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Abstract—It is essential for a robot to be able to detect revisits
or loop closures for long-term visual navigation. A key insight
is that the loop-closing event inherently occurs sparsely, i.e., the
image currently being taken matches with only a small subset
(if any) of previous observations. Based on this observation, we
formulate the problem of loop-closure detection as a sparse,
convex `1-minimization problem. By leveraging on fast convex
optimization techniques, we are able to efficiently find loop
closures, thus enabling real-time robot navigation. This novel
formulation requires no offline dictionary learning, as required
by most existing approaches, and thus allows online incremental
operation. Our approach ensures a global, unique hypothesis
by choosing only a single globally optimal match when making
a loop-closure decision. Furthermore, the proposed formulation
enjoys a flexible representation, with no restriction imposed on
how images should be represented, while requiring only that the
representations be close to each other when the corresponding
images are visually similar. The proposed algorithm is validated
extensively using public real-world datasets.

I. INTRODUCTION

With a growing demand for autonomous robots in a range
of applications, such as search and rescue [29, 8], space and
underwater exploration [7], it is essential for the robots to be
able to navigate accurately for an extended period of time
in order to accomplish the assigned tasks. To this end, the
ability to detect revisits (i.e., loop closure or place recognition)
becomes necessary, since it allows the robots to bound the
errors and uncertainty in the estimates of their positions and
orientations (poses). In this work, we particularly focus on
loop closure during visual navigation, i.e., given a camera
stream we aim to efficiently determine whether the robot has
previously seen the current place or not.

Even though the problem of loop closure has been exten-
sively studied in the visual-SLAM literature (e.g., see [12,
18]), most existing algorithms typically require the offline
training of visual words (dictionary) from a priori images
acquired previously in the same environment. This clearly is
not always the case when a robot operates in an unknown
environment. In general, it is difficult to reliably find loops in
visual-appearance space. One particular challenge is the per-
ceptual aliasing, i.e., while images may be similar in appear-
ance, they might be coming from different places. To mitigate
this issue, both temporal (i.e., loops will only be considered
closed if there are other loops closed nearby) and geometric

constraints (i.e., if a loop has to be considered closed, a valid
transformation must exist between the matched images) can
be employed [18]. In particular, the method proposed in [18]
decides on the quality of a match locally: If the match with
the highest score in some distance measure is away from the
second highest, it is considered a valid candidate. However,
such local information may lead to incorrect decisions even if
the temporal and geometric consistency checks are applied.
This is due to the fact that both temporal and geometric
conditions can easily fail in a highly self-similar environment
(e.g., corridors in a hotel)

To address the aforementioned issues, in this paper we
introduce a general online loop-closure approach for vision-
based robot navigation. In particular, by realizing that loops
typically occur intermittently in a navigation scenario, we, for
the first time, formulate loop-closure detection as a sparse `1-
minimization problem that is convex. By leveraging on the
fast convex optimization techniques, we subsequently solve the
problem efficiently and achieve real-time frame-rate generation
of loop-closure hypotheses. Furthermore, the proposed formu-
lation enjoys flexible representations and can generate loop-
closure hypotheses regardless of what the extracted features
represent. That is, any discriminative information, such as
descriptors, Bag of Words (BoW), or even whole images, can
be used for detecting loops. Lastly, we shall stress that our
proposed approach declares a loop that is valid only when it
is globally unique, which ensures that if perceptual aliasing
is being caused by more than one previous image, no loop
closure will be declared. Although this is conservative in some
cases, since a false loop closing can be catastrophic while
missing a loop closure generally is not, ensuring such global
uniqueness is necessary and important, in particular, in highly
self-similar environments.

II. RELATED WORK

The problem of loop-closure detection has been extensively
studied in the SLAM literature and various solutions have
been proposed over the years for visual navigation (e.g.,
see [19] and references therein). In this work, we focus only on
visual-appearance-based methods. In particular, Cummins and
Newman [12] proposed FAB-MAP, a probabilistic appearance-
based approach using visual BoW for place recognition, and



showed it to work robustly over trajectories up to 1000 km.
Similarly, Galvez-Lopez and Tardos [18] introduced a Binary-
BoW (BBoW)-based method, which detects FAST [27] key-
points and employs a variation of the BRIEF [6] descriptors to
construct the BoW. A verification step is further enforced to
geometrically check the features extracted from the matched
images. It should be pointed out that both methods [12, 18]
learn the BoW dictionaries beforehand, which is used later for
detecting loop closures when the robots actually operates in the
field. In contrast, the proposed approach builds the dictionary
online as the robot explores an unknown environment, while
at the same time efficiently detecting loops (if any). Moreover,
rather than solely relying on the descriptors-based BoW,
our method is flexible and can utilize all pixel information
to discriminate places even in presence of dynamic objects
(encoded as sparse errors), any descriptor that can represent
similar places, or any combination of such descriptors.

