obtained on a single-processor Sun Ultra 5 workstation is on average 51.4%. The table
also shows the number of invocations of these loops during program execution, the average
number of iterations per invocation, and the average number of instructions per iteration.
Finally, the last three columns show the weight of several types of references: speculative
reads and speculative writes as a percentage of the total references in the section, and
instrumented writes (including both speculative and not) as a percentage of the total
instructions in the section. All counts are dynamic. Note that all the data presented in
the evaluation (Section 6.6), including speedups, refer only to the code sections in the
table.

Appl Non-Analyzable | % of | # of | Iters per | Instruc Spec Refs / Instrum Wr /
Sections (Loops) | Tseq | Invoc Invoc per Iter | Total Refs (%) | Total Instructs
Rd | Wr (%)
P3m pp-do100 56.5 1 97336 69165 11.1 2.1 0.8
Tree trwalk 92.2 41 4096 28746 2.9 2.9 0.8
Bdna actfor_do240 44.2 1 1499 103339 7.1 6.8 2.3
Apsi run-do[20,350, 29.3 900 63 102639 | 49.4 33.4 11.6
40,50,60,100]
Track nlfilt_do300 58.1 56 126 22308 0.3 0.2 0.4
Dsmc3d || move3_goto100 41.2 80 46777 5442 0.0 0.0 1.2
[ Average || | 514 | 180 [ 24470 | 55273 | 11.8 [ 7.56 | 3.2 I

Table 6.1. Application characteristics. In Track and Dsmc3d, the data corresponds to unrolling the
loop 3 and 15 times, respectively.

The recovery exception handler invoked after an out-of-order RAW dependence (Sec-
tion 6.3) is executed once in 3 loop invocations (once in each) in Track, and an average of
30 times in each of the 80 loop invocations in Dsmc3d. The retrieval exception handler
(Section 6.3) is not executed in any of the applications: although in-order RAW depen-
dences appear in Dsmc3d, the requested version is a last version and is found in the cache

instead of in the history buffer.

6.6 Evaluation

To evaluate our proposed software buffering scheme that supports multiple versions per
cache, we perform three experiments: impact on execution time of the software buffering
scheme (Section 6.6.1), analysis of implementation overheads in the advanced scheme

(Section 6.6.2), and alternative policies for the advanced scheme (Section 6.6.3).
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6.6.1 Impact of Software Buffering on Execution Time

We compare the execution time of our applications under two different buffering schemes.
One is our advanced scheme (Sw) from Figure 6.5-(a) that filters first stores using task IDs.
The another one is Hw from Section 6.4.8, which implements the buffering in hardware
without any of the software overheads presented in Section 6.4. In Huw, all the operations
on the history buffer are performed with no instruction overhead or cache pollution. To
minimize L1 pollution in Sw, the history buffer is Ll-uncacheable, and recycled. L1-
uncacheable means that the history buffer is stored in the L2-cache and memory, but
never in L1. For recycling, a processor attempts to recycle local history buffer records
before it starts a new task. It reads the variable that records the last-committed task to

know what records to recycle.

Figure 6.8 compares the execution time of these two systems. The scheme from Sec-
tion 6.4 is Sw, and the one implemented in hardware is Hw. For each application, the bars
are normalized to Hw and broken down into execution of instructions (Useful), waiting
on data, control, and structural pipeline hazards (Hazard), synchronization (Sync), and
waiting on data from the memory system (Memory). A sixth category, measuring the
execution of software handlers for data recovery and retrieval, after data dependences, is
too small to be seen. Finally, the numbers on top of each bar show the speedup relative
to the sequential execution of the code, with all the application data placed in the local

memory of the single active processor.
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Figure 6.8. Execution time under different schemes for a 16-node multiprocessor.

Comparing Hw to Sw we can see the overhead introduced by our software implementa-
tion of the history buffer. This overhead is more noticeable in P3m, Apsi and Bdna. This
overhead comes from the more instructions executed (Useful time) and the higher memory

stall due to the history buffers (Memory time). As a result, Hazard also increases.

Overall, our implementation of multi-version buffering is very effective: it only intro-

duces an overhead of 7% when compared to a similar only-hardware scheme, and removes
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most of the hardware complexity. In the following section, we will be examining in detail

the sources of this overhead.
6.6.2 Implementation Overheads of Advanced Buffering

To gain further insight into our software multi-version buffering scheme in Section 6.4,
we now characterize its sources of overhead, namely additional instruction execution and
memory accesses. While all history buffer management operations add up to this overhead,
the bulk of the overhead is induced by the record insertion instructions added before a
store that may be a first store to a variable in a task. Such a store we call an instrumented

store.

The instructions that our algorithm adds to each instrumented store are shown in
Figure 6.5. At run time, two different cases are possible. If the store turns out not to be
a first store, only 2 instructions are executed, (including the check for sector overflow),
of which 1 accesses memory; if the store is a first store, 10 instructions are executed, of

which 6 access memory.

If we compare Sw to Hw in Figure 6.8, we see the effects of these overheads. Instruction
overhead directly reflects into an increases in Useful time. Memory access overhead is
more subtle, due to the ability of superscalar processors to hide memory latency. Memory
access overhead plus some contribution of instruction overhead reflect into an increase in
Hazard, Sync, and Memory. To explain these changes, we now analyze the two overheads

separately.
Instruction Execution Overhead

The last column of Table 6.1 helps explain the impact of instruction execution overhead.
The column shows the number of instrumented stores as a fraction of all instructions
executed in the program before instrumentation. Most applications have a small fraction.
The exceptions are Apsi and, to a lesser extent, Bdna, where the fractions are 11.6% and
2.3%, respectively. These are the applications that show an increase in Useful time for Sw

in Figure 6.8.

However, instrumented stores have different costs. Figure 6.9 classifies all the stores in
the code into three classes: instrumented and first (Inst. First), instrumented and not first
(Inst.Non_First), and not instrumented (Non_Inst). The figure shows the relative weight
of each class. The figure includes both speculative and non-speculative stores since the

latter may also get instrumented.

