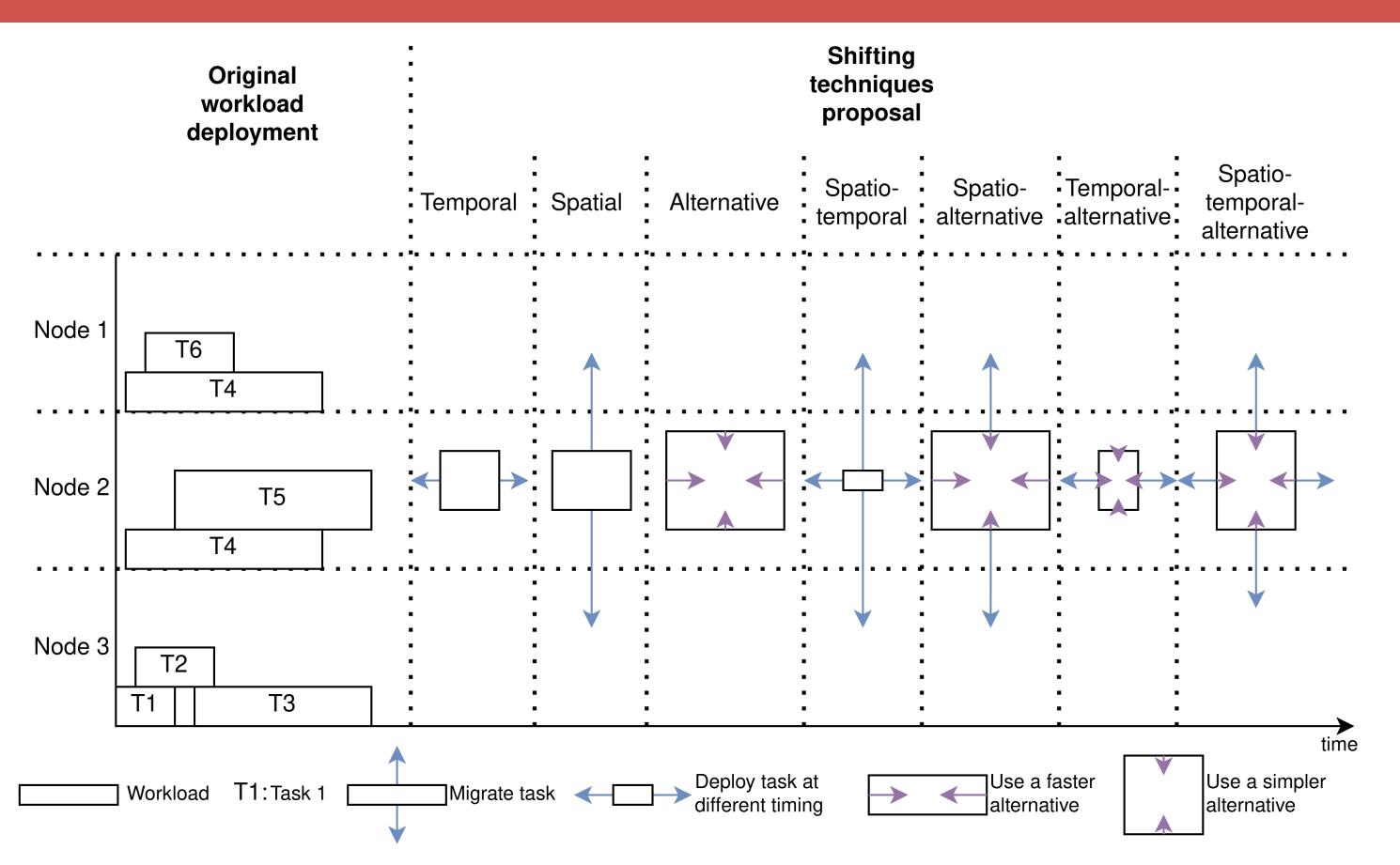
La Quête du Scheduling Parfait: Jouer sur Tous les Tableaux

Nicolas Tirel - Philippe Roose, Sergio Ilarri, Adel Noureddine, Olivier Le Goaër UPPA, Anglet, France/UNIZAR, Saragosse, Espagne

Context → **Problem**


- Halting the worsening climate change requires no more carbon emissions. \rightarrow The impact of the ICT sector has never ceased to increase.
- The energy transition causes conflicts by increasing electricity needs. → Increased computing demand requires more power.
- Optimizing energy efficiency faces limits. \rightarrow The solutions provided so far do not address the problem.

Motivation

- Shifting techniques have the potential to reduce both energy consumption and carbon emissions.
- ► Identify energy profiles by type of tasks using simulations.
- Provide this information to app/software designers.

Proposal **Generated or** T6' Alternative process real-world dataset T6 List of tasks in queue **Implementations** of shifting Scheduler techniques Node 3 Node 2 **Simulated** platform Node 1 time Interrupt and resume later Migrate task Schedule alternative process Power With shifting techniques combined **Visualisation** With time shifting of energy techniques consumption Conventional execution

Shifting techniques

Early results

Table: Impact of shifting techniques in comparison with a conventional execution

Technique	Total energy consumed (joules)	Average power (Watts)	Total makespan (seconds)	time	Average/ max waiting time (seconds)
0. Conventional execution	9.74	207.44	0.17	0.05	0.00/0.0
1. Postponing task	9.74	204.80	0.26	0.05	0.05/0.1
2. Interrupting task	9.74	205.96	0.21	0.05	0.03/0.1
3. Migrating task	9.74	207.44	0.17	0.05	0.00/0.0
4. Alternative process	9.54	206.62	0.18	0.07	0.00/0.0
5. Migrating task with postponing	9.74	205.96	0.21	0.05	0.03/0.1
6. Postponing task with alternative process	9.54	204.41	0.28	0.07	0.05/0.1
7. Interrupting task resumed wit alternative process	9.54	205.89	0.21	0.07	0.03/0.1
8. Migrating task with alternative process	9.54	206.62	0.18	0.07	0.00/0.0
9. Postponing and migrating task with alternative process	9.54	205.89	0.21	0.07	0.03/0.1

The aim is to obtain energy gains while limiting impacts. The result is better than original in green, similar in yellow, and worse in red.

Limits → **next** work

- Energy overhead when migrating is not considered. \rightarrow Implement more complex energy profiles.
- \triangleright Only homogenous machines are used. \rightarrow Implement heterogeneous machines with various energy profiles.
- ightharpoonup The workload considered is simple. ightharpoonup Implement real-world dataset.
- ightharpoonup Carbon impact is not considered yet. ightharpoonup Implement carbon intensity data.

Acknowledgments

- Project PID2020-113037RB-I00 (NEAT-AMBIENCE project), funded by MCIN/AEI/ 10.13039/501100011033
- Government of Aragon (COSMOS research group; last group reference: T64_23R)
- Another collaborator (proofreading/design): Mathilde Chevallier

Compas, 26 juin 2025

Bordeaux

