
The Role of Simulation Tools in the Teaching of Robot Control
and Programming

A. Romeo*

* Universidad de Zaragoza/Departamento de Informática e Ingeniería de Sistemas (DIIS),
Zaragoza, Spain (e-mail: romeo@ unizar.es).

Abstract: Simulation tools can play an important role in the learning of complex subjects. This paper
describes RobotScene: a simulation tool developed for its use in an Industrial Robotics project-based
course in the context of a degree on Industrial Electronics Engineering. RobotScene not only allows
students to design solids, robots, and scenarios, but also to program the created robot as well. Using this
tool, students can improve their knowledge about some aspects of robot control design as kinematics. In
addition, they can acquire robot programming skills, covering in this form several of the major learning
objectives related to robot control and programming.

1. INTRODUCTION

It’s well known that Industrial Robotics is a multidisciplinary
subject whose in-depth knowledge involves many disciplines
taught in higher education, as kinematics, dynamics,
electronics and computer science. Two aspects are mainly
treated in a course of Industrial Robotics for an engineering
degree: The modelling of the robot for the design of its
control system, and the practice to obtain programming skills
using specific robot languages. Both complementary learning
aspects can be benefited by simulation tools. The robot
modelling has a high geometric and mathematical
complexity, which is added to the difficulties (time and
budget required) for students working with real robots.

For several years we have proposed a learning project-based
experience (Romeo 2008) in which, students must model and
solve kinematics for a commercial model of robot
manipulator, design some aspects of its control system and
program the robot in an industrial application. Simulation
tools are essential for student’s motivation and understanding
of the problem, which gives good learning results. The goal
of this paper is to present RobotScene: the simulation tool
developed for this project-based course.

RobotScene is a specific software tool that provides a
graphical interpretation for all the geometrical concepts
involved at the design stage of an industrial robot (solids,
joints, reference frames, Denavit-Hartenberg parameters, etc).
Moreover, RobotScene provides a framework in which
programming the previously created robots. It’s composed by
tree modules specialized on solid, robot and scene creation
respectively. There are many robotic platforms that provide
simulation frameworks in which users can develop robotic
applications (Micorsoft 2008, Mellado 2003), but they are not
specifically oriented to robot manipulator design. Although,
other platforms provide tools useful for robot kinematics and
dynamics simulation, as the Robotic Toolbox for Matlab
(Corke 1996) or Spacelib (Legnani 2006), but they are not
elaborated graphical interfaces and don’t provide robot

programming tools. Some projects as OROCOS (Bruyninckx
2001) and ROBOOP (Gourdeau 1997) allow covering this
empty space, but they haven’t an easy graphical interface and
so, their use requires important learning efforts. Furthermore,
they need an external compiler in order to perform any
simulation. In addition, there are several simulation platforms
as ROBOGUIDE (Fanuc 2008) and RobotStudio (Abb 2008)
developed by robot manufacturers in order to provide off-line
programming tools specifically designed for their robots.
Nevertheless, RobotScene provides modules for creating
solids, robots and robotic scenarios in an easy manner. It has
been developed using GLScene (a graphic motor for Delphi
based on Open GL). The programming capabilities (needed
for both inverse kinematics implementation and robot
programming) are provided by PascalScript, a Delphi
compatible interpreter that adds Pascal-based scripting
support to the Robot constructor module and the Scene
Constructor one.

2. ROBOT MODELLING: KINEMATICS

The first stage of the learning project is to model and solve
the kinematics of a commercial robot. To achieve this,
students must follow the Denavit-Hartemberg (DH)
convention (Denavit 1995), which allows obtaining forward
kinematics in a systematic way.

