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Motivation

• Coloured Petri nets (CPN) 
– through “colours”, identities are modelled 
– natural description of systems with elements of various attributes

• Problem for highly populated systems: too large state space to be 
analyzed in reasonable time

• Continuous place/transition nets:
– Lights: analysis of some highly populated systems
– Shadows: Can any DES model be fluidified? 

• How about transforming CPN-s to continuous P/T nets?
• Not interested in fluid-coloured nets, because identities lead to binary or 

small numbers

• Timed classes used
– Coloured PN-s: Stochastic symmetric nets with bags (SSNB)
– Non-coloured PN-s: Generalized stochastic Petri nets (GSPN)
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Illustrating our desired procedure: 
Two steps from timed coloured to timed continuous Petri net

…

…
Preserving

model
performance

results

Coloured PN model

Non-coloured PN model
(partially…)

Continuous PN model

Fluidification

Decolourisation:
creating “populations”
(non-distinguished elements)
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Getting the flavour: Dining philosophers (Dijkstra)

• P philosophers think (P1) and 
eat (P3) at one table sharing P
forks.

• Philosopher x can use only forks 
x and x⊕1 (“!x”). 

• Philosophers decide to eat after 
some time of thinking (T1). 

• They start eating only when their 
relevant forks are free (P4 
enables t2). Otherwise they wait 
for them (P2).

• They keep forks until they finish 
eating (T3).

cP

cP,cR,cR

T3

P4

t2

T1 P3

P2

P1

<x>

<x>

<x> <x,y,z>

<y+z>

<y+z>

<x>

<x,y,z>

[x=y and z=!y]

[x=y and z=!y]

mP

cP

mR

cR

• Structural and behavioural symmetries, but…
• This model cannot be decolourised due to the use of different 

resources
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Getting the flavour: Dining philosophers – decolourisation

Now, let’s assume that resources become common (non-Dijkstra): 
any philosopher can take any couple of forks 
(guards on t2 and T3 disappeared)

cP

cP,cR,cR

T3

P4

t2

T1 P3

P2

P1

<x>

<x>

<x> <x,y,z>

<y+z>

<y+z><x>

<x,y,z>

mP

cP

mR

cR

T3

P4

t2

T1 P3

P2

P1

2

2
|cP|

|cR|

This model can be decolourised because of using common resources
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Getting the flavour: DinPhilCommon – fluidification

T3

P4

t2

T1 P3

P2

P1

2

2
|cP|

|cR|

T3

P4T1 P3

P2

P1

|cP|

|cR|

2

2

t2
• t2 changed
• time delays: 
w(T1) = w(T3) = 1;
w(t2) = 0.001 

(in cont. model)

Discrete vs. continuous model: Throughput of T3 – difference and ratio
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1. Decolourisation of autonomous nets: Basic idea

Limits of decolourisation based on net structure:
• limited use of inhibitor arcs
• limited use of synchronization functions and bag expressions on 

input arcs
• no more than one occurrence of x or !x in labelling functions of all 

input arcs
• additional constraints on variables to prohibit colour synchronization 

of tokens
• no occurrence of ord(x) function determining number of tokens

Symmetric net with bags
(Coloured net)

Autonomous
Petri net(preserving qualitative

model properties)

Decolourisation
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1. Decolourisation of autonomous nets: Previous work

• Franceschinis – PhD thesis, 1993
• Chiola – Franceschinis, 1991
• Ajmone Marsan – Donatelli – Franceschinis – Neri, 1998
• Chiola – Dutheillet – Franceschinis – Haddad, 1991 & 1993
• Franceschinis – Ribaudo, 1996

• Decolourisation of symmetric nets (non-timed)
– Based on reachability graph (behaviour)
– Based on net structure – this is what we look for!
– Timing issues mentioned partially in one paper

• Lumpability for stochastic symmetric net (timed)
– Based on Symbolic Reachability Graph (SRG) is algorithmised
– Here: we look for aggregation at net level (to keep the net structure) 

- it is computationally more efficient, but less power in reduction!
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1. Decolourisation of autonomous nets: Basis for our work

Symmetric net with bags
Autonomous

Petri net

Stochastic
symmetric net with bags

Generalized
stochastic
Petri net

(preserving qualitative
model properties)

(preserving quantitative
model properties)