Figure 6.9 shows that attempting to identify true first-stores at run time paid off: Apsi,

Tree, and P3m all have many instrumented stores that are proved not to be first stores
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Figure 6.9. Breakdown of dynamic stores.

at run time. In such cases, much overhead is eliminated. Furthermore, the figure explains
why the Useful time for Bdna in Figure 6.8 increases proportionally more than for Apsi,
despite the lower fraction of instrumented instructions in Table 6.1: the instrumented

stores in Bdna are always of the expensive class.
Memory Access Overhead

This overhead is due to accesses to two new objects, namely history buffer and task IDs.
Focusing on the history buffer first, Table 6.2 shows the average size of the history buffer
entries created per task (Column 2) and the number of tasks per history buffer (Columns
4-5). We will examine the other columns later. The column with the history buffer size per
task is labeled Filter to indicate that our algorithm filters the first store (Section 6.4). We
can see that for several applications, the average task needs 20-40 Kbytes. The columns
with the number of tasks per history buffer are labeled Recycle because obsolete sections
of the history buffer are dynamically recycled when a processor grabs a new task. We
show both the average of all processors and the maximum. These values are obtained by
taking a snapshot every time that a processor finishes a task. Note that if we multiply

either of these values by the size of the history buffer per task, we often get large memory

footprints.
Appl History Buffer Size per Task # Tasks in the History Buffer of a Processor
(Kbytes) Recycle No Recycle
(Measured at End of Task) | (Measured at End of Code)
Filter | All Maximum | Average Maximum | Average
P3m 2.5 7.9 100 50.0 132 80.3
Tree 0.4 3.5 8 2.0 70 64.0
Bdna 39.8 39.8 4 1.6 99 93.7
Apsi 40.0 184.0 4 1.8 5 3.9
Track 1.2 1.2 4 1.3 11 6.4
Dsmc3d 1.0 1.0 3 1.1 1136 489.3
[Average || 14.1 | 39.6 [ 205 | 9.6 [ 2422 | 1229 |

Table 6.2. History buffer statistics. The experiments are for 16-processor runs. The records of the

history buffer are 16 bytes.

Overall, although the history buffer can grow large, it is primarily accessed through
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stores to consecutive locations when a record is inserted. Since write latency can be easily

hidden, we do not expect the history buffer to affect Memory stall much.

The second type of object accessed is the task IDs. Our algorithm requires that task
IDs are loaded at every instrumented speculative store irrespective of whether or not the
store turns out to be a first store. Table 6.3 shows the contribution of these task ID
loads to the total L1 read miss rate. In the table, we focus on the columns under History
Buffer L1 Bypass, and among those, the first and the third one, which are labeled Task-ID
Filtering. These two columns correspond to our software algorithm Sw that filters with
task IDs (Section 6.4.4) They show the total L1 read miss rate of the application and
the percentage of L1 read misses that are due to task ID loads, respectively. The other
columns in the table will be discussed later. The data show that task ID loads usually
contribute with only 10% or less of the read misses. The exception is Apsi, where they
contribute with 40.4%, but the total miss rate of Apsi is only 1.01%. Overall, we do not

expect task ID accesses to affect Memory stall much, either.

Appl History Buffer L1 Bypass No History Buffer L1 Bypass
Total L1 Rd L1 Rd Misses from Total L1 Rd L1 Rd Misses from
Miss Rate (%) Task-ID Rd (%) Miss Rate (%) Task-ID Rd (%)
Task-ID Xload Task-ID Xload Task-ID Xload Task-ID Xload
Filtering | Filtering | Filtering | Filtering || Filtering | Filtering | Filtering | Filtering
P3m 8.86 6.20 8.4 0.6 8.86 6.24 7.7 0.6
Tree 21.02 21.11 0.0 0.1 21.11 21.11 0.0 0.0
Bdna 5.03 5.03 5.4 5.4 5.12 5.12 5.3 5.3
Apsi 1.01 0.60 40.4 32.6 2.01 0.80 22.2 29.3
Track 1.29 1.29 9.3 9.3 1.37 1.37 9.8 9.8
Dsmc3d 1.90 1.90 0.0 0.0 1.94 1.94 0.1 0.1
[ Average | 651 | 602 | 105 80 | 67 6.09 75 75

Table 6.3. Effect of task IDs loads on the L1 miss rate. The experiments correspond to 16-processor
runs. Task ID and Xload stand for task ID and extended load, respectively. The history buffer is
recycled in all the cases.

These expectations are confirmed by Figure 6.8. The figure shows that the Memory,
Sync, and Hazard times increase only modestly as we go from Sw to Hw. Therefore, we
conclude that the additional memory requests induced by accesses to the history buffer,

and task IDs do not hurt performance much.
6.6.3 Alternative Designs for Software Logging

Based on the analysis thus far, we now assess alternative designs for software buffering.
Specifically, we consider four optimizations: reducing hazard overhead by eliminating

first-store filtering, reducing memory overhead caused by recycling the history buffer or
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bypassing L1, and reducing memory overhead associated with task-ID loading by using

extended loads.
Eliminating First-Store Filtering

Our default software multi-version buffering algorithm filters the first store to reduce
the number of history buffer insertions (Section 6.4.4). We now eliminate the branch
in Figure 6.5-(a), therefore saving a record in the history buffer before all instrumented
stores. This change eliminates one instruction when the store is actually a first store and,
in all cases, potentially reduces control hazards. However, when the store was not a true
first store, more instructions are executed that before and, in addition, longer buffers are

generated.

Figure 6.10 shows the execution time with this new algorithm, which we label All
because all instrumented stores create a record. The system is compared to our default
Sw system of Figure 6.8, which we have normalized and re-labeled Filter. From the figure,
we see that All is no faster and, in the case of Apsi much slower, than Filter. For the
applications where, according to Figure 6.9, many instrumented stores are Inst. Non_First,
Allis slower. There are several reasons for it. First, since more instructions are executed,
Useful is higher. In addition, more memory accesses are performed, some of them to buffer
values. In particular, the third column of Table 6.2 (labeled All) shows the new size of
the history buffer per task. The history buffer is now over 4 times its filtered size in Apsi.
Finally, Hazard in Figure 6.10 does not decrease noticeably for the applications with only
Inst.First (Bdna, Dsmc3d, and Track) and it increases for the other applications due to

increases in other categories. Overall, we conclude that we should use filtering.
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Figure 6.10. Effect of eliminating first-store filtering.

Normalized Execution Time

Filter
All
Filter
All
Filter
All
Filter
All
Filter
All
Filter
All

Recycling History Buffer and Bypassing L1

Since the history buffer may grow quite large, (Memory) time may decrease if history

buffer bypass the L1 cache and/or their space is recycled.
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To reduce the memory overhead caused by accesses to the history buffer, we now
consider two optimizations that minimize L1 pollution: recycling the history buffer space
at run time and forcing history buffer accesses to bypass L1. History buffer records can
be recycled when the task that generated them commits. The space can then be used
for other records. This optimization reduces the history buffer footprint at the expense
of some bookkeeping. The last two columns of Table 6.2 show that recycling greatly
reduces the history buffer footprint for all applications. The columns show the average
and maximum number of tasks that keep state in an individual history buffer. To measure
these parameters, we take snapshots every time that a processor finishes a task. These
parameters are much smaller than the ones in the columns to their left, obtained at the

end of the code without recycling.

Forcing history buffer accesses to bypass L1 should reduce L1 pollution without no-
ticeably slowing down the processor because write latency can be usually hidden. As it is,
we find that the resulting L1 miss reduction is small. This can be seen from the section of
Table 6.3 labeled LI Bypass, which shows overall miss rates (leftmost column) not much
different from those under No L1 Bypass. Only Apsi has noticeable miss rate change, from
2.00% to 1.00%.

