
Detecting the correct graph structure in pose graph SLAM

Yasir Latif, César Cadena, and José Neira

Abstract— While graph-based representations allow an effi-
cient solution to the SLAM problem posing it as a non-linear
least squares optimization, they require additional methods
to detect and eliminate outliers. It is necessary to obtain
the correct structure of the graph representing the SLAM
problem which is topologically correct and will lead to a metric
correct solution once optimized. In the graph-SLAM context,
the edges represent constraints relating two poses whereas the
vertices represent the robot poses. While all the edges between
consecutive poses actually exist (odometry), the same may not
be true for edges coming from a place recognition system.
Place recognition algorithms always have some degree of failure
in the presence of perceptual aliasing in real environments,
creating edges between otherwise unrelated poses. We argue
that rather than mitigating the effect of incorrect loop closures,
these edges must be detected and removed as they represent
non-existent topological connections in the graph. In this paper
we describe a method that is able to detect and remove such
false edges, leading to a solution of the SLAM problem based
on the resulting topologically correct graph. Our method is
robust both to outliers in place recognition as well as errors
in odometry systems. We focus our experiments on real world
and synthetic datasets and provide comparisons against other
robust SLAM methods.

I. INTRODUCTION

Recently, the graph based formulation to solve the SLAM
problem has become a common choice. Even though this
representation was proposed a long time ago [1], it has made
a comeback thanks to the advances which allow efficient
solution for the non-linear optimization problem by taking
advantages of the sparse nature of the SLAM problem, for
instance iSAM [2], HOG-Man [3], and g2o [4].

A toy example of a pose-graph is shown in Fig. 1. The
nodes in the graph represent unknown robot poses and
the edges represent constraints between these poses. The
edges are obtained from an odometry system (sequential
constraints) and a place recognition system (loop closure
constraints), blue and red lines in Fig 1, respectively. Once
the graph is built, an optimization process finds the config-
uration of poses that best explains all the constraints.

The majority of pose graph optimizers consider constraints
with some degree of noise, typically Gaussian, but also that
all the constraints really exist. For these kind of problems,

Yasir Latif, and José Neira are with the Instituto de Investigación en
Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Zaragoza 50018,
Spain. {ylatif, jneira}@unizar.es.

César Cadena is with the Computer Science Department, Volgenau
School of Engineering at George Mason University, Fairfax, VA 20030,
US. ccadenal@gmu.edu.

This research has been funded by the Dirección General de Investigación
of Spain under projects DPI2009-13710 and DPI2009-07130 and by DGA-
FSE(group T04), and by the US Army Research Office Grant W911NF-
1110476.

FP

TP

TP

(a) D2
G/χ

2 = 87.7/65.2

(b) 41.7/58.1 (c) 10.8/58.1 (d) 15.8/58.1

(e) 82.7/61.7 (f) 59.2/61.7 (g) 16.4/61.7

Fig. 1. Toy example. Graph with the poses as nodes and constraints from
some odometry source (blue) and a place recognition system (red) with
one false positive (FP) and 2 true positives (TP). While we can obtain an
acceptable value for the cost function (D2

G) from the optimizer for the
graphs in (b-d, f and g), only the graphs on (c, d and g) are topological
correct (do not contain false edges). The simplest case of only selecting the
odometry edges, 0 loop closure edges, obtains a cost function value of 0.
The goal is find to a correct configuration with a consistent cost function
(D2

G < χ2) and as many loop closure edges as possible.

different improvements have been developed in presence of
non-Gaussian noise, e.g. using robust cost functions (Huber
function) [5], using robust optimization methods [6], or
more recently handling directly non-Gaussian distributions
[7]. These approaches are excellent options to handle non
modeled errors on the constraints, like slippage errors in
odometry or inaccurate transformations computed from dif-
ferent views in a loop closure.