In order to achieve this stage, students must trace three steps
using two RobotScene modules: In first, by using the Solid
Constructor Module, students must create all the solids that
compose the robot manipulator, assigning each it a reference
frame compatible with the DH rules. In a second step, they
must mount the robot by using the Robot Constructor
Module, which allows defining all data related to joints (type,
range, DH parameters, home value, etc). Furthermore, this
module can be used for creating robotic tools as grippers,
welding equipment, etc. Once all the joints are created,
students can implement the inverse kinematics equations
using a specific programming interface over PascalScript and
run it in order to validate them.

2.1 Modelling the Robot Solids

Once the students have analyzed the morphology of their
assigned manipulator, identifying its joints and its solids, and
assigning them all their reference frames according to the DH
rules, they can begin to model their robot using RobotScene.
The first task that must be accomplished in order to
modelling a robot manipulator is defining the solids that
compose it. The Solid Creator Module provides basic tools
for modelling solids in an easy fashion. It contains a library
that includes the basic geometries (prisms, cylinders,
pyramids, spheres, etc) those composition makes possible the
design of complex solids. Moreover, the module contains
specific tools for modelling volumes generated by extrusion
and revolution, taking into account the relevance of these
geometries in the most of manipulators models. Fig. 1 shows
an example of complex solid composed by two cylinders and
a solid of revolution.

Fig. 1. Example of complex solid: two cylinders and a solid
of revolution

It must be noted that even thought each basic element has its
associated reference frame (the local frame); robot solids
must exhibit a unique one (the global reference frame), that
must accomplish the DH assignation rules. For instance, the
reference frame shown in Fig. 1 corresponds to this
mentioned global reference frame. Note that it’s about the
fourth solid of an articulated robot (the first solid of its wrist)
and so, its z axis corresponds to the fifth manipulator joint
(the flex wrist joint), according to the DH convention.

The solid creation module includes also some tools that are
useful for the solid design task:

• A tool for modifying all the geometry attributes.

• Tools for translating and rotating solids with respect
to different (local or global) reference frames.

• A tool for designing the material attributes (colours,
textures, etc).

• Tools for modifying the observer’s location

Finally, the module enables saving the created solids to an
ASCII file that contains all the solid attributes, enabling in
this form its edition and modification (with or without
RobotScene).

2.2 Assembling the Robot

Once all the manipulator solids have been created, students
can assemble their robots using the Robot Constructor
Module. For do this, students must have previously
determined both the DH parameters as well as the equations
that solve the inverse kinematics of their robot. According to
these previous tasks, the robot creation stage exhibits two
steps: the first one consists of defining in detail all the robot
joints while robot is being assembling. The second step is
related to the implementation of the equations that solve the
robot inverse kinematics, and will be treated in the following
subsection.

The complete modelling of each joint requires the definition
of the following parameters: the joint type (rotational or
translational), the constant DH parameters, the joint range,
the home joint value, the joint max velocity and finally, the
joint max acceleration. Fig. 2 shows the modelling of the
fourth joint of an articulated robot. Note that, depending on
the joint type, the variable DH parameter (θi in this case) will
be represented in the table by mean of its corresponding
variable identifier (qi). As we can see in the same figure, the
joint modelling is considered in the robot construction
process as a part of the solid addition procedure. For the
usual case of a six degree of freedom manipulator, this
addition procedure must be done for seven times (from solid
0 to 6).

It’s important to note at this point the role of the Denavit-
Hartenberg convention in the robot modelling process with
RobotScene: it determines not only the main part of the joint
modelling, but the form in which each solid has been created
as well.

Fig. 2. Modelling the fourth joint by using the Robot
Constructor Module

Once students have finished the robot assembly process, they
can use a robot guidance tool that allows them to move the

robot by dragging the joint-associated cursors or by
specifying robot destinations in joint coordinates. Note that
they can’t exploit the entire guidance tool potential (i.e. the
guidance in user coordinates) because inverse kinematics is
not yet implemented. Nevertheless, robot guidance in
combination with reference frames visualization, can aid to
the students to improve their understanding about the sense
of DH parameters.

