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I3A, University of Zaragoza, Maŕıa de Luna 1, 50018, Zaragoza, Spain

Abstract

In the Artificial Intelligence (AI) field, and particularly within the area of

Machine Learning (ML), recommender systems have attracted significant re-

search attention. These systems attempt to alleviate the increasing information

overload that users can experience in the current Big Data era, by providing

personalized recommendations of items that they may find relevant. Besides,

given the importance of mobile computing, these systems have evolved to con-

sider also the dynamic context of the mobile users (location, time, weather

conditions, etc.) to offer them more appropriate suggestions and information

while on the move.

In this paper, we provide an extensive survey of recent advances towards

intelligent mobile Context-Aware Recommender Systems (mobile CARS) from

an information management perspective, with an emphasis on mobile computing

and AI techniques, along with an analysis of existing research gaps and future

research directions. We focus on approaches that go beyond just considering

the location of the user and exploit also other context information. In this

study, we have identified that deep learning approaches are promising artificial
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intelligence models for mobile CARS. Additionally, in a near future, we expect a

higher prominence of push-based recommendation solutions where at least part

of the recommendation engine could be executed in the mobile devices, which

could share data and tasks in a distributed way.

Keywords: Context-Aware Recommender Systems, mobile computing,

context-aware computing, personalization, information management

1. Introduction

Nowadays, the huge amount of information available may easily overwhelm

users when they need to take a decision that involves choosing among a large set

of options. For example, at the time of writing, a tourist who is visiting Madrid

(Spain) could find more than 250 tourism apps for his/her mobile device when

searching in Google Play [1]. Recommender Systems (RS) [2], that offer relevant

items (articles, products, objects, or places) to the users, have been proposed

as a potential solution to this problem. The main goal of these systems is to

recommend certain items based on the (usually implicit) user preferences.

In the last decade of the 20th century, the use of these systems has increased

in different application scenarios [3]. Recommender systems have been proposed

to suggest a whole range of items, including books, music, movies, news, touris-

tic destinations, friends in social networks, and others [2, 4, 5, 6]. They are

particularly popular in e-commerce [7, 8], as providing relevant recommenda-

tions to customers can help to improve their satisfaction and increase product

sales; indeed, most major companies use RS within their services: for example,

we can cite eBay [9, 10], Facebook [11, 12], Netflix [13, 14], Amazon [15, 16],

Spotify [17, 18], and Pandora [19], among others. On the other hand, they can

also provide value-added to end users. So, in the new era of Big Data [20], given

the continuous increase of the volume of information to which users are exposed,

recommender systems are a very useful tool, able to learn from the behavior of

users and discover their preferences.

Moreover, RS can be considered a key Artificial Intelligence (AI) and Infor-
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mation Management (IM) asset (see Figure 1) that can bring benefits for both

end users and companies. Indeed, according to a survey by 451 Research [21],

predictive analytics and recommendations are the two most important types of

Machine Learning (ML) technologies desired by current organizations. In the

AI area, the term recommender agent has been used as a general term to re-

fer to personalized search engines, intelligent software agents and recommender

systems which assist users who need help to find relevant information [22, 23].

Figure 1: Main fields related to this survey.

At an abstract level, recommender systems try to predict whether a given

item will be appreciated by the user as relevant or not, and for this purpose a

variety of AI techniques can be applied (classification, clustering, deep learning,

regression, etc.). In this paper, we focus on recommender systems which are

considered relevant for intelligent systems and use ML techniques to predict

which items should be suggested to a user [24], analyzing those systems from

an information management perspective (as systems that can help to reduce

the information overload of users) and dealing with topics such as those ob-

served in Figure 2. In the figure, we include recommender systems within the
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global area of information systems and information retrieval, showing a signifi-

cant overlap with artificial intelligence (machine learning and data mining), and

also emphasizing the relation of some types of recommender systems with areas

such as mobile computing and context-aware computing. The figure provides an

overview of related fields, without detailing some subareas of the different fields;

for example, within the area of information systems, cognitive information sys-

tems, such as those based on the idea of cognitive resonance, where hypothesis

can be amplified or weakened during a semantic data analysis, could be men-

tioned [25]. Given its focus on machine learning techniques, this survey excludes

papers on mobile CARS that exploit only pure statistical solutions (e.g., [26]),

ontologies (e.g., [27]), or techniques from other fields such as spatial databases

(e.g., [28]).

Figure 2: Concept map showing the main mobile CARS topics covered and their relations.

Moreover, our study is centered on recommender systems that are both

context-aware and mobile:

• Exploitation of context data. Traditional recommender systems deal with

applications having only two dimensions, users and items (User× Item),

and do not consider contextual information (e.g., the location of the user,

the time of the day, the day of the week, etc.) during the recommendation

process. However, recent approaches have highlighted the importance of
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considering the context of the situation in which the recommendation pro-

cess takes place, to offer more relevant and precise recommendations [29].

As a consequence, the integration of recommender systems and context-

aware computing has given rise to the so-called Context-Aware Recom-

mender Systems (CARS) [30, 31, 32].

• Use in mobile scenarios. As the context of a user in a mobile computing

scenario is highly-dynamic (e.g., the location of the user and his/her sur-

roundings usually change constantly), recommendation algorithms should

be able to effectively and efficiently exploit the dynamic context of the

user to offer him/her suitable recommendations and keep them up-to-

date. Hence, the combination of context-aware recommendations and mo-

bile computing gives rise to the emergence of mobile Context-Aware Recom-

mender Systems (mobile CARS) [33]. A particular case are the so-called

Location-Aware Recommender Systems (LARS) [34], that consider only

the context variable location.

How different authors integrate the contextual dimension into the traditional

recommendation process for different application domains is explained in several

surveys on CARS [35, 36, 37, 38, 39]. There are also a few studies that focus

specifically on the mobile CARS field [33, 40, 41], but most of these surveys are

more than 6 years old [33, 40], and therefore they do not consider many recent

relevant works that have been developed in the field. In addition, in [40] the au-

thors have considered only CARS for vehicular ad hoc networks (VANETs) [42].

As far as we know, the most recent systematic review that provides an overview

of CARS for mobile scenarios was presented in [41]. However, unlike our study,

the authors do not focus on mobile CARS that apply AI techniques during

the recommendation process, and they emphasize the aspects related to the

context-aware field rather than those that are relevant in the mobile computing

field; in fact, one of the main goals of that study was to identify and classify

contextual information in categories, such as the location, social data, time,

activity, and the multi-dimensional context. Instead, we propose a framework
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to analyze research in the field with an emphasis on mobile computing and AI

techniques. Thus, our survey provides a relevant and complementary view over

previous studies.

Due to the importance of CARS within the AI and IM areas, in this paper,

we analyze and classify the most relevant literature of mobile CARS during the

last 10 years (see Figure 3, where key references are highlighted), considering

approaches that take into account several context variables. Figure 3 shows that

some machine learning models have traditionally been exploited over the years,

such as clustering techniques, while there are others whose use has become

less prevalent (e.g., traditional supervised learning models). In recent years,

these traditional techniques have started to be replaced by some advanced deep

learning alternatives (e.g., Convolutional Neural Networks, Recurrent Neural

Networks, etc.), which are currently being explored in the mobile CARS field.

The structure of the rest of this paper is as follows. In Section 2, we review

the technological context of this survey. In Section 3, we describe the evolu-

tion of recommender systems from traditional recommender systems to mobile

CARS. In Section 4, we provide an in-depth analysis of techniques applied for

mobile context-aware recommendation approaches as well as examples of mobile

CARS for specific use case scenarios. Finally, we conclude the paper with some

open issues in Section 5.

2. Technological Context

In this section, we introduce the technological context needed to facilitate

the understanding of the problem of context-aware recommendations in mobile

environments. First, in Section 2.1, we present the basics of mobile computing.

Then, in Section 2.2, we focus on the role of sensors and present examples

of applications that use sensors of mobile devices in dynamic environments.

Finally, in Section 2.3, we describe the main features of context-aware computing

as a specific paradigm within the mobile computing environment.
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Figure 3: Milestones in the development of mobile CARS that exploit artificial intelligence

techniques.

2.1. Mobile Computing

The emergence of portable devices (e.g., smartphones, portable computers,

tablets, smartwatches, etc.) and advances in wireless networking technologies

gave rise to a new paradigm of computing, called mobile computing. In mobile

computing, users with portable devices have access to a shared infrastructure

independent of their physical location [43]. This provides flexible communica-

tion between people, as well as continuous access to data and network services

anywhere and at anytime.

In Figure 4, we show an overview of a mobile computing scenario, where we

can see that there are alternatives for long-range communications (e.g., 3G, 4G,

and 5G) [44, 45, 46], that require a wide-area infrastructure, and short-range

communications (e.g., Wi-Fi and Bluetooth) [47, 48]. A mobile environment
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infrastructure, represented in Figure 4, is composed by portable devices and

base stations, which serve all the mobile devices within their coverage area

or cell, by using wireless communications. The communication among base

stations is wired; thus, base stations allow the communication between mobile

devices and hosts of the fixed network. Moreover, mobile devices can directly

interact without any supporting infrastructure through ad hoc P2P (peer-to-

peer) interactions, by using technologies such as Wi-Fi or Bluetooth. In public

places (e.g., coffee shops, hotels, airports, libraries, schools, supermarkets, etc.),

there are hotspots that offer Internet access to the mobile devices, typically

using Wi-Fi technology.

Figure 4: Overview of a mobile computing scenario.

2.2. Sensors

A sensor is a device that converts a physical phenomenon of the environment

into an electrical signal [49, 50]. According to the way the data is captured,

sensors can be classified into the following types [51, 52]:

• Physical or hardware sensors: they provide certain raw data captured

from the environment.

• Virtual or software sensors: they provide higher-level observations usu-

ally obtained by fusing the measurements of several sensors (e.g., a more
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precise location can be obtained by combining different positioning mech-

anisms) [53].

• Social sensors: they provide data based on social media, such as data

posted in social networks (e.g., Facebook, Foursquare, and Flickr), blogs,

or microblogs (e.g., Twitter) [54]; as an example, the proposal in [55]

exploits microblogs to detect events in the vicinity.

• Human sensors: people can also provide interesting data using their own

senses or managing other sensors in specific ways; so, they can provide vol-

unteered geographic information (VGI) [56] or participate in spatial crowd-

sourcing [57, 58] tasks.

Users with their mobile devices have become an important source of sen-

sor data, as the sensors available in existing smartphones can be exploited [59,

60, 61]. These include inertial sensors, compasses, GPS receivers, microphones,

cameras, proximity sensors, ambient light sensors, accelerometers, gyroscopes,

temperature sensors, pressure sensors, and so forth. These sensors have facili-

tated the development of more flexible and dynamic systems in several domains,

such as healthcare [62], social networks [63], environment monitoring [64], and

transportation [65, 66]. In Figure 5, we show examples of different types of

sensors and contextual variables.

