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Abstract— This paper proposes an approach allowing indoor
environment supervised learning to recognize relevant features
for environment understanding. Stochastic preprocessing meth-
ods in combination with either of usual pattern recognition
schemes are used. Preprocessing method treated is a combination
of the Principal Components Analysis and the Fisher Linear
Discriminant Analysis well adapted to the sensorial information
and to the kind of environments considered. The supervised
method is applied to the raw range data obtained from typical
indoor environments, obtaining good recognition performances
without geometrical feature extraction, allowing its real time
implementation.
Our work focuses on the preprocessing method, giving a geo-
metrical interpretation of their main components, and analyzing
their robustness to shape distortions and scale changes.

I. INTRODUCTION

Most of objectives in mobile robotics (i.e. self-localization,
map building, navigation and place recognition) uses
geometrical and spatial reasoning. To achieve this, a kind of
environment description or map is required. Two basic types
of maps are used for global navigation: on the one hand,
precise metric maps are suited when precise robot localization
is required. Moreover, SLAM deals concurrently with map
generation and precise robot localization using a probabilistic
framework [1]. On the other hand, topological approaches use
an adjacency graph that represents significative locations and
its connections [2][3][4]. These maps are more compact and
less complex than metric maps and require a place recognition
module for global robot localization. Often, hybrid solutions
that combines metric and topological map are performed in
order to obtain advantages of both approaches [5].

Independently of the map kind, polygonal environments
are usually assumed and geometrical features as straight lines
and/or their geometrical compounds (e.g. corners, doors,
ceilings) are required in order to construct maps without
artificial landmarks addition [6]. Hard computational effort is
needed to obtain these geometrical features from sensor raw
data and maintain a consistent map.

But environment descriptions in geometrical terms are not
the unique possibility for our purposes. Appearance-based
methods propose alternative environment descriptions that
use some descriptive/symbolic features obtained directly from
the sensor raw data, arising high level geometrical feature

extraction and so, reducing drastically the gap between
sensor raw data and spatial reasoning. These methods have
been applied mainly to image analysis for face recognition
purposes [7], but also they are used by robotics community
in place recognition [8], robot localization [9] [10] and
navigation [12]. Applications in this area cope with the
problem associated to the high dimensionality of input image
data. All previous approaches perform the image analysis
in a stochastic framework. In particular, they use Principal
Component Analysis (PCA) as main method for project the
sensorial space onto less-dimensional one. However, there are
few works that use appearance methods applied to rangefinder
raw data. Crowley in [13] uses appearance methods only
for localization purposes in a local metric map. Recently,
Burgard et al. [11] use an alternative non-statistical (heuristic)
appearance method combined with AdaBoost algorithm for
place (rooms, doorways and corridors) recognition purposes
without classic walls geometric features extraction. In any
case, once raw data are processed, some recognition technique
must be applied for feature recognition purposes. In [15]
we can find a classical bayesian programming technique for
place recognition for non-distorted environments.

In our work we claim the use of appearance-based methods
applied to the raw data (pairs (d,α)) obtained from a laser
rangefinder sensor. Robot will navigate in a typical maze-like
context (see figure 1), in which navigation across corridors
represents the most important percentage of navigation
time. As the system is able to learn and recognize features
such as: Diaphanous corridor ( ‖ ), End of corridor ( �
), T-intersection ( � ), Turn to left ( � ), Turn to right (
� ), Left hand ( � ), and Right hand ( � ), we can obtain
a topological representation of the environment allowing
a further reasoning on it to localization or navigation. In
addition, a robust environment recognition system able to
recognize that compound features, no matter their size (i.e.
width and length of corridors) or whether they are irregular
(i.e. non-straight walls in a cave, non-polygonal scenarios) is
very useful due to its generality. A such system is the target
of this paper.

In order to recognize these features from raw sensor data,
some kind of preprocessing is needed. We propose here to
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apply a statistical analysis of input data (a kind of training
procedure), focusing our attention on two methods that project
the input space onto a lower dimensional one. The process
works in two steps: the first one consists of a Principal Compo-
nent Analysis (PCA): an unsupervised appearance-based tech-
nique; the second one, applies a Linear Discriminant Analysis
(LDA): a supervised method that enhances the discrimination
capacity in order to recognize the features. Based on this
information, it’s possible to build a topological map, provide
place recognition capability and make decisions for navigating
across the environment. Also, in order to provide environment
understanding, we’ll give a geometric interpretation of the
obtained components in shape terms.