Likewise solids created using by the Solid Creator Module,
robots can be saved in an ASCII file that contains all the joint
attributes and the complete file path for all the solids that
compose them.

2.3 Implementing the Inverse Kinematics Equations

In order to complete the robot modelling stage, students must
implement the equations that solve the inverse kinematics of
their robot. These equations must have been previously
derived by using either geometric or algebraic approaches.
For making possible the mentioned implementation, the
Robot Constructor Module provides a specific programming
tool based on PascalScript, that allows editing, performing
syntactical checking and compiling Pascal source code. As
starting point, students have a source file that includes
comments with useful information about the function syntax
and how to access all the needed data (user coordinates, DH
parameters and robot configuration data). During this
programming phase, students must pay attention to several
problems inherent to inverse kinematics, as ill-conditioned
equations and singularities detection and their treatment.
Appendix A shows an extract of an inverse kinematics
implementation, that shows the wrist singularity detection
and its treatment as a predefined error.

Once inverse kinematics is implemented, students can check
its correctness by using the robot guidance tool in the
following way: in first, they must move the robot to a
destination specified in joint coordinates. Next, they must
commute to user coordinates mode in order to obtain them
from the forward kinematics. Finally, they must move the
robot to these user coordinates, having selected previously
the adequate robot configuration. If the robot has not moved
during the last step, students can assure the correctness of
their inverse kinematics solution (the equations and their
subsequent implementation).

The inverse kinematics implementation is saved in a specific
source code file, and its existence is annotated on the
associated robot file.

3. ROBOT APPLICATION PROGRAMMING

The second stage of the learning project-based experience
consists in designing a robotic task by programming the
previously created robot. For do it, students must firstly
create a scenario that contains both the taking part application
objects and the robot. Secondly, they must design and mount
the appropriate robotic tool for performing the entrusted task
and finally, they must program the robot by using the

provided language. The following subsections describe
individually the mentioned steps.

3.1 Creating the Scenario

The scenario construction step requires the use of both the
Object and the Scene Constructor modules. By using the first
one, students must create all the objects belonging to the
scene. This process is similar to one described in detail in the
subsection 2.1. The main difference is about the object
reference frame definition: for a robot solid, its reference
frame should be compliant with the DH convention, whereas
for non-robot objects, the choice of their reference frame
depends on other factors. It also must be pointed that some
objects could take active part in the task, whereas some
others could be merely decorative objects.

Once objects and robots have been created by using their
corresponding module, students must place them into the
scene by defining the localization of their associated
reference frame. For do this, the Scene Constructor Module
allows defining these localizations in a structured form, by
selecting the most adequate reference frame with respect to
localizations are expressed. This means creating and
maintaining a hierarchy that reflects the dependencies
between the objects in the scene. Fig. 3 shows a simple
structured environment consisting of a robot and a table in
which there are three different objects. The corresponding
scene hierarchy showed at the right side (named the scene
management tool) of the figure shows that Robot and Table
localizations have been defined with respect to the Scenario
frame reference, whereas Cube and Cil2 localizations have
been defined with respect to the Table one. Finally, Cil1 has
been defined with respect to the Cube reference frame.

Fig. 3. Creating a simple localization hierarchy during the
scene creation phase

The scene management tool allows the users not only to
select any element (robot or object) in order to change its
localization, but to modify its role in the hierarchy by
dragging and dropping it as well.

3.2 Designing the Robot Tool

The robot tool is strongly related to the robotic application to
perform and it can be designed by using the specific
procedure provided by the Robot Constructor Module. Two
types of tools have been considered according to the
existence of mobile parts: static tools and dynamic tools (i.e.
grippers). Tool design requires the modelling of its different
parts as individual objects and the definition of its tool
reference frame by specifying the corresponding
transformation that will be added to kinematical chain. For
the usual case of gripers, users must also define the opening
range. Fig. 4 shows the tool definition window for a typical
gripper consisting of one fixed base and two mobile fingers.
Its corresponding reference frame has been defined by
specifying its position and orientation with respect to the last
robot reference frame (normally, the sixth reference frame
located on the tool mounting plate).