Unfortunately, in the presence of false positives in the
place recognition system (constraints that really do not exist)
these approaches can only reduce, and not eliminate, the
effect of them in the final estimation, and they fail in the
presence of multiple or persistent false edges. Note that there
exists a fundamental difference between edges generated by
the odometry and those by the place recognition. Odometry
constraints by nature are topologically correct (even if they
might be metrically inaccurate) while the same does not hold
for loop closure constraints. The problem is then to determine
which loop closure constraints are topologically consistent
with the graph being constructed for the SLAM problem.

Different works have been developed to avoid or at least
minimize the effect of outlier constraints. One popular way is
to robustify the front-end place recognition system. However,
no system can guarantee 100% accuracy. In some environ-
ments perceptual aliasing is almost impossible to avoid, even
for human beings. At the moment it seems that all these
improvements in front-ends are insufficient to guarantee
complete robustness.

Olson [8] proposed a hypothesis verification method for
loop closure constraints using graph partitioning based on
spectral clustering. This method fails in the presence of
odometry drift for large loops. Another approach is to delay
decision making and maintain multiple topologies of the map
with an associated belief for each one [9]. Their approach
uses a Rao-Blackwellized particle filter. However, it was not
explicitly shown how the system is affected by and recovers
from incorrect loop closures. Their method is also unique in
the sense that it uses the estimation process itself to reason
about possible loop closures.

In recent literature, two methods have been proposed to
deal with the problem of robustifying the back-end to deal
with possible false positive loop closures: [10] and [11]. The
robust SLAM back end using “switchable constraints” [10]
penalizes those loop closure edges during graph optimiza-
tion that deviate from the constraints they suggest between
two nodes. Their method suggests a continuous function
governing the state of “switch factors” which may not be
appropriate in many cases, for example in persistent false
positives on traversal paths.

The “max-mixture” [11] attaches a null hypothesis to
each possible loop closure and lets the optimizer select
the more probable one. The null hypothesis represents a
uniform distribution over the whole space and is modeled
by a Gaussian distribution with the same mean as the loop
closure hypothesis and a very large variance. We will return
to both these methods in the experimental section showing
comparisons on real data.

In order to deal with the problem of incorrect place
recognition, we should be able to: (a) distinguish between
correct and incorrect loop closures being introduced by the
front-end place recognition algorithm, (b) discard incorrect
loop closures from the estimation process and (c) recover the
correct map estimate.

We use the novel method: Realizing, Reversing, and Re-
covering (RRR) for loop closure verification i.e: given one
or more sets of sequential constraints provided by odometry
and a set of potential loop closing constraints provided by
a place recognition system, the algorithm is able to differ-
entiate between the correct and incorrect loop closures. The
underlying idea is that of consensus: correct loop closures
tend to agree among themselves and with the sequential
constraints, while incorrect ones tend not to. This, along with
convergence properties of optimization techniques, provides
a robust method for rejecting false loop closures.

RRR makes the best possible decisions over the accep-
tance of loop closing given all the available information
provided by the place recognition and the odometry systems,

either incrementally or in batch. The output is an optimized
pose graph with the correct topological structure, with no
auxiliary constraints and without changing the formulation
of the problem.

In the next section we show the SLAM problem in the
graph formulation. In section III we detail the detection of
a correct graph structure using the RRR algorithm. Experi-
ments are detailed in section IV along with comparisons and
evaluations with competing state of the art methods. Finally,
in section V we present further discussion and conclusions
about this work.

II. THE POSE GRAPH FORMULATION

In the graph based formulation for SLAM, the so-called
“graph-SLAM”, robot poses as modeled as state variables
in the graph’s nodes and constraints as factors on the
graph’s edges. The factors represent a distance to minimize
between the poses and the observations given by the sensors.
Considering the Gaussian assumption to model the sensor’s
noise, we use the covariance or the information matrix. Let
x = (x1 . . . xn)T be a vector of parameters that describe the
configuration of the nodes. Let ωij and Ωij be the mean
and the information matrix of the observation of node j
from node i. Given the state x, let the function fij(x) be
a function that calculates the perfect observation according
to the current state. The residual rij can then be calculated
as:

rij(x) = ωij − fij(x) (1)