To see the effect of these optimizations on the execution time, we run the applications
with 16 processors under all four scenarios (Figure 6.11). We run them with or without
L1 bypass for the history buffer (By and NoBy, respectively), and with or without history
buffer recycle (Rec and NoRec, respectively). For each application, the bars are normalized
to bypass and recycle (By.Rec), which is our baseline Sw from Figure 6.8. While we use
the default filtering algorithm for buffering in all applications (Filter), for comparison
purposes, we also show bars with the All algorithm of Figure 6.10 for Apsi. Apsi was the

only application where the choice of algorithm in Figure 6.10 made a difference.
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Figure 6.11. Effect of log recycling and L1 cache bypassing for logs.

The figure shows that, for a highly-tuned software buffering algorithm like our baseline

Filter, history buffer recycling or L1 bypassing are not very useful. Neither optimization
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reduces Memory much. The only exception is Apsi, where L1 bypassing is effective. The
reason is that tasks in Apsi generate large history buffers (Table 6.2) and, unlike in Bdna,
spread their buffering along their execution, maximizing potential L1 pollution. However,
in some cases like P3m, the combination of both recycling and bypassing is bad: recycling

involves pointer access for bookkeeping, which may be slow if they need to reach L2.

We note, however, that if frequent buffering is required, these optimizations can be
useful. This can be seen for the less optimized All algorithm on Apsi. Either L1 bypassing
or history buffer recycling reduces the pollution enough to speed up the execution of Apsi

20% or more. The combination of both techniques produces marginal gains.
Using Extended Loads

To reduce the memory overhead induced by task-ID loading, we can use extended loads
(Section 6.4.4). With extended loads, instrumented stores add the same number of addi-
tional instructions and memory accesses as with task IDs. However, the task ID is loaded
only if it is needed (i.e. a record needs to be created). Otherwise, only the data to be

written is loaded, therefore reducing cache pollution. The result is a lower miss rate.
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Figure 6.12. Comparing filtering with task IDs to filtering with extended loads.

Table 6.3 compares the L1 miss rate using task IDs (Task ID columns) and extended
loads (Xload columns). Any difference between the schemes is likely occur only for appli-
cations where a large fraction of the misses come from task-ID loading (Columns 4-5 and
8-9) and where many instrumented stores turn out not to be first store (Figure 6.9). The
only such application is Apsi. From the table we see that, if we do not use L1 bypassing,

using extended loads in Apsi reduces the miss rate from 2.00 to 0.8%.

Figure 6.12 shows the resulting impact on the execution time of a 16-processor system.
The figure compares the default system, which uses task IDs for first-store filtering ( Task-
ID) to a system that uses extended loads (Xload). For each case, we show an environment
with L1 bypass and log recycle (By.Rec) and to match the data in the table with L1
bypass and history buffer recycle (NoBy.Rec). From the figure, we can see that Apsi
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benefits slightly from using extended loads. The gains are larger when there is no L1
bypassing, since we can then remove more L1 pollution with extended loads in that case.
Snce using extended loads does not improve execution time noticeably, we choose not to

use the special support required for extended loads.

6.7 Summary

To support buffering of speculative state under speculative parallelization an approach is
the one taken by FMM systems, where main memory keeps the future state while a history

buffer keeps previous versions.

The main contribution of this chapter is the design, implementation and evaluation
of a software only multi-version buffering scheme for a FMM system that uses a history
buffer and runs on top of a speculative protocol. This approach is inexpensive, and it
delivers high performance. Using simulations of a 16-processor CC-NUMA, the overhead
of our proposed implementation for multi-version buffering is only 7% of a similar only
hardware approach. We also found that bypassing the cache or recycling the log was less

important than maximizing logging efficiency.
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Chapter 7

Conclusions and Future Work

In this thesis we have considered mechanisms to improve the performance obtained by a
multiprocessor system executing in parallel threads or tasks from a single application. We
have also studied mechanisms to enable parallel execution of codes that are hard to analyze,
but have a significant degree of parallelism. In particular we have characterize several low-
cost prefetching mechanisms, and have selected the combinations that deliver the higher
speedups for a broad design space of bus-based multiprocessor systems. We have also
proposed an architectural support to parallelize the reduction operations that appear in
many scientific codes. Our support is particularly well suited for the reductions that appear
in sparse and dynamic codes. Finally, we study the challenge of buffering speculative
state when using speculative thread-level parallelization. We introduce a taxonomy of
speculative state management, and evaluate the performance and cost of all the design
points using a common speculative framework. Next, we summarize our main conclusions

and present future work.

7.1 Conclusions

7.1.1 Hardware Prefetch

The increasing gap between the frequency of the processor and the time to access main
memory limits performance for many applications. This limitation is even higher in a

multiprocesor system, where the latency to access memory is larger.

A solution to this problem that many researchers have studied is data prefetch. In this
thesis we take a similar approach. For that, we have first evaluated the characteristics of

parallel applications related with the address regularities we are able to capture. Then,
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we have evaluated four hardware prefetchers that are able to detect the corresponding

patterns.

We have characterized a subset of the SPLASH-2 applications. We have measured the
percentage of loads that follow a scalar, sequential, stride, linked list or index list pattern.
We have also measured the sequence lenghts. This characterization has been done varying

the number of processors from 1 to 32. Our results show:

e Dominance of sequential pattern, with meaningful presence of stride pattern for
some particular applications. The average percentages of scalar, sequential and
stride patterns are 30%, 40%, and 11%, respectively. The remaining 9% correspond

to loads that follow a pattern that we cannot recognize.

e Practical absence of single-load linked list and index list traversal, with percentages

falling always below 1%.

e Existence for some particular applications of a significant fraction of loads that follow
a pattern different of the ones that we tried (56%, 30%, and 35% for Radix, FMM
and Radiosity, respectively). Thus, new pattern detectors could be useful for these

applications.

e Average reduction of 15% in the number of loads that can be predicted when the
learning time is taken into account. This reduction is significant (45.9%) in LU-non,

and it is due to the loss in capturing the sequential pattern.

e Persistance of the patterns as the number of processors changes. The only exceptions
are Cholesky and Radix, which are applications with a higher communication-to-

computation ratio.

e Sequence lenghts also remain constant when the number of processors changes.

After this characterization we have analyzed four cost-effective hardware prefetching
mechanisms: Sequential Tagged (Ts), Load Cache (LC), Load Cache with On Miss In-
sertion (LCm), and Load Cache with On Miss Insertion plus Sequential Tagged (LCms).
These mechanisms have been evaluated in a bus-based multiprocessor system. For the
evaluation we have varied the number of processors (from 1 to 32). We have used two
different sets of cache-sizes for the two levels of cache of our simulated system. The
cache-sizes of the two sets have been chosen to compare two different scenarios: one that
strongly presses the memory system, and another that does not press it. The results of

this evaluation reveal that:

e The performance obtained with a particular prefetch mechanism depends more on

the application than on the cache size.
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e A LCm prefetcher with 16 entries performs always better than a L.C with a traditional

insertion policy, and the same number of entries.

e LLCms and LCm appear to be the bests of the evaluated prefetchers. Taking the best
of LCm and LCms prefetchers, the average reduction in execution time relative to
the same system without prefetch are of 9.97%, 5.03%, 2.54% and 0.43% for 4, 8, 16

and 32 processors respectively.

e As the number of processors increase, the performance benefit of a system with
prefetch reduces when compared to the same system without prefetch: in 72% of the
cases for 32 processors, and 50% for 16 processors, the performance of a system with
prefetch is lower than the performance of its equivalent one without prefetch. Look-
ing at each particular prefetcher, LCm, LCms and Ts yield increase the execution
time in 8.3%, 9%, and 12% of the cases.

e Since sequential prefetch can degrade performance as the number of processors in-
crease, we suggest that the sequential mechanism should be disconnected in software

if it proves to be harmful for a large number of processors.