Once the robotic tool has been completely defined, users
must add it to the robot. This step can be performed with the
scene construction module, after the robot has been located in
the scenario. The grasping operation is internally performed
by using collision detection techniques provided by GLScene.
In this sense, only scene objects and robot tool solids are
considered for the collision detection analysis.

Fig. 4. Robot tool design

3.3 Robot Programming

Once the scene has been created, the last step to trace in order
to design a robotic application task is programming the robot.
For instance, Fig. 5 shows a complex scene in which, a
SCARA robot must weld the yellow frames to the surfaces in
which they are fixed.

For making it possible, the Scene Creator Module provides a
robot programming language and a programming-oriented
tool.

The language exhibits all the features of typical robot
programming languages related to robot setup, robot motion,
localisation data management, input/output and others.

Appendix B shows a summary of the language instructions
set grouped by categories. Note that the language provides
specific simulation domain instructions that allow importing
the localization data present in the previously defined scene
hierarchy. These instructions represent a useful connection
between the scene creation phase and the robot programming
one.

The robot programming tool consists of a programming
interface in conjunction with PascalScript. The programming
interface provides also editing, syntax checking and
execution management capabilities.

Likewise the other modules, the scene and the robot program
source code can be saved in their respective text files, making
possible in this form their subsequent modification without
RobotScene.

Fig. 5. Example of complex scenario that includes a SCARA
robot

4. LEARNING IMPROVEMENTS

Simulation tools can be an highly useful instructional aid. In
this case, two main learning aspects can be benefited from the
use of the proposed simulation tool in the context of an
industrial robotics related subject: the robot control and
modelling in-depth comprehension, and the acquisition of
robot programming skills. Lets treat each one separately.

The main learning improvements provided by the use of
RobotScene during the robot modelling phase, are: the better
comprehension of DH convention, and the in-depth
understanding of the inverse kinematics problem. As
mentioned before, all the robot design process, from the robot
solids design to their subsequent assembly, is strongly
influenced by the DH convention. RobotScene provides a
framework in which students can check in a visual form their
DH parameters, because any error will be reflected as a
wrong solid assembly. They can also benefit from the frame
reference viewing in conjunction with the joint guidance tool,
that allow them to improve their comprehension of the DH
parameters.

On the other hand, the inverse kinematics programming
allows understanding its authentic complexity, because

students must take into account some different problems
related to its nature and implementation, as singularities
detection and treatment, arising the use of ill-conditioned
equations, or the robot configuration selection enabling. At
this point it must be noted that the use of the robot in the
programming stage requires a carefully inverse kinematics
implementation.

Finally, RobotScene allows acquiring programming skills.
Some of them are related to general good programming
practices (readability, maintainability, etc). Nevertheless,
some other are specific to robot programming aspects. A
good example of these skills is related to the taking
advantage from the adequate structuration of the robot
environment. Note that the robot environment corresponds to
the scenario whose hierarchy has been defined during the
scene creation stage.

5. CONCLUSSIONS

RobotScene is not only a robot programming framework. It
allows constructing robots and robotic scenarios, avoiding the
use of proprietary software. Its use improves the robot
kinematics comprehension, and allows the students to acquire
robot programming skills. In consequence, it can be a useful
instructional aid in the teaching of Industrial Robotics.

REFERENCES

Abb (2008). RobotStudio: of offline robot programming for
ABB robots, http://www.abb.com/.

Bruyninckx, H. (2001). Open robot control software: the
OROCOS project. IEEE International Conference on
Robotics and Automation (ICRA), pp. 2523–2528.

Corke, P.I. (1996). A robotics toolbox for MATLAB, IEEE
Robotics and Automation Magazine, Vol. 3, No. 1, pp.
24-32.