Recently, some work has focused on loop closure under
extreme changes in the environment, such as different weather
conditions or different times of the day. In particular, Milford
and Wyeth [23] proposed SeqSLAM, which is able to local-
ize with drastic lighting and weather changes by matching
sequences of images with each other as opposed to single im-
ages. Churchill and Newman [11] introduced the experience-
based maps that learn the different appearances of the same
place as it gradually changes in order to perform long-term
localization. In addition, new images are also discovered in
order to attain better localization [25]. In these cases, if the
information invariant to such changes can be obtained, the
proposed formulation can be utilized to obtain loop-closure
hypotheses. Thus, this work essentially focuses on finding
loop closures given some discriminative descriptions (e.g.,
descriptors, and whole images), without explicitly assuming
a specific type of image representations.

III. SPARSE OPTIMIZATION FOR LOOP CLOSURE

In this section, we formulate loop-closure detection as a
sparse optimization problem based on a sparse and redundant
representation. Even though such representations have been
widely used in computer vision for problems such as denois-
ing [17], deblurring [16], and face recognition [10], to the
best of our knowledge, no prior work has yet investigated this
technique for loop closure in robot navigation. The key idea
of this approach is to represent the problem redundantly, from
which a sparse solution is sought for a given observation.

Specifically, suppose we have the current image represented
by a vector b ∈ Rn, which can be either the vectorized
full raw image or the sparse descriptors extracted from the
image. Suppose that we also have a dictionary denoted by
B = [b1 · · · bm] ∈ Rn×m, which consists of m basis vectors
of the same type as b. Thus, solving the linear equation
Bx = b yields the representation of b in the basis B in
the form of the vector x ∈ Rm. Elements of x indicate
which basis vectors, bi, best explain b and how much the
corresponding contributions are. A zero contribution simply
implies that the corresponding basis vector is irrelevant to b.
One trivial example of a dictionary is the n × n identity
matrix, B = In, which gives us the same representation, i.e.,

Inx = b ⇒ x = b. It is important to note that we have
made no assumption about what the dictionary contains, and
in general, any arbitrary basis including random matrices or
wavelet basis can be used as a dictionary.

We know that a general vector b can be represented by a
basis matrix B if and only if it belongs to the range space of
B, i.e., ∃x 6= 0, s.t. Bx = b. Carefully choosing these bases
may result in a sparse representation, i.e., x is sparse. This
is often the case in practice, because the signal is naturally
sparse when represented in a certain basis. For instance, when
representing an image using the wavelet basis, there are only a
few coefficients that are nonzero. Nevertheless, a vector may
not be representable by the basis, for example, if the basis
matrix (dictionary) is rank-deficient and the vector is in its
null space. To exclude such singular cases, in this work, we
assume that the image vector b is always representable by the
basis matrix which is of full row rank (i.e., rank(B) = n).
Moreover, we allow the basis to be redundant, that is, we
may have more (not necessarily orthogonal) basis vectors than
the dimension of the image vector (i.e., m > n). Note that
this assumption can be satisfied by carefully designing the
dictionary (see Section IV). In general, a redundant dictionary
leads to the sparse representation of the current image, which
is what we seek and describes the sparse nature of the loop-
closure events (i.e., occurring sparsely).

Consider that we have m > n basis vectors, then Bx = b
becomes an under-determined linear system and has infinitely
many solutions. Therefore, we have to regularize it in order
to attain a unique solution by specifying a desired criterion
that the solution should satisfy. Typically, this regularization
takes the form of looking for a solution, x?, that leads to the
minimum reconstruction error in the `2-norm sense, which is
the least-squares formulation:

min
x
‖Bx− b‖22 ⇒ x? = BT (BBT )−1b (1)

Note that `2-norm is widely used in practice in part because
of the closed-form unique solution, while leading to a dense
representation, i.e., almost all of the elements of x? are non-
zero and thus all the basis vectors are involved in representing
the current image vector.

Due to the fact that loop-closure events often occur sparsely,
we instead aim to find the sparsest possible solution under
the condition that it best explains the current image vector.
Intuitively, by assuming that the basis dictionary consists of
all the previous observed images and thus is redundant, we are
looking for the smallest possible subset of previous images
that can best explain our current image. The smallest such
subset would contain just a single image which is “closest” to
the current image (in appearance or descriptor space) under
the assumption that there exists a unique image from the past
which matches the current image.

To that end, we can employ the `0-norm to quantify the
sparsity of a vector, i.e., ‖x‖0 = Card(x : ∀i, xi 6= 0), the
total number of non-zero elements in x. Note that a vector with
d non-zero elements is called d-sparse. Thus, the problem of
loop closure can be formulated as follows:

min
x

‖x‖0 subject to Bx = b (2)



The above problem is a combinatorial optimization problem
which in general is NP-hard [1], because all of the possible
d-sparse vectors have to be enumerated to check whether
they fulfill the constraint. To address this computational-
intractability issue, we relax the `0-norm in (2) to `1-norm,
which is defined as the summation of absolute values of the
elements of x, ‖x‖1 =

∑n
i=1 |xi|, since it is well-known that

`1-norm results in a sparse solution [14], i.e.,
min
x

‖x‖1 subject to Bx = b (3)