The remainder of this paper is organized as follows: in
section II we present PCA and LDA preprocessing methods,
giving interpretation for the resulting main components in
shape terms. In section III a bayesian scheme for shape recog-
nition is described. In section IV, we analyze the robustness
of preprocessing methods proposed in II, increasing it for
distorted and scaled environments and providing the complete
recognition algorithm. Finally, in section V we’ll present some
experimental results.

II. PROCESSING RANGEFINDER RAW DATA: PRINCIPAL

COMPONENT AND LINEAR DISCRIMINANT ANALYSIS

The method developed in this paper allows to obtain the
features mentioned in the previous section, directly from the
raw rangefinder information. The goal is to transform this
information into another space in which the compound features
can be easily recognized in a robust way, in spite of their
size (scale) or their distortion. For this purpose a Principal
Component Analysis and then a Linear Discriminant Analysis
is achieved.

A. Principal Component Analysis

The aim of Principal Component Analysis [14] is to trans-
form the input space in a new space whose elements are

Fig. 1. Example of ideal simulated scenario and features.

uncorrelated (covariance matrix will be diagonal). In other
words, PCA performs a transformation in order to obtain a
new set of orthogonal axis in such a way that variance is
maximum. This process treats two important operations in all
perception processes: feature extraction and feature selection.
PCA performs feature extraction in the sense of enhancing
certain features without a clear geometric interpretation. In
order to reduce the dimensionality of the data, PCA improves
a variance-based arrangement of the components in such a
way that it’s possible to select only majors of them.

Formally, let’s x the data in a n-dimensional space P . We
want to find transformed data y in a new space P ′ obtained
through a linear transformation W in which the variance is
maximum:

y = Wtx (1)

The solution of this optimization problem shows that eigen-
values (λi) of covariance matrix ψx are the diagonal elements
of covariance matrix in new space (ψy), and eigenvectors of
ψx are columns φi of the transformation matrix W:

ψy = WtψxW = diag
(
λ1 λ2 . . . λn

)
(2)

W =
(
φ1 φ2 . . . φn

)
(3)

Elements of new space P ′ are uncorrelated (covariance ma-
trix is diagonal), and also, elements of ψy are arranged if
ψx is positive semi-definite matrix. In order to apply this
selection process to our identification system, we must define
a threshold which represents the minimum percentage of
contribution to global variance for considering a component.
The reduction rate will depend of statistical characteristics of
input set, and they’ll be affected by noise, robot localization,
environment shape and others. In this sense, PCA will present
high noise sensibility because noise increments the variance
of the input set, and surely will belongs to the selected group
of components. So, final transform matrix WPCA will be as
follows:

WPCA =
(
φ1 φ2 . . . φm

)
,m ≤ n (4)

yPCA = (WPCA)txnorm (5)

where xnorm is a normalized input vector (zero mean and
unitary standard deviation for each component): xnorm

i =
(xi − xi)/σi. In our case, vector x = (x1 . . . xn)t contains
the raw range data (181 values) belonging to one scan.
Vector yPCA will be the principal components of x. Figure
2 shows an example that provides understanding to PCA:
it shows the original raw data and its reconstruction from
Principal Components that consider the 90% of the variance
(10 components). It seems clear that the essential geometric
information is contained in a few number of components. This
fact will be utilized for reducing the information provided to
the following step of the feature learning process. Note also
the treatment of distance discontinuities: PCA performs clearly
an interpolation that can be interpreted as a kind of low-pass
filtering.



Fig. 2. Original feature (+red) and its reconstruction (.blue) using only 10
Principal Components

Let’s analyze in detail the PCA, finding some geometrical
interpretation in shape and/or robot localization terms. For all
environments, a component will be suitable for discrimination
purposes if its mean value are quite different from all others
and their variance are small. Figure 3 shows mean and standard
deviation values of the seven major Principal Components for
each environment. These values have been obtained for 2292
different localizations in front of each feature. Localizations
have been selected in such a way all the essential parts of
features are visible (within a band of 0.6 m. with respect to the
central axis, an angular range of 0.1 rad and a distance range
from 3 to 1 meter with respect to nearest part of the feature).
As we can see, the first component is not suitable for shape
discrimination because its variance is high for all features
(their ranges are clearly overlapped). However, the second
component is highly suitable in order to distinguish between
T-intersection (�) and, for example, diaphanous corridor (‖).

