

Re-CoSKQ: Towards POIs Recommendation Using Collective Spatial Keyword Queries

Ramón Hermoso, <u>Sergio Ilarri</u>, Raquel Trillo-Lado University of Zaragoza, I3A

Introduction and goals

- ☐ Interest of recommender systems in mobile computing scenarios
- ☐ The location is a key spatial attribute:
 - Can techniques from the field of spatial databases help?
 - → Explore the potential use of
 Collective Spatial Keyword
 Querying (CoSKQ)

Proposal: Re-CoSKQ for the recommendation of POIs

- ☐ Semantic coverage of the query keywords (no exact match req.)
- ☐ Minimize the cost:
 - Distance to get to the POIs
 - Similarity between the query and the descriptions of items

$$U = \{u_1, ..., u_n\} \rightarrow \text{users}$$

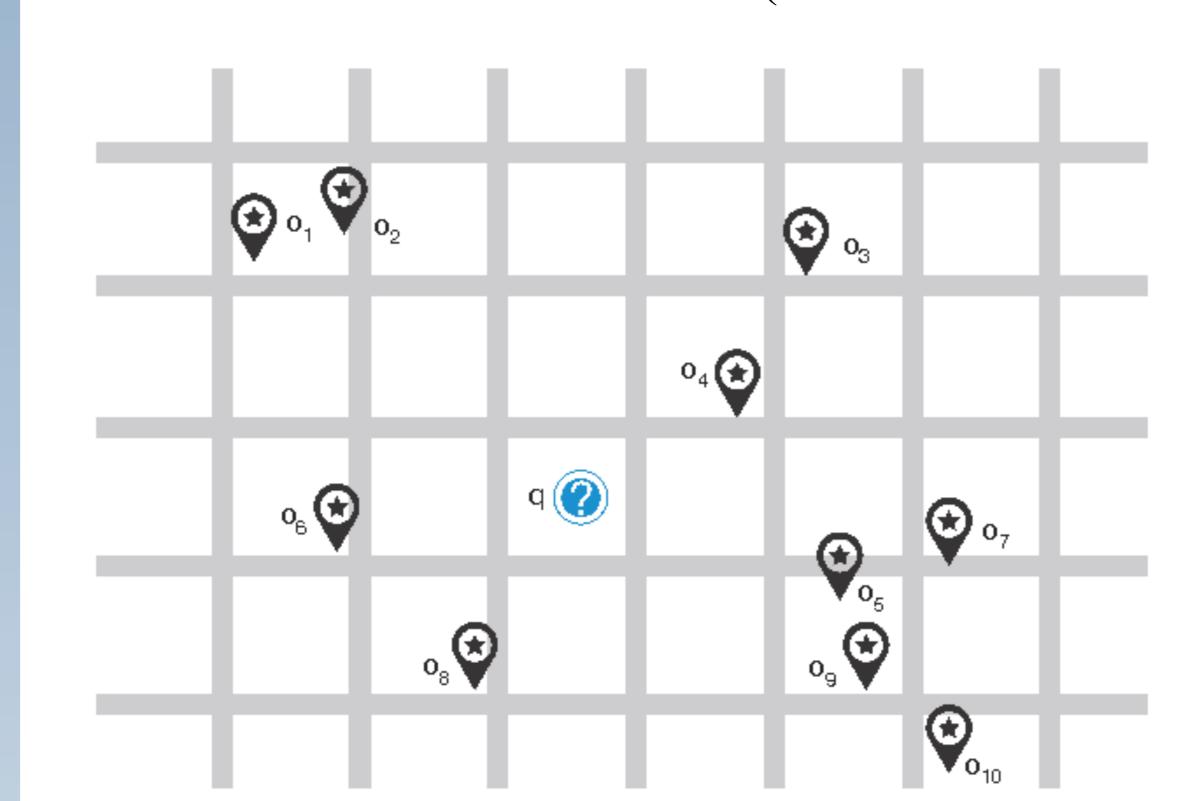
$$O = \{o_1, ..., o_m\} \rightarrow \text{POIs}$$