The problem (3) assumes the perfect reconstruction without
noise, which clearly is not the case in practice. Hence, we
introduce a sparse noise (error) term along with the basis
vector to explain the current image, i.e.,

min
x,e

‖x‖1 + ‖e‖1 subject to Bx+ e = b (4)

⇒ min
α
‖α‖1 subject to Dα = b (5)

where D :=
[
In B

]
and α :=

[
e
x

]
. Note that we

normalize the basis vectors when building the dictionary D,
and thus In can be considered as the noise basis along
each of the n directions of the data space, and e becomes
an indication variable for which noise components dominate
the reconstruction error. This allows us to normalize x and
e together when computing contributions of data and noise
bases (see Section IV-A). We stress that this new formulation
of loop closure (5) takes advantage of the fact that `1-
norm automatically promotes sparsity, as opposed to the more
commonly used `2-norm [3]. By finding the minimum `1-norm
solution of (5), we are in effect seeking an explanation of
our current image that uses the fewest basis vectors from the
redundant set of basis. This problem is also known as atomic
decomposition [17], since b is decomposed into its constituent
atoms in the dictionary.

IV. CLOSING LOOPS VIA `1-MINIMIZATION

In the preceding section, we have formulated loop closure as
a sparse convex `1-minimization problem. In this section, we
present in detail how this novel formulation can be utilized in
monocular-vision-based robot navigation. In what follows, we
first explain how a dictionary can be constructed incrementally
online, and then subsequently how such a dictionary can be
used at each time step to generate loop-closure hypotheses.

A. Building the Dictionary

The first step in the process of detecting loops is to build
a set of basis vectors that make up the dictionary. Unlike
state-of-the-art loop-closure detection methods (e.g., [18]), the
proposed approach does not learn the dictionary offline before
the start of the experiment. Instead, the dictionary is built
exclusively for the current experiment, as the robot moves and
collects images, that is, incrementally online as images arrive.

As a new image becomes available, a mapping function,
f : R(r,c) → Rn, transforms the image of resolution r × c
to a unit vector of dimension n. Due to the flexibility of
representation enjoyed by our proposed approach, this function
is general and can be either a whole image descriptors such as

HOG [13] and GIST [24], or local descriptors such as SIFT
[20] and SURF [4] computed over the image. That is, the basis
vectors can represent any information that helps distinguish
between two images. The proposed method can be considered
as data association in a high-dimensional space carried out by
(approximately) reconstructing a given vector from a subset of
unit vectors in that space. As such, this approach is agnostic
to what these vectors physically represent. For this reason,
versatility of representation is inherent to our algorithm, allow-
ing representation ranging from whole images to descriptors,
BoW, or even mean and variance normalized images over
time for matching sequences across different times of day
or changing weather conditions. Also, since we use `2-norm
of the error to measure how good the reconstruction is, any
descriptor whose distance between two vectors is measured in
term of `2-norm, can be naturally incorporated in the proposed
approach.

In order to ensure full row rank of the dictionary matrix D,
we initialize the dictionary with an identity matrix In, which
also accounts for the basis of the noise e [see (5)]. When the
first image encoded by i1 arrives, b1 = f(i1) is added to the
dictionary. In general, updating the dictionary at the i-th time
step is simply appending bi = f(ii) to the end of the current
dictionary1. However, before augmenting the dictionary, we
need to determine whether or not there are some previous
images that explain the current one, i.e., we need to detect
any loop that can be closed based on the current image.

B. Solving `1-Minimization
Once the dictionary is available and when we obtain an

image at every time step, we are now ready to solve the sparse
`1-minimization problem (5) in order to find (if any) loop
closures. Since this is a convex optimization problem, various
approaches such as the primal-dual method are available for
solving it [5], while in this work, we focus on the homotopy
approach primarily due to its efficiency [21, 15].

The homotopy method is specifically designed to take ad-
vantage of the properties of `1-minimization. In particular, by
relaxing the equality constraint in (5), we have the following
constrained minimization problem:

min
α

‖α‖1 subject to ‖Dα− b‖2 ≤ ε (6)

where ε > 0 is a pre-determined noise level. This is termed the
basis pursuit denoising problem in compressive sensing [14].
A variant of (6) is the following unconstrained minimization
that is actually solved by the homotopy approach:

min
α

λ ‖α‖1 +
1

2
‖Dα− b‖2 (7)

where λ is a scalar weighting parameter. To solve (7), the
homotopy method uses the fact that the objective function
undergoes a homotopy continuation from the `2 constraint to
the `1 cost as λ increases [15]. The computational complexity
of this approach is O(dn2 + dnm) for recovering a d-sparse
signal in d steps, although in the worst case when recovering a

1 Although this simple augmentation would make the dictionary grow
unbounded, more sophisticated update policy (e.g., replacing or merging basis
vectors for the same locations) can be designed in order to control the size
of the dictionary when a robot repeatedly operates in the same environment.