Denavit, J. And R. S. Hartenberg (1995). Kinematic notation
for lower-pair mechanisms based on matrices
Transactions of the ASME, Journal of Applied
Mechanics, Vol. 23, pp. 215-221.

Fanuc (2008). ROBOGUIDE: a family of offline robot
simulation software, http://www.fanucrobotics.com/.

Gourdeau, R. (1997). Object oriented programming for
robotic manipulators simulation. IEEE Robotics and
Automation Magazine, Vol.4, No.3.

Legnani, G. (2006). SPACELIB: a software library for the
Kinematic and dynamic analysis of systems of rigid
bodies. U. di Brescia. http://bsing.ing.unibs.it/~glegnani/.

Microsoft (2008). Microsoft Robotics Developer Studio,
msdn.microsoft.com/robotics/.

Mellado, M. C. Correcher, J.V. Catret, and D. Puig (2003).
VirtualRobot: an open general-purpose simulation tool
for robotics The European Simulation and Modelling
Conference (ESM2003), EUROSIS, Naples, Italy., pp.
271–350.

Nethery, J., and M.W. Spong (1994). Robotica: a
Mathematica package for robot analysis. IEEE Robotics
and Automation Magazine, Vol. 1, No. 1, pp. 13-20

Romeo, A. (2008) Teaching aid for the subject Industrial
Robotics Anillo Digital Docente (ADD). Universidad de

Zaragoza
http://moodle.unizar.es/course/view.php?id=552.

Appendix A. INVERSE KINEMATICS EXAMPLE

// INVERSE KINEMATICS
//
// Returns the vector of joint coordinates that allows the tool
// reaching the desired localization. You have access to the
// Denavit-Hartemberg parameters in the following way:
// d,a,alfa,tita: array[1..num_joints] of single.
// In addition, the variable "configuration" will contain the
// previously selected configuration.
//
// DO NOT MODIFY THE FUNCTION HEADER

function inverse_kinematics(T:TTransformacion):Tarray;
var
 q:Tarray;
// for friendly notation purposes
 px,py,pz,mx,my,mz,nz,nx,ny,oz,ox,oy,ax,ay,az : single;
 r13,r23,r31,r32,r33,fi,aa,bb,c,r:single; // auxiliary variables

begin
 px:= T.pos.x;
 py:= T.pos.y;
 pz:= T.pos.z;
 nx:= T.n.x;
 ny:= T.n.y;
 nz:= T.n.z;
 ox:= T.o.x;
 oy:= T.o.y;
 oz:= T.o.z;
 ax:= T.a.x;
 ay:= T.a.y;
 az:= T.a.z;
// the wrist position when robot tool is a symmetric gripper
 mx:= px - ax*d[6];
 my:= py - ay*d[6];
 mz:= pz - az*d[6];

 // First joint
 if configuration[1]='front' then
 q[1]:= Atan2(my,mx);
 else
 q[1]:= Atan2(-my,-mx);

 // Second joint
 if abs(q[1])-pi/2<0.1 then
 begin
 c:=d[4]*d[4]-a[1]*a[1]-a[2]*a[2]+2*my/Sin(q[1])*a[1]-
mz*mz-my*my/(Sin(q[1])*Sin(q[1]));
 aa:=2*a[1]*a[2]-2*my/Sin(q[1])*a[2];
 end
 else
 begin
 c:=d[4]*d[4]-a[1]*a[1]-a[2]*a[2]+2*mx/Cos(q[1])*a[1]-
mz*mz-mx*mx/(Cos(q[1])*Cos(q[1]));
 aa:=2*a[1]*a[2]-2*mx/Cos(q[1])*a[2];
 end;

http://www.fanucrobotics.com/
http://www.fanucrobotics.com/
http://bsing.ing.unibs.it/%7Eglegnani/
http://moodle.unizar.es/course/view.php?id=552

 bb:=-2*mz*a[2];
 r:=Sqrt(aa*aa+bb*bb);
 fi:=Atan2(bb,aa);

 if r/(2*a[2])>=(a[2]+d[4]) then
 begin
 Kinematics_Error:=Too_Far;
 Exit;
 end;

 if configuration[2]='below'then
 q[2]:=fi+Acos(c/r)
 else
 q[2]:=fi-Acos(c/r)