Figure 5: Overview of different types of sensors and contextual variables.

In recent years, the use of sensors is an essential element for context detec-
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tion [52]. We mention below, for different types of context, the mechanisms or

sensors typically used to capture the contextual information indicated [36, 67]:

• Computing context. It describes hardware (e.g., storage, processing power

of the CPU, amount of memory, current CPU and memory usage, battery

level), software (e.g., operating system and active applications), and net-

work characteristics (e.g., network connectivity, communication costs, and

communication bandwidth) of the mobile device and nearby resources. It

is captured implicitly by the device itself.

• User context. It describes the user’s environment, including the location

of the user, his/her social situation, the user’s interests (or goals), and

people nearby. The interests of the user can be obtained explicitly, for

example, through a user registration process [68] or by using modules

able to capture explicit interest indicators (e.g., a system can identify

thematic groups by analyzing social annotations of each user’s preferred

resources) [69]. Implicit approaches obtain the user’s context information

based on interactions of the user with the system [70].

• Location context. It is the spatial location (e.g., latitude and longitude)

of a person or object. In outdoor scenarios, it is often sensed by us-

ing positioning mechanisms (e.g., GPS) [71, 72, 73, 74, 75], while in in-

door scenarios the positioning technologies commonly used are based on

short-range signals (e.g., Bluetooth, Wi-Fi and infrared), or by using ZIP

codes [76, 77], trajectory data [78, 79, 80], and explicit methods that re-

quire scanning Radio Frequency Identification (RFID) tags [81, 82, 83, 84,

85], among others.

• Social situation context. It is the current relation between users (e.g.,

family members, friends, neighbors, co-workers, etc.). For example, this

can be information about whether a user is with his/her manager, with a

co-worker, or with a friend. The social situation can be explicitly captured

from a manual representation of the group structure [86], or implicitly by
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capturing data from a system (e.g., enrollment data from learning man-

agement systems [87] or social networks [88]). To obtain indications of the

level of collaboration between different members of a group, some systems

infer the social relations by analyzing interactions between users [89].

• Physical context. It describes the environmental situation concerning the

user or system; for example, the amount of lighting, traffic conditions,

temperature, weather, and noise levels. It is typically acquired from the

environment implicitly (e.g., with a thermometer sensor to determine the

temperature of the environment, a light sensor to know if it is day or night,

a microphone sensor to measure the noise level, etc.) [90], or captured

explicitly by the user [91].

• Time context. It can be either entered explicitly by the user (e.g., available

study time [91]) or determined implicitly by checking the device’s internal

clock (e.g., current time).

• Activity context. It is often achieved through mobile phone sensors (e.g.,

accelerometers, gravity sensors, magnetometers, microphones, and gyro-

scopes), without interfering with the user’s lifestyle. Using these data,

ML techniques can be applied to detect activities, such as the current ac-

tivity that the user is performing (e.g., walking, running, driving a car,

riding a bike, etc.). Some systems require explicit user interactions, such

as scanning a QR (Quick Response) code [92] or providing manual text

input [87], to obtain information about the activity context.

In Section 2.3, we revisit some concepts of context, determined by using

these types of sensors, under the perspective of context-aware computing.

2.3. Context-Aware Computing

The interest of exploiting contextual information gave rise to the emergence

of (mobile) context-aware computing as a paradigm within mobile comput-

ing [93, 94]. Several perspectives on how mobile applications should consider
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the context have been presented in the literature [95, 96, 97, 98, 99, 100]. Over-

all, the main goal of context-aware applications is to examine the user’s context

and react to the changes of the dynamic environment to discover information

of interest [101].

In [102], the authors define the context as “any information that can be

used to characterize the situation of an entity”, where an entity could be “a

person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves”.

Other definitions of context have been introduced in the literature related to

the context-aware computing field (e.g., [103, 104]). The meaning of context-

aware was defined in [102] by indicating that “a system is context-aware if it

uses context to provide relevant information and/or services to the user, where

relevancy depends on the user’s task”.

Examples of elements defining the context could be the location, tempera-

ture, weather, noise level, activity, traffic conditions, lighting, time of the day,

week, season of the year, network connectivity, nearby resources, communica-

tion bandwidth, and people accompanying the user, among others. There are

certain types of context elements that, according to the circumstances, could be

more important than others; for example, if it is raining a person could prefer

to stay at home watching a movie rather than to go to run (i.e., the weather

element in this case is more important than others). Sometimes authors classify

the context by categories; for example, in Section 2.2 we showed some possi-

ble context categories. From the perspective of the source and the persistence

of information, the context can be divided into two main types [29, 105, 106],

which are:

• Static context, which does not change frequently. Examples are informa-

tion regarding the address book, contact list, user profile, user preferences,

hardware profile, etc.

• Dynamic context, which is highly variable. Examples of dynamic context

features are the user’s location, the user’s current task, the closeness to
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other people or objects, the weather, the temperature, the speed, the time,

the system status, the user’s emotions, etc.

Context awareness represents a generalized model of relevant input data

(both implicit and explicit) that allows an application to react to its environ-

ment. According to [29], the contextual information can be acquired in several

ways, such as the following:

• Explicit acquisition: when the user enters contextual information directly

into the system (through input fields of an application, by filling out a

form or answering specific questions, etc.).

• Implicit acquisition: when the context is obtained by observing the user’s

behavior, relevant data, and/or the environment (e.g., the user’s location

detected by his/her mobile device).

• Inferred acquisition: when the system obtains context data using statisti-

cal or data mining methods.

Generally, the computing context is acquired implicitly by sensors embedded

in mobile devices (see Section 2.2). In [90, 107, 108], surveys on context-aware

systems, which highlight the different types of sensors used, are provided.

3. Towards Mobile Context-Aware Recommender Systems

In this section, we describe the evolution of recommender systems. First, in

Section 3.1, we present the basics of traditional recommender systems. Then,

in Section 3.2, we focus on context-aware recommender systems. Finally, in

Section 3.3, we tackle mobile context-aware recommender systems.

3.1. Traditional Recommender Systems

A Recommender System (RS) is an application which suggests relevant items

(e.g., articles, products, objects, or places) to users [4]. It tries to adapt its
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proposals to each user individually, based on his/her preferences. These recom-

mendations can be seen as advice about relevant items that are considered of

interest to a particular user. More formally, the task of recommendation can be

formulated as indicated in Definition 1 [109].

Definition 1. Let U = {u1, u2, . . . , uk} be the set of users and I = {i1, i2, . . . , it}

the set of all possible items that can be recommended. Let f : U × I → R be a

utility function that measures how useful item i is for user u, where R is a totally

ordered set of utility values or ratings (e.g., non-negative integers or real num-

bers within a certain range). Then, for each u ∈ U the goal of a recommender

system is to find an item i∗u ∈ I, not yet known to the user, that maximizes the

utility function:

i∗u = argmaxf(u, i)i∈I

In Figure 6, we show the main elements of a recommender system:

Figure 6: Simplified overview of a recommendation process.

• The input data (e.g., the item type requested to the RS and information

related to the user profile), which are entered (explicitly or implicitly) by

the user to initialize the recommendation process.

• A database, which stores information about user and item profiles.

• The recommendation algorithm, which uses the input data and the database

to suggest a list of items to the user (also known as target user, current

user, or active user).
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On the one hand, user profiles have information about the characteristics

(e.g., age, sex, occupation, country, etc.) and preferences of the users (e.g., a

value on a rating scale about an item seen, purchased, or visited). This profile

information can be provided explicitly or implicitly by each user. In the explicit

case, for example, the user is prompted to manually provide some profile infor-

mation (e.g., the recommendation system asks the user to select some activities

that he/she might like). In the implicit case, the preferences are obtained di-

rectly from the user’s interaction with the system, without requiring his/her

intervention. On the other hand, item profiles contain the features of items

(products, places, or activities) to recommend (e.g., taxis, museums, restau-

rants, etc.), which are typically characterized by structured attributes (e.g.,

obtained from a catalog of products or provided by business owners), textual

descriptions (e.g., extracted from external sources such as forums), and tags

(e.g., generated by a user community), among other types of information that

could describe the items. In Figure 7, we show an example of basic information

about the relationships between users and items in a restaurant recommender

system. In this example, only binary ratings are shown (like or not like).

Figure 7: Example of user and item profiles in a restaurant recommender system.

One of the fundamental tasks of a recommender system is thus the prediction

of a rating: for a particular item not seen by the user, the system should be
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able to estimate how the user would evaluate it. If the predicted rating is above

a predefined recommendation threshold, then the item can be recommended to

the user. A list of suitable items to be recommended to a target user is usually

sorted according to the ratings predicted by the system. Depending on how the

recommendations are obtained, a recommender system can be classified usually

in one of three categories [109]:

• Collaborative filtering (CF) recommendations [110, 111]. It is the process

of filtering information by using techniques involving the collaboration

among several users, based on their provided preferences (or ratings about

items). Depending on the specific algorithm used, collaborative filtering

methods can be classified into the following categories:

– Memory-based collaborative filtering [112]. It is one of the most pop-

ular collaborative recommendation techniques and it is based on al-

gorithms to find the k nearest neighbors (kNN). For the prediction

of new item ratings, this technique analyzes the entire User × Item

matrix of ratings to identify users or items with patterns of similar

ratings. In user-based collaborative filtering (UBCF or user-user col-

laborative filtering) [113], the user is recommended items that people

with similar tastes and preferences liked. In item-based collaborative

filtering (IBCF or item-item collaborative filtering) [114], the idea

is similar, but based on the similarity between items instead of the

similarity between users; in this case, the similarity between items is

estimated based only on the ratings they receive (items with similar

rating vectors are considered to be similar).

– Model-based collaborative filtering [112]. It applies machine learning

or data mining techniques (e.g., Bayesian networks, linear classifiers,

clustering, neural networks, association rules, etc.) to learn a model

(or common patterns of behavior), by using available interaction in-

formation provided by the users to the system (i.e., the ratings pro-

vided by the users). The model learned is then used to generate the

16



predictions about the missing interactions.

• Content-based recommendation [115, 116]. It recommends to the user

items similar to the ones the user preferred in the past. As opposed to the

item-based collaborative filtering approach, the ratings provided by other

users are not exploited; instead, the similarity between items is computed

by taking into account their descriptions (i.e., their features or attributes).

Sometimes, the information about the items is a textual description (or

a document), which can be structured and exploited to provide content-

based recommendations. In this scenario, text mining techniques, used

in the Information Retrieval (IR) field [117, 118, 119], play an important

role.

• Hybrid recommendation [120]. It combines several techniques, such as

collaborative filtering and content-based methods. Most of the time, hy-

brid recommendation algorithms are motivated by the need to increase the

quality of the recommendations and minimize the weaknesses of individual

methods.

