Decolourisation of Stochastic Symmetric Nets with Bags

Michal Žarnay & Manuel Silva (University of Žilina, University of Zaragoza) 18 March 2010

Motivation

- Coloured Petri nets (CPN)
 - through "colours", identities are modelled
 - natural description of systems with elements of various attributes
- Problem for highly populated systems: too large state space to be analyzed in reasonable time
- Continuous place/transition nets:
 - Lights: analysis of some highly populated systems
 - Shadows: Can any DES model be fluidified?
- How about transforming CPN-s to continuous P/T nets?
- Not interested in fluid-coloured nets, because identities lead to binary or small numbers
- Timed classes used
 - Coloured PN-s: Stochastic symmetric nets with bags (SSNB)
 - Non-coloured PN-s: Generalized stochastic Petri nets (GSPN)

Illustrating our desired procedure: Two steps from timed coloured to timed continuous Petri net

Getting the flavour: Dining philosophers (Dijkstra)

- *P* philosophers think (*P*1) and eat (*P*3) at one table sharing *P* forks.
- Philosopher x can use only forks x and x⊕1 ("!x").
- Philosophers decide to eat after some time of thinking (*T*1).
- They start eating only when their relevant forks are free (*P*4 enables *t*2). Otherwise they wait for them (*P*2).
- They keep forks until they finish eating (*T*3).
- Structural and behavioural symmetries, but...
- This model <u>cannot</u> be decolourised due to the use of different resources

Getting the flavour: Dining philosophers – decolourisation

Now, let's assume that **resources become common** (non-Dijkstra): any philosopher can take any couple of forks (guards on *t*2 and *T*3 disappeared)

This model can be decolourised because of using common resources

Getting the flavour: DinPhilCommon – fluidification

- t2 changed
- time delays:
- w(T1) = w(T3) = 1;w(t2) = 0.001(in cont. model)

Discrete vs. continuous model: Throughput of T3 – difference and ratio

Contents

1. Decolourisation of autonomous nets

- 1.1 Symmetric nets with bags (SNB)
- 1.2 Decolourisation procedure of SNB
- 1.3 Decolourisation of bags

2. Decolourisation of timed nets

- 2.1 Stochastic symmetric nets with bags (SSNB)
- 2.2 Decolourisation of SSNB
 - 2.2.1 Overview
 - 2.2.2 Transition parameters adjustment (TPA) rules
- 2.3 SSNB Decolourisation examples

1. Decolourisation of autonomous nets: Basic idea

Limits of decolourisation based on net structure:

- limited use of inhibitor arcs
- limited use of synchronization functions and bag expressions on input arcs
- no more than one occurrence of x or !x in labelling functions of all input arcs
- additional constraints on variables to prohibit colour synchronization of tokens
- no occurrence of ord(x) function determining number of tokens

1. Decolourisation of autonomous nets: Previous work

- Franceschinis PhD thesis, 1993
- Chiola Franceschinis, 1991
- Ajmone Marsan Donatelli Franceschinis Neri, 1998
- Chiola Dutheillet Franceschinis Haddad, 1991 & 1993
- Franceschinis Ribaudo, 1996
- Decolourisation of symmetric nets (non-timed)
 - Based on reachability graph (behaviour)
 - Based on net structure this is what we look for!
 - Timing issues mentioned partially in one paper
- Lumpability for stochastic symmetric net (timed)
 - Based on Symbolic Reachability Graph (SRG) is algorithmised
 - Here: we look for aggregation **at net level** (to keep the net structure)
 - it is computationally more efficient, but less power in reduction!