Our work: 
(partial) decolourisation + 

(partial) unfolding + 
adjusting of transition weights/rates

Limits of decolourization based on net structure:
* limited use of inhibitor arcs
* limited use of synchronization functions and bag expressions on input arcs
* no more than one occurrence of x or !x in labelling functions of all input arcs
* additional constraints on variables to prohibit colour synchronization of tokens
* no occurrence of ord(x) function determining number of tokens

untimed

timed

Decolourisation

"Decolourisation"
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cP

cP,cR,cR

T3

P4

t2

T1 P3

P2

P1

<x>

<x>

<x> <x,y,z>

<y+z>

<y+z><x>

<x,y,z>

mP

cP

mR

cR

1.1 SNBs: Dining philosophers with common res. (DinPhilCommon)

Arc functions

Colour domains – from the set of basic 
colour classes Cl = {cP, cR}

Function defining colour domain
C(P3) = cP × cR × cR; 
C(t2) = 〈〈x, y, z〉 ∈ cP × cR × cR〉

Initial marking: mP = ph1…phn; 
mR = r1…rn

Symmetric Net with bags (SNB)
N = <P, T, Pre, Post, Inh, pri, Cl, C, Φ)

Inhibitor arcs (Inh) and priorities of transitions(pri) not used here

Φ – mapping: guards on transitions
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1.1 SNBs: DinPhilCommon with bags

• Resources are provided in a bag of 2 elements, not individually.
• Function Y represents a set – its cardinality is given in guard Φ(t2)

cP

cP,cR

T3

P4

t2

T1 P3

P2

P1

<x>

<x> <x,Y>

<x,Y>

mP

cP

mR

cR

<x>

<x>

<Y>

<Y>

[card(Y)=2]
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1.1 Symmetric nets with bags: Relation to CPN

• Coloured Petri nets (CPN): tokens distinguished through 
colours

• Symmetric net
– Has the same modelling power as CPN

– Is subclass of CPN because it has more strict definition of 
colour classes (used in colour domains of places & transitions) and
colour functions (in arc inscriptions & transition guards)

– Colour classes and functions are written in more explicit (and 
parametric) form, using basic constructs of the formalism

• Symmetric net with bags
– In addition to CPN: manipulation with bags of tokens
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1.2 Decolourisation procedure of SNB: DinPhilCommon

• Flow 1 (philosophers):
– P1, P2, P3, T1, t2, T3
– colour domain cP, variable x

• Colour shrinking function 1:
cP → cP’: ∀ c ∈cP: sh(c) = • 

• Flow 2 (resources):
– P3, P4, t2, T3
– colour domain cR, variables y and z

• Colour shrinking function 2:
cR → cR’: ∀ c ∈cR: sh(c) = • 

• Intuitively: It is not necessary 
to distinguish philosophers, nor resources

cP

cP,cR,cR

T3

P4

t2

T1 P3

P2

P1

<x>

<x>

<x> <x,y,z>

<y+z>

<y+z><x>

<x,y,z>

mP

cP

mR

cR
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1.2 Decol. procedure of SNB: DinPhilCommon –
decolourised net

• Modified version of Dining philosophers with common resources can 
be completely decolourised.

• Populations are created.

T3

P4

t2

T1 P3

P2

P1

2

2
|cP|

|cR|
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1.3 Decolourisation of bags: Union

Three tokens introduced in P3 are equal ⇒ T2 has 3 instances in SNB

Bags X and Y have prescribed cardinalities ⇒
model can be decolourised.

cA={a,b,c,d}
M1={a,b}
M2={c,d}

T2

T1

cA

P2P3P1

<Y>

<Y>

<X U Y>

<X>

<X U Y>

<X>

[card(X)=2 and card(Y)=1]

[card(X)=2 and card(Y)=1]

M2

cA

M1

cA

T2

T1

P2P3P1

3

2

3

2

22
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1.3 Decolourisation of bags: Union – RG
cA={a,b,c,d}
M1={a,b}
M2={c,d}

T2

T1

cA

P2P3P1

<Y>

<Y>

<X U Y>

<X>

<X U Y>

<X>

[card(X)=2 and card(Y)=1]

[card(X)=2 and card(Y)=1]

M2

cA

M1

cA
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1.3 Decolourisation of bags: Bags as wholes

Every bag stays unchanged ⇒ substitution, e.g.:
k = {a,b}, l = {a,c}, m = {c,d}, cB = {k, l, m}

and the model can be decolourised like SN without bags

Bag(cA) Bag(cA)

T2

T1

Bag(cA)

P2P3P1

<whole(Y)>

<whole(Y)>

<whole(X) U
whole(Y)>

<whole(X)>

<whole(X) U
whole(Y)>

<whole(X)>

M2M1

cA={a,b,c,d}
M1={{a,b}{a,c}}
M2={{c,d}}

T2

T1

P2P3P1

12

2

2
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1.3 Decolourisation of bags: Bags as wholes – RG

Bag(cA) Bag(cA)

T2

T1

Bag(cA)

P2P3P1

<whole(Y)>

<whole(Y)>

<whole(X) U
whole(Y)>

<whole(X)>

<whole(X) U
whole(Y)>

<whole(X)>

M2M1

cA={a,b,c,d}
M1={{a,b}{a,c}}
M2={{c,d}}
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1.3 Decolourisation of bags: Bags and elements

Bags as wholes (<whole(X)>) and 
groups of elements (X) , where 
size of X is not determined.