Overall, the use of recommender systems has been successful to alleviate the

problem of information overload, increase the number of items sold, encourage

sales of the most diverse and novel items, facilitate a better understanding

of the user’s needs, and increase the satisfaction and fidelity of the users [4,

109]. However, there are still challenges and constraints that offer research

opportunities, related to topics such as:

• The cold start problem, which occurs when a user or item is new for the

recommender system [121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,

132].

• The incorporation of contextual information during the recommendation

process [29, 33, 36, 37, 109, 133].

• The scalability of recommendation algorithms, taking into account large
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real-world datasets [134, 135, 136, 137, 138]. An example of a poten-

tial solution to this problem is the exploitation of binary codes to repre-

sent users and items in a compact way while minimizing the quantization

loss [139, 140, 141, 142], to enable efficient and scalable recommendations.

• The support of multi-criteria ratings [109, 143, 144, 145, 146]. For exam-

ple, a user can evaluate a restaurant (e.g., on a scale of one to five) regard-

ing different aspects or criteria (e.g., rating food = 3, rating decoration =

4, rating service = 5, and rating price = 4), rather than using a single

criterion rating (e.g., rating = 4) like in traditional recommender systems.

• The privacy-protection between users in RS [144, 147, 148, 149, 150, 151].

Recommender systems must be able to keep the personal information

of the users private, including their preferences, as users should not be

tracked against their will [152].

• The design of recommender systems that operate on mobile devices [153,

154, 155, 156, 157, 158, 159, 160, 161].

• The proactive recommendation of items without the need to generate ex-

plicit queries [162, 163, 164, 165, 166, 167].

• The diversity of items recommended to a target user [168, 169, 170, 171,

172].

• The serendipity (or novelty and unexpectedness of items) in recommender

systems [173, 174, 175, 176].

• The application of strategies that deal with the sparsity problem that arises

because the number of ratings provided by users is usually very small

compared to the number of unknown ratings (and consequently the rating

matrix is very sparse) [177, 178, 179, 180, 181, 182].

• The use of distributed architectures (e.g., P2P networks) in recommender

systems [183, 184, 185, 186, 187, 188].
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• Recommendations to groups of users with common interests [189, 190,

191, 192, 193, 194, 195, 196].

• The delivery of explanations, that allow the user to know the reasons

for the recommendations received. These explanations can be based on

ratings of similar users, attributes that describe the items, or the use of

conversational systems (e.g., questioning and answering techniques) [197,

198, 199, 200, 201, 202, 203, 204, 205, 206]. Knowledge-based recom-

mender systems can lead to useful explanations, which are often difficult

to obtain with pure data-driven approaches based on statistics or subsym-

bolic AI techniques such as neural networks; as an example, motivated

by this, Virtual Bartender [207] proposes a combination of data-driven

and knowledge-based recommendations. A survey on the integration of

symbolic and subsymbolic techniques for explainable artificial intelligence

(XAI) appears in [208].

In-depth studies of some of these challenges can be found in [4, 5, 6].

3.2. Context-Aware Recommender Systems

Most RS operate in a two-dimensional (2D) User × Item space. However,

with advances in the fields of ubiquitous and mobile computing, the lack of

analysis of contextual information in recommender systems has been strongly

criticized [29, 109, 209, 210]. So, whereas researchers and developers had previ-

ously mainly focused on solving classic problems of recommender systems, such

as the cold start problem [121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131],

high dimensionality [211, 212], spam vulnerability [213, 214], and many others

(see Section 3.1 for other challenges of traditional RS), researchers working on

recommender systems have recently recognized the need to investigate them in

domains where the contextual information is particularly relevant [32, 215, 216,

217].

For example, considering only information about the users and items is not

enough in applications such as the recommendation of vacation packages. In
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this case, it is important not only to determine which items should be recom-

mended, but also when these recommendations should be provided and how

to combine them in a ranked list. Moreover, traditional collaborative filtering

techniques generally take into account all the collected ratings of the items to

generate the recommendation models; these techniques assume that the context

is homogeneous, but actually a user can assign different ratings to the same

item in diverse contexts, as the relevance of a specific item may depend on

the current context of the user. Therefore, additional contextual information

(e.g., the time of the day, with whom the user is with, the weather condi-

tions, what the user is doing, etc.) should be considered in the recommendation

process. Examples like this one have motivated research on Context-Aware Rec-

ommender Systems (CARS) [30, 31, 32, 38]. A pioneer proposal for CARS is

the one by Adomavicius et al. [30, 31, 32]. To improve the recommendations

based on contextual information, they extend the classical 2D paradigm to a

multidimensional recommendation model that provides recommendations based

on multiple dimensions: User × Item × Context. So, besides considering the

information of users and items, CARS take into account context information,

which is a set of contextual attributes C = {c1, c2, . . . , cq}. In particular, those

authors introduced three different context-aware recommendation paradigms:

• Pre-filtering, where the contextual information helps to filter the data

before applying traditional recommendation algorithms.

• Post-filtering, where the contextual information is considered only in the

final step of the process. So, contextual information is initially ignored and

the ratings are predicted using any conventional 2D recommender system,

taking all the potential items to recommend into account. Afterwards,

the resulting set of recommendations is adjusted (contextualized) for each

user by using contextual information.

• Contextual modeling, where the contextual information is used directly in

the modeling technique as part of the estimation of ratings.
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The pre-filtering and post-filtering methods consider the context as an ad-

ditional filtering step that can be applied to any traditional recommendation

algorithm, either to restrict its input (pre-filtering) or its output (post-filtering).

On the other hand, contextual modeling recommender systems imply a radically

different approach, as the contextual information directly affects the generation

of the recommendation models.

In several studies, the pre-filtering, post-filtering and contextual modeling

paradigms have been compared [133, 218, 219, 220, 221]. The experimental

analysis provided in [133] shows that none of the considered context-aware rec-

ommendation paradigms dominates the others, considering their predictive per-

formance and diversity measures. However, the performance was affected by

several factors, such as the type of recommendation task (e.g., find all the rele-

vant items or only the top-k items), the granularity of the context information,

and the type of dataset (e.g., depending on features such as the existence of a

high or low sparsity and the heterogeneity of data).

In certain occasions, the problems to be solved require the combination of

several recommendation techniques. Hence, the combination of context-aware

recommendation paradigms facilitates the emergence of new proposals. An ex-

ample is the approach proposed in [30], which uses several pre-filtering models

and combines their outputs. Another interesting hybridization could be to com-

bine the pre-filtering and post-filtering paradigms [222]. For example, sometimes

using the pre-filtering approach may be more useful for attributes such as the

day of the week, while for context attributes like the weather the post-filtering

approach might be more appropriate.

Many researchers apply AI techniques in the models they propose for the de-

sign of CARS. In Figure 8, we show examples of artificial intelligence techniques

applied for the development of context-aware recommendation approaches. We

identified the use of these techniques only in the pre-filtering and contextual

modeling paradigms. In post-filtering paradigms, traditional recommender sys-

tems are exploited and then the resulting item list is filtered or adjusted by

using contextual constraints (e.g., filtering the items based on their distance
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from the user, and then adjusting the candidate list to solve conflicts). For ex-

ample, in a scenario of recommendation of points of interest (POIs), the authors

of [223, 224] re-ordered the list of candidate items to recommend in such a way

that the distance that the mobile user will need to traverse to access those items

(e.g., museums, restaurants, etc.) is minimized. In the following, we will discuss

in more detail the three paradigms separately.

Figure 8: Examples of artificial intelligence techniques applied in contextual recommendation

paradigms.

3.2.1. Pre-filtering Paradigm

In the pre-filtering approach, the contextual information helps to select the

most relevant data (User × Item) for 2D recommendations. In Figure 9, we

show the general process of the pre-filtering paradigm. Firstly, the contextual

information is used to filter out irrelevant ratings. Then, a traditional recom-

mendation model based on contextualized data suggests appropriate items to

the user.

The pre-filtering paradigm is also known as the reduction-based approach,

as it reduces the problem of multidimensional contextual recommendations to

the traditional 2D recommendation space [30]. For example, in a context-aware

music recommender system, if a person enjoys listening to music while running
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Figure 9: Pre-filtering paradigm.

and is at the moment practicing that activity, then the recommender system will

only use rating data (User × Item→ Rating) related to the context running.

An advantage of this approach is that it supports all the 2D recommenda-

tion models proposed in the literature [109]. However, if it discards a large

amount of data, then the model may not have enough data to generate reli-

able recommendations. Moreover, it would be interesting to enhance the pre-

filtering paradigm with the incorporation of context hierarchies. For exam-

ple, the context C = {Girlfriend, Theater, Saturday} could be generalized to

C ′ = {WithCompany,AnyP lace,AnyT ime}.

3.2.2. Post-filtering Paradigm

The basic idea of the post-filtering approach is to consider the context as an

additional constraint to verify a posteriori. As shown in Figure 10, this paradigm

does not take into account the contextual information in the initial data input

of the 2D recommendation model. Only the ranked list of candidate items

(obtained by using a traditional 2D recommendation model) will be adjusted

with the contextual information. This adjustment can be performed in two

ways [29]:

• Filtering (or selecting) the most relevant items in a given context. In

a context-aware book recommender system, an example of item filtering

would be the following: if a person usually reads science books over the

weekend, the system may remove non-science books from the candidate

list of books to recommend during that period.
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Figure 10: Post-filtering paradigm.

• Adjusting the ranking of the list retrieved based on a given context. Fol-

lowing with the same scenario, if a ranking adjustment strategy is applied

instead, books with more stars (i.e., better valued) written by the authors

preferred by the user in that specific context could have a higher value in

the ranked list.

In the filtering adjustment, if there are very few contexts similar to the one of

the current user, then many items from the candidate list to recommend could

be eliminated (even all the items, in the worst case). In the case of ranking

adjustment, if there are no similar contexts, then an approach equivalent to a

traditional recommendation would be applied.

Moreover, the contextual post-filtering approaches (for both forms of adjust-

ment) can be classified into the following types [29]:

• Heuristic post-filtering approaches, which try to find the common item

features for a user in a given context, and then use these features to

adjust the list of recommendations.

• Model-based post-filtering approaches, which build models to predict the

probability that the user will prefer an item type in a given context (e.g.,

likelihood of choosing books of a certain literary genre), and then use this

probability to adjust the list of recommendations.

Like in the case of pre-filtering, a relevant advantage of the post-filtering

paradigm is the ability to use any traditional recommendation model. In addi-
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tion, similarly to the pre-filtering approaches, incorporating the ability to man-

age context generalization models (context hierarchies) into the post-filtering

paradigm would be an interesting enhancement.

3.2.3. Contextual Modeling Paradigm

In the contextual modeling approach, the contextual information is used di-

rectly in the recommendation model. For this purpose, multidimensional (MD)

predictive models (e.g., a probabilistic model, decision tree, etc.) or heuristics

that incorporate a context dimension in the user and item data are applied

(see Figure 11). This contextual approach assumes that context attributes are

appropriate features to learn a recommendation model.

Figure 11: Contextual modeling paradigm.