Algorithm 1 Closing Loops via `1-Minimization
Input: Dictionary Di−1, Current image ii, Threshold τ , Weight λ,

Ignoring-time window tg
Output: Loop-closure hypotheses H, Updated dictionary Di

1: bi := f(ii)
2: Hypothesis generation:
3: Solve min

αi

λ ‖αi‖1 +
1
2
‖Di−1αi − bi‖2 using the homotopy

approach (see Section IV-B)
4: Normalize α̂i := αi

‖αi‖2
5: Find hypotheses H := {j | α̂i,j > τ, ‖i− j‖1 > tg}
6: Dictionary update:
7: Di := [ Di−1 bi ]

non-sparse solution in a high-dimensional observational space
and large number of basis vectors, it can perform as worse as
O(m3), which fortunately is not the case in this work.

The above homotopy solver is employed to determine
loop closure for the i-th image represented by ii, by
solving (7) for f(ii) using the update-to-date dictionary
Di−1 =

[
In f(i1) . . . f(ii−1)

]
.2 The solution αi =[

αi,1 · · · αi,n+i−1

]T
at the i-th time step contains the

contribution of each previous basis in constructing the current
image. To find a unique image to close a loop with, we are
interested in which basis has the greatest relative contribution,
which can be found by calculating the unit vector α̂i =
αi/ ‖αi‖2. Any entry greater than a predefined threshold,
τ , is considered a loop-closure candidate. In addition, due to
the fact that in a visual navigation scenario, the neighbouring
images are typically overlapped with the current image and
thus have great “spurious” contributions, we explicitly ignore a
time window, tg , around the current image, during which loop-
closure decisions are not taken. This is a design parameter and
can be chosen based on the camera frequency (fps) and robot
motion. Once the decision is made, the dictionary is updated
by appending f(ii) to it, i.e., Di =

[
Di−1 f(ii)

]
. The

main steps of this process are summarized in Algorithm 1.

C. Remarks
1) Global uniqueness: It is important to note that the

solution to (7), by construction, is guaranteed to be sparse. In
the case of no perceptual aliasing, the solution is expected to
be 1-sparse, because only one image in the dictionary should
match the current image when a revisit occurs. In the case
of exploration where there is no actual loop-closure match in
the dictionary, the current image is best explained by the last
observed and the solution hence is still 1-sparse.

In a general case where k > 1 images that have been
previously observed and that are visually similar to the current
image, a naive thresholding method – which simply compares
the current image to each of the previous ones based on
some similarity measure – would likely produce k loop-closure
hypotheses corresponding to the k images in the dictionary.
However, this thresholding calculates the contribution of each
previous image without taking into account the effects of other
images or data noise. This can be considered as decoupled

2The subscript i− 1 is hereafter used to denote the time index and thus to
reveal the online incremental process of the proposed approach.

computation of contributions – despite the fact that due to
noise they may be correlated – and thus becomes suboptimal,
while an erroneous loop closure may be catastrophic for the
navigation (estimation) algorithm. In contrast, the proposed `1-
minimization-based approach guarantees the unique hypothe-
sis, by selecting the j-th image with the greatest α̂i,j , where
α̂i is the global optimal solution of the convex problem (7), at
step i that simultaneously considers all the contributions from
all the previous images and noise. In the case of multiple revis-
its to the same location, the proposed approach, as presented
here, is conservative. Including the corresponding images from
earlier visits in the dictionary would lead to a non-unique
solution, when the same location is revisited again. However,
the proposed method can be easily extended to detect loops
on multiple revisits. Instead of considering the contribution
of all the previous basis separately, if a loop exists between
previous locations k and l, we consider their joint contribution
(α̂i,k+ α̂i,l) when making the decision. This ensures that even
though these places are not individually unique enough to
explain the current image, together (and since they are visually
similar as we already have a loop closure between them), they
best explain the current observation, allowing us to detect loop
closures in case of multiple revisits.

2) Flexible basis representation: We stress that the dictio-
nary representation used by the proposed approach is general
and flexible. Although we have focused on the simplest
basis representation using the down-sampled whole images,
this does not restrict our method only to work with this
representation. In fact, any discriminative feature that can
be extracted from the image (such as GIST, HOG, and so
on) can be used as dictionary basis for finding loops, thus
permitting the desired properties such as view and illumination
invariance. To show that, one particular experiment has been
performed in Section V, where the basis vectors are the HOG
descriptors computed over the whole image. Moreover, it is
not limited to a single representation at a time. If we have k
descriptors f i : R(r,c) → Rki , a “unified” descriptor can
be easily formed by stacking them up in a vector in RK

(K =
∑k

i=1 ki). Therefore, our proposed method can be
considered as a generalized loop-closing approach that can
use any basis vector as long as a metric exists to provide the
distance between them.

3) Robustness: It is interesting to point out that sparse
`1-minimization inherently is robust to data noise, which is
widely appreciated in computer vision (e.g., see [10]). In
particular, the sparse noise (error) term in (5) can account
for the presence of dynamic changes or motion blurs. For
example, in Fig. 1 the dominant background basis explains
most of the image, while the dynamic elements (which have
not been observed before) can be represented by the sparse
noise, and Fig. 2 shows that the proposed approach robustly
finds these loops. Such robust performance becomes necessary
particularly for long-term mapping where the environment
often gradually changes over time and thus reliable loop
closure in presence of such changes is essential.