Also, we can to analyze correlations between Principal
Components and robot localization q = (x, y, θ). In this sense,
the first principal component is highly correlated (0.95) with
y, and the second one is also strongly correlated (0.97) with
x for all closed environments (�,�, �, �), being a detector of
distance to the end of feature. We could reduce the variability
of components limiting the robot location range from which
the feature is recognized, i.e. with the robot centered in front of
features.So, the Principal Component information can be used
to improve the visibility of the feature (active perception), but
this is out of the scope of this work.

The main problem of PCA components is that it is an
unsupervised method and so, whereas it exhibits certain op-
timal properties (uncorrelated features, maximum variance,
minimum reconstruction error), they may not be necessarily
optimal for shape recognition (and also, for robot localization).
N. Vlassis et al. in [9] propose an alternative supervised linear
projection in order to optimize the performance of the robot
localization task.

In summary, some positional information (x,y) can be
extracted from PCA components, but it isn’t yet possible to
discriminate the features. Figure 4 shows an alternative spatial
representation of principal components 2, 3 and 4 for all the
features. Thus, we can use some discriminant function for this

0 1 2 3 4 5 6 7 8
−20

−10

0

10

20

30
Diaphanous corridor
End of corridor
T−intersection
turn to left
turn to right
deviation to left
deviation to right

Fig. 3. Mean and standard deviation values (2σ) of the seven Principal
Components particularized for each feature.
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Fig. 4. Principal components 2, 3 and 4. Black axis represent the three
optimal directions for feature discrimination

objective. In this sense, seeing Fig. 4, it seems clear that we
can separate features using linear projections (planes). This
fact allows the use of some linear discriminant functions, as
proposed in next subsection.

B. Linear Discriminant Analysis combined with PCA

Fisher discriminant function [14] allows to find the lin-
ear combination y of input parameters that maximizes the
Rayleigh ratio:

y′By
y′Wy

(6)

Numerator represents the variability between groups (W is the
sum of covariance matrix in each group), whereas denominator
corresponds to variability inside groups. The resulting linear
combination emphasizes those components with high discrim-
ination capacity. The solution is provided by eigenvectors of
W−1B. Only q − 1 eigenvectors φi associated to the q − 1
higher eigenvalues will be linearly independent, being q the
number of features to discriminate. So, the transformation
matrix will be:

WLDA =
(
φ1 φ2 . . . φq−1

)
(7)

and so:
yLDA = (WLDA)tx (8)

where yLDA = (y1, . . . , yq−1)t, and x = (x1, . . . , xn)t.
Notice that columns of WLDA represent directions in which



discrimination capacity is optimal (in general they are not
orthogonal). In Fig. 4 we can see the three directions in which
we can discriminate optimally all the features.

In summary, we propose combining PCA and LDA methods
in two phases process: first, we can obtain those principal
components that contribute in some way to the variance (re-
moving components that correspond to very low contributions
to variance). So, all relevant information will be preserved in
the new space. Covariance matrices in this space are diagonal
and thus, non singular. Then, in a second phase, we can
perform LDA in order to obtain discriminant components.
Combining (5) and (8):

zLP = (WLDA)t(WPCA)txnorm = (WLP )txnorm (9)

where zLP = (z1, . . . , zq−1)t is the discriminant components
vector, and xnorm = (xnorm

1 , . . . , xnorm
n )t is the normalized

input vector. Applying this technique to a typical indoor
environment (such as the Fig. 1), we obt5ain the following
results: in a first phase, PCA preserve 99.9% of variance in 60
components. In the LDA phase, six discriminant components
are obtained from the 60 previous selected Principal Compo-
nents. Note also that first PCA phase improves a significant
dimensionality reduction of the input space (from 181 to
60), and thus, posterior LDA process will be more efficient,
as we’ll see in section V. Fig. 5 shows the mean and 2σ
values of each component and feature. As we can see, these
components are more suitable for shape classification than
Principal Components, and it’s possible intuitively to find a
geometrical interpretation of the major components:

• First component can be considered as a free space de-
tector, because it emphasizes differences between closed
(�, �, �, �) and open (‖, �, �) features.