In this paradigm, traditional 2D recommendation algorithms cannot be used

directly (unlike in the case of the pre-filtering and post-filtering paradigms).

However, these can be modified (or extended) with the purpose of incorporat-

ing the context dimension in the rating estimation. For example, a traditional

neighborhood-based recommendation approach [225] was extended to the mul-

tidimensional case in [30].

3.3. Context-Aware Recommender Systems in Mobile Environments

Some context-aware recommendation architectures have been proposed in

the literature [226, 227, 228]. However, these architectures are not designed

with mobile users in mind, where the context and the movements of the users

may be important factors to consider when deciding which items should be

recommended. This problem is indeed now a future research direction.
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Moreover, the widespread availability of mobile devices, such as smartphones

and portable computers, implies that the relevance of mobile computing scenar-

ios is nowadays undeniable. This, in turn, demands new approaches for the

development of recommender systems that can handle and effectively exploit

the data available in those environments. Hence, the combination of context-

aware recommendations and mobile computing gives rise to the emergence of

Mobile Context-Aware Recommender Systems (mobile CARS) [33, 40, 41, 67].

The main goal of mobile context-aware recommender systems is to suggest

the right items (or services) to mobile users anywhere and at anytime, being

the contextual information a key element in determining the relevance of the

items. In mobile environments, where the user is moving and the context is

highly dynamic, it is essential to provide precise recommendations and avoid

overloading the user with the suggestion of many items. Regarding the spe-

cific recommendation method used, during the design of a mobile context-aware

recommender system it is necessary to decide a suitable contextual recommen-

dation paradigm (i.e., pre-filtering, post-filtering, or contextual modeling), or

a combination of these, which best fits the problem to be solved. Besides, the

appropriate way for the user to request or receive the recommendations (pull

or push approach) has to be determined. Likewise, during the recommendation

process, the answer to a user’s query must be continuously re-evaluated by the

system until the user decides to cancel it, as the recommended items can change

continuously with context changes. From the perspective of mobile computing,

recommender systems are characterized by the following elements [33]:

1. User mobility: the users can access a mobile information system in differ-

ent locations, while moving.

2. Device portability: the device used to access the information system is

mobile (e.g., a smartphone, a tablet, a portable computer, etc.).

3. Wireless connectivity: the device used to access the recommender system

uses wireless communication technologies (e.g., Wi-Fi or Bluetooth).

In [229], the authors identified three important factors that can influence
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the accuracy of mobile CARS: the context, the recommendation method, and

privacy considerations. On the one hand, the type of context (e.g., computing

context, user context, physical context, etc.) to be included in the recommender

system must be determined considering the target recommendation domain. On

the other hand, traditional CARS include static context information (e.g., gen-

der, age, contact list, etc.), generally provided explicitly by the users. However,

in mobile scenarios, the context is highly changing. For example, in a taxi rec-

ommendation scenario both users and items to recommend can be on the move.

Hence, an important aspect to consider in this type of recommender systems

is the exploitation of dynamic context information (e.g., the location, transport

way, mobility, time of the day, etc.), captured from the environment through

sensors (e.g., accelerometers, optical sensors, microphones, etc.) embedded in

mobile devices and other available data sources (e.g., social networks, traffic web

services, etc.). In addition, mobile CARS must be able to automatically update

the contextual information of users and items. An advantage of acquiring dy-

namic context information implicitly is that the users could avoid entering the

information manually into the system. Currently, some mobile CARS use dy-

namic context information (e.g., mood, companion, etc.), but require the users

to enter the information explicitly into the system. The problem is that many

users do not usually enter this type of information (as it takes time and it is

not convenient for them), and then the system lacks relevant contextual infor-

mation needed to generate accurate recommendations. As an example, the STS

dataset [230] (obtained with the South Tyrol Suggests mobile app) collects in-

formation about 14 context attributes, but 89.37% of the actual context values

are missing [231].

To overcome the problem mentioned above, context data should be captured

automatically, whenever it is possible, by using sensors. In Section 2.2, we em-

phasized the importance of sensors for the topic covered in this survey from a

general perspective. Table 1 shows a summary of some physical sensors used

in the literature of mobile CARS for the acquisition of highly-dynamic contex-

tual information, which is of key importance for the particular case of mobile
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CARS. For example, the user’s current location (e.g., home, college, campus,

classroom, library, etc.) and movement trajectory are context data generally

acquired from GPS sensors, which is one of the most commonly used sensors

in mobile CARS. Through Wi-Fi, the mobile device can identify other nearby

networks, as well as extract information that characterizes them. The noise

level around the user (e.g., silent, normal, and loud) can be determined by us-

ing the microphone embedded in the user’s device. By using the light detector,

the ambient light level (illumination) can be obtained to infer the time of the

day (e.g., morning, afternoon, evening, and night), in case a GPS receiver is not

available (as otherwise the precise time of the day could be obtained through the

GPS receiver). Accelerometer and gyroscope sensors measure the acceleration

and rotation rate of the mobile device, respectively; using the values obtained

from these sensors, the activity that the user is performing (e.g., walking, run-

ning, sitting) or his/her transport way (e.g., on foot, bicycle, car, bus, subway)

can be inferred. On the other hand, the temperature is an example of useful

contextual information (e.g., to determine if it is hot, normal, or cold) that is

usually acquired through thermometer sensors. As a final example, a number

of user’s physiological conditions can be measured by using biomedical sensors

or wearables (e.g., the stress level of the user can be determined by measuring

his/her heart rate).

In Table 2, we show examples of virtual, human and social sensors used

to obtain contextual information for mobile CARS. Regarding virtual sensors,

some CARS exploit certain functionalities of the mobile device’s operating sys-

tem to capture relevant contextual information, such as the ringer mode (e.g.,

sound, vibrate, and silent), battery information (e.g., battery level, battery tem-

perature, battery status), day of the week, time of the day, user activity (e.g.,

use of calls and SMS), mobile apps that are active, etc. On the other hand,

some recommender systems use web services available on the Internet (e.g., ex-

ternal weather forecast services) to extract contextual information, such as the

temperature (e.g., hot, normal, cold), humidity (e.g., dry, humid, normal) and

weather conditions (e.g., sunny, cloudy, clear sky, rainy, snowing) of the envi-
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Work
Physical Sensors

GPS Wi-Fi Microphone Accelerometer
Light

detector
Gyroscope Thermometer

Biomedical

and ambient

sensors

[232] 3 3 3 3 3 3

[233] 3 3 3

[234] 3 3

[235]

[236]

[237]

[26]

[238]

[239]

3

[240] 3 3

[241] 3 3

[242] 3 3 3 3 3

[243] 3

Table 1: Examples of physical sensors used by mobile CARS for context acquisition.

ronment. In university contexts, web services based on maps (for indoor and

outdoor environments) have been used to obtain the locations of users on the

campus [244]. Another way of detecting the location of mobile users is through

the geolocation API of HTML 5, which abstracts the programmer from the use

of specific sensors. An example of human sensors could be represented by phys-

ical actions performed by clinicians in operating rooms (e.g., surgical actions

such as administering anesthesia, performing an intubation, or performing an

incision), which are provided to the system to recommend virtual actions in

cases of complications and emergencies. As a final example, social networks

are used as sensors to capture relevant information from users, such as check-in

records of POIs, as well as information about friends and their preferences.

4. Mobile CARS in Depth

In this section, we analyze mobile CARS in detail, as they are one of the

most challenging and representative types of CARS. First, in Section 4.1, we

present the main techniques used for mobile CARS, considering both pull-based

recommendation approaches and push-based approaches. Then, in Section 4.2
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Work
Virtual sensors Human sensors Social sensors

Operating systems’

functionalities
Web services Geolocation API

Physical actions

performed by

clinicians

Social networks

[232] 3

[233] 3 3

[234] 3

[244] 3

[245] 3

[246] 3

[241] 3 3

[235] 3

[243] 3

[238] 3

[239] 3 3

Table 2: Examples of virtual, human and social sensors used by mobile CARS for context

acquisition.

we present specific examples of mobile CARS for different application domains.

4.1. General Approaches for Mobile CARS

We classify mobile context-aware recommendation approaches into two main

categories: pull-based approaches and push-based (proactive) approaches. In

the first case, we assume that the user actively (or explicitly) requests recom-

mendations. In the second case, the user, under certain contextual conditions,

implicitly receives recommendations without explicit user requests. A common

characteristic in both cases is that the contextual factors (e.g., location, tem-

perature, transport way, etc.) are dynamic, in the sense that they can change

continuously. Tables 3 and 4 present an overview of several approaches for

mobile CARS and highlight the AI techniques used in each of them.

4.1.1. Pull-Based Mobile CARS

Pull-based mobile CARS follow a request–response pattern. These systems

only recommends items if a user makes an explicit (or query-based) request.

Several pull-based context-aware recommendation approaches have been pro-

posed for mobile environments [224].
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References Description AI techniques

[246]
Situation-aware proactive recommender that pushes information about

relevant restaurants to the user by applying AI techniques.
Fuzzy logic and rules.

[234]
Context-aware recommendation model that uses AI techniques to suggest

services to mobile users.

Fuzzy logic, rules, and

Bayesian networks.

[247]
Contextual advertisement recommender that understands the needs of the

mobile users by applying data mining techniques.

Decision tree-based

classification rules.

[241] Context-aware mobile guide system that predicts future leisure activities. Clustering algorithm.

[236]

Approach that recommends POIs to bank customers, based on the places

visited by clients (according to their payments with a credit card), which

are initially grouped by using unsupervised learning techniques.

Canopy and k-means

clustering algorithms.

[248]
Intelligent Shopping-aid Sensing System, which facilitates the consumer

shopping process by using ML techniques.

k-means clustering algorithm

and association rules.

[237]

Context-aware recommendation application that guides the mobile users

towards suggested POIs, by considering the location, the behaviour and

favorite category of users. The recommender exploits clustering techniques

to identify similar users.

k-means clustering algorithm.

[249]
Intelligent transport system that applies ML techniques to solve logistics

problems (recommending an optimal transporter to customers).

k-means clustering algorithm

and Principal Component

Analysis (PCA).

[242]
Probabilistic recommender that uses contextual information and music

content to suggests music to users for daily activities.

Classification algorithm based

on Näıve Bayes.

[250]
Recommender that suggests POIs based on contextual information

obtained in the context of Internet of Things (IoT).

Classification algorithm based

on Näıve Bayes.

[240]

Recommender that suggests restaurants by considering contextual

information. Specifically, the transportation mode is inferred by using

a Bayesian network classifier.

Classification algorithm based

on Bayesian networks.

[233]
Context-aware Bayesian hybrid recommender system that combines the

content-based and collaborative filtering recommendation models.

Classification algorithm based

on Bayesian networks.

Table 3: AI techniques used in different approaches for mobile CARS (1/2).