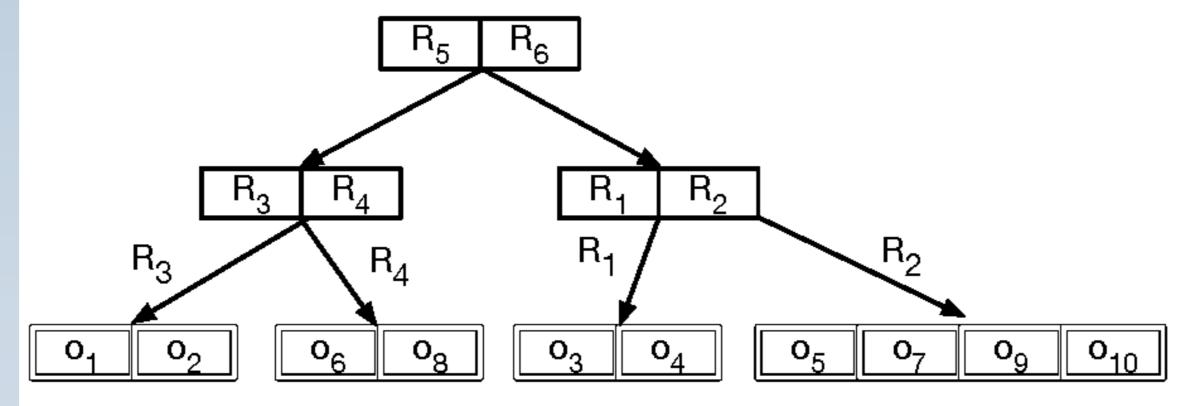
$$o_i.\kappa = \{k_1, ..., k_j\} \rightarrow \text{keywords}$$

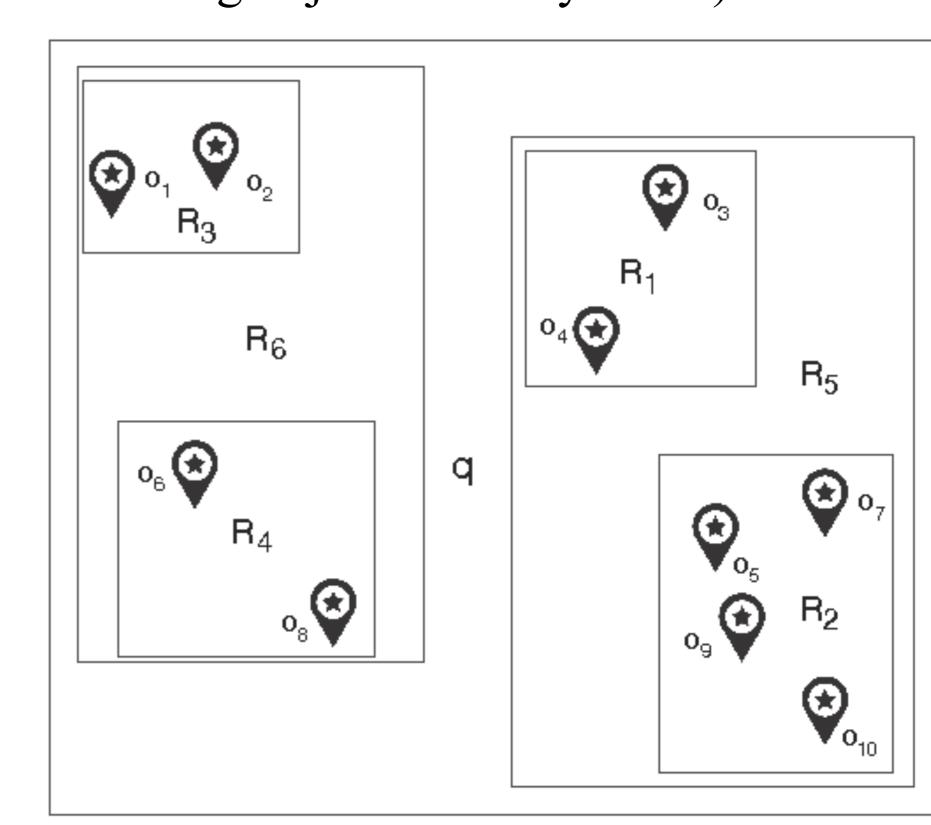
$$\text{describing POI } o_i \in O$$

Collective Spatial Keyword Querying (CoSKQ)