• Second component can be interpreted as a lateral detector:
it distinguishes between symmetrical, left oriented and
right oriented features.

• Third component allows to distinguish between the end
of corridor (�) and the T-intersection (�) features.

From these three components it’s possible to classify input
scan raw sensor data transformed by LDA + PCA transfor-
mation matrices and, as we’ll see later, the proposed method
exhibits robustness when the robot is not centered in the
features.

Its important to note that the proposed combination is a
supervised method (as the method proposed in [9]), since
LDA components are obtained under an optimization criteria
in order to emphasize their discrimination capacity.

III. FEATURE RECOGNITION TECHNIQUE

Once obtained the Fisher’s discriminant components, we
can apply some pattern classification strategies in order to
recognize features. Bayesian decision theory is a fundamental
statistical approach to the problem of pattern classification.
The method can be formally described as follows:

Let {ω1, . . . , ωq} the set of q environments to be recognized
and let z the feature vector (Fisher’s discriminant compo-
nents). The posterior probability P (ωj |z) can be obtained by
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Fig. 5. Mean and standard deviation (2σ) values of the discriminant
components.

the Bayes formula:

P (ωj |z) =
p(z|ωj)P (ωj)

p(z)
=

p(z|ωj)P (ωj)
c∑

j=1

(p(z|ωj)P (ωj))

(10)

where p(z|ωj) is the likelihood, P (ωj) is the prior for the j-th
feature and p(z) is the evidence factor. Likelihoods correspond
to a normal density function. We can also integrate past time
in our scheme in a simple way: the prior probability for each
environment will be obtained considering the weighted average
of posterior probabilities over a temporal window that consider
previous W steps:

P (ωj) =
W∑

k=1

ckPk(ωj |z) (11)

where ck is the weight coefficient for the k previous step, w is
the width of temporal window (in steps), and Pk(ωj |z) is the
posterior probability obtained at k previous step. In order to
provide some type of memory decay we can obtain weighting
coefficients using the following exponential function:

ck = ek/Wτ (12)

where τ represents the constant time for memory decay as
a fraction of window width. This allows to filter spurious
measurements, and delay the effect of entering in transition
zones. Kalman Filters or Hidden Markov Models can be used
as alternative ways. Finally the decision rule choose the feature
with higher posterior probability.

IV. ROBUSTNESS ANALYSIS FOR THE FEATURE

RECOGNITION SYSTEM

Most of feature recognition methods are based on ideal,
non-distorted geometric features. In order to extend our recog-
nition system to real environments, it’s desirable to recognize
lightly distorted features. Also, shape recognition should be
independent of scale factors. So, we’ll analyze separately
robustness to added noisy features and robustness to scale
changes in following sub-sections.
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Fig. 6. Example of distortions considered.
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Fig. 7. Scale factor influence in PCA + LDA transformation.

A. Robustness against noise

Sometimes, real environments exhibit little changes in their
geometry with respect to initial idealizations. In some cases,
these changes are referred to little features initially not consid-
ered (e.g.: frames of the doors). In other cases environments
are not structured (natural scenarios) and so they don’t exhibit
straight lines. We can distinguish several sources of noisy
features:

• Little permanent added structured features (frames of
doors, windows, parts of structural columns, etc).

• Unstructured distortions of environments (i.e. corridors in
caves).

• Non reflected ray and sporadic bad reflections.
• Noise over measures introduced by sensor.

Fig. 6 shows the two kind of distortions above considered.
It’s well known that regularization allows to reach a tradeoff
between generalization capacity and overfitting. Bishop in
[16] proves that training with noise is equivalent to Tikhonov
regularization.