7.1.2 Parallelizing Reductions

Parallelization of reduction is a critical transformation in many loop-parallel scientific
codes. Several software proposals try to exctract a significant parallelism from reductions.
However, it is usually hard to find the appropiate transformation. This is specially true
in the case of sparse, and dynamic applications. In addition, conventional reduction

parallelization algorithms are not scalable.

We propose a new architectural support to speed-up parallel reductions that we call
Private Cache Line Reduction (PCLR). This supports makes reductions scalable when
executing in Distributed Shared Memory (DSM) multiprocessors. The proposed sup-
port is mostly confined to the directory controller of a DSM multiprocessor, and can be
implemented using a hardwired directory controller (Hw), or a programmable directory

controller (Flex).

The main idea of PCLR is to use non-coherent cache lines as a temporary private
storage, where processors acummulate the partial results of a reduction. When the cache
lines are displaced from the cache, their values are accumulated onto the shared reduction
value in memory. PCLR eliminates the need for the final merge step that typically ap-
pears in the conventional software algorithms that use replicated local buffers. With our
proposed support, parallel reduction only needs a final cache flush step that takes a time

proportional to the cache size. Our main conclusions are:
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e Simulations with 16 processors reveal that the Hw implementation of PCLR achieves
an average speed-up of 7.6 for 16 processors, while the Flex one achieves 6.4, and a

software-only implementation achieves 2.7.

e Simulations of 1, 4, 8 and 16 processors show that our PCLR mechanism (for both
Hw and Flex) scales well as the number of processors increase, while a software-only

implementation scales poorly.

7.1.3 State Buffering in Speculative Thread-Level Parallelization

In the context of speculative thread-level parallelization we have focused on the problem
of buffering speculative state. Our contributions here are two-fold: a novel taxonomy of
approacches to buffer and manage speculative state, and the design of a software-only

buffering scheme that works on top of a speculation protocol.

Our taxonomy includes a novel application of the concepts of architectural and future
state to memory state. It also classifies schemes based on the support for multiple tasks
and versions. We perform a tradeoff analysis and detailed performance evaluation of the
different approaches under a single framework for a set of scientific applications. The
performance comparison of the different systems with architectural main memory (AMM)

reveals:

e The support for multiple tasks and a single version is not cost-effective, since its
performance is similar to the one achieved with support for a single task, while its

complexity is very close to the one required for multiple tasks and multiple versions.

e The support for multiple tasks is more cost-effective than the support for lazy mem-
ory update. The reduction in execution time is higher: 35% versus 25% for the
evaluated applications. Furthermore, the hardware complexity for adding multiple

tasks and versions is lower.

e The improvement due to multiple tasks and versions, and due to laziness are fairly
orthogonal. Indeed, adding laziness to a system supporting multiple tasks and ver-

sions reduces execution time by an additional 20%.

We have also compared AMM systems with Future Main Memory (FMM) systems.
The most advanced AMM system, the one supporting multiple tasks and versions and lazy
main memory update, is very competitive when compared against the most expensive and
fastest system with future main memory (FMM) system. The only disadvantage of the
AMM sytems when compared to the FMM systems appears when the applications have
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sizable working sets, load-imbalance, and possibly mostly-privatization patterns that put

stress on the cache hierarchy of the AMM systems.

Our second contribution in this context is the design of a software-only buffering scheme
for FMM systems that supports multiple tasks and versions. We have evaluated several

of the alternative designs that we propose, and we find that:

e Filtering first stores can significantly reduce the execution time for some applications,
and it does not increase the execution of those applications that do not need it. Thus,

we recommend to use it.

e If history buffers bypass the L1 cache or are recycled, the overhead reduces sig-
nificantly if the application requires substantial buffering. If buffering is not that
frequent, these alternatives do not seem to be very useful, but since they do not

increase the execution time, we also recommend to use them.

e Extended Loads do not reduce execution time much, and since it requires extra

support, we recommend not to use them.

We have compared our software-only buffering scheme with a similar hardware-only
implementation and we find that this solution is very attractive. It adds only a 7%
overhead, and removes most of the hardware complexity. For the comparison we used a
software implementation with all the previous recommendations: first stores are filtered,

and history buffers are recycled and bypass the L1 cache.

7.2 Future Work

Next we discuss new directions that may guide future research from the work done in this

thesis.

When studying prefetching we have found that for some applications there is a high
percentage of loads that follow a pattern that we cannot recognize. Thus, new pattern
detectors have to be tried. Also, we think that SPLASH-2 applications are very well
programmed, and that it would be worthful to extend the work on characterization and
hardware prefetch to other parallel programs. On the other hand, companys have released
or announced commercial chips that integrate multiple processors with SRAM or even
DRAM. In this context of multiprocessors on a chip, new research is needed to evaluate
how to take advantage of the system integration, and which is the performance that a

new prefetching scheme can deliver. This study should look at new organizations of the
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memory or its processor interconnection that could eliminate or reduce the bottlenecks of

tightly coupled systems.

As for Speculative Thread-Level Parallelization we think that it is a very promising
research area. However, further research is needed to understand how the parallelizing
compiler and the speculation hardware interact, so that we can extend the coverage and
the efficiendy of speculative parallelization. Lines that seem interesting in this field is the
study of how the scheduling of tasks to processors affects the performance, or how to choose
the most appropiate size grain of the tasks. Long tasks reduce scheduling overheads, but
poses the problem of more work to be squashed in case of an infraction. Thus, the election
of the size will largely depend on the memory latencies of the multiprocessor where the
application is going to run, and on the dependence infractions rate. Dynamic algorithms
may help at finding the most appropiate grain-size. On the other hand, we feel that it is still
unclear the potentials of speculative execution for these codes in DSM systems. Therefore,
our evaluation needs to be extended to other applications, like integer applications and

pointer-based applications, where many more dependences can be expected.