- ☐ Technique from the spatial databases field
- ☐ Goal: retrieve a group of spatial objects that collectively match the user preferences given:
 - Specific locations (of the user and also of the objects)
 - A set of keywords
- ☐ Use of IR-tree data structures (balanced trees that allow indexing objects and keywords)







Internal node:

- pointers to the child nodes
- a Minimum Bounding Rectangle (MBR) covering its subtree
- the set of all keywords in the subtree

Leaf node:

- items o (POI objects) in the node
- a bounding rectangle for each o
- a pointer to an inverted file with the keywords that describe each POI

Examples of distance functions

- □ Location distance:
- Euclidean
- L1-Norm / Manhattan
- Geodesic distance (shortest path)
- ☐ Term distance:
- Similarity based on concept closeness (relatedness)

$$sim(k_1, k_2) = 1 - \frac{sp(k_1, k_2)}{2D}$$

Similarity based on closeness and concept depth

$$sim(k_1,k_2) = \begin{cases} e^{-\alpha l} \frac{e^{\beta h} - e^{-\beta h}}{e^{\beta h} + e^{-\beta h}} & if \quad k_1 \neq k_2 \\ 1 & otherwise \end{cases}$$
• I: shortest path
• d:depth of the least common subsumer
• $\alpha, \beta > 0$: weights

Evaluation proposal

- Define a representative set of queries
- Annotate a dataset of POIs with predefined categories based on the keywords → ground truth → precision, recall, ... + performance and tuning
- Also interesting: user-centered evaluation, DataGenCARS

Acknowledgments

- Government of Aragon (Group Reference T35_17D, COSMOS group) and cofunded with Feder 2014-2020 "Construyendo Europa desde Aragón".
- Project TIN2016-78011-C4-3-R (AEI/FEDER, UE).

Examples of cost functions

$$cost(q, \mathbb{O}') = \alpha \cdot \max_{o \in \mathbb{O}'} \left[dist(q.\lambda, o.\lambda) \right] + \beta \cdot \max_{o_1, o_2 \in \mathbb{O}'} \left[dist(o_1, o_2) \right] \\ + \omega \cdot \max_{k_1 \in q.\kappa, k_2 \in \cup_{o \in \mathbb{O}'} o.\kappa} \left[dist(k_1, k_2) \right]$$
 \leftarrow TYPE 1 – COMB

$$cost(q, \mathbb{O}') = \max \left\{ \alpha \cdot \max_{o \in \mathbb{O}'} \left[dist(q.\lambda, o.\lambda) \right], \beta \cdot \max_{o_1, o_2 \in \mathbb{O}'} \left[dist(o_1, o_2) \right], \right.$$

$$\left. \omega \cdot \max_{k_1 \in q.\kappa, k_2 \in \cup_{o \in \mathbb{O}'} o.\kappa} \left[dist(k_1, k_2) \right] \right\}$$

$$\leftarrow \text{TYPE 2 - MAX}$$

$$\begin{split} cost(q,\mathbb{O}') = & \left[\left(\alpha \cdot \left(\sum_{o \in \mathbb{O}'} (dist(q.\lambda,o.\lambda))^{\phi_1} \right)^{\frac{1}{\phi_1}} \right)^{\phi_2} \right. \\ & + \left(\beta \cdot \max_{o_1,o_2 \in \mathbb{O}'} dist(o_1,o_2) \right)^{\phi_2} \\ & + \left(\omega \cdot \max_{k_1 \in q.\kappa, k_2 \in \cup_{o \in \mathbb{O}'} o.\kappa} dist(k_1,k_2) \right)^{\phi_2} \right]^{\frac{1}{\phi_2}} \end{split}$$

Contact

- Dr. Sergio Ilarri (silarri@unizar.es)
- Dr. Ramón Hermoso (<u>rhermoso@unizar.es</u>)
- Dra. Raquel Trillo-Lado (raqueltl@unizar.es)

