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Abstract: Simulation tools can play an important role in the learning of complex subjects. This paper 
describes RobotScene: a simulation tool developed for its use in an Industrial Robotics project-based 
course in the context of a degree on Industrial Electronics Engineering. RobotScene not only allows 
students to design solids, robots, and scenarios, but also to program the created robot as well. Using this 
tool, students can improve their knowledge about some aspects of robot control design as kinematics. In 
addition, they can acquire robot programming skills, covering in this form several of the major learning 
objectives related to robot control and programming.  

 

1. INTRODUCTION 

It’s well known that Industrial Robotics is a multidisciplinary 
subject whose in-depth knowledge involves many disciplines 
taught in higher education, as kinematics, dynamics, 
electronics and computer science. Two aspects are mainly 
treated in a course of Industrial Robotics for an engineering 
degree: The modelling of the robot for the design of its 
control system, and the practice to obtain programming skills 
using specific robot languages. Both complementary learning 
aspects can be benefited by simulation tools. The robot 
modelling has a high geometric and mathematical 
complexity, which is added to the difficulties (time and 
budget required) for students working with real robots. 

For several years we have proposed a learning project-based 
experience (Romeo 2008) in which, students must model and 
solve kinematics for a commercial model of robot 
manipulator, design some aspects of its control system and 
program the robot in an industrial application. Simulation 
tools are essential for student’s motivation and understanding 
of the problem, which gives good learning results. The goal 
of this paper is to present RobotScene: the simulation tool 
developed for this project-based course.  

RobotScene is a specific software tool that provides a 
graphical interpretation for all the geometrical concepts 
involved at the design stage of an industrial robot (solids, 
joints, reference frames, Denavit-Hartenberg parameters, etc). 
Moreover, RobotScene provides a framework in which 
programming the previously created robots. It’s composed by 
tree modules specialized on solid, robot and scene creation 
respectively. There are many robotic platforms that provide 
simulation frameworks in which users can develop robotic 
applications (Micorsoft 2008, Mellado 2003), but they are not 
specifically oriented to robot manipulator design. Although, 
other platforms provide tools useful for robot kinematics and 
dynamics simulation, as the Robotic Toolbox for Matlab 
(Corke 1996) or Spacelib (Legnani 2006), but they are not 
elaborated graphical interfaces and don’t provide robot 

programming tools. Some projects as OROCOS (Bruyninckx 
2001) and ROBOOP (Gourdeau 1997) allow covering this 
empty space, but they haven’t an easy graphical interface and 
so, their use requires important learning efforts. Furthermore, 
they need an external compiler in order to perform any 
simulation. In addition, there are several simulation platforms 
as ROBOGUIDE (Fanuc 2008) and RobotStudio (Abb 2008) 
developed by robot manufacturers in order to provide off-line 
programming tools specifically designed for their robots. 
Nevertheless, RobotScene provides modules for creating 
solids, robots and robotic scenarios in an easy manner. It has 
been developed using GLScene (a graphic motor for Delphi 
based on Open GL). The programming capabilities (needed 
for both inverse kinematics implementation and robot 
programming) are provided by PascalScript, a Delphi 
compatible interpreter that adds Pascal-based scripting 
support to the Robot constructor module and the Scene 
Constructor one. 

2. ROBOT MODELLING: KINEMATICS 

The first stage of the learning project is to model and solve 
the kinematics of a commercial robot. To achieve this, 
students must follow the Denavit-Hartemberg (DH) 
convention (Denavit 1995), which allows obtaining forward 
kinematics in a systematic way. 

In order to achieve this stage, students must trace three steps 
using two RobotScene modules: In first, by using the Solid 
Constructor Module, students must create all the solids that 
compose the robot manipulator, assigning each it a reference 
frame compatible with the DH rules. In a second step, they 
must mount the robot by using the Robot Constructor 
Module, which allows defining all data related to joints (type, 
range, DH parameters, home value, etc). Furthermore, this 
module can be used for creating robotic tools as grippers, 
welding equipment, etc. Once all the joints are created, 
students can implement the inverse kinematics equations 
using a specific programming interface over PascalScript and 
run it in order to validate them. 