As a final remark, the proposed `1-minimization-based loop-
closure algorithm is also robust to information loss, which is



Fig. 1: Sample images from the New College dataset: Query images (top) and the corresponding match images(bottom). The
images are down-sampled to 8× 6 pixels. Note that in spite of dynamic changes and motion blurs occurring in these images
which deteriorate the loop-closure problem, the proposed approach still provides reliable results.

closely related to the question raised by Milford [22]: How
much information is needed to successfully close loops? In this
work, we have empirically investigated this problem by down-
sampling the raw images (which are used as the basis of the
dictionary) without any undistortion and then evaluating the
performance of the proposed approach under such an adverse
circumstance. As shown in Section V, truly small raw images,
even with size as low as 48 pixels, can be used to reliably
identify loops, which agrees with [22].

V. EXPERIMENTAL RESULTS

In this section, we perform a set of real-world experiments
on the publicly-available datasets to validate our proposed
`1-minimization-based loop-closure algorithm. In particular, a
qualitative test is conducted on the New College dataset [28],
where we examine the different types of basis (raw images
and descriptors) in order to show the flexibility of basis
representation of our approach as well as the robustness to
dynamics in the scene. Subsequently, we evaluate the proposed
method on the RAWSEEDS dataset [26] and focus on the
effects of the design parameters used in the algorithm.

A. New College: Different Types of Basis

The New College dataset [28] provides stereo images at 20
Hz along a 2.2 km trajectory, while in this test we only use
every 20 frames with an effective frame rate of 1 Hz and in
total 2624 images. Each image originally has a resolution of
512 × 384, but here is down-sampled to either 64 × 48 or
8 × 6 pixels. We show below that even under such adverse
circumstance, the proposed approach can reliably find the
loops. The image is scaled so that its gray levels are between
zero and one, and then is vectorized and normalized as a unit
column vector. For the results presented in this test, we use
the threshold τ = 0.99 and the weighting parameter λ = 0.5.
Due to the fact that neighbouring images typically are similar
to the current one and thus generate false loop closures, we
ignore the hypotheses within in a certain time window from the
current image and set tg = 10 sec, which effectively excludes
the spurious loops when reasoning about possible closures.
Note that tg can be chosen according to speed of the robot as

well as the frame-rate at which the loop closing algorithm is
working. We also eliminate random matches by enforcing a
temporal consistency check, requiring at least one more loop
closure within a time window from the current match. We ran
all the experiments in Matlab on a Laptop with Core-i5 CPU
of 2.5GHz and 16 GB RAM, and use the homotopy-based
method [2] for solving the optimization problem (7).

The qualitative results are shown in Fig. 2 where we have
used three different basis, i.e, down-sampled 64 × 48 and
8 × 6 raw images,3 and GIST descriptors. In these plots,
the odometry-based trajectory provided by the dataset is
superimposed by the loop closures detected by the proposed
approach, which are shown as vertical lines connecting two
locations where a loop is found. All the lines parallel to the
z-axis represent loop closures that connect the same places
at different times. Any false loops would appear as non-
vertical lines, and clearly do not appear in Fig. 2, which
validates the effectiveness of the proposed method in finding
correct loops. These results clearly show the flexibility of basis
representation of the proposed method. In particular, instead
of using the different down-sampled raw images as basis, our
approach can use the GIST descriptors, GIST(b) ∈ R256,
which are computed over the whole image, and is able to
detect the same loop closures as with the raw images.

An interesting way of visualizing the locations where loop
closures occur is to examine the sparsity pattern of the solution
matrix, which is obtained by stacking all the solutions, α̂i, for
all the queried images in a matrix. Fig. 4 shows such matrix
that contains non-zero values in each column corresponding to
the elements greater than the threshold τ . In the case of no loop
closure, each image can be best explained by its immediate
neighbour in the past, which gives rise to non-zeros along the
main diagonal. Most importantly, the off-diagonal non-zeros
indicate the locations where loops are closed. It is interesting
to see that there are a few sequences of loop closures appearing

3In part due to the unoptimized implementation in Matlab, it is too costly
to use the vectorized full-sized raw images that would have dimension of
512× 384 = 196608 as the basis for our proposed approach. Thus, we have
employed down-sampled raw images of different sizes as the simplest possible
basis to show the effectiveness as well as the robustness of our method.
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Fig. 2: Loop closures detected by the proposed approach using two different bases for the New College dataset. In these plots,
visual odometry provided with the dataset is shown in gray while the loop closures are shown in blue. The z-axis represents
time (in seconds) and the x- and y-axes represent horizontal position (in meters).
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Fig. 3: A typical dynamic scenario in the New College dataset: When querying a current image to the dictionary that uses
64×48 raw images as its basis, the proposed approach robustly finds the correct match – which however is contaminated with
moving people – by modelling the dynamics as noise.

as off-diagonal lines in Fig. 4. This is due to the fact that the
first three runs in the circular area at the beginning of the
dataset, correspond to the three off-diagonal lines in the top-
left of the matrix; while a sequence of loop closures detected
in the lower part of New College, correspond to the longest
line parallel to the main diagonal.