1. Decolourisation of autonomous nets: Basis for our work

1.1 SNBs: Dining philosophers with common res. (DinPhilCommon)

Symmetric Net with bags (SNB) \mathcal{N} = <P, T, **Pre**, **Post**, **Inh**, **pri**, Cl, *C*, $\boldsymbol{\Phi}$)

Colour domains – from the set of basic colour classes Cl = {*cP*, *cR*}

Function defining colour domain $C(P3) = cP \times cR \times cR;$ $C(t2) = \langle \langle x, y, z \rangle \in cP \times cR \times cR \rangle$

Arc functions

Initial marking: $mP = ph_1...ph_n$; $mR = r_1...r_n$

 Φ – mapping: guards on transitions

Inhibitor arcs (Inh) and priorities of transitions(pri) not used here

1.1 SNBs: DinPhilCommon with bags

- Resources are provided in a bag of 2 elements, not individually.
- Function Y represents a set its cardinality is given in guard $\Phi(t^2)$

1.1 Symmetric nets with bags: Relation to CPN

- Coloured Petri nets (CPN): tokens distinguished through colours
- Symmetric net
 - Has the same modelling power as CPN
 - Is subclass of CPN because it has more strict definition of colour classes (used in colour domains of places & transitions) and colour functions (in arc inscriptions & transition guards)
 - Colour classes and functions are written in more explicit (and parametric) form, using basic constructs of the formalism
- Symmetric net with bags
 - In addition to CPN: manipulation with bags of tokens

1.2 Decolourisation procedure of SNB: DinPhilCommon

- Flow 1 (philosophers):
 - P1, P2, P3, T1, t2, T3
 - colour domain cP, variable x
- Colour shrinking function 1: $cP \rightarrow cP': \forall c \in cP: sh(c) = \bullet$
- Flow 2 (resources):
 - P3, P4, t2, T3
 - colour domain cR, variables y and z
- Colour shrinking function 2: $cR \rightarrow cR': \forall c \in cR: sh(c) = \bullet$
- Intuitively: It is not necessary to distinguish philosophers, nor resources

1.2 Decol. procedure of SNB: DinPhilCommon – decolourised net

- Modified version of Dining philosophers with common resources can be completely decolourised.
- Populations are created.

1.3 Decolourisation of bags: Union

Three tokens introduced in P3 are equal \Rightarrow T2 has 3 instances in SNB

Bags X and Y have **prescribed** cardinalities \Rightarrow

model can be decolourised.

1.3 Decolourisation of bags: Union – RG

1.3 Decolourisation of bags: Bags as wholes

Every bag stays unchanged \Rightarrow **substitution**, e.g.:

 $k = \{a,b\}, I = \{a,c\}, m = \{c,d\}, cB = \{k, I, m\}$

and the model can be decolourised like SN without bags

1.3 Decolourisation of bags: Bags as wholes – RG

Net must be **bag-unfolded** first (*T*1 to *T*11, *T*12, *T*13, etc.) and then it **can be decolourised**.

1.3 Decolourisation of bags: Bags and elements – RG

Contents

1. Decolourisation of autonomous nets

- (BMB) aged hit with bags (SMB)
- 1.2 Decolourisation procedure of SNB
- 1.3 Decolourisation of bags

2. Decolourisation of timed nets

- 2.1 Stochastic symmetric nets with bags (SSNB)
- 2.2 Decolourisation of SSNB
 - 2.2.1 Overview
 - 2.2.2 Transition parameters adjustment (TPA) rules
- 2.3 SSNB Decolourisation examples

2.1 Stochastic SNBs: DinPhilCommon as an example

- adding
 - firing rates (timed t.)
 - weights (immediate t.)

$$w(t2) = \sum w(\langle t2, ph_i, r_j, r_k \rangle), j \langle \rangle k$$

 $< t2, ph_i, r_j, r_k > -$ transition instance of t2 with colours of ph_i, r_i and r_k

- For every *i*, there are m(P4).
 (m(P4) 1) instances –
 philosopher *i* is deciding which couple of resources to pick up
- since all variations of resources have equal chances, then

$$\mathbf{w} (\langle t2, ph_i, r_j, r_k \rangle) = \mathbf{w}(t2) / (\mathbf{m}(P2) \cdot \mathbf{m}(P4) \cdot (\mathbf{m}(P4) - 1))$$