     



 
 

 

2.1  Modelling the Robot Solids 

Once the students have analyzed the morphology of their 
assigned manipulator, identifying its joints and its solids, and 
assigning them all their reference frames according to the DH 
rules, they can begin to model their robot using RobotScene. 
The first task that must be accomplished in order to 
modelling a robot manipulator is defining the solids that 
compose it. The Solid Creator Module provides basic tools 
for modelling solids in an easy fashion. It contains a library 
that includes the basic geometries (prisms, cylinders, 
pyramids, spheres, etc) those composition makes possible the 
design of complex solids. Moreover, the module contains 
specific tools for modelling volumes generated by extrusion 
and revolution, taking into account the relevance of these 
geometries in the most of manipulators models. Fig. 1 shows 
an example of complex solid composed by two cylinders and 
a solid of revolution.  

 

Fig. 1. Example of complex solid: two cylinders and a solid 
of revolution 

It must be noted that even thought each basic element has its 
associated reference frame (the local frame); robot solids 
must exhibit a unique one (the global reference frame), that 
must accomplish the DH assignation rules. For instance, the 
reference frame shown in Fig. 1 corresponds to this 
mentioned global reference frame. Note that it’s about the 
fourth solid of an articulated robot (the first solid of its wrist) 
and so, its z axis corresponds to the fifth manipulator joint 
(the flex wrist joint), according to the DH convention.  

The solid creation module includes also some tools that are 
useful for the solid design task: 

• A tool for modifying all the geometry attributes. 

• Tools for translating and rotating solids with respect 
to different (local or global) reference frames. 

• A tool for designing the material attributes (colours, 
textures, etc). 

• Tools for modifying the observer’s location 

Finally, the module enables saving the created solids to an 
ASCII file that contains all the solid attributes, enabling in 
this form its edition and modification (with or without 
RobotScene). 

2.2  Assembling the Robot 

Once all the manipulator solids have been created, students 
can assemble their robots using the Robot Constructor 
Module. For do this, students must have previously 
determined both the DH parameters as well as the equations 
that solve the inverse kinematics of their robot. According to 
these previous tasks, the robot creation stage exhibits two 
steps: the first one consists of defining in detail all the robot 
joints while robot is being assembling. The second step is 
related to the implementation of the equations that solve the 
robot inverse kinematics, and will be treated in the following 
subsection. 

The complete modelling of each joint requires the definition 
of the following parameters: the joint type (rotational or 
translational), the constant DH parameters, the joint range, 
the home joint value, the joint max velocity and finally, the 
joint max acceleration. Fig. 2 shows the modelling of the 
fourth joint of an articulated robot. Note that, depending on 
the joint type, the variable DH parameter (θi in this case) will 
be represented in the table by mean of its corresponding 
variable identifier (qi). As we can see in the same figure, the 
joint modelling is considered in the robot construction 
process as a part of the solid addition procedure. For the 
usual case of a six degree of freedom manipulator, this 
addition procedure must be done for seven times (from solid 
0 to 6).  

It’s important to note at this point the role of the Denavit-
Hartenberg convention in the robot modelling process with 
RobotScene: it determines not only the main part of the joint 
modelling, but the form in which each solid has been created 
as well. 

 

Fig. 2. Modelling the fourth joint by using the Robot 
Constructor Module 

Once students have finished the robot assembly process, they 
can use a robot guidance tool that allows them to move the 

     



 
 

 

robot by dragging the joint-associated cursors or by 
specifying robot destinations in joint coordinates. Note that 
they can’t exploit the entire guidance tool potential (i.e. the 
guidance in user coordinates) because inverse kinematics is 
not yet implemented. Nevertheless, robot guidance in 
combination with reference frames visualization, can aid to 
the students to improve their understanding about the sense 
of DH parameters. 

Likewise solids created using by the Solid Creator Module, 
robots can be saved in an ASCII file that contains all the joint 
attributes and the complete file path for all the solids that 
compose them. 

2.3  Implementing the Inverse Kinematics Equations 

In order to complete the robot modelling stage, students must 
implement the equations that solve the inverse kinematics of 
their robot. These equations must have been previously 
derived by using either geometric or algebraic approaches. 
For making possible the mentioned implementation, the 
Robot Constructor Module provides a specific programming 
tool based on PascalScript, that allows editing, performing 
syntactical checking and compiling Pascal source code. As 
starting point, students have a source file that includes 
comments with useful information about the function syntax 
and how to access all the needed data (user coordinates, DH 
parameters and robot configuration data). During this 
programming phase, students must pay attention to several 
problems inherent to inverse kinematics, as ill-conditioned 
equations and singularities detection and their treatment. 
Appendix A shows an extract of an inverse kinematics 
implementation, that shows the wrist singularity detection 
and its treatment as a predefined error. 