Net must be bag-unfolded first (T1 to T11, T12, T13, etc.) and then 
it can be decolourised.

T13

T12

T23

T22

T21

T11
P2P1

3

2

2

3

2

Bag(cA) cA

T2

T1

P2P1

<X><whole(X)>

<X><whole(X)>

M1

cA={a,b,c,d}
M1={{a,b}{c}}
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1.3 Decolourisation of bags: Bags and elements – RG

Bag(cA) cA

T2

T1

P2P1

<X><whole(X)>

<X><whole(X)>

M1

cA={a,b,c,d}
M1={{a,b}{c}}
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cP

cP,cR,cR

T3

P4

t2

T1 P3

P2

P1

<x>

<x> <x,y,z>

<x,y,z>

mP

cP

mR

cR

<x> <y+z>

<y+z><x>

w[T1]=3

w[t2]=1

w[T3]=20

2.1 Stochastic SNBs: DinPhilCommon as an example

• adding
– firing rates (timed t.)
– weights (immediate t.)

• w(t2) = ∑ w(<t2,phi, rj, rk>), j<>k

<t2,phi, rj, rk> - transition instance 
of t2 with colours of phi, rj and rk

– For every i, there are m(P4) . 
(m(P4) – 1) instances –
philosopher i is deciding which 
couple of resources to pick up

– since all variations of resources 
have equal chances, then 

w (<t2,phi, rj, rk>) = w(t2) / (m(P2) . m(P4) . (m(P4) – 1))
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2.2.1 Decolourisation of SSNB: On used terminology

• Extended conflict set (ECS):
set of transitions that are in transitive closure of conflict 
relation (equivalence classes)

• Colour-safe place: 
in all possible markings, it contains at most one instance 
from each colour:

– {A1, A2} – allowed

– {A1, A1, A2} – not allowed
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2.2.1 Decolourisation of SSNB: Overview of our approach

• Net transformation rules: 
we look for patterns not at behavioural level (symbolic 
Markov chain), but only on structural level: from net to net

• Steps of decolourisation procedure of SSNB:
1. As autonomous net:

a) Decolourisation of the net as SNB
b) Where necessary: unfolding of colours or bags 

– it usually brings problems: population ↓, net size ↑

2. As timed net: 
– Adjusting transition firing rates / weights according to existing 

extended conflict sets (ECS) for transition instances in the SSNB so that rates 
of underlying CTMC (Continuous-time Markov chain) stay preserved

• By default, we assume: 
– Infinite server semantics (ISS)
– Bounded nets
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2.2.2 TPA rule 1 – New variable on output (1)

Variable y is not present on input, but on output arc only
It represents tokens from colour set cB with 4 possible values
How does the firing rate of T change by decolourisation?

SSNB GSPN

firing rate 
of 1 instance

of T

firing rate 
of T’ P3P2

P1

T’

μ

P3P2

P1

cA

λ
T

cA cB

A1
A2

<x>

<x> <y>

cB={B1, B2, B3, B4}
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2.2.2 TPA rule 1 – New variable on output (2)

There are
8 transition instances
for all combinations
between 2 tokens in P1

and 4 potential values 
of variable y. 

A2
A1

[A1,B1]
[A1,B2]

[A1,B3] [A2,B1] [A2,B3]
[A2,B4][A2,B2][A1,B4]

<x>

<x> <y>

P 1

cA

P 2

λ

T

cB

P 3

cA

cB = {B1,B2,B3,B4}
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2.2.2 TPA rule 1 – New variable on output (3)

P3P2

P1

T’

μ

Firing rate

Flow

Infinite SS

T in coloured model: 8 transition instances ⇒ firing rate by ISS: 8λ
T’ in non-coloured model: enabling degree by ISS is 2 ⇒ 2μ
Difference: |cB| = 4 … necessary multiplication: μ = λ.4

P3P2

P1

cA

λ
T

cA cB

A1
A2

<x>

<x> <y>

cB={B1, B2, B3, B4}
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2.2.2 TPA rule 1bis – Decolourisation of input only