In Figure 12, we present an overview of pull-based recommendation mod-

els proposed in the literature, by taking into account their evolution and per-

formance. There are authors who extend 2D recommender systems to achieve

CARS (e.g., [253, 254]; see in Figure 12 the arrows from boxes labeled with “RS”

to boxes labeled with “CARS”) while others evolve existing CARS (e.g., [232,

255]; arrows from “CARS” to “CARS” in Figure 12). As the figure shows,

the proposed n-dimensional MF-based recommendation models have outper-

formed some classical MF-based recommenders (e.g., S-DEEPREC [251] out-

performs LibFM [256] and SVD++ [257]), as well as other n-dimensional MF-

based context-aware recommendation models (e.g., GeoMF [258]). On the other
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References Description AI techniques

[245]
Context-aware recommendation approach that applies a predictive linear model

to infer the relevance of a POI in a specific contextual situation.
Predictive linear model.

[217]
Context-aware probabilistic matrix factorization approach that addresses the data

sparsity problem in POI recommendations by using information of friends.

Generative statistical model

(Latent Dirichlet Allocation

–LDA–).

[235]

Context-aware recommendation approach for surgeons, that recognizes concurrent

actions on the raw data obtained from sensors, by using ML techniques, to suggest

relevant virtual actions in operating rooms.

Conditional Random Fields

(CRF).

[243]

Recommendation framework that personalizes multimedia contents, by predicting

the latent preferences of user’s contexts through adaptive interfaces in an Ambient

Intelligent (AmI) environment.

Probabilistic Latent Semantic

Analysis (PLSA) and

Expectation-Maximization

(EM) algorithm.

[238]

Location-based social network recommender system that uses the user’s location

trajectory, user-shared images, and textual comments, to suggest POIs to mobile

users.

Deep Learning –Convolutional

Neural Networks (CNNs)– and

clustering algorithms.

[251]
Location-aware recommendation model that exploits feed-forward neural networks

to learn the latent factors of users and locations, by using check-in information.

Deep Learning –Feed-Forward

Neural Networks (FNNs)–.

[232]

Latent Context Matrix Factorization (LCMF) recommendation algorithm that

performs a selection of the best contextual features by using unsupervised

techniques.

Unsupervised Deep learning

(Auto-Encoding) and Principal

Component Analysis (PCA).

[252]
Sequential latent context-aware recommendation model that uses RNNs to learn

a nonlinear interaction function between users, items, and contexts.

Deep Learning –Recurrent

Neural Networks (RNNs)–.

Table 4: AI techniques used in different approaches for mobile CARS (2/2).

hand, the exploitation of DL-based techniques in CARS has represented a signif-

icant improvement regarding several state-of-the-art MF-based recommenders

(e.g., [251, 252, 255]). In the following, we detail the most relevant contributions.

Most contextual modeling approaches proposed in the literature use super-

vised learning techniques to incorporate contextual information into the recom-

mendation process. The training set of this type of model requires, for each

vote of an item, information of each context attribute. Sometimes, contextual

information is unknown, and therefore an increase of the number of context

attributes could aggravate the data sparsity problem. In [232], the authors

emphasized the need to limit the dimensionality of the context representation.

Hence, they decided to extend the Context-Aware Matrix Factorization (CAMF)

recommendation approach presented in [253] by proposing a Latent Context Ma-

trix Factorization Recommendation (LCMF) approach. The main idea of this

new approach is to extract latent context data from a rich set of mobile sen-

sors and use them to improve the recommendation algorithm. To address the
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Figure 12: Overview of related work considering the evolution and performance of pull-based

recommendation models.

sparsity problem, it performs a selection of the best features (e.g., regarding

the location, time, ringer mode, speed, battery, activity, microphone, light, ac-

celerometer, rotation, gyroscope, etc.) that can be used to infer unexplored user

contexts, by using deep learning and Principal Component Analysis (PCA). The

proposed model was evaluated with an Android application that, based on an

explicit query provided by the user, recommends POIs nearby, such as restau-

rants, bars, entertainment centers, etc. Considering the RMSE (Root Mean

Squared Error), the proposed LCMF approach was shown to be superior to the

Context-Aware Matrix Factorization model [253] and the BiasSGD Traditional

MF model [259].

Models based on Matrix Factorization (MF) are one of the most effective col-

laborative filtering recommenders [253]. However, in [251] the authors presented

a deep learning based recommendation model that significantly outperforms

33



several state-of-the-art recommendation models based on matrix factorization

(e.g., SVD++ [257], libFM [256], and GeoMF [258]). The authors explain an

improvement in the Normalized Discounted Cumulative Gain (NDCG), due to

the high capacity of neural networks to better detect latent factors related to

user preferences and locations. Specifically, they implemented a location-aware

recommendation model, called S-DEEPREC, that exploits feed-forward neural

networks to learn the latent factors of users and locations, by using check-ins

of users. A novel aspect to highlight is the incorporation of spatial constraints

into latent factors related to locations (e.g., geographically-close locations are

given a higher preference, as opposed to the one assigned to geographically-

distant locations). To implement time-aware location recommendation models,

they proposed, as future work, to apply other types of neural networks, such as

Recurrent Neuronal Networks (RNNs). Recently, in [255], the authors applied

Convolutional Neural Networks (CNNs) in a time-aware recommender system to

study the changes of user preferences over time. The experimental results show

improvements over the CAMF [253], NeuMF [260], BPR-Opt [261], TF [262],

CHNMF [263], and ConvMF [264] models.

The sequential latent context-aware model (SLCM) [252] is another example

that uses deep neural networks to address limitations of traditional MF (i.e.,

use of a fixed linear function to capture the complex structure of user and item

interactions, and explicit definition of latent factors) for collaborative filtering

recommenders. Specifically, the authors used RNNs to learn a nonlinear func-

tion of user, item, and context interactions. In movie and POI recommendation

domains, the proposed model improves the recommendation accuracy (MAE,

RMSE, and Hit@K) compared to other state-of-the-art context-aware models

(e.g., [259, 253, 232]), which are also extensions of the neural network collabora-

tive framework (NCF) [260]. A relevant aspect of this work is that the authors

deal with the user’s privacy problem, by using context sequences observed in

the system for different users instead of individual context sequences per user;

this is one of the few papers that tackle this challenge. As future work, the

authors plan to solve “the new user problem” by extending the SLCM model
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(for example, studying recommenders based on user groups), and to apply other

neural network architectures such as CNNs.

In the same line of collaborative filtering research based on MF, the authors

of [265] addressed the sparsity problem using latent behavior patterns learned

from implicit contextual features (e.g., the current location, the time of the day,

and the day of the week). They proposed two POI recommendation methods:

Global Pattern Distribution Model (GPDM) and Personalized Pattern Distribu-

tion Model (PPDM). Both methods differ in the way they learn the behavioral

pattern distribution. The first method assumes that all the users have a fixed

pattern distribution, while PPDM learns a personalized pattern distribution per

user. The GPDM and PPDM models were compared with state-of-the-art mod-

els for next POI recommendation [266, 267, 268, 269, 270, 271, 272], by using

the Foursquare and Gowalla datasets. The proposed models obtained better

recall and NDCG.

Moreover, a context-aware Bayesian hybrid recommender system was pro-

posed in [233]. The proposed model combines content-based and collaborative

filtering recommendation models. It uses contextual information (e.g., the lo-

cation, season, day of the week, time of the day, temperature, etc.) obtained

from a mobile device, user ratings, and attributes that characterize the items.

To improve the prediction accuracy, a Bayesian Network is applied in both

recommendation models.

4.1.2. Push-Based Mobile CARS

Generally, mobile devices such as smartphones have some limitations in com-

parison to traditional mobile or desktop computers; for example, they usually

provide restricted input facilities (e.g., lack of a comfortable keyboard, small dis-

play sizes, etc.). So, a recommender system can try to relieve the user from hav-

ing to type or introduce significant information as an input, by using push-based

context-aware recommendations rather than pull-based context-aware recom-

mendations. A push-based context-aware recommendation approach automat-

ically delivers recommendations to the mobile user in an appropriate context,
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without explicit requests from him/her.

For example, a proactive contextual recommendation approach that pushes

suggestions to the mobile user when the current situation (i.e., the context) is

considered appropriate, without explicit user requests, was proposed in [273].

The idea is to determine not only which items to recommend, but also when to

make a recommendation. Hence, the proposed approach periodically analyzes

the current contextual conditions and, if the current context is appropriate,

then a second phase is activated to examine the suitable items to suggest. For

example, a gas station recommender system can proactively suggest a gas station

when the remaining fuel level is low and a gas station is nearby, without causing

much (or any) detour.

From the perspective of AI techniques, a contextual recommendation ap-

proach for mobile environments was proposed in [234]. This approach for smart-

phone users automatically recommends services (or actions related to the volume

adjustment, call settings, profile, applications, etc.) in a specific contextual sit-

uation. For example, when the user is in a library, the recommendation model

activates the vibrating mode automatically and also offers services like book

search. Contextual information (e.g., the day, time, location, temperature, etc.)

is captured by the available sensors (e.g., accelerometer, temperature, humid-

ity, etc.), and obtained from data stored by applications in electronic calendars,

address books, task lists, etc. In this contextual recommendation model, the

context values captured by the sensors are represented as fuzzy values to define

the context situations, the actions to execute under the current context condi-

tions are determined by using rules, and Bayesian Network techniques are used

to classify the incoming calls (e.g., into high-priority calls, low-priority calls,

and unknown calls).

An agent-based architecture for context-aware recommendation was intro-

duced in [244]. The eAgora? application is an implementation of the proposed

architecture in a university scenario, which is characterized by an environment

which is dynamic (there are mobile users), heterogeneous (there are several mo-

bile devices, social interactions, and services available), intelligent (when the
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system is able to react smartly to environment changes), and contextualized

(when it is context-aware). The application learns the user preferences continu-

ously, by using software agents, to adjust automatically to the context changes

and proactively recommend events occurring in the campus (academic events

and cultural events).

A context-aware recommender system that pushes information about dif-

ferent types of items (e.g., restaurants, gas stations, attractions, etc.) in an

environment of Internet of Things (IoT) was proposed in [250]. It takes into

account the user’s contextual information (e.g., the time, outside temperature,

human temperature, blood pressure, if the user is out of his/her country, if

he/she is on holiday, the oil level in the car, if the car engine is working at

the moment, and if it is lunchtime or not) during the recommendation process.

When a type of recommendation (e.g., about a hospital, gas station, restaurant,

or cinema) is triggered, then a Näıve Bayes classifier is used to provide informa-

tion of interest to the user. For example, if the system detects that the user’s

blood pressure is high, it would recommend hospitals near his/her location.