Once inverse kinematics is implemented, students can check 
its correctness by using the robot guidance tool in the 
following way: in first, they must move the robot to a 
destination specified in joint coordinates. Next, they must 
commute to user coordinates mode in order to obtain them 
from the forward kinematics. Finally, they must move the 
robot to these user coordinates, having selected previously 
the adequate robot configuration. If the robot has not moved 
during the last step, students can assure the correctness of 
their inverse kinematics solution (the equations and their 
subsequent implementation). 

The inverse kinematics implementation is saved in a specific 
source code file, and its existence is annotated on the 
associated robot file. 

3. ROBOT APPLICATION PROGRAMMING 

The second stage of the learning project-based experience 
consists in designing a robotic task by programming the 
previously created robot. For do it, students must firstly 
create a scenario that contains both the taking part application 
objects and the robot. Secondly, they must design and mount 
the appropriate robotic tool for performing the entrusted task 
and finally, they must program the robot by using the 

provided language. The following subsections describe 
individually the mentioned steps. 

3.1  Creating the Scenario 

The scenario construction step requires the use of both the 
Object and the Scene Constructor modules. By using the first 
one, students must create all the objects belonging to the 
scene. This process is similar to one described in detail in the 
subsection 2.1. The main difference is about the object 
reference frame definition: for a robot solid, its reference 
frame should be compliant with the DH convention, whereas 
for non-robot objects, the choice of their reference frame 
depends on other factors. It also must be pointed that some 
objects could take active part in the task, whereas some 
others could be merely decorative objects. 

Once objects and robots have been created by using their 
corresponding module, students must place them into the 
scene by defining the localization of their associated 
reference frame. For do this, the Scene Constructor Module 
allows defining these localizations in a structured form, by 
selecting the most adequate reference frame with respect to 
localizations are expressed. This means creating and 
maintaining a hierarchy that reflects the dependencies 
between the objects in the scene. Fig. 3 shows a simple 
structured environment consisting of a robot and a table in 
which there are three different objects. The corresponding 
scene hierarchy showed at the right side (named the scene 
management tool) of the figure shows that Robot and Table 
localizations have been defined with respect to the Scenario 
frame reference, whereas Cube and Cil2 localizations have 
been defined with respect to the Table one. Finally, Cil1 has 
been defined with respect to the Cube reference frame. 

 

Fig. 3. Creating a simple localization hierarchy during the 
scene creation phase 

The scene management tool allows the users not only to 
select any element (robot or object) in order to change its 
localization, but to modify its role in the hierarchy by 
dragging and dropping it as well. 

 

 

     



 
 

 

3.2  Designing the Robot Tool 

The robot tool is strongly related to the robotic application to 
perform and it can be designed by using the specific 
procedure provided by the Robot Constructor Module. Two 
types of tools have been considered according to the 
existence of mobile parts: static tools and dynamic tools (i.e. 
grippers). Tool design requires the modelling of its different 
parts as individual objects and the definition of its tool 
reference frame by specifying the corresponding 
transformation that will be added to kinematical chain. For 
the usual case of gripers, users must also define the opening 
range. Fig. 4 shows the tool definition window for a typical 
gripper consisting of one fixed base and two mobile fingers. 
Its corresponding reference frame has been defined by 
specifying its position and orientation with respect to the last 
robot reference frame (normally, the sixth reference frame 
located on the tool mounting plate). 

Once the robotic tool has been completely defined, users 
must add it to the robot. This step can be performed with the 
scene construction module, after the robot has been located in 
the scenario. The grasping operation is internally performed 
by using collision detection techniques provided by GLScene. 
In this sense, only scene objects and robot tool solids are 
considered for the collision detection analysis. 

 

Fig. 4. Robot tool design  

3.3  Robot Programming 

Once the scene has been created, the last step to trace in order 
to design a robotic application task is programming the robot. 
For instance, Fig. 5 shows a complex scene in which, a 
SCARA robot must weld the yellow frames to the surfaces in 
which they are fixed. 

For making it possible, the Scene Creator Module provides a 
robot programming language and a programming-oriented 
tool. 

The language exhibits all the features of typical robot 
programming languages related to robot setup, robot motion, 
localisation data management, input/output and others. 

Appendix B shows a summary of the language instructions 
set grouped by categories. Note that the language provides 
specific simulation domain instructions that allow importing 
the localization data present in the previously defined scene 
hierarchy. These instructions represent a useful connection 
between the scene creation phase and the robot programming 
one. 