It is important to note that although both dynamic changes
and motion blurs occur in the images, the proposed approach
is able to reliably identify the loops (e.g., see Fig. 1), which
is attributed to the sparse error used in the `1-minimization
[see (5)]. To further validate this robustness to dynamics,
Fig. 3 shows a typical scenario in the New College where
we query a current image with no dynamics to the dictionary
that uses 64× 48 down-sampled raw images as its basis, and
the correct match is robustly found, which however contains
moving people. Interestingly, the dominant noise contributions
(blue) as shown in Fig. 3(c), mainly correspond to the locations
where the people appear in the match image. This implies that
the sparse error in (5) correctly models the dynamic changes.

B. RAWSEEDS: Effects of Design Parameters

To further test the proposed algorithm, we use the Bicocca
25b dataset from the RAWSEEDS project [26]. The dataset
provides the laser and stereo images for a trajectory of 774 m.
We use the left image from the stereo pair sampled at 5 Hz,
resulting in a total of 8358 images. Note that we do not
perform any undistortion and work directly with the raw

images coming from the camera. In this test, we focus on
studying the effects of the most important parameters used in
the proposed approach, and evaluate the performance based
on precision and recall. Specifically, precision is the ratio
of correctly detected loop closures over all the detections.
Thus, ideally we would like our algorithm to work at full
precision. On the other hand, recall is the percentage of correct
loop closures that have been detected over all possible correct
detections. A high recall implies that we are able to recover
most of the loop closures.

1) Threshold τ and weight λ: We first examine the ac-
ceptance threshold τ , whose valid values range from 0.5 to
1. This parameter can be thought of as the the similarity
measure between the current image and the matched image
in the dictionary. In order to study the effect of this parameter
on the precision and recall, we vary the parameter for a fixed
image of 20×15 pixels. Moreover, we are also interested in if
and how the weighting parameter λ impacts the performance
and thus vary this parameter as well.

The results are shown in Fig. 5. As expected, the general
trend is that a stricter threshold (closer to 1) leads to higher
precision, and as a side effect, a lower recall. This is because as
the threshold increases, we get fewer loop closing hypotheses
but a larger proportion of them is correct. Note that this dataset
is challenging due to the perceptual aliasing in many parts
of the trajectory; the matched images are visually similar but
considered as false positives since the robot is physically not
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Fig. 4: Sparsity pattern induced by solving (7) for all the im-
ages in the New College dataset. The i-th column corresponds
to the solution for the i-th image, and the non-zeros are the
values in each column that are greater than τ = 0.99. Note
that the main diagonal occurs due to the current image being
best explained by its neighboring image, while the off-diagonal
non-zero elements indicate the loop closures.

in the same place. Note also that as seen from Fig. 5, smaller
λ leads to higher precision (and lower recall). This is because
a smaller value of this parameter results in a better data-fitting
(less sparse) solution of (5), thus requiring the images to be
as visually similar as possible but at the same time, lowering
the contribution of the greatest basis vector.

2) Image size: Inspired by the recent work [22], we also
examine the performance difference by varying image sizes
and see if we can obtain meaningful results using small-size
images. The original image size from the Bicocca dataset is
320×240, and the first image size we consider is 80×60 which
is a reduction of a quarter in each dimension. For each new
experiment, we half the size in each dimension, which results
in images of size 40×30, 20×15, 10×8, and finally 5×4. The
weighting parameter λ is fixed to be 0.5. Precision and recall
curves are generated by varying the acceptance threshold τ
are shown in Fig. 6.

It is clear from Fig. 6 that the curves are tightly coupled
and undergo the same behaviour for each image size. Precision
curves for the three largest image sizes overlap each other,
showing that we can generate the same quality of loop closure
hypotheses using any of the image sizes. These plots show a
graceful degradation as the image size decreases. Considering
that the image of size 10× 8 is a factor of 960 times smaller
than the original image, our method is able to distinguish
places based on very little information, which agrees with [22].

3) Execution time: Since the proposed method solves an
optimization problem in a high-dimensional space, it is im-
portant to see how long the method takes to come up with
the loop-closing hypotheses. Despite that each image is an
r × c vector for an image with r rows and c columns, and at
the end of the experiment we have nearly 8500 images, the
computation is very efficient thanks to the sparsity induced by
the novel formulation. Most of our solutions are expected to be
1-sparse (i.e., we expect only one non-zero if the current image
matches perfectly one of the basis vectors in the dictionary),
and thus the homotopy-based solver performs efficiently as
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Fig. 5: Precision and recall curves for the Bicocca dataset
while using the 20× 15 raw images.
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Fig. 6: Precision and recall curves for the Bicocca dataset
while fixing the weighting parameter λ = 0.5.

shown in Table I. For the largest image size, the mean time is
390 ms with a maximum of just over a second. The proposed
method works well on small images such as 20 × 15, which
take on average 17 ms. The runtime gradually grows as the
number of basis vectors increases. In general, even with the
current unoptimized Matlab implementation, the execution is
fast enough to be used in real-time operations with runtime
well below a second in almost all cases.