2.2.1 Decolourisation of SSNB: On used terminology

- Extended conflict set (ECS): set of transitions that are in transitive closure of conflict relation (equivalence classes)
- Colour-safe place:

in all possible markings, it contains at most one instance from each colour:

- {A1, A2} allowed
- {A1, A1, A2} not allowed

2.2.1 Decolourisation of SSNB: Overview of our approach

- Net transformation rules:
 - we look for patterns not at behavioural level (symbolic Markov chain), but only on structural level: **from net to net**
- Steps of decolourisation procedure of SSNB:
 - 1. As autonomous net:
 - a) Decolourisation of the net as SNB
 - b) Where necessary: **unfolding** of colours or bags
 - it usually brings problems: population \downarrow , net size \uparrow
 - 2. As timed net:
 - Adjusting transition firing rates / weights according to existing extended conflict sets (ECS) for transition instances in the SSNB so that rates of underlying CTMC (Continuous-time Markov chain) stay preserved
- By default, we assume:
 - Infinite server semantics (ISS)
 - Bounded nets

2.2.2 TPA rule 1 – New variable on output (1)

Variable *y* is not present on input, but on output arc only It represents tokens from colour set *cB* with 4 possible values How does the firing rate of *T* change by decolourisation?

2.2.2 TPA rule 1 – New variable on output (2)

There are 8 transition instances for all combinations between 2 tokens in P_1 and 4 potential values of variable y.

2.2.2 TPA rule 1 – New variable on output (3)

T in coloured model: 8 transition instances \Rightarrow firing rate by ISS: 8 λ *T*' in non-coloured model: enabling degree by ISS is 2 \Rightarrow 2 μ Difference: |cB| = 4 ... necessary multiplication: $\mu = \lambda.4$

2.2.2 TPA rule 1bis – Decolourisation of input only

Only input place and arc are decolourised

value on output arc: not determined any more, but **random** *T*': number of transition instances changes from 1 to **[cA]**

2.2.2 TPA rule 2 – Multiple input places

T: tuple $\langle x, y \rangle$ on output composed from x and y on input

No. of transition instances: product of current marking of input places *T*': marking-dependent flow containing the product
Products: – frequent in population dynamics (foxes, rabbits)
– clear non-linearity (≠ minimum operator)

2.2.2 TPA rule 3 – Addition on input arc

<*x*1+*x*2>: variations from current marking,

x1 = A1 and x2 = A2 is different from x1 = A2 and x2 = A1. Result: marking-dependent firing rate of *T*'.

2.2.2 TPA rule 4 – Bag on input arc

<*Y*>: combinations from current marking, the order of colours in the bag is not important. Result: **marking-dependent** firing rate of *T*'.

2.2.2 TPA rule 5 – Non-colour-safe input place

Place contains several tokens of the same value.

Transition instances: **one token per colour** is considered for enabling. Result: **marking-dependent** flow **from unique tokens**.

2.2.2 TPA rule 6 – Inhibitor arc

<x> on inhibitor arc: number of absent colours considered.
Result: marking-dependent firing rate of *T'*.

2.2.2 TPA rule 7 – Decolourisation of output only

Only output place and arc are decolourised in a partially decolourised net

T': number of transition instances changes from |cA| to 1

2.2.2 TPA rule 8 – Free-choice conflict with new variables

Coloured model: 3 instances of t_1 and 2 instances of t_2

 $\Rightarrow \pi(t_1) = 3/2.(w_1/w_2). \ \pi(t_2)$

Non-coloured model: 1 t. i. of each transition $\Rightarrow \pi(t_1) = (v_1/v_2)$. $\pi(t_2)$ Result: weight (firing rate) adjusted & fixed for all markings

2.2.2 TPA rule 9 – Non-free-choice conflict

Analogous to previous case,

just the weights/rates depend on current marking here

2.2.2 TPA rules: Summary

- Transition parameter adjustment rules for modification of
 - Firing rates of timed transitions:
 - 1) New variable on output
 - 1bis) Decolourisation of input only
 - 2) Multiple input places
 - 3) Non-colour-safe input place
 - 4) Addition on input arc
 - 5) Bag on input arc
 - 6) Inhibitor arc
 - 7) Decolourisation of output only
 - Weights of immediate transitions or firing rates of timed transitions:
 - 8) Free-choice conflict with new variables
 - 9) Non-free-choice conflict
- Completeness? No! Rules ≈ tools.