The robot programming tool consists of a programming 
interface in conjunction with PascalScript. The programming 
interface provides also editing, syntax checking and 
execution management capabilities. 

Likewise the other modules, the scene and the robot program 
source code can be saved in their respective text files, making 
possible in this form their subsequent modification without 
RobotScene. 

 

Fig. 5. Example of complex scenario that includes a SCARA 
robot 

4. LEARNING IMPROVEMENTS 

Simulation tools can be an highly useful instructional aid. In 
this case, two main learning aspects can be benefited from the 
use of the proposed simulation tool in the context of an 
industrial robotics related subject: the robot control and 
modelling in-depth comprehension, and the acquisition of 
robot programming skills. Lets treat each one separately. 

The main learning improvements provided by the use of 
RobotScene during the robot modelling phase, are: the better 
comprehension of DH convention, and the in-depth 
understanding of the inverse kinematics problem. As 
mentioned before, all the robot design process, from the robot 
solids design to their subsequent assembly, is strongly 
influenced by the DH convention. RobotScene provides a 
framework in which students can check in a visual form their 
DH parameters, because any error will be reflected as a 
wrong solid assembly. They can also benefit from the frame 
reference viewing in conjunction with the joint guidance tool, 
that allow them to improve their comprehension of the DH 
parameters. 

On the other hand, the inverse kinematics programming 
allows understanding its authentic complexity, because 

     



 
 

 

students must take into account some different problems 
related to its nature and implementation, as singularities 
detection and treatment, arising the use of ill-conditioned 
equations, or the robot configuration selection enabling. At 
this point it must be noted that the use of the robot in the 
programming stage requires a carefully inverse kinematics 
implementation. 

Finally, RobotScene allows acquiring programming skills. 
Some of them are related to general good programming 
practices (readability, maintainability, etc). Nevertheless, 
some other are specific to robot programming aspects. A 
good example of these skills is related to the taking 
advantage from the adequate structuration of the robot 
environment. Note that the robot environment corresponds to 
the scenario whose hierarchy has been defined during the 
scene creation stage. 

5.  CONCLUSSIONS 

RobotScene is not only a robot programming framework. It 
allows constructing robots and robotic scenarios, avoiding the 
use of proprietary software. Its use improves the robot 
kinematics comprehension, and allows the students to acquire 
robot programming skills. In consequence, it can be a useful 
instructional aid in the teaching of Industrial Robotics. 
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Appendix A. INVERSE KINEMATICS EXAMPLE 

//                          INVERSE KINEMATICS 
// 
// Returns the vector of joint coordinates that allows the tool  
// reaching the desired localization. You have access to the  
// Denavit-Hartemberg parameters in the following way:  
// d,a,alfa,tita: array[1..num_joints] of single. 
// In addition, the variable "configuration" will contain the  
// previously selected configuration. 
// 
// DO NOT MODIFY THE FUNCTION HEADER 
 
function inverse_kinematics(T:TTransformacion):Tarray; 
var 
  q:Tarray; 
// for friendly notation purposes  
  px,py,pz,mx,my,mz,nz,nx,ny,oz,ox,oy,ax,ay,az : single;  
  r13,r23,r31,r32,r33,fi,aa,bb,c,r:single; // auxiliary variables 
 
begin 
   px:= T.pos.x; 
   py:= T.pos.y; 
   pz:= T.pos.z; 
   nx:= T.n.x; 
   ny:= T.n.y; 
   nz:= T.n.z; 
   ox:= T.o.x; 
   oy:= T.o.y; 
   oz:= T.o.z; 
   ax:= T.a.x; 
   ay:= T.a.y; 
   az:= T.a.z; 
// the wrist position when robot tool is a symmetric gripper 
   mx:= px - ax*d[6]; 
   my:= py - ay*d[6]; 
   mz:= pz - az*d[6]; 
 
   // First joint  
   if configuration[1]='front' then 
        q[1]:= Atan2(my,mx); 
   else 
        q[1]:= Atan2(-my,-mx); 
 
   // Second joint 
   if abs(q[1])-pi/2<0.1 then 
   begin 
      c:=d[4]*d[4]-a[1]*a[1]-a[2]*a[2]+2*my/Sin(q[1])*a[1]-
mz*mz-my*my/(Sin(q[1])*Sin(q[1])); 
      aa:=2*a[1]*a[2]-2*my/Sin(q[1])*a[2]; 
   end 
   else 
   begin 
       c:=d[4]*d[4]-a[1]*a[1]-a[2]*a[2]+2*mx/Cos(q[1])*a[1]-
mz*mz-mx*mx/(Cos(q[1])*Cos(q[1])); 
       aa:=2*a[1]*a[2]-2*mx/Cos(q[1])*a[2]; 
   end; 

