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Abstract: - The aim of this paper is to show a comparison between two control design strategies applied to
particular case. The controller must allow to maintain the desired position of a ball on a bar whose inclination can
settle down by a cc motor coupled in its center. The paper shows and evaluates the cost and the performance of
two control strategies:

• State space based controller

• Fuzzy controller

And it compares and discuss the choose of both strategies applied to this particular case. In the University of
Zaragoza a system’s prototype has been developed. Over this prototype has been implemented the controllers
designed according both strategies.
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1 Introduction
The two more classic examples of unstable systems
presented in the study of control theory are probably
the ball on the bar and the inverted pendulum. their
control is approached in diverse ways that allow to
evaluate the different used strategies. In the University
of Zaragoza a system’s prototype has been developed.
Over this prototype has been implemented the
controllers designed according both strategies.

Fig. 1. Prototype they are carried out the tests

2 System identification. State
space model
With purpose of simplifying the process of obtaining
an acceptable mathematical model, certain
simplifications have been assumed:

• The system has been linearized for small angles.

• Dynamics of the ball and the bar are considered
non-coupled.

• Angular looseness of the reductor has been
rejected (± 2º aprox.)

These simplifications allow to identify in a simple way
(via non parametric methods) the two subsystems in
those that the global system can be divided:

• The first subsystem is formed by the cc motor
and the bar. Its entrance is the motor tension and
its exit is the angular position of the bar. By
means of a simple experiment the following
transfer function has been determined:
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• The second subsystem is formed by the bar and
the ball. Their entrance is the bar’s inclination and
its exit is the ball’s position. Experimentally the
following transfer function has been determined:
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Fig. 2. motor-bar and bar-ball subsystems

Starting from the differential equations that define the
system in the time domain, the following group of state
variables is chosen:
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Expressing these differential equations in matricial
form, the state space model is obtained:
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3. State space based controller
Using the pole placement with integrator design
technique, the matricial form of the system’s model is
the following one:
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Where ( )x ks  represents the state of the system and

( )x ki
 represents the state of the integrative one.
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Fig. 3: State space controller

If closed-loop poles are placed so that system
dynamics matches with a second order with a double
real pole and three dominated poles, and fixing a settle
time tr, desired closed-loop poles will be:
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Applying the Ackermann’ formula, we can obtain the
feedback gains in function of the settle time, shown in
the first table.

tr 3 4 5 6 7

K1
361.6430 183.7239 101.8628 60.5961 38.1514

K2
176.6126 116.0502 79.1575 55.9736 40.8615

K3
124.6055 99.3881 80.2440 65.7531 54.6721

K4
8.2114 7.26441 6.4033 5.6358 4.9562

K i
-22.7864 -8.9115 -4.0106 -2.0065 -1.0897

Table 1. Feedback gains in function of response time

Since the ball’s speed is not available for direct
measurement, a minimum-order state observer has
been implemented to estimate this speed. The pole of
the observer is chosen so that its dynamics is four
times quicker than the closed-loop controlled system.
So, the vector gains of the observer will be:
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The different values of the observer gain in function of
settle time are shown in the following table:

tr 2 3 4 5 6 7

Ke
6.1326 4.6918 3.7811 3.1614 2.7143 2.3771

Table 2. Gain of velocity observer



4. Fuzzy controller
Fuzzy logic control design methodologies are justified
because imprecision of the mathematical model used
previously. Rule-based controllers try account the
human’s knowledge about how to control a system
without requiring a mathematical model. The model is
given by a group of inference rules that operate on
fuzzy sets.

Rule-based
controler φ(x)

u(k)

r(k)

x(k)

y(k)

Fig. 4. Control outline

A base-rule that contains expert’s linguistic description
of how to achieve good control has been implemented.
This base-rule operates on three linguistic variables
that results from fuzzyfication of the ball’s relative
position, of its lineal speed, and of the bar’s angular
position.

Fig. 5. Fuzzy sets and its memberships functions

In the table 3 the cubic base-rule is shown prepared in
layers corresponding to the three possible angular
position linguistic values.

Applying this base-rule previously to the defined fuzzy
sets, and by means of a simple process of
defuzzyfication (Center Average of Maximum [COX
92], [PASSINO 98]). the control surfaces
particularized for the different angular positions of the
bar are shown in the figure 6.

NEGATIVE FAST- CERO FAST+

FAR- +++ +++ ++

NEAR- +++ ++ ++

OK ++ ++ ++

NEAR+ ++ ++ +

FAR+ + + 0

CERO FAST- CERO FAST+

FAR- +++ ++ 0

NEAR- +++ + --

OK ++ 0 --

NEAR+ ++ - ---

FAR+ 0 -- ---

POSITIVE FAST- CERO FAST+

FAR- 0 - -

NEAR- - -- --

OK -- -- --

NEAR+ -- -- ---

FAR+ -- --- ---

Table 3. Inference base-rule disposed in angle layers.