Most push-based mobile CARS assume the availability of a centralized server

that stores a large database about all the ratings that are released over time

(e.g., [241, 243, 274, 275]). In [276], the authors analyzed the possibility of

using pure mobile P2P networks to exchange relevant data in contexts where

no centralized database or server exists. They implemented a simulation appli-

cation that allows testing a trajectory-based mobile CARS able to proactively

push relevant items to mobile users. The idea is to recommend to the user a

trajectory to follow within a museum, taking into account the sequence of works

of art to observe during the time available. In this scenario, the museum visi-

tors propagate partial amounts of rating data opportunistically (i.e., when they

meet each other in the physical space). The experimental results show that the

mobile P2P-based recommendation approach shows a performance close to a

centralized strategy but it does not outperform it. This is because the mobile

P2P recommendation variant to learn the models only uses information collected

opportunistically in the local database of the user’s mobile device, rather than
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using a centralized server that contains all the information available. However,

mobile P2P architectures have potential advantages over centralized solutions,

such as the following: they do not imply costs to deploy a required support

infrastructure; the mobile users do not incur any cost derived from the use of

cellular communications (e.g., 3G, 4G, or 5G) when providing rating informa-

tion; and they may provide better privacy guarantees, as no centralized server

collects all the information provided by the users.

4.2. Examples of Mobile CARS in Different Domains

In this section, we present several examples of context-aware recommender

systems for mobile environments in different domains (e.g., recommendation

of restaurants, POIs, music, etc.). As a summary, in Table 5, we provide an

overview of the context variables and example application domains of existing

work for mobile CARS. Moreover, from the perspective of Information Systems

(IS), in addition to contextual attributes, mobile CARS take into account ad-

ditional information related to users and items. In Tables 6 and 7, we present

some application examples that use item and user attributes.

Regarding the evaluation of mobile CARS, some works apply rating predic-

tion measures used to evaluate traditional recommender systems. These metrics

determine the accuracy of the recommendations taking into account their er-

ror. We identified that, among these metrics, the Mean Squared Error (MAE)

and Root Mean Squared Error (RMSE) measures are the ones mostly used by

researches in the mobile CARS field. In Table 8, we show some examples of mo-

bile context-aware recommendation proposals that use these metrics. However,

mobile CARS are a new generation of recommender systems, that probably re-

quire metrics adapted to dynamic environments and context-enriched data sets.

On the other hand, some researchers apply Information Retrieval (IR) metrics

for the evaluation of mobile CARS. Examples of these metrics are the preci-

sion, recall, F-measure, and Mean Average Precision (MAP). Finally, there are

ranking metrics focused on the evaluation of top-k recommendations, where the

utility of a recommended item is proportional to its position in the ordered list
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Reference Approach Context variables considered Domain

[247] Pull location, time, interest, satisfaction level

POIs
[245] Pull

distance, temperature, weather, season, companion, time of the

day, day of the week, crowdedness, familiarity, mood, budget,

travel length, transport way, travel goal

[236] Pull time, activity, location

[238] Pull location, trajectory of the user’s activity, time

[237] Pull
location, user’s behavior or actions, POI categories preferred by

users

[265] Pull location, time of the day, day of the week

[246] Push time, location, distance, budget, reachability

restaurants
[274] Push

location, time, activity, companion, status of the mobile device

(e.g., flight mode), distance

[240] Pull location, transport way, distance, activity

[273] Push
location, time, transport way, companion, distance, fuel level of

the car, detour needed, total length of the route, traffic

gas stations,

restaurants

[254] Pull
driving style, road type, landscape, sleepiness, traffic conditions,

mood, weather, time of the day
music

[242] Pull activity, music audio content

[243]
Pull /

push

location, companion, time of the day, date, emotions, weather,

things (e.g., physical components, cellphone)

multimedia:

news, music,

movies

[241] Push
time of the day, location, weather, user plans, price, noise level,

availability of parking, smoking, venues’ business hours

leisure

activities

[26] Pull location, time, companion

food,

shopping,

health

services,

POIs (for

tourists)

[248] Pull time, location, day of the week
movies,

POIs

[239] Pull location, time

sessions and

exhibitors

of an event

[248] Pull location
products of

a shop

[249] Pull

location, car availability, car’s maximum speed, car tank, year of

manufacture of the car, car millage counter, car’s CO2 emissions,

road congestion

transporters

Table 5: Overview of example domains and context variables considered by existing proposals

of mobile CARS.
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Application Prototype? User’s attributes Item’s attributes Item type

LARMU [247]
gender, location, interest,

satisfaction level

type of the place,

location

POIs

ReRex [245] 3

companion, crowdedness,

familiarity, mood, budget,

travel length, transport

way, travel goal

descriptions of POIs

Labs [236] 3

age, gender, average

expense in credit card

transactions per year,

places where bank clients

have spent their money,

payment amount, time

and date of the purchase,

location

category, name,

address, location

UTravel [237] 3

age, gender, employment,

behavior (actions or

interactions with

mobile apps)

descriptions of POIs

DCAPR [238]

location, activity

trajectory, age, gender,

education, nationality,

textual comments, pictures

shared in social networks

N/A

SAPRS [246] location
budget, reachability,

location
restaurants

R2Proactive [274] 3 activity, companion

name, cuisine type,

description, name,

average price

Co-ARS [240] 3

user’s browsing history

(real-time clicking on

options to get information

about specific restaurants),

location, transport way

name, location,

rating, cuisine type,

address, pictures

of the restaurant

Table 6: Overview of user and item attributes considered by existing proposals of mobile

CARS (1/2).

of recommendations. Examples of these metrics are the NDCG and the P@K

metric.
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Application Prototype? User’s attributes Item’s attributes Item type

ProactiveRS [273] 3 location, companion price, location
gas stations,

restaurants

InCarMusic [254] 3
name, genre preferences,

sleepiness, mood
genre

music

ACACF [242] 3 user’s activity music audio content

RecAm [243] 3

social network, sex, age,

location, companion,

emotions

content category

multimedia:

news, music,

movies

iS3 [248] 3

age, gender, frequency

of purchase, purchase

habits

content, price, location,

promotion

products of

a shop

Magitti [241] 3

user plans (content of

emails, calendar,

appointments,

applications used, web

pages and documents

viewed, messages),

location

price, noise level,

availability of parking,

smoking, location,

venue’s business hours

leisure

activities

EventAware [239] 3
areas of interest, time,

location

name, description,

location, session start

time, days of the event,

contact information

sessions,

exhibitors

Transporter and

Customer [249]
3

name, availability status,

location

location, max speed,

CO2 emissions (car

tank, car model, car

maker, year of

manufacture of the

car, millage counter)

transporters

Table 7: Overview of user and item attributes considered by existing proposals of mobile

CARS (2/2).

4.2.1. Mobile CARS for the Recommendation of POIs

In the domain of RS, the recommendation of POIs has received a consider-

able attention [277, 278, 279]. In the same way, this has happened in the specific

research area of mobile CARS, characterized by a very dynamic environment

and the fact that the user is moving. In [247], the authors emphasize the need to

develop recommendation architectures that can be applied to real problems. Be-
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sides, they consider that many of the proposed approaches are developed based

on the interests of service providers rather than clients. Hence, they proposed

a location-based advertisement recommender for mobile users, called LARMU,

where the classical collaborative filtering approach is modified to include several

context dimensions related to mobile users (e.g., their location, time, interest,

and satisfaction level). To understand the needs or interests of the users, they

applied data mining techniques (e.g., decision tree-based classification rules and

the CART algorithm). The proposed algorithm was evaluated in the context

of the recommendation of places for shopping, eating, enjoying, drinking, and

learning. Considering the MAE, LARMU was shown to outperform a tradi-

tional collaborative filtering model. The experimental results were obtained by

using data collected from users, but the proposed architecture was not applied

in a real-world mobile scenario. Due to this limitation, the initial motivation of

the authors was not completely satisfied. In addition, the sparsity problem of

ratings remains as a problem that needs to be addressed.

Reference MAE RMSE Precision Recall F-measure MAP Survey scores Hit@K AVG Rank NDCG

[247] 3

[217] 3 3 3

[248] 3 3 3

[254] 3

[238] 3 3 3

[243] 3 3 3 3

[242] 3 3

[232] 3 3 3 3

[250] 3

[245] 3

[236] 3

[246] 3

[274] 3

[273] 3

[241] 3

[239] 3

[237] 3 3 3 3

[26] 3 3

[251] 3

[252] 3 3 3

[265] 3 3

Table 8: Examples of evaluation metrics used in mobile CARS.
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In [245], motivated by the idea of simplifying the user’s effort to provide

ratings of items seen in different contexts, the authors proposed a methodology

that identifies the existing quantitative dependency between user ratings and

context factors. Through this methodology, users first evaluate whether the

context influences (increases or decreases the probability of, or has an impact

on) the selection of POIs. Then, a predictive linear model is learned with this

information to infer the relevance of a POI in a specific contextual condition.

To put it in practice, a mobile context-aware recommendation prototype, called

ReRex, was developed, that suggests interesting POIs for tourists, according to

contextual conditions (e.g., distance, temperature, weather, season, etc.) that

the system must consider during the recommendation process. Another impor-

tant aspect to highlight is the ability of ReRex to explain the recommendations

provided, thanks to the use of a predictive linear model which identifies the

most relevant contextual factor for each user’s request. For example, the sys-

tem could explain the suggestion of visiting a museum by arguing that the

climatic conditions are unfavorable to be outdoors. The experimental results

show that users prefer context-aware recommendations rather than traditional

recommendations. However, the authors propose to improve the explanations

provided, due to a low user satisfaction with them.

In the line of developing architectures designed for real-world problems, a

mobile CARS based on real banking data (e.g., customer profiles, credit card

transactions, etc.) was presented in [236]. The proposed model is used to

recommend POIs (e.g., restaurants, stores, cinemas, supermarkets, etc.) to

bank customers, by considering the places visited by clients where they used

the bank’s credit card. In a first phase, the model applies clustering techniques

to the information extracted from customers’ bank accounts in order to generate

social clusters, to form groups of clients according to the purchases made with

their credit cards, their age, their gender, etc. Once the social context of each

user is known, in a second phase, the system filters these social contexts by

considering the user’s location to find places closer to the user that requested

the recommendation. Finally, in a third phase, the user’s context (inferred

43



from sensor data) is considered to obtain personalized recommendations. For

the evaluation of the architecture, the authors developed a prototype, called

Labs. In general, users were shown to be satisfied with the recommended places.

However, some users were concerned about privacy issues that could arise in

real commercial environments. Moreover, the authors proposed the generation

of proactive recommendations as future work.

The UTravel application is another example of context-aware mobile recom-

mender system that applies clustering algorithms to identify profiles of similar

users [237]. The architecture is composed of two main modules. The first mod-

ule captures and generates user profiles. In addition, it exploits the k-means

clustering model to identify groups of similar users, by taking into account two

types of profiles: the demographic profile (with attributes like the age, gen-

der and employment) and the preference profile (e.g., evaluation of POIs, by

considering the quality of services, cost, reachability, waiting time, and overall

rating). An important contribution of this work is the methodology applied by

the authors to include behavioral information in user profiles at both the indi-

vidual level and the group level, by analyzing user actions, such as the selection

of categories, marking POIs as favorites, clicking on a POI to see its details,

etc. The second module of the implemented architecture uses user behavior

profiles to decide which POIs (e.g., shops, pubs, museums, etc.) to recommend

to the user, by using different item filters, such as a location filter, a behavior

filter, and a favorite category filter. As future research, the authors proposed to

implement a decentralized version of the application for performance reasons.