Interestingly, we found λ = 0.5 is a good trade-off between
precision/recall and computational cost. In general, a higher
threshold τ would lead to fewer high-quality loop closures.
This parameter can be designed based on the the application
in question. Similarly, images of size larger than 20 × 15 do
not provide great improvement in terms of precision/recall.
Thus, the choice of image size should take into account the
complexity of the environment being modelled. In an environ-
ment (e.g., outdoors) where there is rich textural information,
smaller images may be used. If the environment itself does
not contain a lot of distinguishable features, larger images can



TABLE I: Execution time for different image sizes

size min (sec) mean (sec) max (sec) std (sec)

80× 60 0.1777 0.3928 1.0495 0.1245
40× 30 0.0133 0.0671 0.1768 0.0309
20× 15 0.0014 0.0173 0.2544 0.0097
10× 8 0.0008 0.0057 0.0502 0.0033
5× 4 0.0008 0.0030 0.0922 0.0023

be used in order to be able to differentiate between them.

C. Comparison to DBoW

Finally, in this section, we compare the performance of
the proposed method against the state-of-the-art DBoW al-
gorithm [18]. For the DBoW, we operate on the full-sized
320 × 240 images, using different temporal constraints (k =
0, 1, 2) along with geometric checks enabled. Its performance
is controlled by a so-called confidence parameter α ∈ [0, 1].
We sweep over the values of this parameter and compute the
precision and recall for each α, which are shown in Fig. 7.

For purposes of comparison, we carry out the same geo-
metric verification step in DBoW (Fig. 7) and in the proposed
method (Fig. 8): feature extraction, matching and fitting a
fundamental matrix between the matched features. If sufficient
support is not found for the fundamental matrix, the proposed
hypothesis is rejected. This geometric verification is carried
out on the full resolution images.

As seen from Figs. 8 and 7, the best precision-recall
curve of our method competes with that of the DBoW in
terms of precision; moreover, the proposed algorithm is more
conservative and operates with lower recalls. This low recall
is a consequence of requiring the match to be globally unique
in order to be considered a loop closure. Overall, the proposed
approach achieves competitive trade-off between precision and
recall. We consider the results promising for the proposed
methodology to be applied to other problems such as place
categorization and the selection of visually distinct images for
life-long topological mapping.

VI. CONCLUSIONS AND FUTURE WORK

While the problem of loop closure has been well studied
in visual navigation, motivated by the sparse nature of the
problem (i.e., only a small subset of past images actually close
the loop with the current image), in this work, we have for
the first time ever posed it as a sparse convex `1-minimization
problem. The globally optimal solution to the formulated
convex problem, by construction, is sparse, thus allowing
efficient generation of loop-closing hypotheses. Furthermore,
the proposed formulation enjoys a flexible representation of
the basis used in the dictionary, with no restriction on how
the images should be represented (e.g., what descriptors to
use). Provided any type of image vectors that can be quantified
with some metric to measure the similarity, the proposed for-
mulation can be used for loop closing. Extensive experimental
results have validated the effectiveness and efficiency of the
proposed algorithm, using either the whole raw images as
the simplest possible representation or the high-dimensional
descriptors extracted from the entire images.
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Fig. 7: Precision and recall curves of DBoW [18] for the
Bicocca dataset using the full-sized 320 × 240 images. In
this plot, k denotes the values used for temporal consistency
constraint.
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Fig. 8: Precision and recall curves corresponding to Fig.6 with
an additional geometric verification step, same as the one used
in DBoW.

We currently use a single threshold τ to control the loop-
closure hypotheses, which guarantees a globally unique hy-
pothesis. However, in the case of multiple revisits to the same
location, this hard thresholding would prevent detecting any
loop closures and the revisits would be simply considered as
perceptual aliasing, which is conservative but loses informa-
tion. In the future, we will investigate different ways to address
this issue. For example, as mentioned earlier, we can sum up
the contributions of basis vectors if a loop has already been
detected between them and thus ensure that multiple visits
lead to more robust detection of loop closures. Nevertheless,
this has not been a major issue in our tests; as shown in
Fig. 2, the proposed algorithm is capable of detecting loops
at different revisits. As briefly mentioned before, the number
of basis vectors in the dictionary grows continuously and can
prohibit the real-time performance for large-scale problems.
To mitigate this issue, one possible way would be to update
the dictionary dynamically by checking a novelty factor in
terms of how well the current image can be explained by the
existing dictionary, which is akin to adding “key frames” in
visual SLAM.

ACKNOWLEDGMENTS

This work was partially supported by the MINECO-FEDER
project DPI2012-36070, by research grant BES-2010-033116,
by travel grant EEBB-I-13-07010, by ONR grants N00014-
10-1-0936, N00014-11-1-0688 and N00014-13-1-0588, and by
NSF award IIS-1318392.



REFERENCES

[1] E. Amaldi and V. Kann. On the approximability of
minimizing nonzero variables or unsatisfied relations in
linear systems. Theoretical Computer Science, 209(12):
237–260, 1998.

[2] M. Asif. Primal dual pursuit: A homotopy based algo-
rithm for the Dantzig selector. Master’s thesis, Dept. of
Electrical and Computer Engineering, Georgia Institute
of Technology, 2008.