Only input place and arc are decolourised
value on output arc: not determined any more, but random
T’: number of transition instances changes from 1 to |cA|

P1

cA

P2

cA

λ
T

<x>

<x>

A1

SSNB SSNB

P1

P2

μ
T’

<x>

cA
ISS
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2.2.2 TPA rule 2 – Multiple input places

T: tuple <x,y> on output composed from x and y on input
No. of transition instances: product of current marking of input places
T’: marking-dependent flow containing the product
Products: – frequent in population dynamics (foxes, rabbits)

– clear non-linearity (≠ minimum operator)

P3

P2P1

T’

μ

P3

P2P1

<x>

<x,y>

cA cB

cA, cB

<y>

λ
T

A1
A2

B1

B3
B2

Not ISS

SSNB GSPN
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2.2.2 TPA rule 3 – Addition on input arc

P2

P1

T’
f(T’)

2

A3
A1

A2

P2

P1

cA

<x1,x2>

λ

<x1+x2>

cA, cA

T

<x1+x2>: variations from current marking,
x1 = A1 and x2 = A2 is different from x1 = A2 and x2 = A1.
Result: marking-dependent firing rate of T’.

Not ISS
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2.2.2 TPA rule 4 – Bag on input arc

A3
A1

A2

P2

P1

cA

cA

<Y>

λ
T

[card(Y) = 2]

<Y>

P1

P2

T’
f(T’)

2

2

Not ISS

<Y>: combinations from current marking, 
the order of colours in the bag is not important.
Result: marking-dependent firing rate of T’.
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2.2.2 TPA rule 5 – Non-colour-safe input place

Place contains several tokens of the same value. 
Transition instances: one token per colour is considered for enabling.
Result: marking-dependent flow from unique tokens.

Not ISS

P2

P1

<x>

λ
T

<x>

cA

cA

A1
A1

A2
A2

P2

P1

T’
f(T’)
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2.2.2 TPA rule 6 – Inhibitor arc
cA={A1, A2, A3}

P3

P2P1

<y>

cA cB

λ

B1
B2

<x> <y>

T

A2

cB

|cA|

P3

P2P1

f(T’)
T’

Not ISS

<x> on inhibitor arc: number of absent colours considered.
Result: marking-dependent firing rate of T’.
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2.2.2 TPA rule 7 – Decolourisation of output only

Only output place and arc are decolourised in a partially 
decolourised net

T’: number of transition instances changes from |cA| to 1

ISS

P1

P2

λ
T

<x>

cA

P1

P2

μ
T’
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P3P2

t1 2t

P1

w1 w2

cA

cA,cB cA,cC

<x><x>

<x,z><x,y>

cB={B1,B2,B3}
cC={C1,C2}

A1

2.2.2 TPA rule 8 – Free-choice conflict with new variables

v1 = w1.|cB|

v2 = w2. |cC|

Coloured model: 3 instances of t1 and 2 instances of t2
⇒ π(t1) = 3/2.(w1/w2). π(t2)
Non-coloured model: 1 t. i. of each transition ⇒ π(t1) = (v1/v2). π(t2)
Result: weight (firing rate) adjusted & fixed for all markings

P3P2

t’1 2t’

P1

v 1 v 2
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2.2.2 TPA rule 9 – Non-free-choice conflict

P1

w1

P4

2t
w2

t1

P3

cA

P5

cA

P2

cA

cA

<x>

<x>

<x>

<x>

A5
A6A2A4

A3A1

Analogous to previous case, 

just the weights/rates depend on current marking here

v1 = w1. m(P1)

v2 = w2. m(P3)

P1

v 1

t’1

P4

P3

P2

P5

2t’
v 2
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2.2.2 TPA rules: Summary

• Transition parameter adjustment rules for modification of 
– Firing rates of timed transitions:

1) New variable on output
1bis) Decolourisation of input only
2) Multiple input places
3) Non-colour-safe input place
4) Addition on input arc
5) Bag on input arc
6) Inhibitor arc
7) Decolourisation of output only

– Weights of immediate transitions or firing rates of timed transitions:
8) Free-choice conflict with new variables
9) Non-free-choice conflict

• Completeness? – No! Rules ≈ tools.
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2.3 SSNB decolourisation examples: 
Concurrent Readers – Exclusive Writers (CREW)

cE,cA

req

erdsrdisR

isW swr ewrwritewaitW

grant

readwaitR

choosethink

cAcEcE

<y>

<S>

<S>

<y>

<x>

<x>

<x,y><x,y><x>

<x><x><x><x>

<x>

<x>

<x>

<x><x>
mA

cEcE

cE

mE

• E entities access a shared space for reading concurrently (read) or writing 
exclusively (write)

• Access is granted (srd, swr) by access tokens (grant). Writing needs all of 
them (<S>), reading just one (<y>). 