As another example, TGSC-PMF [217] is a context-aware probabilistic ma-

trix factorization approach proposed to address the data sparsity problem for

the recommendations of POIs, by using information about friends. Specifically,

this approach uses contextual information obtained from a Location-Based So-

cial Network (LBSN), where each POI is described using a topic model as well as

geographical, social and categorical correlations, to generate a POI preference

score, which is then integrated into a probabilistic matrix factorization model.

Recently, with the rise of the Big Data era, Deep Learning (DL) techniques
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(e.g., Convolutional Neuronal Networks –CNNs–, Recurrent Neuronal Networks,

Attentional Models, etc.) have obtained promising results in several research

fields, such as in the Computer Vision and Natural Language Processing (NLP)

domains. The use of deep learning techniques in recommender systems has also

been an emerging trend [280]. For example, a deep CNN-assisted personalized

recommendation framework for mobile wireless network users, named DCAPR,

was presented recently [238]. An interesting aspect of DCAPR is its ability to

feed on multisource heterogeneous spatiotemporal data of mobile wireless net-

work users and different input features, such as image features, text features,

and mobile user trajectories. Information about users (e.g., the trajectory of the

user activities, textual comments, pictures shared by them, etc.) is extracted

from their social networks. In addition, other types of information are captured

from user profiles in social networks (e.g., the age of the user, his/her gen-

der, nationality, and education). Users’ location information is also exploited to

identify friends with common interests, through the use of clustering techniques;

specifically, the authors assume that people who visit POIs located in the same

region have common preferences. The CNN architecture has three layers: a

rough layer, an enhanced layer, and an accurate layer. The first layer considers

users with common trajectory activities as candidates, which are obtained by

comparing the trajectories of mobile users in the social network. Some can-

didates can be fake-friends, as they can have similar trajectories but different

visited POIs and therefore different interests (e.g., users visiting different types

of stores in the same mall). In the second layer, the CNN model captures fea-

tures from images published in a social network, to filter the candidate friends

with similar POIs. In the last layer, a CNN classifier is exploited to extract

text features from comments posted or articles of interest shared by the user

in a social network. Concerning precision, recall, and F-measure, the proposed

recommendation model outperforms the baselines considered in the paper. An

important conclusion of this paper is that, despite the efforts, there is still a gap

between deep learning, mobile wireless communication networks, context-aware

recommender systems, and mobile computing. According to that work, another
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current challenge in this research field is how to combine multisource data to

obtain more accurate recommendations.

Regarding the recommendation of POIs, we would also like to highlight that

the tourism scenario has been the most exploited case study to implement and

evaluate the effectiveness of mobile CARS [26, 27, 237, 245]. On the one hand,

this is because in this type of domain it is easy to appreciate the importance of

including contextual information in recommender systems to obtain appropri-

ate recommendations. For example, a travel recommender system that assists

tourists during their trip may be influenced by various contextual factors, such

as the distance to POIs, the weather, the season, whether the POIs are places

in open or closed spaces, etc. LOOKER [26] is an example of mobile recom-

mendation application that takes into account the location and time before sug-

gesting different travel-related services (e.g., food, shopping, health, and POIs)

to tourists. On the other hand, tourists generally have limited time available

and are constantly on the move (visiting POIs). Hence, from the perspective

of mobile computing, the tourism domain is a suitable scenario to show the

need to implicitly capture and update dynamic contextual information from the

environment.

4.2.2. Mobile CARS for the Recommendation of Restaurants

In the restaurant recommendation domain, several approaches have been

proposed in the literature. For example, the Situation-Aware Proactive Recom-

mender System (SAPRS) [246] pushes information about relevant restaurants

to the user at the right contextual situation. In the first phase, SAPRS applies

fuzzy logic as an inference technique to address the uncertainty of the current

situation, and if the situation is appropriate then a collaborative filtering rec-

ommendation model is activated in a second phase.

A current challenge for mobile CARS is the proper design of mobile user in-

terfaces. Along these lines, [274] evaluated the impact of proactivity on the user

experience in a restaurant recommendation domain, to analyze if users would

accept proactive recommendations, how to present the recommended items, and
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how to properly notify the users. To answer these questions, the authors eval-

uated two mobile user interfaces (a widget-based interface and a notification-

based interface) for context-aware restaurant recommendation, based on the

proactive recommendation model proposed in [273]. The experimental results

showed that the widget-based interface was preferred by the users.

A pull-based context-aware recommender system for mobile environments,

called Co-ARS, was presented in [240]. This system recommends restaurants by

considering contextual information and attributes such as the user’s location,

restaurant’s location, user’s preferred transportation mode, network distance

between the user’s current location and the final destination, and overall rat-

ing of the restaurant. The user’s location is automatically acquired from the

GPS sensor embedded in a smartphone. The transportation mode used (e.g.,

stationary, walking, biking, or driving) is detected by using a Bayesian Network

classifier. During the rating prediction process, the proposed recommendation

model favors nearby restaurants, by considering the mode of transportation and

the distance between the user’s current location and the restaurant’s location.

Besides recommending a list of nearby restaurants, for each of them the optimal

route and travel mode is suggested, by using Google Maps.

4.2.3. Mobile CARS for the Recommendation of Other Items

To facilitate the consumer shopping process, several other mobile CARS have

been implemented. An example is the Intelligent Shopping-aid Sensing System

(iS3) [248]. The model incorporated in this system first uses the k-means clus-

tering algorithm to generate customer clusters, by considering the gender, age,

and frequency of purchase variables. Then, an association rule mining approach

(Apriori algorithm) is applied to each cluster to provide product recommen-

dations to customers. The proposed recommendation system integrates RFID

technology to automatically show information about products (e.g., size and

specifications) to users.

Other works focus on the user’s activity to generate recommendations. For

example, Magitti [241] is a scalable architecture for context-aware activity-
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detecting mobile recommender systems. It infers leisure time activities, based

on the context and patterns of user behavior, to recommend relevant places

for carrying activities. As another example, [235] presents an activity-aware

recommender system for teams of medical professionals working in hospital op-

erating rooms. It suggests relevant virtual actions (e.g., retrieval of information

resources and initiation of communications with professionals outside the oper-

ating rooms) based on the current state of the operation (detected from sensor

data) and considering similar past situations, by using ML techniques.

The EventAware [239] system is able to personalize the agenda of users

participating in a congress (e.g., recommending them sessions and exhibitors

of interest). For the recommendation process, the authors used a tag-based

approach which determines the similarity between the tags that describe the

items and the areas of interest of the users. To minimize the number of user

interactions with the system, it implicitly incorporates some user’s contextual

information (e.g., the location and time) and tags obtained from Wikipedia

(e.g., tags that describe the items) and LinkedIn (e.g., basic information of the

user’s account and his/her areas of interest, represented by tags). In addition,

the user provides information about the days that he/she will be at the event.

EventAware first applies the pre-filtering paradigm to ignore items that do not

match the user’s current context. Then, the tag-based approach is applied on the

candidate items to generate recommendations that match the user’s preferences.

Depending on the user’s current context, the final recommendation list will be

dynamically modified. In [281], a similar approach was previously presented for

the music domain in a web-based environment.

In the domain of context-aware music recommendation, the InCarMusic

system [254] is a context-aware mobile recommender system that offers music

recommendations to the passengers of a car by using collaborative filtering and

matrix factorization. As another example related to music recommendation, a

novel probabilistic model for the recommendation of songs for daily activities

(e.g., studying, running, walking, sleeping, working, and shopping) was proposed

in [242]; in this proposal, contextual information collected by mobile devices is
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integrated with music content analysis techniques.

A different and interesting example is the intelligent transport system pre-

sented in [249], which tackles logistics problems. It is a clustering-based recom-

mender system that suggests the optimal transporter (e.g., cars, trucks, etc.) to

deliver a package for the customer in a smart city. During the recommendation

process, the model uses contextual features of transporters (e.g., availability,

current location, max speed, fuel consumption, year, millage counter, and CO2

emissions), the road congestion, and the customer’s current location.

As a final example, a multimedia recommendation framework, called Re-

cAm, was proposed in [243]. It incorporates contextual information (e.g., the

time, health conditions, emotions, calendar and location data, etc.) into the

recommendation process. The purpose of this framework is to facilitate the rec-

ommendation of multimedia content by identifying the user’s context through

adaptive user interfaces in Ambient Intelligent (AmI) environments. For exam-

ple, a prototype that uses the proposed framework would be able to detect the

stress level of a person (by capturing the heart signal) and recommend suitable

songs that can decrease the stress level. Besides, the prototype could modify

the environment of the room (e.g., adjusting the volume of the music and the

light level) according to the preferences and current context of the user, by using

AmI interfaces.

In Figure 13, we show an overview of different types of items that have been

considered in mobile CARS. In addition, we present the percentages of works

that exploit these items (considering an overall of 29 representative papers). The

figure clearly shows that CARS for mobile environments have mainly focused

on three types of items: POIs, restaurants, and movies.

5. Conclusions and Open Issues

In this paper, we have provided an extensive survey of AI-based mobile

CARS from an information management perspective. We have introduced the

technological context needed to facilitate the understanding of context-aware
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Figure 13: Percentage of works that consider different types of items to be recommended.

recommendations in mobile environments, including mobile computing, the

main features of traditional recommendation systems, and context-aware rec-

ommendation systems. In addition, we have examined in detail pull and push

approaches of mobile CARS that exploit artificial intelligence techniques. We

have also described some relevant examples of mobile CARS for different appli-

cation domains.

In this study, we have identified several promising artificial intelligence mod-

els that have been applied to the development of traditional RS. Subsym-

bolic artificial intelligence approaches (where the models are not explicitly rep-

resented through elements such as formulas or rules, but learned from ex-

perience) are prevalent nowadays [282], and in particular deep learning ap-

proaches [283, 284, 285] have been recently explored in the specific context of mo-

bile CARS (e.g., Auto-Encoding [232], Feed-Forward Neuronal Networks [251],
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Convolutional Neural Networks [255], and Recurrent Neural Networks [252]).

We could expect an increasing consideration of these types of techniques, as

well as improvements of more classical ones, to offer more relevant customized

recommendations to mobile users in a variety of potential use cases. However,

the use of these complex neural networks leads to important challenges in the

domain of RS [280], such as the large amount of data required for each user

during the training phase to achieve high-quality predictions and the difficulty

to provide explanations of the items recommended to the users. Hence, tradi-

tional classification approaches (e.g., association rules, decision trees, Random

Forest, Näıve Bayes, Bayesian Networks, and Conditional Random Fields) are

still widely used to estimate user preferences and to recognize the activity being

performed by the user [224, 233, 234, 235, 240, 242, 247, 248, 250, 281]. More-

over, Canopy and k-means clustering techniques have been among the most

frequently used approaches to find groups of similar users based on their profile

information [217, 236, 237, 248, 249]. Another observation in this study is that

statistical techniques, such as Principal Component Analysis (PCA), Probabilis-

tic Latent Semantic Analysis (PLSA), and Expectation-Maximization (EM), are

also widely used [232, 249, 243]. For example, PCA is a relevant statistical tech-

nique used to alleviate high dimensionality and sparsity problems in CARS. An

overview of these AI models and trends is shown on the left side of Figure 14.