Stability and robustness
 Stability and robustness analysis of systems controlled
by a non-linear rule-based controller can be carried out
in an approximated way using the system’s state space
model ([ARACIL 89], [HOLGADO 95]):

 Suppose that the system’s model is the following state
equation:

& ( ) ,x f x bu x R u Rn m= + ∈ ∈            

 and that the rule-based controller is described by the
following state function:

u x= =φ φ( ) ( )     0 0

 It is desired that the origin is a equilibrium point. The
stability in this point will be insured if this point is an
attraction point and it is the only equilibrium point.
Hence:
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The first condition is related with the loss of stability
when real or complex eigenvalues cross the imaginary
axis toward positive values of its real component,
while the second is related with the uniqueness of the
attraction point. In this case these conditions implies
the non-negativity of three indexes I1,I2 and I3. Both
first they are associated to the first condition, and they
will be obtained from the jacobian matrix of the
controlled system:
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Fig. 6. Control surfaces for some negative angle
positions of the bar. The case of positive angles keeps

symmetry.

The evaluation of those partial derivatives in the origin
can be carried out from the cut of the control surface
with the vertical planes of null position and null speed,
as well as of the limits of the fuzzy sets for the angular
position and the rule-base. This process allows to find
the characteristic equation, and the indices I1 and I2:
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The previous results show the stability in the origin
with the used controller. The global stability will be
insured with the non negativity of the third index. This
index is calculated as the minimum distance between
the state function and the controller's action for a
unidimensional space denominated auxiliary space that
excludes an area around the equilibrium point. In this
case, the auxiliary space corresponds to a horizontal
axis in function of the position when the angular
position of the bar and the speed of the ball are null.
The index I3 belongs together with the distance from
the horizontal axis to the plane area of the resulting
graph of intersecting the control surface for horizontal
bar with the plane of null speed:

53 =I

The robustness of fuzzy controller is increased with the
value of these three indexes.

5. Results and comparative analysis
Figures 7 and 8 shown the behaviour of the ball when
this part of a position far from the center of the bar (-
45 cm) for the two developed controllers.

a) Transient and steady response: In both cases a
oscilant behaviour is observed in steady state due to
the existence of a serious angular looseness ( ± 2º ).
The width of this oscillations will be related with
the dynamics demanding. For the fuzzy controller
the width of this oscillations is smaller than state
space controller, but they are associated to greater
oscillations in the angular position of the bar. This
result is explained by the dynamics that the fuzzy
controller demands in the area of lineal work
around the equilibrium point (-2.6<x<2.6, -
6<dx/dt<6, -0.07<θ<0.07). This dynamics is
comparable with the one imposed by a state space
based controller designed by pole-placement method
to provide a response time to the step of 2 seconds.

The transient response in the case of fuzzy
controller is complex to adjust without affecting the
steady response, and in this case it is worse than the
transient response for state space controller.
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Fig. 7. Relative position and control action for a
reference steep of 0.45 meter. Fuzzy controller

b)  Development time.: The time spent in adjusting the
base-rule, the limits of fuzzy sets and the magnitude

of the control actions is much higher than the spent
in the identification of the mathematical model and
the state space controller design. It is complex to
define rules that operate on three variables at the
same time. The adjustment process would be
simplified notably using state space controllers as a
reference, because they can give us an idea of the
weight of the different feedback, indicating us the
guidelines to continue. This strategy can be very
useful from the practical point of view, although it
con be discussed from the theoretical point of view,
because it uses the mathematical model of the
system that the fuzzy logic seeks to ignore.

6. Conclusions
Fuzzy controllers offer in certain circumstances, clear
advantages over conventional controllers:

• They materialise in form of inference rules the
human reasoning, conjugating the inherent
imprecision of natural language with the expert’s
knowledge about how to control a system.

• They allow to control non lineal systems in an
appropriate form.

• They allow to obviate the systems’ mathematical
model. This is very useful in those cases that don't
have these models, or the available models are
very imprecise.

The comparison of the two control strategies makes
sense because the environment of the fuzzy controllers'
application is not well defined. The system purposed in
this paper had some lacks in their mathematical model
that made attractive the implementation of a fuzzy
controller. However, some difficulties in its design and
implementation can dissuade its use:

• It is complex to enunciate intuitively rules that
relate three variables.

• Controller adjust is very time-consuming. If the
system’s mathematical model is ignored, it is
possible to design incorrect controllers. A clear
example of this is shown in the figure 8. An
apparently acceptable behaviour is detected with a
fuzzy controller in comparison with the
corresponding state space controller designed to
obtain a 6 seconds response time. but fuzzy
controller is unstable in the equilibrium point
because there is a repulsion point flanked by two
attraction points in its proximity. This
circumstance isn’t accomplished if it isn’t carried
out a formal analysis using the mathematical
model

• Serious difficulties in the adjustment of the
transient response.



The key is to choose the appropriate application
environment of both controller types. In this case, the
cost of extracting a sufficiently precise mathematical
model is notably inferior to the cost associated to
design the inference base-rule and the adjustment of
fuzzy controller.
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