Constraints can either be introduced by odometry which are
sequential constraints (j = i+ 1), or from place recognition
system which are non-sequential. The amount of error intro-
duced by each constraint, weighed by its information, can
be calculated as:

dij(x)2 = rij(x)TΩijrij(x) (2)

and therefore the overall error, assuming all the constraints
to be independent, is given by:

D2(x) =
∑

dij(x)2 =
∑

rij(x)TΩijrij(x) (3)

where dij(x)2 is the pairwise factor of the present variables
in nodes i and j. The solution to graph-SLAM problem is
to find a state x∗ that minimizes the overall error.

x∗ = argmin
x

∑
rij(x)TΩijrij(x) (4)

III. METHOD

With the graph formulation we have to find the optimal
state estimation in Eq. 4. At this point we face two different
problems at the same time: figuring out which factor actually
exist and which do not, and inferring the optimal state. In
the following we summarize the RRR algorithm, for further
details and algorithms the reader is referred to our recent
work [12].

We start by dividing the factors into two sets; the first
one, S contains the factors that exist by definition, from the
sequential odometry sensor, and the second set R contains

Fig. 2. Clustering loop closures. Each cluster is represented by a different
colour.

the factors provided by the place recognition system, for
which we have to determine if they are correct or not. Since
all constraints are mutually independent, the error in (3) be
written as:

D2(x) =
∑

(i,j)∈S

dij(x)2 +
∑

(i,j)∈R

dij(x)2 (5)

We further divide the set R into n disjoint subsets Rc, where
each subset only contains topologically related constraints
(sequences of links that relate similar portions of the robot
trajectory) such that R = ∪nc=1Rc and ∀(i 6= j)Ri∩Rj = ∅.
We term each of theses subsets as “clusters”. An example of
clustering can be seen in Fig. 2 where loop closures for one
of the sessions of Bicocca dataset are shown. Each cluster
is represented by a different colour. Then the error for set R
can be written as:

∑
(i,j)∈R

dij(x)2 =

n∑
c=1

∑
(i,j)∈Rc

dij(x)2 =

n∑
c=1

dRc
(x)2 (6)

where dRc(x)2 is the error contributed by the cth cluster. This
simply means that the overall error introduced due to place
recognition constraints is the sum of the individual errors of
each cluster.

In the absence of any loop closing constraints, the best
estimate of the nodes is the one that is constructed from the
odometry. If the graph is optimized with just this information,
the overall error would be zero because all the constraints
agree with each other. Therefore, the error in (3) is caused
practically only by the loop closing links. Once we iterate
to find the optimal state, the error in the odometry is no
longer zero. This increase in odometry error gives us a
measure of the metric change that must take place so that the
graph conforms to the place recognition constraints. Having
clustered loop closures, the next step is to find if there may
be outlier with in cluster. This is done by evaluating ‘intra-
cluster’ consistency. Mathematically, for any cluster Ri to
be individually consistent, the following two conditions must

hold:

D2
G(x) =

∑
(i,j)∈Ri

rij(x)TΩijrij(x)+
∑

(i,j)∈S

dij(x)2 < χ2
α,δG

(7)
where δG are the degrees of freedom of the whole graph.
And,

D2
l (x) = rij(x)TΩijrij(x) < χ2

α,δl
, (i, j) ∈ Ri (8)

ensures that if there are any outliers within the cluster they
are omitted. δl are the degrees of freedom of each constraint.
Now that we have clusters that are free from outliers inside
them, the next step is to find out which clusters are consistent
with each other, what we call ‘inter-cluster consistency’. For
a selected subsets of clusters C, we term the clusters in C
to be jointly consistent if:

D2
C(x) =

|C|∑
c=1

∑
(i,j)∈Rc

rij(x)TΩijrij(x) < χ2
α,δC (9)

and

D2
G(x) = D2

C(x) +
∑

(i,j)∈S

rij(x)TΩijrij(x) < χ2
α,δG (10)

This first criteria ensures that the present clusters are con-
sistent with each other while the second one ensures the
consistency of the clusters with the odometry links.

Having an initial set of consistent clusters, the algorithm
iterates until it can no longer find any more consistent
clusters, gathering all the clusters that are consistent given
the all the available information.