B. Robustness to scale changes

In order to analyze the size/scale dependencies, we compare
the results of applying PCA+LDA transform matrices obtained
from non-scaled environments to scaled non-distorted envi-
ronments (see figure 7). In order to analyze the scale factor
influence, we can rewrite (9) for scaled environments as:

zLP = (WLP )tΣ−1(Kx − x) (13)

where K is the scale factor, Σ−1 is a square diagonal matrix
formed by the inverse of variance for each input component
for the train set and x is the mean input raw scan vector of
the training set. We can write seven linear equations (one for

each feature) that relate the scale factor K with the mean
input vector for each feature. Let’s xj the mean input vector
(training set) for the feature j, and zj the mean vector of
discriminant components for the same feature. The previous
general expression can be particularized for the j feature as:

zj = K(WLP )tΣ−1xj − (WLP )tΣ−1x = AjK +C (14)

Where Aj and C are known (C is the same for all en-
vironments and Aj must be computed from train set for
each environment). For example, considering the diaphanous
corridor case (j = 1), we can compute the mean input vector
for the train set, and we will obtain the following values for
Aj and C vectors:

Aj = (−4.31, 2.96, 16.15, 3.72,−7.61,−6.49)t

C = (1.49,−3.04,−18.12,−3.13, 7.72, 6.60)t

From figure 7 we can note that mean values for 6th discrim-
inant component (a component without a clear geometrical
interpretability) are approximately the same for all the features,
and consequently, we can use it for scale factor detection.
Once the scale factor value K is known, we can reject its
influence simply affecting the input raw vector by K−1 and
then applying the recognition protocol described in previous
sections.

The overall process detailed in previous sections can be
described by the following recognition algorithm:

TABLE I

RECOGNITION ALGORITHM

Off-line processing on the training data:
begin

Obtain xt, Σ−1 and WLP . Then compute C from (14);

For the j feature, obtain xj
t and then compute Aj from (14);

end
On-line recognition process on the current data x:

begin
Compute zLP applying (9). Select the 6th component;
Compute K applying (14) to the 6th component;
Apply K−1 to the input test vector x;
Obtain from (9) the new zLP without the scale influence;
Apply the bayesian recognition procedure proposed in section III;

end

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of our recognition
system, we have developed two different experiments: the
first one has been performed over a simulated ideal scenario,
whereas the second experiment has been performed in a
real (and distorted) one. In advance, we wish to note the
low computational cost of the proposed method: 92µsec for
the preprocessing PCA+LDA product (9) applied to each
rangefinder scan, over a Pentium IV processor (3.4 GHz)
executing MATLAB.

A. Test over simulated scenarios

The training set for parameter extraction is formed by 2904
laser scans of the seven selected features obtained from sim-
ulated environments. For testing purposes, we have designed



TABLE II

PERCENTAGE OF CORRECT RECOGNITION FOR EACH FEATURE IN THE

SIMULATED IDEAL SCENARIO

‖ � � � � � �
99.2% 100% 98.4% 100% 100% 98.5% 78.7%

an experiment over a simulated scenario (Fig. 1) in which we
can find all the features treated in this work. The experiment
as been designed as follows:

• Recognition system operates each 0.5 meters along the
corridor axis.

• For each axial position, we test the system in 25 com-
binations of transversal position (-0.1 to 0.1 meters) and
orientation (-0.04 to 0.04 radians).

Fig. 1 shows the sequence of places (topological path) visited.
Dark areas represent the regions where our system must
identify (these areas exhibit training compatibility) the feature
in front of the robot. Note that the shape recognition procedure
is very conditioned by training set selection. In our case, we
have used a restrictive training policy: only when the features
are sufficiently near, the robot must be able to recognize them.
Anyway, if the robot is too near to the features, some essential
parts of them can disappear of the sensing area. For this reason,
out of dark areas, the recognition system could classify the
feature as unknown. However, in such areas adjacent to the
above mentioned, the system recognizes the feature, exhibiting
in this form its robustness. Table II shows the recognition
performance for the different features included in the proposed
path. Note the low value for the right hand feature. It’s due to
a front-end apparition when the system is recognizing the last
right hand. In other words, two features (� and �) are visible
at same time and consequently this situation is classified as
unknown. These kind of problems require a different treatment
to separate the sensed features, and it’s being treated in an
ongoing work. As we can see, the proposed method has a
potential discriminant power for its use in maze-like scenarios.