Although the number of proposals involving pull-based recommendation ap-

proaches found during the literature review was significantly higher than those

considering push-based recommendation techniques, it is expected that push-

based solutions will become a more relevant trend in the near future, thanks to

advances in mobile computing and its widespread use. Currently, many proac-

tive recommenders use reasoning approaches (e.g., Fuzzy Logic and rules) to

handle the uncertainty during the initial assessment phase that determines if

the current situation is appropriate to push recommendations (e.g., [234, 246]).

From a technological point of view (see the right side of Figure 14), we

have noticed that most of the reviewed works have proposed mobile context-

aware recommendation applications considering centralized (client-server) archi-
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Figure 14: Overview of models, technologies and expected trends for mobile CARS.

tectures [234, 235, 236, 237, 240, 241, 242, 243, 245, 246, 248, 249, 274]. In this

scenario, the server hosts the contextual recommendation engine and the needed

databases to store information about users, contexts, items, and ratings. Java

frameworks such as Mahout and Weka are commonly applied to develop the

context-aware recommendation logic (e.g., see [224, 281, 250, 236]). Tools such

as MATLAB (with its Fuzzy toolbox) have been successfully used to develop

fuzzy inference systems (e.g., [246]). We believe that, in a near future, Python

frameworks (e.g., TensorFlow, Theano, Keras, and PyTorch) will be widely used,

due to the recent interest to apply deep learning techniques for mobile CARS.

We also expect more solutions where at least part of the recommendation en-

gine could be executed in the mobile clients; besides, several mobile devices

could share data and tasks as part of a distributed recommendation process.
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Currently, in most approaches, the mobile device of a user manages information

about the user’s profile and preferences and provides the graphical user inter-

face of the recommendation system, but it does not usually play a relevant role

in the recommendation algorithms. The majority of the mobile client applica-

tions identified in this review are Android prototypes implemented in Java with

Android Studio. CoreLocation, Geo2tag, Geolocation, Google Maps, Google

Places, and MapKit, are examples of tools and services used by researchers of

mobile CARS to acquire the locations of users and items [26, 240, 245, 246, 274].

As we have seen in this survey, relevant work related to mobile CARS has

already been performed. However, there are still significant open issues. Some

challenges of context-aware recommender systems are inherited from traditional

recommender systems (e.g., data sparsity, cold start, and high dimensionality

problems, as well as security, privacy, and spam vulnerability concerns), while

others arise as new ones. Among the additional challenges, the following can be

highlighted for the general case of CARS [32, 67, 286, 287]:

• The variety of application scenarios and user needs makes it difficult to

determine what types of contexts are actually needed in CARS. Hence,

the efficient discovery of valid (or suitable) context types for a specific

domain is a serious challenge that CARS should overcome, to reduce the

difficulty of context acquisition and the computational cost of recommen-

dation algorithms, thus improving the performance accuracy of CARS.

According to [30], this challenge can be treated as a problem of feature se-

lection to reduce the dimensionality of the context, and thus make context

comparisons more efficient.

• Context acquisition and automatic discovery of dynamic user preferences

from several external data sources (e.g., social networks, sensors, RFID

data, etc.) is a major research challenge for CARS. The resulting rec-

ommendations could be more effective if the characteristics of the dy-

namic environment were effectively exploited. For this purpose, the use

of text mining techniques (applied on users’ reviews, items’ descriptions,
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and other user’s texts like posts in social networks), such as sentiment

analysis [288, 289], could play a key role in the design of recommender sys-

tems [290]. As an example, the SenticNet 6 approach detects the polarity

of a text through an ensemble of symbolic and subsymbolic AI tools [291];

this is motivated by the fact that, according to the authors, “Coupling

symbolic and subsymbolic AI is key for stepping forward in the path from

NLP to natural language understanding” [292]. Capturing and considering

the current emotions of a user, to design affective recommenders (emotion-

based recommendations) [293, 294, 295, 296, 297], is also a research avenue

that would benefit from further research. Indeed, as mentioned in [298],

affective computing and sentiment analysis can enhance the capabilities

of recommendation systems.

• Another critical issue for CARS is the development of generic contextual

models. The problem of the current proposals (e.g., [299, 300, 301]) is

that they model information for a very specific application domain (e.g.,

tourism, movies, etc.) or more abstract domains but for specific types of

items (e.g., products, web services, e-learning, etc.), and so their domain-

specific models cannot be easily reused in other recommendation scenarios.

Some proposals try to solve this challenge. As an example, [302] presents

a generic model using an ontology, which can be used in different types of

recommender systems, and models data, context, and the recommenda-

tion process itself. Moreover, a study to try to determine whether a more

generic modeling approach could be applied for CARS was carried out

in [303]; as a result of the study, the authors proposed a novel generic con-

textual model for CARS, which was theoretically evaluated with positive

results.

• Very few proposals in the CARS literature combine the context’s history

and the user’s behavior [304, 305]. Hence, understanding the user’s behav-

iors based on the context’s history could be improved, which may lead to

improve the accuracy of recommendations.
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• According to [306], the link between cognitive models and recommenda-

tion systems has not received enough attention so far. However, decision-

making is based on cognitive information [307]. Critique-based recom-

menders [307, 308, 309, 310] establish a feedback-based recommendation

process to refine the initial recommendations provided; in this way, the

user can provide critiques of the previous recommendations until a suit-

able recommendation is received. Moreover, it has been reported that the

use of cognitive approaches and linguistic formalism can lead to intelli-

gent information sharing [311, 312]. Although cognitive approaches can

be applied for recommender systems in general [313], we believe that they

could be particularly relevant to CARS, as the context can play a key role

in decision-making.

Besides, we have identified several relevant open research issues for the spe-

cific case of mobile CARS, where the existence of a highly-dynamic context and

the mobility of users play a key role:

• There is still a gap between CARS and mobile computing. For exam-

ple, the recommended items are usually considered to be static (e.g., not

moving). Besides, some data management techniques for mobile com-

puting, for example approaches for distributed data processing and mo-

bile P2P data management, could be needed for the effective deployment

of mobile CARS in certain environments [314]. For example, mixed RS

and mobile computing solutions would be useful in the case of a user

who is walking down the street and uses a mobile application that sug-

gests to him/her an appropriate taxi in real-time (in this case, both the

user and the target items may be moving). Most of the proposed mo-

bile CARS operate on centralized infrastructures (client–server architec-

tures) [234, 235, 236, 237, 240, 241, 242, 243, 245, 246, 248, 249, 274],

and so they are subject to the traditional limitations of centralized ap-

proaches. Besides, new attributes relevant to mobile users in the context

of the COVID-19 pandemic, such as the social distance between people,
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should be considered [315].

• User interfaces designed for recommendation purposes (explicit or implicit

recommendations) should be simple and easy to understand. However,

very few studies have evaluated the usability of interfaces for recommender

systems [274] or have studied in depth the best way to present the informa-

tion to recommend. Usability aspects could be particularly relevant in the

case of recommender systems designed for mobile users, as the users may

need to interact with a recommender system using a mobile device while

on the move. For example, more research could be devoted to the design

of critique-based recommenders for mobile users, such as MobyRek [316]

and Shopr [197].

• There is a need for the development of generic and flexible architectures

that facilitate the creation of context-aware recommender systems for mo-

bile environments. This aspect should be analyzed, given the interest of

having a generic solution that can be extended and adapted to different

applications and domains [224, 317]. As described in Section 4.1, some

context-aware mobile recommender systems have already been developed,

but they focus mostly on specific domains (e.g., restaurants, museums,

gas stations, supermarkets, foods, etc.) [273, 318, 319, 320, 321].

• Research on push-based recommender systems is still in its infancy. Most

context-aware recommender systems require users to explicitly express

their interests and information needs as a query (explicit request). Cur-

rently, due to limitations of mobile devices (e.g., typing data using a small

device is inconvenient), a key challenge is how to proactively deliver rele-

vant recommendations to the user’s mobile device [273, 274].

• There is no common methodology established for the evaluation of mobile

CARS. Some works deploy real implementations and test the usability

of the systems by asking the users to fill out questionnaires to capture

the user satisfaction [236, 242, 243, 245, 246, 273, 274]. The lack of
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public datasets available and the emergence of new evaluation measures

different from the classical ones (e.g., MAE, RMSE, precision, recall, and

F-measure score), such as the combination of metrics (e.g., combining

the accuracy and the diversity with the latency) or the incorporation

of context parameters in existing measures, are currently critical chal-

lenges [322]. As claimed in [323], determining what makes a good recom-

mendation is not an easy task and the expected utility of a recommenda-

tion is a function of the item’s features, the context, and the user’s goals

(indeed, “What we like may not be what we choose”). Besides, many

of the mobile CARS presented in this paper are evaluated with custom-

built datasets (e.g., [232, 241, 244, 248]) and through survey scores (ques-

tions) [26, 236, 237, 239, 241, 242, 243, 245, 246, 250, 273, 274], which

limits the generality of the results.

• There are not many practical mobile context-aware recommendation ap-

plications, especially in real business domains. Indeed, most research on

CARS has been conceptual and there has been little work done on develop-

ing practical applications for CARS [32]. Generally, researchers implement

a context-aware recommendation model, which is tested (using datasets)

and compared with other models proposed in the literature of the same

domain.

• Another current challenge is to guarantee a suitable privacy protection.

Mobile CARS must be able to include privacy protection techniques that

protect users’ personal and contextual information (e.g., location, prefer-

ences, etc.).

• Only a few approaches have recently considered that mobile users may

move in groups. As this situation may happen frequently, it is relevant

to study in more depth how to develop mobile CARS that offer item

recommendations to groups of users (e.g., a tourism group) [243, 324].

These approaches should consider the preferences of the different persons
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in the group and criteria such as fairness for all the users and maximum

utility for the group.

In Figure 15, we show a summary of relevant challenges hierarchically related

considering traditional RS, CARS and mobile CARS.

Figure 15: Summary of challenges related with RS, CARS and mobile CARS.
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[22] V. F. López, R. E. Salamanca, M. N. Moreno, A. B. Gil, J. M. Cor-

chado, A knowledge-based recommender agent to choosing a competi-

tion system, in: J. Bajo, J. Z. Hernández, P. Mathieu, A. Campbell,

A. Fernández-Caballero, M. N. Moreno, V. Julián, A. Alonso-Betanzos,
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