IV. EXPERIMENTS

In this section we compare the performance of our method
against the two other state-of-the-art approaches to robust
back-end methods, namely Switchable constraints (SC) [10]
and Max-Mixtures (MM) [11]. We explore the effect of
number of outliers on all the three algorithms. We also
present experiments that show the effect of varying amount
of outliers and well as the odometry noise on our method.

Experiments are carried out on a dataset from the
RAWSEEDS project [13]. We also present results for syn-
thetic dataset, city10000. For all the experiments with RRR,
the back end used was g2o configured with Gauss-Newton
and every optimization was carried out for 4 iterations. The
code used for SC and MM is available from the openslam
website1.

A. Comparison of Robust SLAM methods

1) Single Run: In this experiment we compare the per-
formance of SC, MM and RRR in batch mode on a single
run from the Bicocca-25b dataset. The loop closures come
from a simple place recognition algorithm (the BoW stage
described in [14]) with the minimum confidence parameter
(α−) set to 0.15. Under these settings, the algorithm is known

1http://openslam.org/vertigo.html, http://openslam.org/maxmixture.html

−40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

100

x [m]

y
 [

m
]

(a) Output of SC −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

100

x [m]

y
 [

m
]

(b) Output of MM

−40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

100

x [m]

y
 [

m
]

(c) Output of RRR

0 1 2 3 4 5
0

50

100

150

200

250

300

Position Error [m]

F
re

q
u

e
n

cy
ē=2.36

ē=1.02
ē=1.74

SC

RRR

MM

(d) ATE distributions

Fig. 3. Bicocca-25b experiment, see Fig. 2, with laser odometry and the
constraints from the place recognition system. (a): The result of Sunderhauf
et. al [10], (b): Olson et. al [11], (c): Output of RRR (a:left): Link colors
proportional to the switch values (b-c:left): Accepted loop closures (green)
(a-c:right): Optimized graph (blue) and ground truth (green). (d): The
distribution of the Absolute Trajectory Errors for the final pose graphs
against the ground truth (b,c,d:right).

Mean (m) Std. Dev (m). Time (sec)

SC 2.358 1.059 0.88

MM 1.7353 0.923 0.54

RRR 1.018 0.367 8.45

TABLE I
SUMMARY OF RESULTS FOR FIG. 3.

to have many false positives. The laser odometry along with
the loop closures suggested by BoW are shown in Fig. 2.

As the performance metric for this experiment, we com-
pare the Absolute Trajectory Error (ATE) for the three
algorithms. ATE measures the global mismatch between
the constructed map and the ground truth using root mean
squared error. As a preprocessing step, a transformation
that best aligns the constructed map with the ground truth
is also calculated if the two maps are in different frames
of reference. Tools for automatically calculating ATE are
provided in the RAWSEEDS project [13].

SC was used with the default parameters given in the
authors’ code. In order to correctly determine the weight
(w) and scaling (s) parameter for MM, a parameters sweep
was carried out in the range 0.1 ≤ s ≤ 10−19 and 0.1 ≤ w
≤ 10−9. The parameters that provided the least Absolute
Trajectory Error were selected for comparison (s=10−6,
w=10−3). Both SC and MM were run until convergence.
The results are presented in Fig. 3 and Table I.

It can be seen from Fig. 3(d) that RRR outperforms the
other algorithms in this case in terms of ATE. Table I
provides details of the ATE and its spread as well as the
execution time for each algorithm. SC is the one which
suffers more from drift in odometry for large loops. RRR
on the other hand is the most expensive, time-wise, but
generates the best results in terms of the overall ATE. This

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

alpha
−

A
T

E
(m

)

MM

RRR

SC

(a) ATE (m)

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

alpha
−

P
re

c
is

io
n

MM

RRR

SC

(b) Precision

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

alpha
−

R
e

c
a

ll

MM

RRR

SC

(c) Recall

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

alpha
−

True positives

False positives

(d) Inliers and outliers for BoW

Fig. 4. Comparison of RRR, SC and MM: Performance under varying
number of outliers

behaviour will be seen again for RRR in cases where there
are a few correct loop closures. While the difference between
the slowest and the fastest algorithm (MM and RRR) appears
to be one order of magnitude, considering that the trajectory
was collected over half an hour, this allows for near-real time
use of the method.