Finally, the work done with the software buffering is a step ahead at reducing the
complexity of the hardware protocols. But more work needs to be done in this line. A
possible idea would be to use the multithreading possibilities of the new released Simulta-
neous Multithreading Chips (like the Hyper-threaded Intel Xeon), in order to insert new

instructions to check for dependences, buffer speculative state, and so on.
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Speculation Protocol for MultiT& MYV lazy FMM systems

This appendix explains some important details of the speculation protocol proposed
for a Distributed Shared Memory (DSM) multiprocessor system in [Zha99]. The protocol
is used for speculative thread level parallelization of codes that the compiler cannot fully
analyze. With this approach, the compiler extracts tasks that can be executed in parallel.
As tasks execute, the speculation protocol checks for memory dependences across tasks.
To do this, the speculation protocol extends the transactions of the coherence protocol.
However, while the coherence protocol works at the granularity of cache lines, this protocol
works at the granularity of 32 bit words, that in the following we call variables. This avoid

false dependence detection due to false sharing.

In this protocol, tasks are dynamically scheduled to processors. When a task finishes,
it cannot be considered committed until all predecessor tasks have also finished and com-
mitted. However, to neutralize load-imbalance, the processor that ran the task does not
wait: it goes on to execute the next task. Figure 7.1-(a) shows two finished tasks (F') that
cannot commit. Every time a processor finishes a task, it tries to advance the Commit
Point (CP). If it succeeds, several tasks can commit at a time, Figure 7.1-(b). In this pro-
tocol, committing a task does not involve any data copying or flushing: it simply involves

an update to a shared variable called the Commit Point.

cC C C C: Committed Task
C UF F UWU C FF Fuu F: Finished Task
\ \ \ \ \ \ \ \ \ -
¢ Increasing L¢ Increasing U: Unfinished Task
task-ID task—-ID A Commit Point
(a) Parallel Execution (b) Commit Point Advance

Figure 7.1. Sliding commit of tasks.

This protocol has been proposed in a DSM context, and therefore, when talking about
a cache block we will use the terms home or local node. The home node refers to the node in
whose memory the block is allocated, while the local node refers to the node containing the
processor that issues the request. The protocol assumes that data whose access patterns
cannot be analyzed at compile time (and thus, can cause data dependences across tasks)
are distributed among the memories of all the nodes in the multiprocessor. Private data

to each thread are allocated in the memory of the node that contains the processor where
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the thread executes. The access to the non-analyzable data is marked with instructions
with special operation codes that trigger the speculation protocol actions. For the non-
marked accesses, the plain coherence protocol is used. We assume a full-map directory,
invalidation-based scheme as the underlying coherence protocol [CF78]. Coherence states
are not used in the regular way for the cache lines accessed with the speculation protocol.
Instead, variables are time-stamped to track memory dependences, as we will explain
later. However, some of the transactions of the speculation protocol use the information

recorded in the bit vector of the directory, like the list of sharers for a particular block.
Main Idea

This protocol only requires task squashes under out-of order RAW dependences. It
can eliminate WAR and WAW dependences, and gracefully process in-order RAW depen-

dences.

To eliminate WAR and WAW hazards, writes of a processors are prevented from in-
validate the caches of other sharer processors. This change enables multiple versions of a
variable to exist in different caches. Furthermore, when a dirty line is displaced from a
cache, in addition to being sent to its home, it is also stored in the memory in the local
node. This way, later accesses from the same task can obtain the data locally. However,
since these multiple versions can be displaced out-of order, when a dirty displaced line
reaches its home, it will overwrite the shared data in the home only if the home contains
an older version of the variable. With these changes, data are effectively privatized and
writes can be executed by different processors in any order without causing WAR or WAW

dependences.

To gracefully process RAW dependences, an exposed load (a load of a variable in a
task that is not preceded by a write in the same task) to a variable has to proceed all
the way to the home node. The cache coherence protocol is modified to find the correct
version, that can be located either in the shared memory at the home, or in any of the
sharer processors. Once located, the protocol supplies the version to the requester. With

this support, in-order RAW dependences are satisfied seamlessly.

Required Support

The protocol allows multi-version caching and conditional write-backs at the home. To
support these features, several data structures are mapped to each memory node, namely
shared and local task-IDs, an overflow area, and a Memory History Buffer (MHB). The
allocation and access to these structures is performed by the Directory Controller with

the help of an Address Mapping Module. We consider all the elements in turn.
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1) Task-IDs

To identify dependences, two shared task-IDs for each speculatively accessed variable are
used: MaxzR1st, which identifies the youngest task in the system that has executed an
exposed load of the variable, and MinW which identifies the oldest task that has written
to it so far in the system. In addition, to support conditional write-backs at the home, a
shared MaxWDisp task-ID is kept for each variable. This task-ID identifies the youngest
task that wrote to that variable and then displaced it to the home. These task-IDs are

kept in the main memory of the home node.

Speculatively accessed variables are also locally tagged. For each variable a processor
access, two private task-IDs are kept in its local memory: PmaxzR1st, which identifies the
youngest task ran by the local processor that executed an exposed load for that variable,
and PmazW, which identifies the youngest task executed by the local processor that has
written that variable so far. Shared and private task-IDs are initialized to zero before the

speculative section starts.

Finally, to further reduce messages with the local memory, cache tags keep summaries
of the local task-1Ds. Specifically, for each variable, a Read1st and a Write bit are kept.
These bits are cleared when a new task starts. The ReadIst bit is set only if the first
access of a task to a variable is a read. The Write bit is set the first time the task writes

a variable.
2) Overflow Area and Address Mapping Module

This protocol keeps a space-efficient area in each node memory where cache can overflow
into without the need of task squashing. The first time that a dirty line containing
speculatively modified data is displaced from the cache, in addition to being sent to its
home, the local directory allocates a page in the memory of the local node, and stores
the data. With this support, the local overflow area can be considered as an extension of
the local cache. When either a request from the local processor or a remote request from
the home misses in the local cache, the local overflow is interrogated. The overflow area
will supply the data if it was displaced in dirty state earlier during task execution. This
happens in two cases. First, in a non-exposed load from the local processor and, second,

in an incoming read from the home that is trying to satisfy an in-order RAW dependence.

To access the local overflow area an address mapping table is needed. This table maps
a physical shared address to the physical local address at the page granularity. Thus, for
a given shared page address (SPA), this table keeps a pointer to the suitable overflow area
page, and another pointer to the corresponding page of local task-IDs. Notice, that only
the dirty displaced lines need to be valid in the overflow area. In addition, each node has

a second table for the shared variable that are homed locally. This second table has a
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pointer to the shared task-IDS. Both tables are integrated in the Address Mapping Module

in each node, as shown in Figure 7.2.

Physical Address

From Processor Shared &
SPA ' Private
: Data
Shared —» SPA | | —1- Local
Page 5 \ [ Pmaxrist | Pmaxw |
Task-IDs

Address
\ Overflow
—'* SPAl | E Area
i \ Shared

"""""""""" TaskoIDs |Malest | MinWl MaxWDisp

Address Mapping Module Memory

History
Buffer

Physical Memory
in each node

Figure 7.2. Address Mapping Module.