2.3 SSNB decolourisation examples: Concurrent Readers – Exclusive Writers (CREW)

- *E* entities access a shared space for reading concurrently (*read*) or writing exclusively (*write*)
- Access is granted (*srd*, *swr*) by access tokens (*grant*). Writing needs all of them (<S>), reading just one (<y>).
- If they are not available, entities wait (*waitR*, *waitW*).
- |*cA*| = |*cE*|

2.3 SSNB decol. examples: CREW – decolourized net

- This model can be completely decolourized populations of entities and access tokens created
- Timing: non-free-choice conflict of immed. transitions (TPAR 9):
 - Conflict between *srd* and *swr* after firing of *ewr*
 - Their firing rates dependent of marking of their input places (*waitR*, *waitW*)

2.3 SSNB decolourisation examples:

Multi-computer programmable logic controller (MCPLC)

- C computers access memory modules of other computers over *B* buses
- Units compete for resources (t_3) and release them after their job (T_4)
- Cycles are synchronized (T_6)

Two kinds of synchronization:

- Use of resources (competition):
 - Buses
 - Memory modules
- Cycle (cooperation)

2.3 SSNB decolourisation examples: MCPLC

- Flow (buses):
 - P4, P5, t3, T4
 - colour domain *cB*, variable *z*
- Colour shrinking function: $cB \rightarrow cB'$: $\forall c \in cB$: $sh(c) = \bullet$
- Intuitively:
 - Communication request does not ask for a specific bus (no condition on variable *z* in *t*3)
 - \Rightarrow no reason to distinguish buses with colours

2.3 SSNB decol. examples: MCPLC – decolourised net

In general, only buses can be decolourised here + no timing changes necessary. We only get a <u>population</u> of buses

To get a P/T net, unfolding is needed what means usually two kinds of problems:

- population \downarrow
- net size ↑

2.3 SSNB decolourisation examples: DinPhilCommon – decolourised net

- Completely decolourised model the same for:
 - Resources assigned individually
 - Resources assigned in bag
- Timing: no changes needed

2.3 SSNB decolourisation examples:

DinPhilCommon – net reduction

In the coloured net transitions *t*2 and *T*3 can be agglomerated to *T*23. Modified meaning: *all waiting philosophers "eat at once" with the same resources and only the fastest one is fed up*

2.3 SSNB decol. examples: DinPhilCommon reduced

- Decolourisation on autonomous level: straightforward
- Decolourisation on timed level:
 - Modifying firing rate of T23
 - Using TPAR2 Multiple input places and TPAR3 Addition on input arc
 - Flow (not ISS):

$$f(T23) = \lambda.\mathbf{m}(P2).\mathbf{m}(P4).(\mathbf{m}(P4) - 1)$$

- If bags are used:
 - Using TPAR2 and TPAR4 Bag on input arc
 - Flow (not ISS): $f(T23) = \lambda.\mathbf{m}(P2).\binom{\mathbf{m}(P4)}{2}$

Summary and Future Work

- Decolourisation of SSNB models
 - On autonomous level, procedure enhanced to include use of bags
 - On timed level, set of 9 rules for transition parameters adjustment defined
- Decolourisation process has got limits.
 - Where not applicable, unfolding must be used that brings usually two kinds of problems:
 - population \downarrow
 - net size \uparrow
 - Non-colour-safe places and complicated operations with bags are obstacles in successful decolourisation of timed models. More research required.

Thank you for your attention

michal.zarnay@fri.uniza.sk, silva@unizar.es