In order to investigate the robustness of each algorithm to
false positive loop closures, we compare how each algorithm
behaves under varying amount of false positive loop closures
in the next experiment.

2) Robustness to false positive loop closures: In this
experiment, we compare the robustness of the RRR, SC
and MM to varying amount of outliers in loop closures.
The minimum confidence parameter for the front-end place
recognition system was varied from 0 to 1 with increment of
0.025 to generate 41 different sets of loop closing constraints.
The number of loop closures suggested vary from 446 to 23.
The number of outliers and inliers as are present in the output
from BoW are shown in Fig. 4(d).

SC was run with the default parameters as provided in the
source code. MM was run with the parameters that gave the
least ATE for the previous experiment (s=10−6, w=10−3).

The performance of the algorithms is compared based
on three metrics: Precision, Recall and Absolute Trajectory
Error. The results are shown in Fig. 4. SC does not make
a binary decision about the correctness of a loop closing
constraint but gives a value between 0 and 1. Therefore,
for calculating the precision-recall curves any switch with a
value greater than 0.5 was considered to be “on” and “off”
otherwise. For MM, all the links in which the suggested loop
closing constraint was more probable than the corresponding
null hypothesis were selected and included in the precision-
recall calculation.

The most important metric to look at in the context of
robust back-ends is precision. Full precision means that
the all the accepted constraints are topologically correct.

Fig. 6. Examples of odometry corrupted by noise : 2σ = 4.0, 6.0, 8.0,
10.0 degrees

Secondly, we would like to have full precision with as much
recall as possible. That means that while we only select
the correct loop closures, we selected as many of them as
possible.

As can be seen in the Fig. 4(b) both SC and RRR are
able to provide full precision for all the 41 experiments.
RRR has a greater recall which amounts to lower ATE. MM
is confused by the presence of many outliers but as the
number of outliers decreases, MM is also able to achieve
full precision.

MM initially has greater ATE because of accepting some
false positives but when it reaches full precision, it suffers
from low recall. The lowest point in the ATE plot for MM
is the point for which we calculated the parameters using a
parameter sweep. This means that if we could calculate the
correct parameters for every experiment, MM may perform
better. On the other hand, this means that MM is very
sensitive to the tuning parameters and that they do not depend
on the trajectory, but rather on the distribution of the loop
closing hypotheses.

B. Evaluation of RRR under increasing odometry error

Another interesting aspect to look at is the performance of
the algorithm with varying odometry errors. The main metric
of concern is again precision. We use the trajectory and
loop closings given in Fig. 3(a) and add noise to orientation
of every pose. This has a cumulative effect on the overall
trajectory. We simulate 10 noise levels with noise varying
from 2σ = 1 degree to 10 degrees. For each noise level 100
random experiments were generated and RRR was run on
them. Fig. 6 illustrates some of the corrupted trajectories.

The results are shown in Fig. 5. In this setup, errors can
come from two sources. One is the error in odometry and
the other is the error that might come from false positive or
false negative loop closures.

Fig. 5(a) gives box plots for ATE of the experiments. The
medians are marked by the line inside every box. We are
still able to perform with full precision, although recall is
seriously affected. It can be seen that the ATE is affected by

the amount of noise and greater noise leads to greater error.
With full precision, this means that most of the error is due
to the own odometry noise and not due to false positives. In
only one of the 1000 experiments, we accept a single false
positive loop closure. Recall degrades with varying amount
of noise.

C. Synthetic dataset: city10000

While real datasets provide us with a way of evaluating
the performance of our algorithm when there are a few loop
closings, synthetic datasets can be used to evaluate the per-
formance in the presence of massive loop closing hypotheses,
due for example to highly self-similar environments.

Here we evaluate the performance of our algorithm on a
synthetic dataset: city10000 provided with iSAM [2]. The
dataset simulates a run in a city with 10, 000 nodes and
provides ground truth loop closings.