3) Multi-version Caching

To support multiple versions of a given variable in different caches, a simple procedure is
needed. After a processor writes and the local directory controller receives a home-bound
invalidation message, the directory controller intercepts it and replies with a completion
message. The directory controller access the local task-IDs of the speculatively accessed
data by means of the Address Mapping Module, and determines whether this is the first
write of the task by comparing the local PmazW to the ID of the current task being
executed by the local processor. If PmaxzW is lower, it sends a Write-First message to the

home, and sets PmazW to the current task-ID.
4) Conditional Write-Back at the Home

To support out-of-order WAW dependences, conditional write-back support is used at the
home. Such support involves the use of MaxzWDisp for each shared variable in the home.
Remember that this task-ID keeps the number of the youngest task that wrote the element
and then displaced it to the home. When a cache line is received at its home, each variable
comes with the PmazW it had when displaced. Then, for each variable in the line, its
PmazW and MaxWDisp are compared. If PmazW is lower than MazWDisp, the incoming
variable is discarded. Otherwise, the variable overwrites the copy at home and MaxzWDisp

1s set to PmazW.
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5) Memory History Buffer (MHB)

Since several tasks are executed in the same processor, a processor may end up buffering
multiple versions of the same variable. In this case, the last version, the one produced
by the youngest task that ran in the processor will be in the cache or overflow area; the
previous ones are stored in a memory history buffer (MHB) which is placed in the local

memory of each processor.

When a task is about to destroy a version of a variable that was created by a previous
task that ran in the same processor, the old version is saved in an entry of its local MHB.
The information that we need to save is the old value before being destroyed, the ID of the
task that produced the value, and its physical address. All the entries created by a task
are grouped together. The reason is that when a task commits, all its changes become

safe, and thus all its entries in the MHB can be deallocated and its spaced can be reused.

Memory History Buffer
Task Pointer Table

Producer
Addr TaskID Value

: Overwriting H
H i H N
Valid Task ID Ovflw End Next : &\\ Taski
' i 1 ~
" =
j 0 — H N N Task j
Free :
Sector H Sector
Table —» :
V77772

Histroy Buffer Controller

Figure 7.3. Per-processor structures required for the Memory History Buffer.

All the information in the MHB is handled in hardware using a history buffer controller
shown in Figure 7.3. This module contains a Task Pointer Table, and a Free Sector Table.
When a task starts running, it is dynamically assigned an entry in the Task Pointer Table
and one sector in the history buffer. Free sectors are obtained from the Free Sector Table.
Two pointers in the Task Pointer Table point to the Next entry to fill and the End entry
to check for overflow. If the task needs more entries than a sector, another sector is
dynamically assigned and linked to the previous one, while the Overflow bit is set. To
insert a new entry into the MHB, the speculation protocol must detect when a version
is about to be destroyed. On a write hit, the Write bit in the tag caches is checked. If
the Write bit is zero, it is the first write of the task to that variable, and the old value in
cache needs to be sent to the history buffer controller in the local node. However, if the
write misses, the local PmazW task-ID is checked. If the Pmaz W task-ID of the variable is

smaller than the ID of the task, the old value needs to be read from the overflow area and
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saved into the MHB. Finally, there is a situation, that we explain later, where an entry
needs to be inserted in the MHB on an exposed load. For that, the local task-IDs PmazW
and PmazR1st are checked. Notice that all these operations are done in the background

with fairly small overhead.

Finally, Figure 7.4 shows the set of modifications required in each node by the complete
speculation framework. The components modified are the directory controller and the
cache tags. In addition, the processor must support special load/store instruction for the

memory accesses that can cause dependence hazards.

Main
5: Logic to manipulate Task-1Ds

Memory‘zHlHB‘
6: History Buffer Controller

Extended .- / . '
Transactions Directory |
Module | : E
: Modifications

1: Directory Controller

2: Directory Array

3: Network Interface

4: Address Mapping Module

™)

ONO

L1 off-chip
Proc | | cache cache
~. —

Extra bits in cache tags

Figure 7.4. Modifications required in a DSM machine to support the complete speculation protocol.

Overall Algorithm

The overall algorithm can be divided into the actions performed by the processor locally
(Local Algorithm) and those performed at the home (Home Algorithm). Figure 7.5-(a)
shows a simplified algorithm with the actions performed by the local directory controller
on reads and writes. For the read, it checks whether it is the first exposed load of the task.
For that, the ID of the current task (TID in the algorithm) is compared to the value of
PmazW and PmazR1st. If TID is higher, PmaxzR1st is updated and a Read-First message
is sent to the home. On a write, a similar algorithm is used. In this case, TID is compared
to the PmaxzW task-ID. If TID is higher, this is the first write of the variable by the task.

PmazW is updated, and and a Write-First message is sent to the home.

Remember that the cache tags are extended with Readlst and Write bits. These bits
are used to reduce messages to the local directory controller. In a write hit, the Write bit
in cache is checked. If it is reset, this is the first write to the variable by this task, the
Write bit is set and a message is sent to the local directory controller, which will proceed

as explained before. Otherwise, if the Write is already set, no message is sent to the local
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memory, since the first write was already notified. Note that all these messages are sent in
the background. Thus, the processor does not wait for the message to complete to proceed
with the computation. For the Read1st bit a similar algorithm is used. Readlst and Write

bits are cleared when a new task starts.

if Read if Read-First
if (PmaxR1st <= PmaxW < TID) if (MinW 1=0) &&
insert_MHB (TID, old_value, addr, PmaxW) ((MinW < TID) || (MazWDisp'=0)))
endif send Write-Back to all sharers
if ((PmaxR1st < TID) && (PmaxW < TID)) if (MazWDisp > TID)
send Read-First with TID to home exception (WAR, addr, TID, PmaxR1st)
PmaxR1st = TID endif
endif endif
endif MaxR1st = max (MaxRl1st, TID)
if Write endif
if ((PmaxR1st <= PmaxW < TID) || if Write-First
(PmaxW == 0)) if (TID < MaxR1st)
insert_MHB (TID, old_value, addr, PmaxW) exception (RAW, addr, TID, MaxR1st)
endif endif
if (PmaxW < TID) if (MinW == 0)
send Write-First with TID to home insert_MHB(TID, old_value, addr, 0)
PmaxW = TID endif
endif MinW = min (MinW, TID)
endif endif
(a) Local Algorithm (b) Home Algorithm

Figure 7.5. Algorithm for the speculation protocol at the Local Memory Node (a) and at the Home

Memory Node (b). TID is the ID of the executing task.

Figure 7.5-(a) shows the algorithm executed by the Home. When the home receives a
Read-First request, it must find the correct version. This version will be the one located
in the shared memory when the variable was never written (MinW is equal to 0), or when
the variable was written, but PmazR1st is lower than MinW and no version has been
displaced to the home (MazWDisp is equal to 0). Otherwise, the home node must send a
Write-Back request to all the sharer processors. The sharer processors will answer with
its version in cache or overflow area (the last one) and its Pmaz W task-ID. The home will
select the version with the highest PmaxW task-ID and will store the data and task-ID in
the shared memory location and MaxWDisp respectively. If at this point, the home finds
that MaxzWDisp is higher than the PmazR1st of the Read-First request, it means that a
WAR infraction would arise if the home supplied the requester the MaxzWDisp version. To
resolve this infraction, an exception handler needs to be run. This issue will be explained

later in more detail. If, however, MazWDisp is smaller than PmazR1st, the version in the
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home is sent to the requester processor. In any case, MazR1st is updated to the maximum
of the incoming PmaxR1st and MazR1st.