 // Third joint
 if abs(q[1])-pi/2<0.1 then
 q[3]:=Atan2((my/Sin(q[1])-a[1]-a[2]*Cos(q[2])),-(mz-
a[2]*Sin(q[2]))) -q[2]
 else
 q[3]:=Atan2((mx/Cos(q[1])-a[1]-a[2]*Cos(q[2])),-(mz-
a[2]*Sin(q[2]))) -q[2] ;

 // Wrist joints
 r13:=
ax*Cos(q[1])*Cos(q[2]+q[3])+ay*Sin(q[1])*Cos(q[2]+q[3])
+az*Sin(q[2]+q[3]);
 r23:= ax*Sin(q[1])-ay*Cos(q[1]);
 r33:=
ax*Cos(q[1])*Sin(q[2]+q[3])+ay*Sin(q[1])*Sin(q[2]+q[3])-
az*Cos(q[2]+q[3]);
 r31:=
nx*Cos(q[1])*Sin(q[2]+q[3])+ny*Sin(q[1])*Sin(q[2]+q[3])-
nz*Cos(q[2]+q[3]);
 r32:=
ox*Cos(q[1])*Sin(q[2]+q[3])+oy*Sin(q[1])*Sin(q[2]+q[3])-
oz*Cos(q[2]+q[3]);

 if configuration[3] = 'Flip' then
 q[5]:= Acos(r33)
 else
 q[5]:=-Acos(r33);

 // Wrist singularity
 if abs(q[5])<0.001 then
 begin
 Kinematics_Error:=Wrist_Singularity;
 Exit;
 end;

 q[4]:=Atan2(r23/Sin(q[5]),r13/Sin(q[5]));
 q[6]:=Atan2(r32/Sin(q[5]),-r31/Sin(q[5]));

// Radians to degrees
 for i:=1 to 6 do q[i]:=q[i]*180/pi;
 result:=q;
end;

Appendix B. ROBOT PROGRAMMING LANGUAGE
SUMMARY

Basic operations with localization data

function NullTr:TTransform;

function Comp(T1,T2:TTransform):TTransform;

function Invert(T:TTransform):TTransform;

function Transf(x,y,z,yaw,pitch,roll:single):TTransform;

function RotYPR(yaw,pitch,roll:single):TTransform;

function RotEuler(alfa,beta,gamma:single):TTransform;

function Traslation(x,y,z:single):TTransform;

function Shift(T:TTransform; x,y,z:single):TTransform;

function ShiftRel(T:TTransform; x,y,z:single):TTransform;

procedure Speed(value:single);

function Where_Tool:TTransform;

function Joint_Values:TArray;

function
Import_Relative_Transform(name:string):TTransform;

function
Import_Absolute_Transform(name:string):TTransform;

Motion instructions

procedure Home;

procedure MovJoint(destination:Tarray);

procedure MovCoor(destination:TTransform);

procedure MovLin(destination:TTransform);

procedure MovRelCoor(destination:TTransform);

procedure MovRelLin(destination:TTransform);

procedure Drive(Num_Joint:integer;value:single);

procedure Stop(Miliseconds:integer);

Miscellaneus instructions (setup, I/O, etc)

procedure Open;

procedure Close(value:single);

procedure Tool_Transform(T:TTransform);

procedure Set_configuration(conf:string);

procedure Speed(value:single);

procedure Wait(i:integer);

procedure Signal(i:integer);