In order to evaluate the performance of our algorithm
under varying number of false positives, randomly generated
incorrect loop closures were added to the dataset starting
from 100 to 1000 with a step of 100. For every level of
outliers, 10 random experiments were generated and the RRR
algorithm was run on them. The metrics calculated are ATE,
precision and recall. For this dataset, the number of iterations
for the optimizer were set to 5. Sample results are shown in
Fig. 8 and results for calculated metric are given in Fig. 7.

Fig. 7(b) gives the precision. Since links were added at
random, some of them are actually correct but do not exist
in the ground truth. This is reflected in the corresponding
ATE. If the loop accepted were actually false positives, this
would severely corrupt the map, which is not the case as can
be seen from the corresponding value of ATE in Fig. 7(a).

Recall is effected by the number of outliers. Table II gives
the numerical results for the shown plots. One point to note
is that while the median recall at worst is about 41% , the
corresponding value of ATE, 0.11 m is not very large. This
means that although we are discarding a lot of correct loop
closures, we are not discarding anything important; the maps
estimate is still very accurate.

The details for execution time are given in Table II. The
algorithm takes a considerable time to generate the result.
The table also gives the number of clusters in each case and
time per cluster.

V. DISCUSSION

The RRR algorithm is a consistency-based approach for a
robust backend of a SLAM system. RRR works on any pose-
graph built from sequential constraints (normally laser/visual
or other forms of odometry) and loop closure edges.

We have presented the comparisons of RRR against two
recently proposed approaches to robust back ends, namely
Olson’s Max-mixtures and Sünderhauf’s switchable cons-
traints. On real datasets where loop closing constraints are
sparse, RRR is able to perform at full precision with a
considerable recall, resulting in a smaller absolute trajectory
error.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10
2σ [degrees]

 A
T

E
 [
m

]

(a) ATE

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7 8 9 10
2σ [degrees]

P
re

c
is

io
n

(b) Precision

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
2σ [degrees]

R
e
c
a
ll

(c) Recall

Fig. 5. Effects of different level of odometry noise on RRR

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400 500 600 700 800 900 1000
Number of outliers

A
T

E
(m

)

(a) ATE in meters

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

100 200 300 400 500 600 700 800 900 1000

Number of outliers

P
re

c
is

io
n

(b) Precision

0

0.2

0.4

0.6

0.8

100 200 300 400 500 600 700 800 900 1000

Number of outliers

R
e

c
a

ll

(c) Recall

Fig. 7. Results for 100 experiments on the city10000 dataset with varying amount of incorrect loop closures

−50 0 50

−60

−40

−20

0

20

40

60

−50 0 50

−60

−40

−20

0

20

40

60

−50 0 50

−60

−40

−20

0

20

40

60

Fig. 8. Sample results for city10000. From left to right: Optimized graph after RRR in presence of 100, 500 and 1000 outliers. Accepted links in green,
final optimized trajectory in blue and rejected links in gray.

outliers
ATE (m) Precision Recall Total time (s) clusters time (s)/cluster

mean median mean median mean median mean median mean median mean median

100 0.04 0.04 1.00 1.00 0.85 0.85 764.2 785.7 1661.3 1661.5 0.46 0.47

400 0.10 0.07 1.00 1.00 0.47 0.49 701.3 699.1 1954.0 1954.5 0.35 0.35

700 0.11 0.06 0.99 1.00 0.46 0.54 922.1 918.6 2246.6 2246.5 0.41 0.40

1000 0.26 0.11 0.99 0.99 0.38 0.41 1362.2 1261.2 2538.5 2540.5 0.53 0.49

TABLE II
ATE, PRECISION, RECALL FOR CITY10,000

The aim of SLAM is not just to build a good looking map
but to use it further to carry out higher level tasks such as
planning and navigation. In that regard, loop closing edges
provide traversability information. Switchable constraints
may provide a good map estimate, but the switches are
governed by a continuous function, where as loop closures

should either be completely accepted or completely rejected.
The distribution of the switch values for the experiment
shown in Fig. 3 is given in Fig. 9. Although most of the
loop closures are either rejected (in the first bin) or accepted
(last bin), there are still quite a few loop closures which
remain in the map and provide topologically inconsistent