If the home receives a Write-First request, the Pmaxz W of the arriving message is com-
pared to the shared MazR1st. If PmaxW is smaller than MaxR1st, a task has prematurely
loaded a variable. Thus, an exception handler must deal with this out-of-order RAW
dependence. This handler will squash all tasks with an ID higher than the writing one,
and will revert memory to a safe state. If on the contrary, the PmazW is equal or larger
than MaxzR1st, no dependence infraction is detected. The MinW task-ID is updated if

necessary with the arriving PmazW.
MHB Insertion

Notice that there are three points in the algorithms of Figure 7.5 where an entry needs to
be inserted in the MHB. The most obvious one corresponds to a first write by a task in a
processor. In this case, a version from an older task is about to be overwritten. Thus, the
local directory controller inserts a new entry in its local MHB where it keeps the old value
of the variable, its Pmaz W, and the address. An special case occurs when Pmaz W is zero.
In this case, the write is the first write in the processor. Thus, the value that needs to be
inserted into the MHB is the initial value of the variable before the speculation started.
Instead of that, an entry with a value of -1 for the producer task-ID is inserted into the
MHB. Thus, if later a recovery process finds this entry when undoing a task, it will know

that the initial value needs to be copied back to the home.

The initial value is backed up by the home node the first time that a First- Write
message reaches its memory home (Figure 7.5-(b)). The home saves an entry in its node’s
MHB with the initial value, the address and the zero producer task-ID.

Unfortunately, another situation where an entry needs to be inserted in the MHB is
on an exposed load. On an exposed load a new version from outside the processor can
kill a local version. Suppose that a task i has executed in a processor and has generated
the version 7 of a variable that has not yet saved in the MHB. This version will be in the
cache, or in the overflow area if it was displaced. Suppose now that a new task ¢ + £ in the
same processor executes an exposed load of that variable. This exposed load will cause
a Read-First request message to be sent to the home node, which will supply the correct
version (a version j, with j in between i and i+k). In this case, version j can destroy the

unsaved version of the previous task i.

However, we do not need to save an entry under every exposed load that a processor
executes. We only need to save an entry when the condition (PmaxRlst <= PmaxW <
TID) is true. In this case, the processor has a version that it did not save in its MHB.

This condition says that we only need to save a version on the first exposed load of a task.
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In addition, only on the first exposed load, after a writing task, we need to insert an entry
in the MHB.

Dealing with Dependences

Using this protocol WAR and WAW hazards are eliminated and in-order RAW de-
pendences are gracefully processed. Table 7.1 lists how the dependences are handled, and

what are the corresponding actions that need to be undertaken. We explain them next.

|| Dependence | Run-time order | Notes

Actions taken ||

in-order Search for the right producer data Hardware
Software if also WAR,
RAW out-of-order Squash and rerun tasks larger Software
than producer task
in-order No problem -
WAR out-of-order If the home has been updated, Software
search to read the right data
in-order No problem. Home chooses the last | Hardware
WAW write among the displacements
in-order Same as above

Table 7.1. How to handle dependences between tasks.

In an in-order RAW dependence, the correct version needs to be searched. If this is
the only dependence that has occurred, the search will be done in hardware. The version
required may be found in the shared memory, or in any of the sharer processors in either
the cache or the overflow area in the local memory’s node. If the in-order RAW dependence
is mixed with an out-of-order WAR. dependence, the search needs to be done in software.
In an out-of order RAW dependence, the reading task has already consumed a wrong

value. Thus, special actions needs to be taken. They are done in software.

Obviously, an in-order WAR does not pose any problem. Both reading and writing
tasks have executed in the correct order. However, the read of an out-of order WAR
dependence cannot find the initial value if the shared memory location in the home has
been updated by a cache displacement with the value of the youngest version. In this
case, overflow areas and maybe MHB need to be searched. This process is also done in

software.

In-order and out-of order WAW dependence are not problematic, since they are solved

by the home directory which always takes the youngest displaced version.

Thus, the only two dependence infractions that need special actions are out-of order
RAW and a out-of order WAR. These two infractions need to be repaired in software.

They are considered in detail next.
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Out-of-oder RAW: Recovery by Undoing and Re-Running Tasks

An out-of order RAW dependence is detected when a write update message brings to the
home a PmaxzW that is lower than the home’s MazR1st. The reader has read prematurely.
In this case, the recovery consists of a software handler that undoes the effects done by

tasks greater than the producer one.

After the error is detected, all tasks with ID higher than the writing one are squashed.
The other tasks are allowed to complete. When they complete, the ID of the writing task
becomes the Commit Point (CP). At this moment, the home memory contains three types
of data: uncommitted, committed and last-update. Uncommitted data was generated by
tasks higher than the writing one and, therefore, their MazWDisp is higher than the CP.
Committed data was generated by the other tasks and their MaxzWDisp is lower or equal
to the CP. Finally, last-update is one type of committed data: the one generated by the
highest write lower or equal to the commit point. The recovery process will simply involve

setting all the speculatively modified data in the home to their last-update value.

The first step is cache flushing. As dirty data is flushed from the caches and arrives at
the home, two cases are possible. If the data at the home is committed (MazWDisp <= CP),
we only accept the incoming data if it brings us closer to the last-update value (Figure 7.6-
(a)). This occurs when the incoming datas Pmaz W is such that MazWDisp <= PmazW <=
CP. If, instead, the data in the home is uncommitted (MaxzWDisp > CP), we only accept
the incoming data if it takes us to a committed version (arrow 1 in Figure 7.6-(b)). This

occurs when the incoming datas Pmax W is such that PmazW <= CP.

Unfortunately, the change from uncommitted to committed does not guarantee ever
producing the last-update version, even after flushing all caches. Indeed, such a version
may not be in any cache any more: it may have been displaced from a cache during the
regular execution of the algorithm and discarded because the home already had a newer
(the uncommitted) version. In this case, the last-update version may be in a local memory.
Consequently, after the change from uncommitted to committed, the home automatically
request a further write back of the line from all the sharers of the line, as indicated by
the directory. For each sharer, this write back request will get the data from the local
memory. As each of these writebacks returns data to the home, the same algorithm is
used to decide if it is to be accepted. These writebacks can get us closer to the last-update

value (arrow 2 in Figure 7.6-(b)).

The second step if for each processor to restore data from its own history buffer.
Only tasks with IDs higher than the CP are restored. The order of the restores does not
matter, since the home uses the algorithms described above to accept or reject versions as

they are written back. As before, every time that we record a transition like arrow 1 in
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Figure 7.6. Recovering the state in an out-of-order RAW dependence infraction.