B. Test over real scenarios

In order to evaluate the performance of our recognition
system, we have used the data collected from the A level of the
CMU - Newell-Simon Hall by a Sick PLS laser range finder
mounted on GRACE robot. This data set was obtained from
the Robotics Data Set Repository (Radish) [17]. Thanks go to
Nick Roy for providing this data.

Fig. 8 shows the path visited. Grey narrow areas represent
regions where our system should identify (these areas exhibit
training compatibility in position) the feature in front of the
robot. In this sense, it should be noted that:

• Some features are quite different than the employed
in training phase in the ideal simulated scenario (they
present distortions or added obstacles).

• Some corridors have different width than the employed
in training phase

Fig. 8. Path along experiment. Grey areas indicate training compatibility
zone for feature recognition.

• A relevant part of robot path is outside areas of train
compatibility.

As mentioned earlier, the feature recognition procedure is
very conditioned by the training set selection and so, out of
mentioned compatibility areas, the recognition system could
classify features as unknown. However, in such areas adjacent
to the above mentioned, the system recognizes the feature,
exhibiting its robustness. Table III shows the performance of
recognition system for the different features included in the
proposed path. The first row shows global results whereas rows
2 and 3 show results for two different areas denoted as A and B
in Fig. 8. The reason for distinguishing two different areas in
order to analyze results is that we can find an area (denoted as
B) in which we observe heavy distortions in features i.e. non-
polygonal turns (see Fig. 9(a)) and also, several (compound)
features are visible at same time. These compound features
(see Fig. 9(b)) can be classified as unknown because its
novelty. In order to improve more robustness in these cases,
it should be necessary to separate the sensed features as
mentioned in previous sub-section. Moreover, the robot path in
this area differs a lot of the employed in training phase. On the
other hand, area denoted as A presents more clear (and clean)
features, and we can expect results not conditioned by heavy
distortions and feature compositions. Analyzing the results for
this case, we can conclude that for all the features present in
A area (‖, �, � and �), results are very good, and reflect the
suitability of our recognition procedure in order to apply it in
scenarios with features different (in shape and size) to the ones
used in the training phase. In addition, erroneous recognitions
are concentrated in zones adjacent to ones in which some
essential parts of features are lost. Figure 10 shows an example
of this fact: erroneous results are concentrated in two zones,
far fromo the feature and on it, as was expected (in these zones
essential parts of the feature are not visible). Note also that



(a) distorted feature (b) compound feature

Fig. 9. Robustness of recognition procedure. Two different cases

Fig. 10. Robustness example: x dots represent erroneous classification
whereas o dots represent good classification. Green area in the center of the
corridor indicates training compatibility zone for feature recognition.

the path analyzed is even out of training compatibility area,
exhibiting in this form the robustness of the proposed method.

Results for the features present in B area reflect above
mentioned: note the low values for �, � and � features. In
the first case, the unique feature included along the path is
seriously distorted, and consequently, final results reflect this
fact. In the second case, distortion is provided by a walking
person that passes near to the robot, and finally, for the unique
� feature present, the robot lost visibility of essential parts of
the feature.

With this experiment we wish to highlight that our method is
quite robust in real environments. Notice that the training set
used is based on simulated environments, but the technique
is applied to another different environment and in different
conditions to the applied while system learns.

VI. CONCLUSION AND FURTHER WORK

In this work we have presented a method that provides
environment recognition in terms of semantic classes, using
Principal Components and Fisher Discriminant Components
techniques. The environment descriptions don’t need to ob-
tain geometric features, requires low computational efforts,
sinze only it’s necessary to compute one matrix product
(WLP ) in real time, and features are computed from the laser
rangefinder raw data. The method is suitable for a topological
feature recognition and for topological map building and place
recognition. From the experiments, we can conclude that

TABLE III

PERCENTAGE OF CORRECT CLASSIFICATIONS FOR EACH FEATURE

‖ � � � � �
Global 94.7% 97.2% 71.6% 37.4% 59.1% 30.0%

A area 94.7% 100.0% 94.1% – 100.0% –

B area – 95.5% 41.4% 37.4% 47.5% 30.0%

the technique works in real environments and is robust to
some distortions and scale changes. As a further work, we’ll
extend the recognition procedure to other topological features,
accomplishing a specific treatment for compound features, and
providing a topological localization method.
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