• If they are not available, entities wait (waitR, waitW).
• |cA| = |cE|
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2.3 SSNB decol. examples: CREW – decolourized net

• This model can be completely decolourized - populations of entities and 
access tokens created

• Timing: non-free-choice conflict of immed. transitions (TPAR 9):
– Conflict between srd and swr after firing of ewr
– Their firing rates dependent of marking of their input places (waitR, waitW)

req

erdsrdisR

isW swr ewrwritewaitW

grant

readwaitR

choosethink

|cE|

|cE||cE||cE|
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2.3 SSNB decolourisation examples: 
Multi-computer programmable logic controller (MCPLC)

M1

C 1 C 2 C 3

M2
• C computers access memory 

modules of other computers over B
buses

• Units compete for resources (t3) and 
release them after their job (T4)

• Cycles are synchronized (T6)

Two kinds of synchronization:
• Use of resources 

(competition):
– Buses 
– Memory modules 

• Cycle (cooperation)

C 2

t
3

t
3

T4

T4

M3

M1

B 1

B 2

t
3

T4

M2B 1

C 3

B 1M2

t
3

T4

C 1

T6
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2.3 SSNB decolourisation examples: MCPLC

• Flow (buses):
– P4, P5, t3, T4
– colour domain cB, variable z

• Colour shrinking function:
cB → cB’: ∀ c ∈cB: sh(c) = • 

• Intuitively: 
Communication request does not 

ask for a specific bus 
(no condition on variable z in t3) 

⇒ no reason to distinguish buses 
with colours

cC

t5

t3

T6

T4

t2

T1

cC,cM,cB

cC,cM

cC

P5P4

P7 P3

P6P2

P1

<x>

<y>

<y>

<z>

<z>

<x,y,z>

<x,y,z>

<x,y>

<x,y>

<x>

<S>

<S>

<x><x>

<x>

<x>

[x<>y]

mM cM

mB

cB

mC

cC
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2.3 SSNB decol. examples: MCPLC – decolourised net

In general, only buses can be 
decolourised here
+ no timing changes necessary.

We only get a population of buses

To get a P/T net, 
unfolding is needed what means 
usually two kinds of problems:
– population ↓
– net size ↑

cC

t5

t3

T6

T4

t2

T1

cC,cM

cC,cM

cC

P5P4

P7
P3

P6P2

P1

<x>

<y>

<y>

<x,y>

<x,y>

<x,y>

<x,y>

<x>

<S>

<S>

<x><x>

<x>

<x>

[x<>y]

mM cM

|cB|

mC

cC
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2.3 SSNB decolourisation examples: 
DinPhilCommon – decolourised net

• Completely decolourised model –
the same for:
– Resources assigned individually
– Resources assigned in bag

• Timing: no changes needed

T3

P4

t2

T1 P3

P2

P1

2

2
|cP|

|cR|
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2.3 SSNB decolourisation examples: 
DinPhilCommon – net reduction

In the coloured net transitions t2 and T3 can be agglomerated to T23. 
Modified meaning: all waiting philosophers “eat at once” with the same 
resources and only the fastest one is fed up

cP

P4

P2

P1

<x>

<x>

mP

cP

mR

cR

T23T1

<y+z>

<x> <y+z>

<x>

T23 P4T1

P2

P1

2

2
|cP|

|cR|
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T23 P4T1

P2

P1

2

2
|cP|

|cR|

2.3 SSNB decol. examples: DinPhilCommon reduced

• Decolourisation
on autonomous 
level: straightforward

• Decolourisation
on timed level:
– Modifying firing rate of T23

• Using TPAR2 Multiple input places
and TPAR3 Addition on input arc

• Flow (not ISS):

– If bags are used:
• Using TPAR2 and TPAR4 Bag on input arc
• Flow (not ISS):
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Summary and Future Work

• Decolourisation of SSNB models
– On autonomous level, procedure enhanced to include use of bags
– On timed level, set of 9 rules for transition parameters adjustment 

defined

• Decolourisation process has got limits. 
– Where not applicable, unfolding must be used – that brings usually 

two kinds of problems:
• population ↓
• net size ↑

– Non-colour-safe places and complicated operations with bags are 
obstacles in successful decolourisation of timed models. More 
research required.

Thank you for your attention
michal.zarnay@fri.uniza.sk, silva@unizar.es
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