     

http://www.fanucrobotics.com/
http://www.fanucrobotics.com/
http://bsing.ing.unibs.it/%7Eglegnani/
http://moodle.unizar.es/course/view.php?id=552


 
 

     

 

    
   bb:=-2*mz*a[2]; 
   r:=Sqrt(aa*aa+bb*bb); 
   fi:=Atan2(bb,aa); 
 
   if r/(2*a[2])>=(a[2]+d[4]) then 
   begin 
        Kinematics_Error:=Too_Far; 
        Exit; 
   end; 
    
   if configuration[2]='below'then 
 q[2]:=fi+Acos(c/r) 
   else 
 q[2]:=fi-Acos(c/r) 
 
   // Third joint 
   if abs(q[1])-pi/2<0.1 then 
     q[3]:=Atan2((my/Sin(q[1])-a[1]-a[2]*Cos(q[2])),-(mz-
a[2]*Sin(q[2]))) -q[2]  
   else 
     q[3]:=Atan2((mx/Cos(q[1])-a[1]-a[2]*Cos(q[2])),-(mz-
a[2]*Sin(q[2]))) -q[2] ; 
 
   // Wrist joints 
   r13:= 
ax*Cos(q[1])*Cos(q[2]+q[3])+ay*Sin(q[1])*Cos(q[2]+q[3])
+az*Sin(q[2]+q[3]); 
   r23:= ax*Sin(q[1])-ay*Cos(q[1]); 
   r33:= 
ax*Cos(q[1])*Sin(q[2]+q[3])+ay*Sin(q[1])*Sin(q[2]+q[3])-
az*Cos(q[2]+q[3]); 
   r31:= 
nx*Cos(q[1])*Sin(q[2]+q[3])+ny*Sin(q[1])*Sin(q[2]+q[3])-
nz*Cos(q[2]+q[3]); 
   r32:= 
ox*Cos(q[1])*Sin(q[2]+q[3])+oy*Sin(q[1])*Sin(q[2]+q[3])-
oz*Cos(q[2]+q[3]); 
 
   if configuration[3] = 'Flip'  then 
 q[5]:= Acos(r33) 
   else 
 q[5]:=-Acos(r33); 
 
   // Wrist singularity 
   if abs(q[5])<0.001 then 
   begin 
        Kinematics_Error:=Wrist_Singularity; 
        Exit; 
   end; 
 
   q[4]:=Atan2(r23/Sin(q[5]),r13/Sin(q[5])); 
   q[6]:=Atan2(r32/Sin(q[5]),-r31/Sin(q[5])); 
 
// Radians to degrees 
   for i:=1 to 6 do q[i]:=q[i]*180/pi; 
   result:=q;   
end; 

 

Appendix B. ROBOT PROGRAMMING LANGUAGE 
SUMMARY 

Basic operations with localization data 

function NullTr:TTransform; 

function Comp(T1,T2:TTransform):TTransform; 

function Invert(T:TTransform):TTransform; 

function Transf(x,y,z,yaw,pitch,roll:single):TTransform; 

function RotYPR(yaw,pitch,roll:single):TTransform; 

function RotEuler(alfa,beta,gamma:single):TTransform; 

function Traslation(x,y,z:single):TTransform; 

function Shift(T:TTransform; x,y,z:single):TTransform; 

function ShiftRel(T:TTransform; x,y,z:single):TTransform; 

procedure Speed(value:single); 

function Where_Tool:TTransform; 

function Joint_Values:TArray; 

function 
Import_Relative_Transform(name:string):TTransform; 

function 
Import_Absolute_Transform(name:string):TTransform; 

 

Motion instructions 

procedure Home; 

procedure MovJoint(destination:Tarray); 

procedure MovCoor(destination:TTransform); 

procedure MovLin(destination:TTransform); 

procedure MovRelCoor(destination:TTransform); 

procedure MovRelLin(destination:TTransform); 

procedure Drive(Num_Joint:integer;value:single); 

procedure Stop(Miliseconds:integer); 

 

Miscellaneus instructions (setup, I/O, etc) 

procedure Open; 

procedure Close(value:single); 

procedure Tool_Transform(T:TTransform); 

procedure Set_configuration(conf:string); 

procedure Speed(value:single); 

procedure Wait(i:integer); 

procedure Signal(i:integer); 

 