Figure 7.6-(b), the home requests a further Write-Back from all the sharers. Overall, after
the restoration of the history buffers, the home only contains last-update versions. The
space in the history buffers is then recycled, the task IDs are reset, and parallel execution

is restarted.
Out-of-Order WAR: Retrieve the Correct Version

Unfortunately, there is one additional case where recovery is needed: an out-of-order
WAR resulting from the on-demand merging of this protocol. Recall that, when a task
executes an exposed load, it send a message to the home node. When the home receives
this message, it request a Write-Back to all the sharer processors, selects the one with
the highest PmazW task-ID, and stores data and task-ID in the shared memory location
and MaxzWDisp respectively. If, at this point, it finds that MazWDisp is higher than the
PmazR1st of the exposed load, it means that there is out-of-order WAR. To recover, a
software handler has to dig out the correct version of the variable from caches, overflow
areas or MHBs. The correct version will be the one with the higher task-1D, that is still
lower than the reading task. The software handler runs in the processor executing the

reading task. No other processor needs to be involved and no task needs to be squashed.
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Description of the Applications

This Appendix gives a brief explanation of the parallel applications used in the experimen-
tal framework of Chapters band 6. These applications are: Apsi from SPEC{p2000 [J.L00],
Track and Bdna from Perfect [BT89], Dsmc3d from HPF-2 [DSH94], P3m from NCSA,
and Tree from [J. 94].

e P3m This applications implements a N-body simulation problem. The loop under
test is invoked 1 time, with 97336 iterations. Each iteration computes the forces at
one particular node. These forces depend on the number of neighbour nodes and the
distance between them. Thus, nodes placed in a populated area, will receive force
interactions from many nodes. However, nodes placed far away from other nodes
will receive little force interactions. A consequence of this is that this application
is very imbalanced. A few iterations spend a lot of time computing forces, while
many of them almost do not have forces to compute. On the other hand, the arrays
that are speculative accessed can in practice be privatized. However, the dependence
structure cannot be fully analyzed and therefore the compiler does not parallelize
this loop. While the loop has 97,336 iterations, we only use the first 9,000 iterations

in the evaluation.

e Tree This application implements a hierarchical N-body simulation of the evolution
of collisionless systems. The loop under test is invoked 41 times and consists of
a while loop that traverses a tree structure, with 4096 iterations. The speculative
array is used as a stack and in practice elements are only poped and used by an
iteration after they have been previously written and pushed on the stack by the
same iteration. This array is therefore privatizable, although this pattern cannot be

fully resolved at compile time.

e Bdna This application simulates the hydration, structure, and dynamics of nucleic
acids by molecular dynamics simulations of biomolecules in water. The loop under
test is invoked 5 times, with 1499 iterations each. The speculative arrays are privati-
zable. At each invocation several elements are written in succession and later on read
in succession. As the reads use subscripted subscripts the loop is non-analyzable at
compile time. In practice, however, the set of elements read at each iteration is fully

contained in the set of elements written previously by the same iteration.
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e Apsi This application simulates, in three dimensions, pollutant concentration and

deposition patterns in lake shore environments. We use an input grid of 512x1x64.
The loop under test is invoked 900 times, with 63 iterations each. All invocations
present the same behaviour. There is only an array which is speculatively accessed.
At run-time, some portions of the array are only read, while other portions are
privatizable, since a write always precedes a read in each iteration using a certain
datum. This behaviour, however, cannot be fully determined at compile time. At

run-time there are no same-word RAW dependences.

Dsmc3d This application performs a randomized simulation of gas particles using a
Direct Simulation Monte Carlo method. The loop under test is invoked 80 times,
with 758972 iterations each. The speculative array is accessed very sparsely and
has a few same-word RAW dependences. At run time some of them are executed

out-of-order.

Track This application simultaneously tracks the trajectory of an unknown number
of missiles launched from several different sites. The loop under test is invoked
56 times, each executing a different number of iterations, with an average of 502
iterations per invocation. A few arrays must be treated speculatively, but only one
of those actually has same-word RAW dependences. The writes to this particular
array are guarded by a loop variant condition, whereby the loop is not analyzable

at compile time. Out-of-order RAW, however, occur very sparsely in practice.
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Example of Poor MultiT&SV Performance

Consider a program with 6 tasks that we run on 3 processors. The tasks are load-
imbalanced as shown in Figure 7.7-(a) and have mostly-privatization patterns. Suppose
that tasks T0, T1, and T2 have been assigned to processors P(, P1, and P2, respectively.
Figure 7.7-(b) shows the time when P2 finishes T2. Under SingleT (Figure 7.7-(c)), P2
will wait until 72 commits (point ¢2) and then execute T5. Under MultiT&SV (Fig-
ure 7.7-(d)), P2 will greedily start 73 and then stall. Unfortunately, in this case, P0 will
later get a task (74) far from the non-speculative one at that time (77). As a result, after

it finishes it and takes T, it will remain stalled for a long time, wasting many cycles.

TO T1 T2 T3 T4 T5 Proc# PO P1 P2 PO P1 P2 PO P1 P2
Time _ . . _ __ M e
I 2] 2] T2
27
R O AR P A S P -
T1 T3 T1 : Ta T1 :
I [ (R TR | [ [ -t
| T |
c3 Jfrcl c2 T5 cl T c2
T4 T5 ‘
Task Sizes c4 ¢
c4 c5 T5
Lc5
TO|T1 T2 T3|T4 T5 TO|T1 T2 T3 T4 |T5
C|E F E C|E F S E
SingleT MultiT&SV

(@) (b) (c) (d)

Figure 7.7. Example where MultiT&SV is slower than SingleT. The example assumes that tasks commit

without visible delay.

The overall result is that MultiT&SV is slower: T finishes and commits much later
(¢5) than in SingleT. The reason is that under SingleT tasks end up being round-robin
assigned, what guarantees that the tasks making progress are the ones closer to the commit
point. However, under MultiT&SV tasks are greedily assigned. This greedy assignment
may result in tasks far from the commit point making progress, while other tasks closer
to it are stalled. This effect delays the commit wavefront, which is counter-productive for
MultiT&SV schemes running applications with mostly-privatization The reason is that
under these circumstances the commit wavefront is in the critical path because a stalled

task cannot resume with the execution until the previous one commits. Therefore, delaying
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the task commit results in delays of task execution.

All these effect are shown in the example of the Figure, which also shows the window
of uncommitted tasks at time ¢ under SingleT and MultiT&SV. This window includes
the non-speculative task and all the other speculative ones. Under SingleT, this window
contains three tasks, 71, T2 and T3. Under, MultiT&SV the window has grown larger and
also contains T4. However, the number of tasks making progress (either being executed
(E) or finished (F)) is the same in both cases because T3 is stalled under MultiT&SV.
The result of this stall is that 7' will commit later under MultiT&SV than under SingleT,
and thus will delay the task commit wavefront of the MultiT&SV scheme.
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