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Value of the switch variable

N
u
m

b
e
r

o
f
s
w

it
c
h
e
s

Fig. 9. The distribution of the values governing the behaviour of Switch
Variables. Ideally, all the values should be either 0 or 1

links. In certain cases, this might cause problems when
the map is actually being used to carry out higher level
tasks. Max-mixtures is a mathematically sound approach, but
that requires a great deal of parameter tuning, as has been
shown in comparisons. From a topological point of view,
MM introduces null hypotheses into the graph which replace
incorrect loop closures. Before using the map for planning or
any higher level task, such links may need to be pruned from
the map. Both SC and MM are fast and very useful when
there are dense loop closing hypotheses such as in synthetic
datasets. However, in real world scenarios, loop closing are
comparatively sparse and there is weak evidence for MM
and SC to work on. In those cases, RRR out performs both.
In synthetic datasets RRR also achieves good results. While
execution time is greater, it is still real time for the duration
of the experiments.

We have demonstrated that RRR is able to correctly
identify false positives and removes them to robustly recover
the correct map estimate. We have investigated the effect of
number of outliers and odometry error on the method and,
even in the presence of a considerable amount of noise, RRR
is able to work at full precision, which is a highly desirable
quality for a robust back-end. RRR is more robust than the
alternative state-of-the-art methods and always provides a
topological correct graph structure given all the gathered
evidence.

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, pp. 333–349,
1997.

[2] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering,” in IEEE Intl.
Conf. on Robotics and Automation, ICRA, Shanghai, China, May 2011.

[3] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2d and 3d map-
ping,” in Robotics and Automation (ICRA), 2010 IEEE International
Conference on, may 2010, pp. 273 –278.

[4] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[5] P. Huber, “Robust regression: asymptotics, conjectures and monte
carlo,” The Annals of Statistics, vol. 1, no. 5, pp. 799–821, 1973.

[6] D. Rosen, M. Kaess, and J. Leonard, “An incremental trust-region
method for robust online sparse least-squares estimation,” in IEEE
Intl. Conf. on Robotics and Automation, ICRA, St. Paul, MN, May
2012, pp. 1262–1269.

[7] ——, “Robust incremental online inference over sparse factor graphs:
Beyond the Gaussian case,” in IEEE Intl. Conf. on Robotics and
Automation, ICRA, Karlsruhe, Germany, May 2013, to appear.

[8] E. Olson, “Recognizing places using spectrally clustered local
matches,” Robotics and Autonomous Systems, vol. 57, no. 12, pp.
1157–1172, December 2009.

[9] A. Ranganathan and F. Dellaert, “Online probabilistic topological
mapping,” The International Journal of Robotics Research, vol. 30,
no. 6, pp. 755–771, May 2011. [Online]. Available: http://ijr.sagepub.
com/content/early/2011/01/23/0278364910393287.abstract

[10] N. Sünderhauf and P. Protzel, “Switchable Constraints for Robust
Pose Graph SLAM,” in Proc. IEEE/RJS Int. Conference on Intelligent
Robots and Systems, Vilamoura, Portugal, 2012.

[11] E. Olson and P. Agarwal, “Inference on networks of mixtures for
robust robot mapping,” in Proceedings of Robotics: Science and
Systems, Sydney, Australia, July 2012.

[12] Y. Latif, C. Cadena, and J. Neira, “Robust Loop Closing Over Time,”
in Proceedings of Robotics: Science and Systems, Sydney, Australia,
July 2012.

[13] RAWSEEDS, “Robotics advancement through Webpublishing of sen-
sorial and elaborated extensive data sets (project FP6-IST-045144),”
2009, http://www.rawseeds.org/rs/datasets.

[14] C. Cadena, D. Gálvez-López, J. Tardós, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Transaction on RObotics,
vol. 28, no. 4, pp. 871 –885, 2012.