[3] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex
optimization with sparsity-inducing norms. Optimization
for Machine Learning, pages 19–53, 2011.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded
up robust features. In European Conference on Computer
Vision (ECCV), pages 404–417. Graz, Austria, May 7–
13, 2006.

[5] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF:
Binary Robust Independent Elementary Features. In Eu-
ropean Conference on Computer Vision (ECCV), pages
778–792. Crete, Greece, September 5–11, 2010.

[7] C. J. Cannell and D. J. Stilwell. A comparison of
two approaches for adaptive sampling of environmental
processes using autonomous underwater vehicles. In
MTS/IEEE OCEANS, pages 1514–1521, Washington,
DC, December 19–23, 2005.

[8] F. Capezio, F. Mastrogiovanni, A. Sgorbissa, and R. Zac-
caria. Robot-assisted surveillance in large environments.
Journal of Computing and Information Technology, 17
(1):95–108, 2009.

[9] J. J. Casafranca, L. M. Paz, and P. Pinies. A back-
end `1 norm based solution for factor graph SLAM. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 17–23, Tokyo, Japan, Novem-
ber 3–8, 2013.

[10] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang. Learning
with `1-graph for image analysis. IEEE Transactions on
Image Processing, 19(4):858–866, 2010.

[11] W. Churchill and P. Newman. Experience-based naviga-
tion for long-term localisation. The International Journal
of Robotics Research, 32(14):1645–1661, 2013.

[12] M. Cummins and P. Newman. FAB-MAP: Probabilistic
Localization and Mapping in the Space of Appearance.
The International Journal of Robotics Research, 27(6):
647–665, 2008.

[13] N. Dalal and B. Triggs. Histograms of oriented gra-
dients for human detection. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 886–893, San Diego, CA, June
20-26, 2005.

[14] D. L. Donoho. Compressed sensing. IEEE Transactions
on Signal Processing, 52(4):1289–1306, 2006.

[15] D. L. Donoho and Y. Tsaig. Fast solution of `1-
minimization problems when the solution may be sparse.
Technical report, Dept. of Statistics, Stanford University,
2006.

[16] M. Elad and M. Aharon. Image denoising via sparse
and redundant representations over learned dictionaries.
IEEE Transactions on Image Processing, 15(12):3736–
3745, 2006.

[17] M. Elad, M. Figueiredo, and Y. Ma. On the role of sparse
and redundant representations in image processing. Pro-
ceedings of the IEEE, 98(6):972–982, 2010.

[18] D. Galvez-Lopez and J. D. Tardos. Bags of binary words
for fast place recognition in image sequences. IEEE
Transactions on Robotics, 28(5):1188–1197, 2012.

[19] Y. Latif, C. Cadena, and J. Neira. Robust loop closing
over time for pose graph SLAM. The International
Journal of Robotics Research, 32(14):1611–1626, 2013.

[20] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, 2004.

[21] D. M. Malioutov, M Cetin, and A. S. Willsky. Homotopy
continuation for sparse signal representation. In IEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing, 2005.

[22] M. Milford. Vision-based place recognition: how low can
you go? The International Journal of Robotics Research,
32(7):766–789, 2013.

[23] M. Milford and G. Wyeth. SeqSLAM: Visual route-based
navigation for sunny summer days and stormy winter
nights. In IEEE International Conference on Robotics
and Automation (ICRA), pages 1643–1649, St. Paul, MN,
May 14–18, 2012.

[24] A. Oliva and A. Torralba. Modeling the shape of the
scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision, 42(3):145–
175, 2001.

[25] R. Paul and P. Newman. Self-help: Seeking out per-
plexing images for ever improving topological mapping.
The International Journal of Robotics Research, 32(14):
1742–1766, 2013.

[26] RAWSEEDS. Robotics advancement through Webpub-
lishing of sensorial and elaborated extensive data sets
(project FP6-IST-045144), 2009. URL http://www.
rawseeds.org/rs/datasets.

[27] E. Rosten and T. Drummond. Fusing points and lines
for high performance tracking. In IEEE International
Conference on Computer Vision (ICCV), volume 2, pages
1508–1515, Beijing, China, October 17-20, 2005.

[28] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. New-
man. The new college vision and laser data set. The
International Journal of Robotics Research, 28(5):595–
599, 2009.

[29] H. Sugiyama, T. Tsujioka, and M. Murata. Collaborative
movement of rescue robots for reliable and effective
networking in disaster area. In International Conference
on Collaborative Computing: Networking, Applications
and Worksharing, San Jose, CA, December 19–21, 2005.

http://www.rawseeds.org/rs/datasets
http://www.rawseeds.org/rs/datasets

	Introduction
	Related Work
	Sparse Optimization for Loop Closure
	Closing Loops via 1-minimization
	Building the Dictionary
	Solving 1-Minimization
	Remarks
	Global uniqueness
	Flexible basis representation
	Robustness


	Experimental results
	New College: Different Types of Basis
	RAWSEEDS: Effects of Design Parameters
	Threshold  and weight 
	Image size
	Execution time

	Comparison to DBoW

	Conclusions and future work

